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INTRODUCTION

The human face is a fascinating and complex topic, as it serves as the primary means of 
verbal and nonverbal communication for the majority of individuals. A key component in 
normal facial functioning is the seventh cranial nerve, appropriately called the facial nerve. 
The facial nerve generally terminates into five motor branches; the temporal, zygomatic, 
buccal, marginal mandibular, and cervical branch, which control the muscles most 
important for facial expression [1–3]. Although certain muscles might be innervated by 
multiple terminal branches, each branch has a general region of innervation. The temporal 
branch innervates the area of the forehead including the eyebrows, the zygomaticus 
innervates the eyes, the buccal branch innervates the middle part of the face including 
nose, cheeks, and upper lip, the marginal mandibular branch innervates the lower lip and 
chin, and the cervical branch innervates the neck [1–3]. As the facial nerve plays a major 
role in a wide variety of facial movements an impairment of the facial nerve can result in 
a significant impact on the physical, social, and emotional quality of life of a patient [4–8]. 
A unilateral peripheral facial palsy (PFP) is a symptom caused by a lesion to the facial 
nerve on the ipsilateral side of the face. The PFP may result in either a partial loss of nerve 
function which limits the range of voluntary movement (paresis), or a complete loss of 
nerve function resulting in the inability to move (paralysis). Apart from the palsy itself, other 
symptoms can accompany a PFP, such as an altered facial sensation, vestibular dysfunction, 
excessive tearing, hyperacusis, phonophobia, dry eyes, and taste disorders [9,10].

To diagnose a PFP it is first important to determine whether the symptoms relate to 
a central or peripheral facial palsy [9,11,12]. In case of a central lesion, a patient can 
still move their forehead and close their eyes, as the upper half of the face is bilaterally 
innervated [3]. When a central facial palsy is excluded, the cause for the PFP needs to be 
determined. As there are over 50 etiologies that can affect the facial nerve function, the 
patient history and physical examination will play an important role to determine the cause 
of the PFP [10,11,13–15]. Some of the most common causes of a PFP can be categorized 
as infectious (Lyme, otitis media), viral (varicella zoster virus, herpes simplex virus), 
neoplastic (acoustic neuroma, parotid malignancy), and traumatic (fracture, birth trauma) 
[10,11,13,14,16]. In case of a lacking explanation of the PFP it is called an idiopathic PFP. 
The idiopathic PFP is the major contributor of the PFP cases with 40% to 70% of the cases 
and an annual incidence rate of 10 to 40 cases per 100,000 individuals [10,13,14,16,17].
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The treatment plan will depend on the exact cause of the PFP, but eye care is generally 
the most important factor during any acute episode of a PFP due to the potential inability 
for the patient to close their eye [11,13,18]. To prevent the cornea from drying out and 
become susceptible to injury several interventions can be recommended such as the 
usage of eye drops, wearing an eye patch, or adding weights to the top eyelid [11–14]. 
Additionally, a corticosteroid therapy such as prednisolone is regularly administered in 
case of an acute idiopathic PFP with the most common dosage of 60 mg prednisone 
per day for approximately 5 to7 days followed by a 5-day taper [14,16,18,19]. In case of 
idiopathic PFP, antiviral drugs can be used alongside corticosteroids, such as acyclovir 
and valacyclovir, although there is no consensus regarding the optimal dosage [13,14,18]. 
If Lyme disease is diagnosed, antibiotics such as ceftriaxone or doxycycline can be 
administered [13,14,18]. Apart from pharmacological intervention, there are several 
methods to possibly improve rehabilitation, such as surgical intervention, mime therapy, 
physical therapy, biofeedback, and electrotherapy, although the latter is thought to be 
obsolete nowadays [4,18,20].

During rehabilitation, an estimated 40% to 70% of patients will fully recover from a PFP 
[10,16]. In case of idiopathic PFP the recovery rate can be as high as 85% to 94% [10,16]. 
The rate of recovery will also depend on other factors such as the cause of the PFP, 
the initial severity of the PFP, voluntary activity in needle electromyography, and patient 
age [10,16,17]. The onset of recovery can be relatively fast where 85% of patients with 
a PFP see an improvement in facial function within three weeks [10]. In the remaining 
15%, some facial functioning generally begins to return after 3 to 5 months. Four percent 
of the patients remain with severe sequelae, including hemifacial spasms, contractures, 
or synkinesis. Synkinesis is the involuntary and undesirable activation of facial muscles 
during the execution of a desired voluntary facial movement of a different facial muscle 
group [21]. An example is the closing or narrowing of the eye during a smile. Synkinesis 
is thought to be caused by regrowth of the facial nerve fibres in the incorrect region, 
resulting in the innervation of an unwanted facial muscle [21].

1
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GRADING OF A PERIPHERAL FACIAL PALSY

During the initial onset and progression of the PFP it is crucial to be able to assess the 
severity of the PFP. This requires a grading system that is sensitive to clinically relevant 
changes in facial nerve functioning, whilst being reliable and easy to implement in clinical 
practice. There are over 19 grading systems available to determine the severity of a PFP 
where the conventional subjective grading system was the House-Brackmann scale 
which was introduced in 1985 [12,19,22–25]. The House-Brackmann scale categorizes 
a PFP on a scale from normal functioning (Grade 1) to a complete palsy (Grade 6) [24]. 
By representing the PFP with a single global score, the overall grade is often assigned to 
the poorest functioning muscle group. This may not be representative of all muscular 
function and might be insensitive to changes during the rehabilitation of the PFP. 
Therefore, alternative grading systems have become more popular in the last decade. 

The Sunnybrook Facial Grading System (SFGS) is emerging as one of the most popular 
PFP grading systems, which was introduced in 1996 [12,25–27]. During this time, the SFGS 
has been recommended multiple times as the standard grading system for PFP due to its 
clinical relevance, sensitivity, and reliable measuring method [12,19,22,23,25]. Therefore, 
the SFGS is routinely used at the Radboudumc in the Department of Otorhinolaryngology 
and the Department of Physical Therapy for the grading of patients with a PFP. The SFGS 
achieves the clinical relevance by assessing the facial nerve function of the muscles most 
important for facial expression and compares the function between the healthy and palsy 
side of the face. A total of 13 individual elements are assessed which are grouped into three 
subcomponents; the resting symmetry (3 elements), symmetry of voluntary movement (5 
elements), and synkinesis (5 elements) [27]. The resting asymmetry assesses the eye, the 
cheek (naso-labial fold), and the corners of the mouth at rest. The symmetry of voluntary 
movement assesses five voluntary movements consisting of the forehead wrinkle, gentle 
eye closure, open mouth smile, snarl, and lip pucker. During the grading of the voluntary 
movements both the degree of muscle movement and the degree of asymmetry are 
compared to the healthy side of the face. The same five voluntary movements are used 
to determine the degree of synkinesis. The patient might be requested to perform the 
voluntary movements multiple times to complete the entire SFGS. After the grading of 
these 13 elements, each of the three subcomponents will results in its own weighted 
subscore. The resting symmetry subscore ranges from 0 to 20, the symmetry of voluntary 
movement subscore ranges from 20 to 100, and the synkinesis subscore ranges from 
0 to 15. The composite score is then calculated by subtracting the resting symmetry 
subscore and synkinesis subscore from the symmetry of voluntary movement subscore. 
This results in a composite score ranging from 0 to 100, where a score of 0 indicates a 
complete flaccid PFP (without synkinesis) and a score of 100 indicates normal functioning 
of the facial muscles. A complete breakdown of the SFGS is shown in Figure 1. 

1
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AUTOMATION OF THE SUNNYBROOK FACIAL GRADING 
SYSTEM

As the SFGS is a subjective grading system, the grading is influenced by the individual input 
of an observer which could bias the assessment of the PFP. Although the SFGS is found 
to be a reliable grading system, there is a learning curve to achieve the optimal reliability, 
which makes the SFGS inaccessible to untrained observers [23,28–33]. This might make 
it unfeasible to increase the frequency in grading when monitoring the rehabilitation of 
a patient. These limitations of the SFGS could be alleviated by automating the grading of 
the SFGS. This automated system could be used independently by the patient, during 
online consultations in an eHealth environment, or by untrained co-workers. To increase 
the likelihood of adoption by clinicians and researchers, the barrier of entry for an 
automated SFGS should be as low as possible. Therefore, the automated SFGS should 
be relatively inexpensive, portable, non-invasive, reliable, and fast. Finally, the automated 
system should generate the same output as the manual SFGS, in order to keep the clinical 
relevance, validation, and experience gained over the years with the SFGS.

Imaging of the facial surface
A form of input data is required for the automation of the SFGS. As the SFGS relies on 
visual examination, one of the initial considerations would be to use non-ionizing and 
non-invasive imaging techniques, such as two-dimensional (2D) photos, 2D video, three-
dimensional (3D) photos, or 3D video (4D). Due to the complex geometric structure of the 
human face and the significant amount of motion in the anterior-posterior plane during 
facial expression, the inclusion of depth data with 3D and 4D imaging could be beneficial 
in the assessment of facial asymmetry [34–37]. The most common methods for high 
accuracy 3D facial surface imaging are based on stereophotogrammetry, structured light 
imaging, or laser scanning [38]. Laser scanners are generally not suitable for dynamic 
measurements due to the relatively long acquisition times and are therefore not suitable 
for the automation of the SFGS. In contrast, stereophotogrammetry and structured light 
systems can achieve capture times in the millisecond range both suitable for 3D and 4D 
imaging [34,38–44].

Stereophotogrammetry 
Stereophotogrammetry creates a depth image based on the information from two or 
more 2D images of a scene. These images can be captured by a single moving camera 
or multiple (synchronized) cameras. In a clinical setup, the most common practice 
is to use multiple cameras placed laterally apart, pointed towards a subject near the 
centre of the viewpoints of the cameras. Using this setup, it is possible to create depth 
images with an accuracy around 0.2 mm or better [34,36,40,43,45]. The calculation of 
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the depth image relies on the automatic detection of matching key points between two 
or more images. Without proper lighting conditions or insufficient overlap between the 
multiple images, the detection of matching key points will be affected. This could result 
a decreased accuracy of the depth image or even result in missing depth data [34]. To 
overcome the reliance on lighting conditions or lack of key points it is possible to use 
active stereophotogrammetry, in contrast to passive stereophotogrammetry. With active 
stereophotogrammetry an emitter is used to project a random pattern on the objects 
in the scene which will generate key points on the object which can be used for the 
reconstruction of the depth image. This projected pattern is usually in the infra-red (IR) 
range, as not to disturb the colours on the image visible to the human eye. However, both 
systems based on passive or active stereophotogrammetry can achieve a high accuracy 
with proper lighting conditions and camera setup [45]. 

Structured light imaging
Instead of relying on key points from multiple images to create a depth image, structured 
light imaging uses the distortion of a structured light pattern to determine the depth 
image [46]. An IR emitter is used to project a pattern on objects in the scene, similar to 
active stereophotogrammetry. However, in this case a structured light pattern is emitted, 
compared to a random pattern in active stereophotogrammetry. A second sensor will 
capture the reflected light pattern, where the reflected pattern will be distorted due to 
the geometry and position of objects in the scene. By comparing the original projected 
pattern to the distorted pattern, it is possible to reconstruct the depth image [46]. The 
usage of a structured light pattern generally results in a high depth accuracy, 0.2 mm or 
better, even in low light conditions or lack of natural key points in the scene, due to the 
use of an IR emitter [41–43,46]. However, the accuracy is correlated to the strength of 
the emitter and the absence of interfering signals in the IR range of the projected pattern, 
such as the sun or other emitters used in the same environment [38,41–44,47]. 

RealSense 4D camera
Traditional 3D and 4D imaging systems tend to be expensive (tens of thousands of US 
dollars), bulky, or overly complicated, which limits their usage to dedicated healthcare 
centres [34,37,41]. However, technical developments have made it possible to create 
inexpensive, portable 4D cameras [47]. One of the more recent developments in this 
space is the Intel RealSense™ (Intel®, Santa Clara, USA) camera range [48–51]. The 
RealSense F200 is a structured light 4D camera specifically developed for close range 
imaging and was released in 2015 for $100 USD [49]. The camera is the size of a 
webcam and consists of five core elements: the image processor, RGB colour sensor, 
IR sensor, IR laser projector, and a stereo microphone. The RealSense F200 allows for 
simultaneous capture of colour (1920 x 1080 pixels) and depth images (640 x 480 pixels), 

1
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with a frame rate around 30 frames per second (FPS). The output of the depth image 
is a set of individual points with a X, Y, and Z-coordinate, resulting in a point cloud. The 
2D colour image can be projected onto the 3D point cloud, generating a 3D colour 
image. After a first generation of 4D cameras the RealSense D415 was launched in 
2018 for $150 USD [49]. The RealSense D415 includes multiple hardware and software 
improvements compared to the RealSense F200. The biggest change is the switch to an 
active stereophotogrammetry based camera in the RealSense D415 with a higher depth 
resolution (1280 x 720 pixels) compared to the RealSense F200. Due to the switch to 
active stereophotogrammetry, the RealSense D415 is also better suited to be used in 
conditions with direct sunlight.

Data analysis
The next step in the automation of the SFGS is to convert the facial surface image data 
into the SFGS scores. This conversion from input data to a desired output is related to the 
field of machine learning. Broadly speaking, machine learning refers to the development 
and usage of algorithms which can be trained to perform a certain task without explicit 
programming. During the training stage of these algorithms, input data is supplied to 
identify patterns in the dataset and generalize this knowledge. When implemented 
successfully, the trained algorithm can properly execute the task even when unseen data 
from different situations is introduced. In case of the automated SFGS the task would be 
to accurately determine the SFGS score when a new patient with PFP is presented to the 
model. 

Facial landmarks and anthropometric measurements
Historically, objective measurements of the face were performed with a calliper or 
measuring tape. With these tools specific features of the face were measured, such as the 
distance and angles between facial landmarks. This method of objectively quantifying and 
evaluating surface morphology on the human body is called anthropometry [40,52,53]. 
The direct anthropometric measurements are a reliable and affordable method 
to quantify the human face [40]. However, the execution of direct anthropometric 
measurements can be a very time-consuming task. Additionally, all necessary 
measurements must be taken during the initial assessment, as there is no opportunity to 
add or repeat measurements based on the patient’s original condition at a later time. In 
case of the SFGS it even is infeasible for the patient to stay in maximum exertion during 
the voluntary movements to perform the anthropometric measurements. Due to these 
limitations, there has been a shift from direct anthropometric measurements towards 
digital 2D and 3D anthropometric measurements, where 3D measurements have been 
found to be a reliable alternative to direct anthropometric measurements [40,54]. The 
digital 3D measurements consist of placing the landmarks on the 3D image from which 
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the anthropometric measurements can be calculated, similar to direct anthropometric 
measurements. The 3D image also allows for more extended analysis of the face where 
the entire surface or volume of the face can be considered. Traditional machine learning 
algorithms are regularly based on features such as facial landmarks and anthropometric 
measurements, for the automation of a multitude of facial analysis tasks, which make 
these facial features an interesting option for the automation of the SFGS [55–57].

Deep learning
Despite the successful applications of traditional machine learning algorithms, the 
selection of the features for the input of the algorithms is crucial in this process to 
prevent the loss of valuable information [58,59]. To alleviate the issue of manual feature 
selection, a subset of machine learning, deep learning can be applied. Deep learning is 
a type of neural network, where the neural network consists of interconnected nodes 
which are organized into layers [60]. In deep learning, multiple layers are used in the 
neural network, hence the term deep. The nodes connect to each other in between 
the layers, with associated weights and thresholds, which can be adjusted during the 
training phase of the network. If a node’s output exceeds the threshold, it activates and 
passes data to the next layer. Each layer processes and transforms the input data to 
automatically detect relevant features from the raw input data, removing the need for 
manual feature selection. A type of deep learning network, the convolutional neural 
network (CNN) is especially suited for the feature selection from images [60,61]. There 
have been many successful implementations of CNNs in (medical) image processing 
tasks where implementations can even exceed human performance [62–67]. Therefore, 
CNNs could prove to be a valuable tool for the automation of the SFGS. 

1
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RESEARCH QUESTIONS

This thesis investigates the automation of the SFGS using the RealSense F200 and D415 
for the recording of patients with a PFP. The first part of the thesis validates the depth 
data of the RealSense cameras including their derived landmarks and anthropometric 
measurements, answering the following research questions: 

1. What is the depth accuracy of the RealSense F200 (Chapter 2) and the RealSense 
D415 (Chapter 3) during the SFGS poses?

2. What is the reliability of 3D landmark placement on RealSense D415 images 
during the SFGS poses? (Chapter 3)

3. What is the reliability and agreement of 3D anthropometric measurements on 
RealSense D415 images during the SFGS poses? (Chapter 3)

The second part of the thesis implements an automated SFGS addressing the following 
research questions:

4. What is the reliability of an automated SFGS grading system based on a CNN 
compared to human observers? (Chapter 4)

5. What is the impact on the reliability of the automated SFGS by adding a facial 
landmark layer to the CNN? (Chapter 5) 

THESIS OUTLINE

The SFGS is one of the major grading systems used to determine the severity and 
progression of a PFP but requires a trained observer for optimal reliability. Therefore, 
this thesis investigates the automation of the SFGS with the long-term aim to develop a 
user-friendly system that could be used by the patient at home without any assistance, 
whilst ideally exceeding the inter-rater reliability of human observers. 

The changes in the facial surface during the SFGS poses can be captured in real-time 
when using a 4D imaging system, such as the portable and inexpensive RealSense 
F200 camera. Due to the difference in price and complexity compared to a professional 
setup, a lower image quality of the RealSense F200 is expected. Therefore, Chapter 2 
determines the depth accuracy of the RealSense F200 during the maximum exertion of 
the SFGS poses in a cohort of 34 patients with a PFP. The depth accuracy is validated by 
using the clinically validated 3dMD system (3dMDface, 3dMD, Atlanta, USA) as the gold 
standard. The results from Chapter 2 can be used to determine if the RealSense F200 is 
a viable 4D camera for the implementation of the automated SFGS.
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The RealSense F200 was superseded by the RealSense D415 with improvements on both 
the hardware and software level. Therefore, the clinical validation of the depth accuracy 
was repeated for the RealSense D415 in Chapter 3. A major group of facial analysis is 
based on facial landmarks or their derived anthropometric measurements, which can be 
useful for the automation of the SFGS. Therefore, the reliability of landmark placement 
and the reliability and agreement of the anthropometric measurements are determined 
for the RealSense D415 using the 3dMD system as the gold standard. Chapter 3 is split 
into two separate parts, where both parts are based on the same dataset of 30 patients 
with a PFP. Part 1 of Chapter 3 will discuss the measurements for the patients at rest and 
Part 2 will discuss the measurements during the voluntary movements of the SFGS. The 
validation of the RealSense D415 in Chapter 3 enables the camera to be used in a clinical 
setting with a known impact on the depth accuracy, reliability of landmark placement, and 
reliability and agreement of anthropometric measurements. 

A first version of the automated SFGS is implemented in Chapter 4 based on a dataset 
of 116 patients with a PFP and 9 healthy subjects recorded with the RealSense D415. The 
automated SFGS uses CNNs to automatically score the 13 elements of the SFGS. From 
these elements the three subscores and composite score of the SFGS are determined, 
which are then compared to the manual grading based on three human observers all 
experienced in the grading with the SFGS. These results give a first indication of the 
expected reliability of the automated SFGS in a clinical setting.

Chapter 5 continues the development of the automated SFGS by adding a facial 
landmark layer to the CNN implemented in Chapter 4. In order to compare the results 
between the two chapters, as many potentially confounding variables are kept consistent. 
These results determine whether the facial landmarks can improve the reliability of the 
automated SFGS without increasing the size of the underlying dataset.

1
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ABSTRACT

The RealSense F200 represents a new generation of economically viable 4-dimensional 
imaging (4D) systems for home use. However, its 3D geometric (depth) accuracy has 
not been clinically tested. Therefore, this study determined the depth accuracy of the 
RealSense, in a cohort of patients with a unilateral peripheral facial palsy (PFP, n = 34), 
by using the clinically validated 3dMD system as a gold standard. The patients were 
simultaneously recorded with both systems, capturing six poses of the Sunnybrook 
Facial Grading System (SFGS). This study has shown that the RealSense depth accuracy 
was not affected by the PFP (1.48 ± 0.28 mm), compared to the healthy side of the face 
(1.46 ± 0.26 mm). Furthermore, the SFGS poses did not influence the RealSense depth 
accuracy (p = 0.76). However, the distance of the patients to the RealSense was shown 
to affect the accuracy of the system, where the highest depth accuracy of 1.07 mm was 
measured at a distance of 35 cm. Overall, this study has shown that the RealSense can 
provide reliable and accurate depth data when recording a range of facial movements. 
Therefore, when the portability, low-costs, and availability of the RealSense are taken into 
consideration, the camera is a viable option for 4D close range imaging in telehealth.
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INTRODUCTION

Three-dimensional (3D) and 4-dimensional (4D) imaging is extensively used in routine 
clinical practice, ranging from surgical planning and evaluation to patient monitoring, 
and rehabilitation [1–4]. A significant advantage of 4D imaging over 3D imaging, is 
that it can create multiple 3D images over time, which is especially suited for dynamic 
measurements, such as the movement of limbs or facial expressions [5]. Despite this, 
traditional 4D imaging systems tend to be bulky, expensive, or overly complicated for 
self-patient use. Thus, their use has been limited to dedicated healthcare centres [1,6]. 
Technical developments have made it possible to create inexpensive, portable 4D 
cameras such as the RealSense F200 (which will be referred to as the RealSense). This 
may allow the shift of current 3D and 4D imaging tasks into telehealth applications [7]. 
However, before such an imaging device can be implemented in a clinical setting, it is 
crucial to evaluate the accuracy of the system.

The RealSense is a portable 4D imaging device composed of five core elements: 
the image processor, colour sensor, infrared (IR) sensor, IR laser projector, and 
a stereo microphone. This device was developed for close range imaging, with a 
recommended user range of 20 to 120 cm, which allows the user to capture detailed 
areas such as the face or hand [8]. Typically, the RealSense will simultaneously capture 
colour and depth images, with a frame rate around 30 frames per second (FPS). One 
single frame consists of a 2-dimensional (2D) colour image, captured by the light sensor 
(Figure 1a) and a depth image, containing geometrical 3D information (Figure 1b – d). 
The depth image is generated with the IR laser projector and the IR sensor. First, the 
IR laser projector emits a structured light pattern. Subsequently, the IR sensor captures 
the reflected light pattern from the object or person. The reflected pattern will be used 
to reconstruct the 3D surface, by a technique called triangulation [9]. The generated 
depth data consists of individual points with X, Y, Z coordinates resulting in a point cloud 
(Figure 1d).

A possible telehealth application for the RealSense is the development of an automated 
grading system for patients with a unilateral peripheral facial palsy (PFP), for monitoring 
rehabilitation progress at home. Currently, there exist over 19 subjective and objective 
grading systems to grade the severity of a PFP [10–13]. One of the recommended 
subjective grading systems is the Sunnybrook Facial Grading System (SFGS). This grading 
system is a well-established sensitive method for evaluating facial movement outcomes, 
both at rest and through five key voluntary movements (forehead wrinkle, gentle eye 
closure, open mouth smile, snarl, and lip pucker) [14]. Therefore, the SFGS is one of 
the most robust manual measuring methods currently in clinical use [10,11]. Thus, to 
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incorporate the positive aspects of the SFGS, and to make its clinical implementation 
easier, it would be valuable to create an automated scoring system based on the SFGS. 
Since facial expressions consist of a significant amount of anterior-posterior movement 
[15], a 4D system such as the RealSense could capture the information in this direction. 
However, currently there is no data available on the depth accuracy of the RealSense 
point cloud.

Therefore, the goal of this study was to determine the depth accuracy of the RealSense 
in a cohort of patients with a PFP capturing the face at rest with five additional voluntary 
movements based on the SFGS. In addition, as this study was conducted in patients 
with a PFP, the healthy side of the face of the patient was used to determine the depth 
accuracy of the RealSense in a healthy situation.

Figure 1. A single frame from a RealSense F200 recording is shown, which simultaneously captures 
both the colour image (a) and the depth image (b), by the colour sensor and the IR sensor, respectively. 
During this study, the RealSense captured 27 of these frames per second. Although the recording was 
performed from a frontal position, it is possible to show the depth data from multiple angles, such as a 
lateral perspective (c), visualizing the additional available information. The individual points of the point 
cloud become visible when zooming in on the image (d). The colour frame was cropped and shading was 
added to the depth data for visualization purposes.

a

c d

b
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MATERIALS & METHODS 

Population 
In this study, patients presenting to the Radboud University Medical Centre (Radboudumc, 
Nijmegen, the Netherlands) with a unilateral PFP were included, irrespective of etiology, 
severity, and the time since onset of the PFP. The exclusion criteria were the presence of 
a bilateral PFP and an age younger than 18 years. Approval of this study was authorized 
by the Ethics Committee of the Radboudumc (2015-1829). This study was conducted 
in compliance with the World Medical Association Declaration of Helsinki on medical 
research ethics. All subjects provided written informed consent before data acquisition. 
Additionally, a written informed consent was obtained from the patient shown in this 
paper, to publish the images in an online open-access publication.

Figure 2. Comparison of the depth data between the simultaneously captured 3D reference image (3dMD 
system; green) and the RealSense F200 depth image (white). A total of 6 poses based on the Sunnybrook 
Facial Grading System were captured for each patient with a unilateral peripheral facial palsy (n = 34), 
where the snarl (a) and smile (b) are shown as an example for a single patient. The 3D reference image 
acted as the gold standard, to determine the depth accuracy obtained by the RealSense F200.

a

b
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Data acquisition 
Continuous RealSense recordings were acquired with the RealSense F200 (depth 
camera manager version 1.4.27 and RealSense Software Development Kit, RSSDK, 
version 7.0.23.8048, Intel, Santa Clara, USA) using a colour resolution of 1920 × 
1080 pixels and depth resolution of 640 × 480 pixels. RealSense recordings were 
captured with an average frame rate of 27 FPS. Simultaneously, a two-pod 3dMD 
system (3dMDface, 3dMD, Atlanta, USA) was used to capture single static 3D images, 
acting as the reference clinical standard (Figure 2). Patients were first positioned 
in front of the 3dMD camera. Subsequently, the RealSense camera was positioned 
in front of the patient at eye level on a tripod. The minimum distance from camera 
to patient was determined by the RealSense facial tracking algorithm from the RSSDK. 
The distance between patient and camera was increased if this was required due to 
physical limitations, such as body size. All recordings were acquired in a windowless 
room used for clinical 3D imaging at the Department of Oral and Maxillofacial Surgery. 
A diffuse lighting environment was created with two Diva Light 400 lights (Kinoflo 
Lighting Systems, Los Angeles, USA), which was the only light source in the room. 
Finally, a single RealSense recording was made for each patient, capturing six different 
poses based on the SFGS, which includes the face at rest and five facial expressions 
based on voluntary movements (forehead wrinkle, gentle eye closure, open mouth 
smile, snarl, and lip pucker) [14]. The patient was asked to hold each pose at maximum 
exertion of the voluntary movement, until the static 3D image was taken. A total of six static 
3D images were captured with the 3dMD system during a single RealSense recording. 
The static 3D images made by the 3dMD system will be referred to as the 3D reference 
images.

Figure 3. Overview of the pre-processing of RealSense F200 depth images. The original 
image (a) showing the raw depth data. As exemplified in the red circle, this image still contains spurious 
background noise. Using a statistical outlier filter, the background noise was removed from the original 
RealSense depth data (b). After correcting for statistical outliers, a region of interest (ROI) was selected 
based on a sphere centred at the pronasale (c). The radius of the sphere was determined by the distance 
between the pronasale and the exocanthion, with an additional margin of 10%, to include the complete 
eye region.

a b c
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Data processing
To determine the accuracy of the RealSense, the RealSense depth data was compared to 
the 3D reference images for each SFGS pose. Since the RealSense recording consisted of 
a continuous data stream, six frames from the RealSense recording were selected at the 
capture time of the 3D reference image. The frame selection was based on the flash from 
the 3dMD system that was visible on the RealSense recording. To prevent RealSense depth 
data distortion due to the 3dMD flash, the RealSense frame immediately prior to the 
3dMD flash was used in the final analysis. From the six selected RealSense frames, which 
captured the facial movements at maximum exertion, the depth data was exported with 
the RSSDK as individual point clouds in X, Y, Z coordinates (Figure 2). After exporting 
the point clouds, the pre-processing was performed using the Point Cloud Library (PCL, 
version 1.8.0) [16]. Due to a limited field of view of the RealSense depth image compared 
to the 3D reference image (Figure 2), a region of interest (ROI) was selected from the 
RealSense image. To remove possible noise within the ROI, a statistical outlier filter 
was applied (Figure 3a & b) [16]. Next, the ROI was selected with a sphere centred at 
the pronasale (Figure 3c). The radius of the sphere was determined by the maximum 
Euclidean distance between the pronasale and the left or right exocanthion, based on 
manual landmarks placed on the 3D reference image. The sphere radius was increased 
by 10% to include the eye region completely. No pre-processing was applied to the 
3D reference image. After the pre-processing stage, initial registration was performed 
between the RealSense point cloud and 3D reference image by the Procrustes algorithm 
implemented by libigl (Figure 4a & b) [17]. The Procrustes algorithm was performed with 
manually placed landmarks, at the exocanthion and pronasale, at the RealSense and 3D 
reference image. During this registration, no scaling or reflection was applied. The initial 
registration was followed by a refined registration with the Iterative Closest Point (ICP) 
algorithm implemented by PCL (Figure 4c) [18], set to a rigid registration without scaling, 
as not to deform the RealSense point cloud.

Figure 4. A registration pipeline was used to align the cropped RealSense F200 image (white) with the 3D 
reference image (green). A rough alignment was performed with a Procrustes analysis (b). Subsequently a 
refined alignment was performed with the Iterative Closest Point Algorithm (c). The 3D reference image was 
cropped in subfigure b & c for clarity.

a b c
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Data analysis
To determine the accuracy of the RealSense point cloud, a distance map was calculated 
between the RealSense and the 3D reference image with PCL (Figure 5). The distance 
map was created by calculating the Euclidean distance between each point of the 
RealSense point cloud to the closest point on the 3D reference image. The final depth 
accuracy was defined as the root mean square (RMS) of the distance map, where the 
3D reference image was considered as the gold standard. This analysis was performed 
separately for the healthy and palsy side of the patient, determined by the midsagittal 
plane (Figure 5), and each of the six SFGS poses (rest, forehead wrinkle, gentle eye closure, 
open mouth smile, snarl, and lip pucker) [14]. A paired Student’s t-test was performed 
for each pose comparing the depth accuracy of the healthy and palsy side. Additionally, 
a one-way analysis of covariance (ANCOVA) was performed to determine if there were 
significant differences in depth accuracy between the SFGS poses. In this analysis, the 
SFGS poses were categorized as six different groups, with the depth accuracy acting as 

Figure 5. A distance map generated from a patient at rest. The distance map was created by calculating 
the closest distance between the RealSense F200 image and the 3D reference image, for each RealSense 
point. The white areas represent a perfect match with the 3D reference image (0 mm), with areas in red 
and green showing distances between ± 5 mm. Using the midsagittal plane (blue dashed line), the distance 
map was calculated separately for the healthy (a) and palsy side (b) of the face.

a

-5 mm +5 mm

b
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the dependent variable, and the RealSense camera distance as the covariate. The data 
from the paired Student’s t-test and the ANCOVA analysis was tested for normality using 
the Kolmogorov-Smirnov test with Lilliefors significance correction [19]. Additionally, 
the homogeneity of variances was tested with Levene’s test for the ANCOVA analysis 
[20]. A p-value of <0.05 was considered as statistically significant. Statistical analysis was 
performed using IBM SPSS Statistics, Version 22 (IBM Corp., Armonk, NY, USA).

RESULTS

A total of 34 patients were included in this study (age: 53 ± 13 years, gender: 71% 
female, left sided PFP: 53%). Each patient was captured with the face at rest and with 
five additional voluntary movements based on the SFGS (forehead wrinkle, gentle eye 
closure, open mouth smile, snarl, and lip pucker), where the patient was simultaneously 
recorded with the RealSense and the 3dMD system. This resulted in the comparison of 
204 RealSense point clouds with their associated 3D reference image (Figure 3). 

Firstly, the depth accuracy for the healthy side of the face was calculated for all SFGS 
poses combined, which lead to an average RMS of 1.48 mm (standard deviation (SD) 
= 0.28 mm; 95th percentile (p95) = 2.08 mm). The palsy side of the face resulted in an 
RMS of 1.46 mm (SD = 0.26, and p95 = 1.93). The depth accuracies of the healthy and 
palsy side of the separate poses are shown in Figure 6. When the Kolmogorov-Smirnov 
test was applied to any of the SFGS poses, the results were not significant. Therefore, 
the data was assumed to be normally distributed. The paired Student’s t-test showed no 
statistically significant differences between the accuracy of the healthy and palsy side for 
any of the six poses (rest, p = 0.25; forehead wrinkle, p = 0.96; gentle eye closure, p = 0.63; 
smile, p = 0.22; snarl, p = 0.41; lip pucker, p = 0.63). 

Table 1. Depth accuracy of the RealSense F200 depth data in patients with a unilateral peripheral facial 
palsy grouped by the 6 poses of the Sunnybrook Facial Grading System (SFGS) with the healthy and palsy 
side combined (n = 34 for each pose). Depth accuracy is expressed as the root mean square (RMS).

SFGS pose RMS ± SD (mm) p95 (mm)

Rest 1.48 ± 0.22 1.95 

Forehead wrinkle 1.49 ± 0.20 1.90 

Gentle eye closure 1.46 ± 0.24 1.89 

Open mouth smile 1.53 ± 0.22 2.04 

Snarl 1.49 ± 0.22 1.93 

Lip pucker 1.48 ± 0.22 1.83
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As we have shown that there is no significant difference in accuracy between 
the two sides of the face, the data from the healthy and palsy side of the face were 
combined in order to determine the depth accuracy in between the SFGS poses (see 
Table 1). No significant results were found in either the Kolmogorov-Smirnov test 
or Levine’s test in the data of the ANCOVA analysis. The ANCOVA analysis showed 
no significant differences in depth accuracy between the poses (F = 0.53, p = 0.76). 
When combining the data from the six poses with the ANCOVA analysis, an average linear 
regression of y = 0.003 x + 0.1715 (r = 0.78, p = 0.00) was found as shown in Figure 7, 
where x is the distance to the camera in mm and y the depth accuracy in mm.

DISCUSSION

In this study, the depth accuracy of the RealSense was determined in a cohort 
of 34 patients with a PFP. The patients were recorded with the face at rest with 
five additional voluntary movements (forehead wrinkle, gentle eye closure, 
open mouth smile, snarl, and lip pucker), which were based on the SFGS [14]. 
No significant differences were found in depth accuracy when comparing the 
healthy and palsy side of the patients, with an average RMS of 1.48 ± 0.28 mm and 
1.46 ± 0.26 mm, respectively. Additionally, no significant differences were found in depth 
accuracy between the SFGS poses (p = 0.76).

Figure 6. Average accuracy RealSense F200 depth data (n = 34) comparing the healthy and palsy side of 
the patient for each pose of the Sunnybrook Facial Grading System (SFGS). Depth accuracy is expressed 
as the root mean square (RMS). Any values greater than 1.5 times the interquartile range were considered 
as outliers for the boxplot.
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To the best of our knowledge, this is the first study investigating the depth accuracy of the 
RealSense. Therefore, no direct comparison can be made with other studies investigating 
the depth accuracy of the RealSense. Although other “off-the-shelf” 4D imaging systems 
such as the Kinect (Version 1 and 2, Microsoft, USA), have been used to reconstruct a face 
using multiple frames (RMS accuracy of 0.84 to 2.00 mm [21–25]). No comparable studies 
have used a single frame of the face and compared this to a clinical reference standard, 
such as the 3dMD system. Therefore, our study has shown that the RealSense depth 
accuracy lies within the range of the Kinect accuracy when imaging the face, but it is 
expected to be higher due to use of only a single frame for the analysis of the RealSense.

The depth accuracy of the RealSense camera was determined by comparing the RealSense 
data to the 3D reference image from the two-pod 3dMD system. The reference image has 
a known accuracy of 0.20 to 0.25 mm when imaging the face at rest, which is considered 
as a sufficient accuracy for a range of clinical implementations [26–29]. Therefore, the 
RealSense would have a similar accuracy as the 3dMD system if the depth accuracy of 
the RealSense had been in the range of 0.25 mm. However, the RealSense is an order of 
magnitude more inaccurate, with an average accuracy of 1.48 mm for the healthy face at 

Figure 7. Correlation between the distance from patient to the RealSense F200 camera and the depth 
accuracy of the RealSense F200. The patient measurements include all the 6 poses from the Sunnybrook 
Facial Grading System for the 34 patients (n = 204). Depth accuracy is expressed as the root mean square 
(RMS) in mm. The regression line from the ANCOVA analysis is shown (y = 0.003x + 0.1715 with r = 0.78 and 
p = 0.00), including the 95% confidence interval (CI).
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rest. This resulted in a smoother RealSense image compared to the 3D reference image 
(Figure 2). Therefore, a decrease in accuracy at regions with a higher curvature, such as 
the mouth and nose, is expected and can be seen in Figure 5. The inaccuracies around 
the nose region can partially be explained by the blocked view around the alar groove 
due to the frontal positioning of the RealSense, whereas the 3D reference image was 
captured by two pods from the side.

The accuracy of the RealSense was shown to decrease when imaging the eye region. 
However, it is known that the accuracy of the 3D reference image decreases when 
capturing specular surfaces, such as the eye and teeth [30]. This inaccuracy in the gold 
standard was not corrected for during this study, since the average accuracy of the 3D 
reference image is 0.38 ± 0.34 mm around the eye [31], which is still an order of magnitude 
more accurate than the RealSense. The impact on the depth accuracy can for example be 
seen between the neutral pose, and the gentle eye closure, where the specular area of 
the eye is covered, which resulted in a non-significant difference in the average accuracy 
in this study (Table 1). Overall, the apparent difference in depth accuracy between the 
RealSense image and the 3D reference image was an expected result, considering the 
difference in cost, size, and complexity of the two systems.

Further analysis compared the accuracy between the healthy and palsy side for the 
RealSense. A possible difference in accuracy, between the healthy and palsy side, 
could have been found due to the asymmetrical nature of the face in patients with a 
PFP. For example, patients with a PFP can experience a dropped corner of the mouth, 
or a pronounced labial fold, in the palsy side of the face at rest [14]. This can lead to 
an increased complexity of the facial surface. However, no significant differences in 
depth accuracy were found in this study for any of the SFGS poses when comparing the 
healthy side to the palsy side. This indicates that the RealSense is able to capture the 
depth information of the asymmetrical features of the patients for all the SFGS poses. 
Although this study found that the RealSense has an average accuracy ranging between 
1.46 mm and 1.53 mm, the average facial movement is expected to be 6.49 mm in the 
vertical direction and 5.49 mm in anterior-posterior direction in a healthy situation [32]. 
Therefore, the surface differences between the healthy and palsy side of the face seem 
to be large enough to be detected by the RealSense.

An important consideration when analysing the depth accuracy of the RealSense is the 
influence of patient to camera distance. Cameras that acquire depth data with structured 
light patterns, such as the RealSense, are expected to increase their depth accuracy at 
closer distances [33]. During this study, the minimal camera distance to the patient was 
determined by a facial tracking algorithm built in with the software development kit of 
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the camera, with an operating range of 30 to 100 cm [8]. However, since the patients 
needed to be captured simultaneously with the 3dMD system, the available imaging 
space was limited. Due to physical limitations, such as body size, the camera distance 
needed adjustments for each patient to make the recording possible. This resulted 
in the majority of patients being recorded in a range of 35 to 55 cm, with one patient 
being measured at a distance of 65 cm. However, when the healthy side of the face 
was compared to the palsy side, the distance to the camera was approximately the 
same since the patients were positioned perpendicular to the RealSense. Therefore, the 
intra-patient accuracy was minimally influenced. In contrast, the inter-patient accuracy is 
heavily influenced by the distance to the camera, as can be seen in Figure 7 (r = 0.78, p = 
0.00). Therefore, the average RMS, SD, and p95 reported in this study highly depend on 
the distance to the camera and the selected distance range. This will represent a realistic 
scenario for certain real-world clinical implementations where the distance to the camera 
will vary between measurements. For example, in this study patients moved in between 
the captured SFGS poses, as can be seen in Figure 7 at the patient measured at 65 cm. 
Therefore, an ANCOVA analysis was applied to correct for the distance to the camera, 
when comparing depth accuracy between the six poses. Since no significant differences 
were found (p = 0.76), the RealSense was tested in a wide range of facial motion, without 
showing significant differences in depth accuracy.

The current study design has several limitations that should be taken into account. 
First of all, the cohort consisted of patients with a PFP with an age older than 18 years, 
making the depth accuracy unknown for children, healthy adults, and other diseases. 
Additionally, the accuracy of structured light cameras is known to be influenced by 
different light sources [33], which was not investigated in this study. When applying the 
RealSense in telehealth applications more various lighting conditions can be expected. 
Therefore, future research should determine the influence of the lighting in the room on 
the accuracy of the RealSense. The current measurement setup used a single RealSense 
camera, compared to the two pods of the 3dMD system. This resulted in a more limited 
field of view for the RealSense (Figure 2), possibly losing valuable information of the 
face. To overcome this limitation, it is possible to use multiple synchronized RealSense 
cameras, positioned at different angles. However, this will increase the complexity of 
the measurement setup that needs to be used at home. Therefore, this study used a 
single RealSense camera, and an ROI was selected to make the comparison between 
the RealSense and the 3D reference image possible. The ROI included key areas of 
the face, such as the eyes and mouth. To make the ROI consistent for all patients, the 
area around the pronasale was selected within a patient specific radius (Figure 3c). This 
radius was determined by the distance between the pronasale and the exocanthion, to 
include the eye region. To prevent cropping of the eye region, 10% was added to the 
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determined radius. The ROI used in this study was relatively conservative, to make sure a 
similar ROI could be selected in between patients. The average depth accuracy potentially 
could have improved since the excluded areas immediate to the current ROI were areas 
with low curvatures. However, the point cloud was cut off at the lateral sides of the face 
(Figure 1c) since these areas were positioned more perpendicular to the camera. The 
exact position of this cut-off changed in between patients. Therefore, a conservative ROI 
was chosen to ensure a more consistent ROI selection across patients. This ROI can 
be increased by using multiple synchronized RealSense cameras positioned at different 
angles in the measurement setup.

Additionally, during the processing of the data it was necessary to apply a registration 
between the RealSense and the 3D reference image, since the two images were captured 
with two separate imaging devices, resulting in a different location in space (Figure 4a). 
With the implementation of the Procrustes and ICP registration, it was possible to match 
the point clouds semi-automatically. However, the final ICP registration could find a 
sub-optimal matching in a local optimum, resulting in a lower depth accuracy [34]. In 
addition, another important limitation to this study, is that the clinical reference standard 
was only able to capture static 3D images. Therefore, only a single frame of the RealSense 
recording could be used in the final analysis for each SFGS pose, while there are 27 
RealSense frames available each second. Future studies would benefit from the use of 
a professional 4D system as the reference clinical standard. However, in this study, six 
frames were extracted from each RealSense recording, capturing the accuracy of the 
system over multiple time points. All six SFGS poses reported an accuracy within a range 
of 1.46 to 1.53 mm, showing the consistency of the camera for various facial movements 
over time, in a single recording.

In conclusion, this study has shown that the RealSense can provide reliable and accurate 
depth data when capturing the face at rest and when performing five voluntary movements 
based on the SFGS, in a cohort of 34 patients with a PFP. Therefore, a similar accuracy 
of the RealSense point cloud can be expected when analysing the different SFGS poses, 
when an automated SFGS is implemented. Additionally, it has been shown submillimetre 
information is lost in the RealSense point cloud, especially noticeable in areas with higher 
curvature, which will need to be taken into account in an automated grading system. 
However, larger deviations will be possible to capture, especially at a closer distance to 
the camera, where the highest depth accuracy of 1.07 mm was achieved at a distance of 
35 cm. Due to the correlation between camera distance and depth accuracy for systems 
such as the RealSense [33], it will be essential to keep track of the patient to camera 
distance in clinical applications. One aspect that needs to be included in future research 
is the influence of the lighting in the room on the accuracy of the RealSense. Although 



Depth accuracy of the RealSense F200: Low-cost 4D facial imaging
 
 

41

this study investigated the imaging of patients with a PFP with the RealSense, there are 
numerous applications for a portable 3D and 4D imaging system such as the RealSense. 
With the emerging interest in the use of telehealth in tasks such as health monitoring, 
diagnostics, and performing consults, there is still room to increase the use of 3D and 
4D imaging in telehealth [35–42]. Overall, when considering the portability, low-costs, 
and availability of the RealSense, the camera is a viable option for 3D and 4D imaging in 
telehealth, where the RealSense is especially suited for close range imaging. However, 
when submillimetre accuracy is required for the clinical application, more professional 
setups are still recommended to be used. 
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ABSTRACT

The reliability (precision) and agreement (accuracy) of anthropometric measurements 
based on manually placed 3D landmarks using the RealSense D415 were investigated 
in this study. Thirty patients with a unilateral peripheral facial palsy, were recorded 
simultaneously with the RealSense and a professional 3dMD imaging system, with their 
face in neutral (resting) position. First the RealSense depth accuracy was determined. 
Subsequently, two observers placed 14 facial landmarks on the 3dMD and RealSense 
image, assessing the distance between landmark placement. The respective intra- and 
inter-rater Euclidean distance between the landmark placements was 0.84 ± 0.58 mm 
and 1.00 ± 0.70 mm for the 3dMD landmarks and 1.32 ± 1.27 mm and 1.62 ± 1.42 mm 
for the RealSense landmarks. From these landmarks 14 anthropometric measurements 
were derived. The intra- and inter-rater measurements had an overall reliability of 0.95 
(0.87 to 0.98) and 0.93 (0.85 to 0.97) for the 3dMD measurements, and 0.83 (0.70 to 0.91) 
and 0.80 (0.64 to 0.89) for the RealSense measurements, respectively, expressed 
as the intra-class correlation coefficient. Determined by the Bland-Altman analysis, 
the agreement between the RealSense measurements and 3dMD measurements 
was on average -0.90 mm (-4.04 to 2.24) and -0.89 mm (-4.65 to 2.86) for intra- and 
inter-rater agreement, respectively. Based on the reported reliability and agreement 
of the RealSense measurements, the RealSense D415 can be considered as a viable 
option to perform objective 3D anthropomorphic measurements on the face in a neutral 
position, where a low-cost and portable camera is required.
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INTRODUCTION

A unilateral peripheral facial palsy (PFP), with idiopathic PFP as the most common cause, 
is caused by a lesion in the 7th cranial nerve, with an estimated incidence rate between 
11 to 40 per 100,000 people per annum [1]. The recovery rate of idiopathic PFP patients 
depends on multiple factors such as the severity of the initial PFP, the time until the start of 
the recovery, age, the presence of a normal taste or the stapedius reflex [2]. Patients with 
a complete PFP have a recovery rate between 50 to 61% compared to a recovery rate of 
94 to 99% for patients with an incomplete PFP, which accounts for 70% of idiopathic PFP 
patients [1,2]. Although there is no standard for its quantitative measurement, a major 
category of asymmetry measurements is based on anthropometric measurements [3–5]. 

Traditionally, anthropometric measurements are acquired through direct measurements 
with a calliper or through the analysis of two-dimensional (2D) photography to 
determine linear distances between facial landmarks. Currently, three-dimensional (3D) 
stereophotogrammetry images are frequently used for anthropometric measurements 
due to a fast capture time in less than one second and being a non-invasive and 
non-ionizing imaging method [6–14]. 3D images add the possibility to analyse angles, 
surface area and volume. A common disadvantage of 3D stereophotogrammetry systems 
is the price and size of these systems, which might be a barrier for the implementation 
in clinics [15]. Additionally, these system properties make it infeasible to perform the 3D 
anthropomorphic measurements in a telemedicine setting, which potentially could be 
used to monitor the rehabilitation of the patient at home.

Therefore, this study determined the reliability and agreement of anthropometric 
measurements based on manually placed 3D landmarks in patients with a PFP with 
the face in neutral (resting) position using a portable low-cost 4D imaging system, the 
RealSense D415. The outcome of this study is intended to be used as a foundation 
for the implementation of the RealSense in a clinical or telemedicine setting, such as 
the objective assessment of facial asymmetry. Implementation of such an objective 
assessment is out of scope for this study. Subsequently, it is important to define the 
terms reliability and agreement, where reliability is defined as the consistency of results 
when a measurement is repeated (precision) and the agreement is defined as how close 
a measurement is to the gold standard (accuracy) [16]. 

Four objectives were defined to determine reliability and agreement of the RealSense 
measurements, whilst using a professional stereophotogrammetry imaging system, the 
3dMD system, as a reference. The first objective was to determine the depth accuracy of 
the RealSense 3D images, to establish possible scaling issues or large discrepancies with 

3
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the 3dMD reference image (1). Secondly, the intra- and inter-rater Euclidean distance 
of the manual placement for 3D landmarks were assessed for both the RealSense and 
3dMD images, to determine the potential influence of a lower image quality of a patient 
on the placement of manual landmarks (2). Thirdly, the intra- and inter-rater reliability 
(precision) of anthropometric measurements based on the manually placed landmarks 
were determined for both the RealSense and 3dMD images (3). Finally, the intra- and 
inter-rater agreement (accuracy) of the RealSense measurements was assessed by using 
3dMD measurements as the gold standard (4).

MATERIALS & METHODS

Population
Between August 2018 and April 2019 patients with varying degrees of a unilateral PFP 
were included in this study, where the healthy side of the face acted as the reference 
for the measurements. Exclusion criteria were the presence of bilateral PFP and an age 
younger than 16 years. This study was conducted in compliance with the World Medical 
Association Declaration of Helsinki on medical research ethics and was approved by the 
Ethics Committee of the Radboudumc (2015-1829). All subjects provided their written 
informed consent for participation in this study. In addition, patients shown in this study 
provided a written informed consent for the use of their images in scientific publications.

Image acquisition
For each patient, the face in neutral pose was simultaneously captured with the 
RealSense D415 (Intel, Santa Clara, USA) and the two pod 3dMD system (3dMDface, 
3dMD, Atlanta, USA). The RealSense recorded with 30 frames per second at a colour 
resolution of 1920 × 1080 pixels and a depth resolution of 1280 × 720 pixels, at an 
approximate distance of 35 cm to the patient. Due to the continuous development of the 
stability of the RealSense software, the latest stable version of the RealSense Software 
Development Kit (SDK) and camera firmware at the date of the recording were used. 
During the RealSense recordings, a static 3D image was captured with the 3dMD system, 
which acted as the clinical reference image. Due to the static nature of the 3dMD image, 
the RealSense was used as a 3D system as well, instead of using the full 4D capabilities of 
the RealSense. Recordings were performed in a windowless room used for daily clinical 
3D imaging, illuminated with overhead fluorescent lighting.

Depth accuracy of the 3D image
The RealSense depth accuracy was calculated in accordance with the method 
outlined in previous work [17]. Briefly, a single RealSense depth image was exported 
from the recording at the time the static 3dMD image was taken. In this study, a 
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temporal filter and spatial filter were applied to the depth data, by using the built-
in filters from the RealSense SDK set to default values. Further processing of the 
RealSense depth image was performed with the Point Cloud Library [18]. First, a 
region of interest was selected from the RealSense 3D image by cropping the face 
with a sphere, with the centre of the sphere placed at the pronasale. The radius 
of the sphere was determined by the distance of the exocanthion and pronasale. 
This radius was increased by 10% to fully include the eye region of the face. 
Remaining noise in the cropped RealSense images were removed with a statistical 
outlier filter [18]. The cropped RealSense images and 3dMD images were initially roughly 
aligned using the Procrustes algorithm, followed by a refined registration with the 
Iterative Closest Point (ICP) algorithm [19]. No scaling or reflection were applied during 
Procrustes and ICP registration. A distance map was calculated between the cropped 
RealSense depth image and the 3dMD image, based on the Euclidean distance between 
the vertices of the RealSense image and the 3dMD image. From this distance map, 
consisting of absolute values, the average Euclidean distance and standard deviation 
were calculated. 

Facial landmark selection and placement
To determine the reliability of landmark placement, 14 facial landmarks (4 midline and 
5 bilateral) were manually placed on the RealSense and 3dMD images (see Figure 1). 
The 14 landmarks were selected on their potential ability to describe the asymmetry 
of facial movement, such as the ability to close the eyes, smile, lifting the nose, lifting 
the eyebrows or pucker of the lips. Additionally, only clearly defined landmarks based 
on a standardized nomenclature of Caple & Stephan were selected to increase 
the accuracy and reproducibility of the landmark placement [20]. Landmarks 
based on the corneal apex were modified since the 3dMD system is not able to capture 
highly reflective surfaces, causing image artefacts at and around the eye region [15]. 
Therefore, the palpebrale superius was defined as the most inferior intersection 
of the upper eyelid with a vertical line through the palpebrale inferius. Next, the 
superciliare centralis was defined as the superior most intersection of the eyebrow with 
a vertical line through the palpebrale inferius and palpebrale superius to find the cross 
section of the eyebrow. In order to determine the inter-rater reliability, the 14 landmarks 
were manually placed by two experienced observers (TtH and SV) on the 3D surface of 
both the RealSense image and the 3dMD images for each patient using 3ds Max Studio 
2018 (Autodesk, New York, NY, USA). The RealSense and 3dMD images were shown in 
a random order whereas the RealSense and 3dMD images could alternate. However, 
the sequence of 3D images was exactly the same for the two observers. The first 
observer (TtH) placed all the landmarks a second time after three weeks to determine 
the intra-rater reliability.

3
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Intra- and inter-rater reliability and agreement of anthropometric 
measurements based on facial landmarks
A total of 14 anthropometric measurements were derived from the manually placed 
landmarks discussed in the previous paragraph by calculating the Euclidean distance 
between two selected landmarks (see Figure 1). First, the intra- and inter-rater reliability 
were determined separately for both the RealSense and 3dMD measurements. 
Subsequently, the average location of each landmark was calculated based on the 
landmarks from the first and second session. From this average landmark location, the 
intra- and inter-rater agreement of the RealSense measurements were determined by 
using the 3dMD measurements as the gold standard.

Statistical analysis
Statistical analysis was performed using IBM SPSS Statistics, Version 25 (IBM Corp., 
Armonk, NY, USA). A p-value of <0.05 was considered as statistically significant. All data 
were tested for a normal distribution using skewness-kurtosis tests [21]. The statistical 
analysis of landmark placement and anthropometric measurements were separated 
into the healthy and palsy side of the face. Subsequently, the intra- and inter-rater 
distance of the manual landmark placement was determined by calculating the Euclidean 
distance for each individual landmark between session one and two from observer TtH 
and between observer TtH and SV, for both the RealSense and 3dMD landmarks. The 
Wilcoxon signed-rank test was used for intra- and inter-observer measurements, to 
determine the significance between the intra- and inter-observer landmark placement 
due to a non-normal distribution of the landmark placement [22]. Anthropometric 
outcomes were normally distributed and therefore the reliability of the anthropometric 
measurements was determined by intra-class correlation coefficient (ICC) estimates and 
their 95% confidence interval (CI). The intra-rater reliability was calculated using a single-
rater, absolute agreement, two-way mixed effects model. The inter-rater reliability was 
calculated using a single-rater, absolute agreement, two-way random effects model [23]. 
An ICC of <0.5 was considered as poor, 0.50 to 0.75 as fair, 0.75 to 0.90 as good, and 0.90 
to 1.00 as excellent [24]. Agreement of the anthropometric measurements between the 
RealSense and the 3dMD measurements was assessed by the Bland-Altman method [25]. 
The Bland-Altman analysis was based on the mean systematic difference between the 
RealSense and 3dMD anthropometric measurements as well as on the upper and lower 
limits of agreement (LoA), which span 95% of all observations. The LoA was represented 
as a percentage of the 3dMD measurement.



Part 1: Reliability and agreement of 3D anthropometric measurements
in facial palsy patients using a low-cost 4D imaging system

 

55

RESULTS

Population
A total of 30 patients with a PFP were included in this study, consisting of 11 men and 19 
women, with an average age of 57 ± 13 years ranging from 30 to 87 years old.

Depth accuracy of the 3D image
The RealSense depth accuracy was determined by the average Euclidean distance 
from the RealSense image to the 3dMD image, where an average Euclidean distance of 
0.97 ± 0.07 mm was found. 

3

Figure 1. Manually placed landmarks on a face in a neutral (resting) position. The 14 manually placed 3D 
landmarks are shown as green markers (enlarged for visualization purposes) on the 3dMD image. The 
midline landmarks consisted of the sellion (se’), subnasale (sn’), labiale superius (ls’), and labiale inferius (li’). 
The bilateral landmarks consisted of the superciliare centralis (scc’), palpebrale superius (ps’), palpebrale 
inferius (pi’), subalare (sbal’) and cheilion (ch’). The anthropometric measurements are indicated by the 
dotted white lines (only shown on the left side of the face for visualization purposes) and consisted of ps’-
scc’, ps’-pi’, sbal’-sn’, ch’-sn’, ch’-ls’, ch’-li’, sn’-se’, and sn’-ls’. Definitions of the landmarks are based on Caple 
& Stephan with scc’ and ps’ having modified definitions [16].
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Intra- and inter-rater Euclidean distance of landmark placement
The average Euclidean distance was determined for the intra- and inter-rater landmark 
placement of both the RealSense and the 3dMD image as shown in Table 1, with a 
respective intra- and inter-rater distance of 0.84 ± 0.58 mm and 1.00 ± 0.70 mm for the 
3dMD landmarks and 1.32 ± 1.27 mm and 1.62 ± 1.42 mm for the RealSense landmarks. 
Additionally, Table 1 marks the landmarks that showed a statistically significant difference 
between the RealSense and their 3dMD counterpart. When comparing the landmarks 
from the palsy and healthy side, a significant difference was found for the palpebrale 
superius for the intra-rater landmark placement on the RealSense image, and the 
palpebrale inferius and subalare for the inter-rater landmark placement on the RealSense 
image, also indicated on Table 1.

Table 1. The average (absolute) Euclidean distance including the standard deviation for the intra- and 
inter-rater landmark placement for the 3dMD and RealSense D415 measurements.

3dMD RealSense D415

Landmark Intra-rater 
(mm)

Inter-rater 
(mm) Intra-rater (mm) Inter-rater (mm)

ps’ (p) 0.75 ± 0.46 0.98 ± 0.56 0.78 ± 0.41† 1.04 ± 0.50

ps’(h) 0.84 ± 0.55 0.81 ± 0.52 0.96 ± 0.47 1.16 ± 0.78 

pi’ (p) 0.77 ± 0.44 0.93 ± 0.46 0.66 ± 0.34 1.15 ± 0.57†

pi’(h) 0.69 ± 0.42 0.73 ± 0.41 0.79 ± 0.35 0.88 ± 0.52

scc’(p) 0.93 ± 0.57 1.27 ± 0.71 1.31 ± 0.67* 1.76 ± 1.28

scc’(h) 1.03 ± 0.45 1.29 ± 0.74 1.34 ± 0.75 1.90 ± 0.82*

sbal’(p) 0.72 ± 0.57 0.79 ± 0.51 2.25 ± 2.53* 2.88 ± 2.20*†

sbal’(h) 0.77 ± 0.39 0.84 ± 0.49 2.00 ± 2.26* 2.13 ± 2.41*

ch’(p) 0.74 ± 0.53 0.98 ± 0.95 1.24 ± 0.98* 1.76 ± 1.59*

ch’(h) 0.81 ± 0.61 1.20 ± 0.96 1.63 ± 1.19* 1.74 ± 1.01*

se’ 1.05 ± 0.69 1.21 ± 0.80 1.55 ± 1.54 1.49 ± 1.18

sn’ 0.80 ± 0.45 0.98 ± 0.53 1.12 ± 0.70 1.56 ± 1.09*

ls’ 0.51 ± 0.50 0.57 ± 0.41 0.98 ± 0.61* 1.32 ± 1.70*

li’ 1.38 ± 0.90 1.39 ± 0.90 1.84 ± 1.11 1.94 ± 1.50

Overall 0.84 ± 0.58 1.00 ± 0.70 1.32 ± 1.27 1.62 ± 1.42

The bilateral landmarks are grouped by the palsy side of the face (p) and the healthy side of the face (h). 
See Figure 1. For landmark abbreviations.

*Statistically significant difference between the placement of the RealSense D415 landmark and their 
respective 3dMD landmark (p <0.05).
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Intra- and inter-rater reliability of anthropometric measurements 
Intra- and inter-rater reliability (precision) was determined for the anthropometric 
measurements expressed as the ICC, as shown in Table 2, with an overall ICC of 0.95 
and 0.93 for the intra- and inter-rater reliability of the 3dMD and 0.83 and 0.80 for the 
RealSense. When categorizing the ICC scores, all 3dMD anthropometric measurements 
for both the intra- and inter-raters are in the good to excellent category compared to 
85.7% for the RealSense. 

Intra- and inter-rater agreement of anthropometric measurements
A summary of the Bland-Altman analysis is shown in Table 3, where the intra- and 
inter-rater RealSense measurements were on average 0.90 mm and 0.89 mm lower 
compared to the 3dMD measurements, respectively. The LoA ranged on average from 
-4.04 to 2.24 mm and from -4.65 to 2.86 mm for the intra and inter-rater agreement, 
respectively.

Table 3. Numeric representations of the Bland-Altman analysis for the intra- and inter-rater agreement 
of the anthropometric measurements. 

Intra-rater agreement Inter-rater agreement

Measurement Mean difference (mm) LoA (%)  Mean difference (mm) LoA (%) 

ps' – scc’ (p) -0.03 (-2.10 – 2.04) 10.9  -0.32 (-3.47 – 2.83) 15.8

ps' – scc’ (h) -0.69 (-3.01 – 1.63) 10.9  -0.71 (-3.79 – 2.37) 14.2

ps' – pi’ (p) -0.44 (-2.30 – 1.42) 23.5  -0.25 (-2.30 – 1.80) 24.8

ps' – pi’ (h) -0.43 (-2.04 – 1.18) 17.5  -0.50 (-2.17 – 1.17) 18.8

sbal' – sn’ (p) -1.41 (-4.98 – 2.16) 21.6  -0.79 (-4.99 – 3.41) 25.6

sbal' – sn’ (h) -1.99 (-5.87 – 1.88) 22.5  -1.57 (-5.23 – 2.10) 22.1

ch’ – sn’ (p) -1.23 (-5.41 – 2.95) 9.4  -1.43 (-6.36 – 3.51) 11.9

ch’ – sn’ (h) -1.12 (-5.25 – 3.00) 9.4  -0.89 (-5.25 – 3.46) 9.8

ch’ – ls’ (p) -1.08 (-5.49 – 3.34) 12.5  -1.34 (-7.41 – 4.72) 18.5

ch’ – ls’ (h) -0.72 (-4.23 – 2.79) 9.8  -0.61 (-5.33 – 4.10) 13.5

ch’ – li’ (p) -1.01 (-4.95 – 2.93) 12.2  -0.97 (-6.71 – 4.77) 19.2

ch’ – li’ (h) -1.05 (-4.33 – 2.23) 9.9  -1.14 (-5.41 – 3.13) 12.6

sn’ – se’ -0.29 (-3.49 – 2.92) 6.4  -0.91 (-3.80 – 1.97) 5.3

sn’ – ls’ -1.10 (-3.12 – 0.92) 13.1  -1.06 (-2.87 – 0.75) 11.5

Overall -0.90 (-4.04 – 2.24) 13.6  -0.89 (-4.65 – 2.86) 16.0

The data shows the mean systematic difference between the RealSense D415 and 3dMD 
measurements (mm) including the limits of agreement (LoA). Besides the LoA range in mm, the LoA are 
represented as the percentage (%) of the measured 3dMD distance. The anthropometric measurements 
are grouped by the palsy side of the face (p) and the healthy side of the face (h). See Figure 1 
for landmark abbreviations.
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DISCUSSION

Depth accuracy of the 3D image
This study assessed the reliability (precision) and agreement (accuracy) of anthropometric 
measurements for the RealSense D415 based on 3D images of 30 patients with a PFP. 
The first objective of this study was to determine the overall depth accuracy of the 
RealSense, expressed as the average Euclidean distance, using the 3dMD system as the 
gold standard where a depth accuracy of 0.97 ± 0.07 mm was found. In our previous 
study, a similar method was used to determine the depth accuracy of the RealSense F200, 
a predecessor of the RealSense D415, where an average depth accuracy of 1.48 ± 0.22 
mm was found for patients with a PFP [17]. The higher depth accuracy of the RealSense 
D415, represented by a lower average Euclidean distance, can partially be explained by 
the lower recording distance of 35 cm, which is associated with a higher depth accuracy 
[17]. Additionally, the default temporal and spatial filters from the RealSense SDK were 
applied to the raw image data, which could positively influence the depth accuracy by 
removing temporal and spatial noise. In contrast, this study used overhead fluorescent 
lighting which reflected a more realistic representation of a patient’s home situation, 
compared to the professional diffuse lighting setup used in our previous study [17]. 
Overall, the depth accuracy results indicated that there were no major scaling issues 
with the RealSense D415 depth data and that the general curvature of the face was 
successfully captured, with potentially a slightly higher depth accuracy compared to the 
RealSense F200 [17]. However, the average Euclidean distance is a general analysis of 
depth accuracy which does not specifically determines the accuracy of certain regions 
such as the mouth or the nose.

Intra- and inter-rater Euclidean distance of landmark placement
The second objective was to assess the average Euclidean distance of the intra- and 
inter-rater manual landmark placement on the RealSense D415 and the 3dMD images. 
The 3dMD landmarks acted as a reference with an average intra- and inter-rater landmark 
distance of 0.84 ± 0.58 mm and 1.00 ± 0.70 mm, respectively. Previous literature does 
not describe the Euclidean distance of manual 3D landmark placement of patients with 
a PFP. However, this distance is reported for healthy subjects and the average intra- and 
inter-rater distances range from 0.76 mm to 1.32 mm (intra) and 0.88 mm to 1.42 mm 
(inter) [26–30], which is consistent with the results from this study. The reported average 
landmark distance highly depends on the selected landmarks. Therefore, the distances 
of individual landmarks were also compared to the existing literature, although not all 
studies reported the individual distance for each landmark as used in this study. The 
palpebrale inferius, cheilion, sellion, subnasale, and labiale superius fell within a range 
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of 0.2 mm compared to the reported distances in the literature, whereas the palpebrale 
superius was found to be more than 0.5 mm accurate in this study [26–30]. Therefore, we 
consider the 3dMD landmark placement of the two observers in this study representative 
from what can be expected in a practical situation and can be used as a realistic reference 
for the RealSense landmark placement.

As landmarks can be directly placed on the RealSense image, in theory, the landmark 
placement could be equally as reliable as the landmark placement on the 3dMD 
image. However, the distance between the manual landmarks for the RealSense 
was on average 1.32 mm for the intra- and 1.62 mm for the inter-rater landmark 
placement, which falls around the 95th percentile of landmark placement compared 
to professional cameras such as the 3dMD [26–30]. Notably, a statistically significant 
higher Euclidean distance was found for the superciliare centralis, subalare, subnasale, 
cheilion, and labiale superius on the RealSense image compared to the 3dMD image. 
The first possible explanation for the higher landmark distance is the lack of depth data 
around certain regions not visible to the RealSense camera, due to the use of a single 
camera. An example is the alar region, where the nose blocks a direct view to the alar 
region, making the localization of the subalare unreliable. Hence the highest landmark 
distance was found for the subalare on the RealSense image. Secondly, the landmark 
distance is influenced by the colour quality of the RealSense image, since a subset of 
the landmarks are based on certain colour transitions, such as the labiale superius, 
labiale inferius or superciliare centralis. Due to the relatively higher age of the subjects 
in this study, the cheilion was often surrounded by skin folds causing shaded areas. 
The shaded areas made it harder to identify the location where the upper and lower 
vermillion border met, which explains the relatively higher inter-rater distance on the 
3dMD image. When comparing the healthy and palsy side of the face, only significant 
differences were found for the RealSense landmarks. However, the placement of the 
subalare was found to be unreliable due to the lack of depth information, which is the 
likely cause of the significant difference instead of the presence of the PFP. Furthermore, 
the intra-rater palpebrale superius and inter-rater palpebrale inferius were found to be 
significantly different. However, these differences are not present for all the palpebrale 
superius and inferius landmarks, and in one case the healthy side had a lower landmark 
distance whilst in the other case, the palsy side had a lower distance. Therefore, it is not 
clear whether this difference is caused by the presence of the PFP or overall difficulty of 
selecting these landmarks. In general, the results from the Euclidean distances of the 
landmarks indicate that the lower depth and colour quality of the RealSense increase 
the difficulty of selecting the same landmark between multiple sessions or observers 
compared to the 3dMD images.
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Intra- and inter-rater reliability of anthropometric measurements 
The third objective was to determine the intra- and inter-rater reliability (precision) of 
the anthropometric measurements based on the manually placed landmarks as shown 
in Table 2. It is essential to determine whether the 3dMD measurements can be used as 
a reference for the RealSense measurements. Previous studies have not reported the 
reliability of anthropometric measurements for patients with a PFP. Instead, previous 
work used 2D landmarks for their analysis or focused on analysing motion [31–34]. 
Hence, only an indirect comparison could be made with anthropometric measurement 
studies based on healthy subjects [7,14,35–37]. The 3dMD system has a reported 
average absolute difference between observers of 0.8 mm ranging from 0.5 to 1.2 mm for 
anthropometric measurements [7]. If this difference is expressed as the percentage of 
the measurement the average difference is 4.1% with a range of 0.5 to 11.0%. Using the 
Di3D, another professional stereophotogrammetry system, a similar absolute difference 
of 0.87 ± 0.56 mm and 1.64 ± 1.08% has been reported [14]. Finally, an absolute 
difference of 0.99 ± 0.93 mm has been found using the Cyberware 3030RGB laser 
scanner [35]. These results were comparable to the 3dMD measurements performed in 
this study with an average absolute difference of 0.7 mm with a range of 0.4 to 1.2 mm 
and an average percentage difference of 2.9% with a range of 1.7 to 4.9% for the intra-
rater measurements, respectively. The inter-rater measurements are within a similar 
range with an average absolute difference of 0.9 mm from a range to 0.4 to 1.3 mm 
and a percentage of 3.3% with a range from 2.1 to 4.2%. Similarly, the reported average 
intra-rater ICC ranges from 0.97 to 1.00 and from 0.83 to 0.99, which was comparable to 
this study where the average ICC ranged from 0.84 to 0.99 [14,37]. The reported average 
intra-rater ICC ranged from 0.70 to 0.98 and from 0.73 to 0.98, where this study has 
found an ICC in the range of 0.85 to 0.97 [36,37]. Since the absolute differences and 
the ICC reliability were both in a similar range as previously reported results, the 3dMD 
anthropometric measurements were considered to be representative results. 

Therefore, a comparison could be made with the RealSense measurements. The RealSense 
measurements showed a relatively high ICC for the majority of the measurements, with 
85.7% being in the good or excellent category, although all RealSense ICC values were 
lower compared to their relative 3dMD ICC score [24]. The 95% CI had a considerably 
wider range compared to the 3dMD measurements, indicating a lower reliability. A lower 
reliability was expected for the RealSense measurements, due to the overall higher 
distance between the individual landmark placement as explored in objective two. This 
was evident in the subalare to subnasale measurement, where the subalare landmark 
placement was found to be unreliable for the RealSense due to the lack of depth data, 
resulting in the lowest ICC value overall. When comparing the palsy side to the healthy side 
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the majority of the measurements had an ICC difference below 0.03. The remaining largest 
difference was between the palpebrale superius and inferius measurement. However, 
the ICC for the healthy side of the face was already lower for the 3dMD measurement. 
This result seemed to be amplified in the RealSense measurements. Despite the overall 
lower reliability of the RealSense measurements compared to the 3dMD it is important 
to determine the clinical impact of the lower reliability of the RealSense measurements.

Intra- and inter-rater agreement of anthropometric measurements
The fourth objective of this paper assessed the agreement (accuracy) of anthropometric 
measurements. In an ideal situation, all intra- and inter-rater measurements for both the 
3dMD and the RealSense would be similar. Therefore, an initial estimate of agreement 
was made by comparing the length of the 3dMD and RealSense measurements as shown 
in Table 2. After subtracting the measured 3dMD length from the RealSense length for 
each individual measurement, an average underestimation of 0.91 mm and 0.89 was 
found for the intra- and inter-rater RealSense measurements, respectively. The Bland-
Altman analysis confirmed these results with an overall underestimation of 0.90 mm and 
0.89 mm for the intra- and inter-observer measurements, respectively. Furthermore, the 
average Bland-Altman analysis showed that in a clinical setting it is expected that 95% 
of the measurements will be less than 4.04 mm and 4.65 mm difference compared to 
the 3dMD measurements for the intra- and inter-rater, respectively. When expressed 
as a percentage of the original 3dMD measurement, this equates up to 95% of the 
measurements having a discrepancy of less than 13.6% and 16.0%, respectively. Most 
notably, the measurement between the palpebrale superius and inferius have an average 
LoA of 21.5%. Although the actual LoA was relatively low, ranging from -2.2 to 1.4 mm, 
the original measurement had a relatively short length of 9.2 mm. This caused the lower 
average depth accuracy of 0.97 mm from the RealSense image to have a higher impact 
on the overall measurement. Therefore, it is important to be aware that in a clinical 
implementation, 95% of the RealSense measurements based on the neutral face are 
expected to be within a range of 13.6 and 16.0% of the 3dMD measurements for the 
intra- and inter-rater measurements, respectively. However, this percentage most likely 
will increase when measuring short distances closer to the overall depth accuracy of the 
RealSense image.

Future research
As far as the authors are aware, this is the first study to use images from the RealSense 
D415 to assess anthropometric measurements. Therefore, this study focused on the 
manual 3D landmark placement of 14 selected landmarks on a neutral (resting) face from 
30 patients with a PFP. This leaves multiple areas of research yet to be explored. 
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The current research primarily used the 3D capabilities of the RealSense camera by 
analysing the face in a neutral position. However, in order to effectively assess a PFP, 
multiple facial poses should be analysed [3–5]. Although the required facial poses will 
depend on the chosen grading scale, it is clear that the analysis of a single neutral pose 
would not be sufficient in assessing the severity of a PFP [3–5]. Therefore, the reliability 
and agreement of the anthropometric measurements based on different facial poses 
should be investigated. This could be realized by recording multiple facial poses with a 
4D camera such as the RealSense D415. The 4D data could offer additional quantification 
methods for the assessment of the severity of a PFP, on top of the 3D landmarks and 
anthropometric measurements defined in this paper [3–5].

This study used the manual landmark placement on the 3dMD images as the gold 
standard since the reliability and agreement of manual landmark placement on 
high quality 3D images has been extensively researched [26–30]. Therefore, the 
reliability and agreement of the landmark placement and the anthropometric 
measurements found in this study could be directly compared to the existing 
literature. However, in order to minimize the effort required to perform the 
anthropometric measurements, the implementation of automatic landmark detection 
algorithms could be an interesting topic for future research [3–5]. Additionally, 
the RealSense camera simultaneously captured 2D colour images and 3D depth 
images in this study. This would make it possible for future research to compare 
the reliability and agreement of anthropometric measurements based on either the 
2D or 3D landmarks [12,13,38]. Depending on the implementation of the objective 
assessment of the PFP, additional landmarks may be required on top of the 14 selected 
landmarks defined in this study. The results from this study could be used as an indication 
of expected reliability and agreement of the landmark placement and anthropometric 
measurements. 

CONCLUSION

This study has assessed the reliability (precision) and agreement (accuracy) of 
anthropometric measurements based on manually placed 3D landmarks using the 
RealSense D415 within a population of patients with a PFP in a neutral (resting) position. 
This research can be used as a foundation for the implementation of the RealSense in 
a clinical or telemedicine setting, such as the objective assessment of facial asymmetry. 
Based on the reported reliability and agreement of the RealSense measurements, 
the RealSense D415 can be considered as a viable option to perform objective 3D 
anthropomorphic measurements on the neutral face in a clinical or telemedicine setting, 
where a low-cost and portable camera is required.

3



Chapter 3

64

REFERENCES

1. McCaul, J. A. et al. Evidence based management of Bell’s palsy. Br. J. Oral Maxillofac. 
Surg. 52, 387–391 (2014).

2. Peitersen, E. Bell’s Palsy: The Spontaneous Course of 2,500 Peripheral Facial 
Nerve Palsies of Different Etiologies. Acta Otolaryngol. Suppl. 4–30 (2002) 
doi:10.1080/000164802760370736.

3. Samsudin, W. S. W. & Sundaraj, K. Image processing on facial paralysis for facial 
rehabilitation system: A review. Proc. - 2012 IEEE Int. Conf. Control Syst. Comput. 
Eng. ICCSCE 2012 259–263 (2012) doi:10.1109/ICCSCE.2012.6487152.

4. Revenaugh, P. C. et al. Use of Objective Metrics in Dynamic Facial Reanimation A 
Systematic Review. JAMA Facial Plast. Surg. 20, 501–508 (2018).

5. Niziol, R., Henry, F. P., Leckenby, J. I. & Grobbelaar, A. O. Is there an ideal outcome 
scoring system for facial reanimation surgery? A review of current methods and 
suggestions for future publications. J. Plast. Reconstr. Aesthetic Surg. 68, 447–456 
(2015).

6. Aldridge, K., Boyadjiev, S. A., Capone, G. T., DeLeon, V. B. & Richtsmeier, J. T. Precision 
and error of three-dimensional phenotypic measures acquired from 3dMD 
photogrammetric images. Am. J. Med. Genet. 138 A, 247–253 (2005).

7. Wong, J. Y. et al. Validity and reliability of craniofacial anthropometric measurement 
of 3D digital photogrammetric images. Cleft Palate-Craniofacial J. 45, 232–239 (2008).

8. Weinberg, S. M. et al. Anthropometric Precision and Accuracy of Digital Three-
Dimensional Photogrammetry. J. Craniofac. Surg. 17, 477–483 (2006).

9. Schimmel, M. et al. Distances between facial landmarks can be measured accurately 
with a new digital 3-dimensional video system. Am. J. Orthod. Dentofac. Orthop. 137, 
1–10 (2010).

10. Aynechi, N., Larson, B. E., Leon-Salazar, V. & Beiraghi, S. Accuracy and precision of a 
3D anthropometric facial analysis with and without landmark labeling before image 
acquisition. Angle Orthod. 81, 245–252 (2011).

11. Hong, C. et al. Evaluation of the 3dMDface system as a tool for soft tissue analysis. 
Orthod. Craniofacial Res. 20, 119–124 (2017).

12. Dindaroğlu, F., Kutlu, P., Duran, G. S., Görgülü, S. & Aslan, E. Accuracy and reliability 
of 3D stereophotogrammetry: A comparison to direct anthropometry and 2D 
photogrammetry. Angle Orthod. 86, 487–494 (2016).

13. Ghoddousi, H., Edler, R., Haers, P., Wertheim, D. & Greenhill, D. Comparison of three 
methods of facial measurement. Int. J. Oral Maxillofac. Surg. 36, 250–258 (2007).

14. Fourie, Z., Damstra, J., Gerrits, P. O. & Ren, Y. Evaluation of anthropometric accuracy 
and reliability using different three-dimensional scanning systems. Forensic Sci. Int. 
207, 127–134 (2011).



Part 1: Reliability and agreement of 3D anthropometric measurements
in facial palsy patients using a low-cost 4D imaging system

 

65

15. Heike, C. L., Upson, K., Stuhaug, E. & Weinberg, S. M. 3D digital stereophotogrammetry: 
A practical guide to facial image acquisition. Head Face Med. 6, 1–11 (2010).

16. Zaki, R. Validation of Instrument Measuring Continuous Variable in Medicine. in 
Advances in Statistical Methodologies and Their Application to Real Problems 217–
237 (IntechOpen, 2017). doi:10.5772/66151.

17. ten Harkel, T. C. et al. Depth accuracy of the RealSense F200: Low-cost 4D facial 
imaging. Sci. Rep. 7, 16263 (2017).

18. Rusu, R. B. & Cousins, S. 3D is here: Point Cloud Library (PCL). 2011 IEEE Int. Conf. 
Robot. Autom. 1–4 (2011) doi:10.1109/ICRA.2011.5980567.

19. Segal, A. V, Haehnel, D. & Thrun, S. Generalized-ICP. Proc. Robot. Sci. Syst. 2, 4 (2009).
20. Caple, J. & Stephan, C. N. A standardized nomenclature for craniofacial and facial 

anthropometry. Int. J. Legal Med. (2015) doi:10.1007/s00414-015-1292-1.
21. Lilliefors, H. W. On the Kolmogorov-Smirnov Test for Normality with Mean and 

Variance Unknown. J. Am. Stat. Assoc. 62, 399–402 (1967).
22. Wilcoxon, F. Individual Comparisons by Ranking Methods. Biometrics Bull. 1, 80–83 

(1945).
23. McGraw, K. O. & Wong, S. P. Forming Inferences about Some Intraclass Correlation 

Coefficients. Psychol. Methods 1, 30–46 (1996).
24. Koo, T. K. & Li, M. Y. A Guideline of Selecting and Reporting Intraclass Correlation 

Coefficients for Reliability Research. J. Chiropr. Med. 15, 155–63 (2016).
25. Bland, J. M. & Altman, D. G. Statistical methods for assessing agreement between two 

methods of clinical measurement. Lancet 327, 307–310 (1986).
26. Plooij, J. M. et al. Evaluation of reproducibility and reliability of 3D soft tissue analysis 

using 3D stereophotogrammetry. Int. J. Oral Maxillofac. Surg. 38, 267–73 (2009).
27. Lin, H., Zhu, P., Lin, Y., Zheng, Y. & Xu, Y. Reliability and Reproducibility of Landmarks on 

Three-Dimensional Soft-Tissue Cephalometrics Using Different Placement Methods. 
Plast. Reconstr. Surg. 134, 102e-110e (2014).

28. Toma, A. M., Zhurov, A., Playle, R., Ong, E. & Richmond, S. Reproducibility of facial soft 
tissue landmarks on 3D laser-scanned facial images. Orthod. Craniofacial Res. 12, 
33–42 (2009).

29. Fagertun, J. et al. 3D facial landmarks: Inter-operator variability of manual annotation. 
BMC Med. Imaging 14, 1–9 (2014).

30. Baysal, A., Sahan, A. O., Ozturk, M. A. & Uysal, T. Reproducibility and reliability of 
three-dimensional soft tissue landmark identification using three-dimensional 
stereophotogrammetry. Angle Orthod. 86, 1004–1009 (2016).

31. Neely, J. G., Wang, K. X., Shapland, C. A., Sehizadeh, A. & Wang, A. Computerized 
Objective Measurement of Facial Motion. Otol. Neurotol. 31, 1488–1492 (2010).

32. Mehta, R. P., Zhang, S. & Hadlock, T. A. Novel 3-D video for quantification of facial 
movement. Otolaryngol. - Head Neck Surg. 138, 468–472 (2008).

3



Chapter 3

66

33. Hadlock, T. A. & Urban, L. S. Toward a universal, automated facial measurement tool 
in facial reanimation. Arch. Facial Plast. Surg. 14, 277–282 (2012).

34. Shujaat, S. et al. The clinical application of three-dimensional motion capture (4D): A 
novel approach to quantify the dynamics of facial animations. Int. J. Oral Maxillofac. 
Surg. 43, 907–916 (2014).

35. Ramieri, G. A. et al. Reconstruction of facial morphology from laser scanned data. 
Part I: Reliability of the technique. Dentomaxillofacial Radiol. 35, 158–164 (2006).

36. Ceinos, R., Tardivo, D., Bertrand, M. F. & Lupi-Pegurier, L. Inter- and Intra-Operator 
Reliability of Facial and Dental Measurements Using 3D-Stereophotogrammetry. J. 
Esthet. Restor. Dent. 28, 178–189 (2016).

37. Othman, S. A., Majawit, L. P., Hassan, W. N. W., Wey, M. C. & Razi, R. M. Anthropometric 
study of three-dimensional facial morphology in Malay adults. PLoS One 11, 1–15 
(2016).

38. Caple, J. & Stephan, C. N. A standardized nomenclature for craniofacial and facial 
anthropometry. Int. J. Legal Med. 130, 863–879 (2016).



Part 1: Reliability and agreement of 3D anthropometric measurements
in facial palsy patients using a low-cost 4D imaging system

 

67

3





CHAPTER 3CHAPTER 3

Authors: Timen C. ten Harkel, Shankeeth Vinayahalingam, Thomas J.J. Maal, Henri 
A.M. Marres, Caroline M. Speksnijder & Koen J.A.O. Ingels

PART 2: RELIABILITY AND AGREEMENT OF 
3D ANTHROPOMETRIC MEASUREMENTS 
DURING THE VOLUNTARY MOVEMENTS 
OF THE SUNNYBROOK FACIAL GRADING 

SYSTEM



Chapter 3

70

ABSTRACT

Background
This study determined the reliability (precision) and agreement (accuracy) of 14 
anthropometric measurements during 5 voluntary movements of the Sunnybrook Facial 
Grading System (SFGS).

Materials & Methods
Thirty patients with a unilateral peripheral facial palsy (PFP) were recorded simultaneously 
with the 3dMD system (gold standard) and a low-cost RealSense D415 camera. 
Measurements were derived from 14 manually placed landmarks on the 3dMD and 
RealSense 3D images at maximum exertion for each of the voluntary movements.

Results
The depth accuracy of the RealSense ranged between 0.95 mm and 1.01 mm during the 
voluntary movements. The reliability of the landmark placement ranged from 0.87 mm to 
1.02 mm (intra-rater) and 1.00 mm to 1.25 mm (inter-rater) for the 3dMD image. For the 
RealSense image this ranged from 1.04 mm to 1.28 mm (intra-rater) and from 1.39 mm 
to 1.57 mm (inter-rater). The reliability of the anthropometric measurements, expressed 
as the intra-class correlation coefficient, ranged from 0.95 to 0.97 (intra-rater) and from 
0.93 to 0.96 (inter-rater) for the 3dMD measurements and from 0.90 to 0.95 (intra-rater) 
and from 0.87 to 0.92 (inter-rater) for the RealSense measurements. The agreement of 
the anthropometric measurements resulted in an underestimation of -1.47 mm to -1.02 
mm (intra-rater) and -1.34 mm to -1.02 mm (inter-rater) of the RealSense measurements 
compared to the 3dMD. 

Conclusion
Firstly, the reliability of the 3D landmark placement and anthropometric measurements 
was similar for patients with a PFP performing the voluntary movements of the SFGS 
compared to healthy subjects at rest, when using the high quality 3dMD images. Secondly, 
the 3D anthropometric measurements on the RealSense images showed a relatively 
consistent reliability and agreement during the voluntary movements of the SFGS based 
on the patients with a PFP. Therefore, the RealSense can be considered as a viable option 
to perform objective measurements in case a low-cost and portable camera is required, 
e.g. in an eHealth environment.
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INTRODUCTION

Peripheral facial palsy (PFP) is caused by a lesion at or below the facial nucleus of the 
seventh cranial nerve, resulting in a partial or complete impairment of the ipsilateral 
mimic muscles. PFP has an estimated incidence rate of between 11 to 40 per 100,000 
people per annum, with the majority of cases classified as an idiopathic PFP [1]. In order 
to assess the severity of a PFP during diagnostic workup and follow-up there are multiple 
subjective diagnostic tools available, such as the Sunnybrook Facial Grading System 
(SFGS), House Brackmann, and Sydney score [2,3]. Additionally, objective measurements 
can be used to determine asymmetry measurements for the grading of a PFP, where a 
major class of objective measurements are based on anthropometric measurements 
[2–4].

Anthropometry is the scientific method to measure dimensions of the human body. 
Traditionally, this method utilized callipers to measure the distance between two facial 
landmarks [5]. The calliper has mostly been replaced by digital measurements based 
on 2D images, 2D videos, static 3D images, or 3D videos (also called 4D imaging) [2–5]. 
One of the advantages of 3D imaging is the ability to include depth and express the 
anthropometric measurements in real world coordinates [6]. A 4D imaging system might 
be preferred over a 3D imaging system since certain aspects of a PFP are only visible 
during certain facial poses. Preferably, the 4D imaging system would be limited in size, 
complexity, and cost, making the implementation of a 4D analysis more accessible. 
However, these properties could result in a lower image quality and depth accuracy, 
which could influence the accuracy of the landmark placement and the anthropometric 
measurements. 

In previous work, the reliability and agreement of anthropometric measurements were 
determined using such a low-cost portable 4D imaging system, the RealSense D415 [7]. 
This study analysed a population of patients with a PFP with the face at rest. However, it is 
important to determine the effect on the reliability and agreement of the anthropometric 
measurements during multiple facial poses. One of the major subjective grading systems 
for PFP is the SFGS [8]. The SFGS includes the scoring of the facial symmetry at rest, during 
five voluntary movements and the scoring of synkinesis. The five voluntary movements 
of the SFGS consist of raising the eyebrows, gently closing the eyes, open mouth smiling, 
snarling (raising the nasal ala), and puckering the lips [9]. Due to the extensive use of the 
SFGS and the variety of voluntary movements, the SFGS provides a good representation 
of clinically relevant voluntary movements to assess a PFP in clinical practice.
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Therefore, the aim of this study is to determine the impact of the five voluntary movements 
of the SFGS on the reliability and agreement of the anthropometric measurements, 
based on manually placed 3D landmarks on patients with a PFP, using the RealSense 
D415. The results of this study will be compared to the research analysing the face at rest 
to determine the potential influence of the voluntary movements on the reliability and 
agreement of the anthropometric measurements during clinical measurements [7]. In 
order to compare the results to the research analysing the face at rest, the following four 
objectives were adapted using the previous study protocol using the same professional 
3dMD imaging system as the gold standard, with a reported depth accuracy of 0.20 
to 0.25 mm [7,10–12]. The first objective was to determine the depth accuracy of the 
RealSense 3D images for each of the voluntary movements (1). Secondly, the intra- and 
inter-rater reliability (precision) of the manual 3D landmark placement were assessed 
for the voluntary movements for both the RealSense and 3dMD images (2). Thirdly, the 
intra- and inter-rater reliability of anthropometric measurements based on the manually 
placed landmarks were determined for the voluntary movements for both the RealSense 
and 3dMD images (3). Finally, the intra- and inter-rater agreement (accuracy) of the 
RealSense measurements was assessed for each of the voluntary movements by using 
3dMD measurements as the gold standard (4). 

MATERIALS & METHODS 

Population 
Between August 2018 and April 2019, all patients with a unilateral PFP seen during 
a multidisciplinary consultation at the Department of Otorhinolaryngology of the 
Radboudumc, were eligible for participation in this study. Exclusion criteria were the 
presence of epilepsy and an age younger than 16 years. Approval of this study was 
authorized by the Ethics Committee of the Radboudumc (2015-1829) and was conducted 
in compliance with the World Medical Association Declaration of Helsinki on medical 
research ethics. All subjects provided a written informed consent for the participation in 
this study. Additionally, patients shown in this study provided a written informed consent 
for the use of their images.

Image acquisition
The image acquisition consisted of recording the five voluntary movements based on the 
SFGS (i.e., forehead wrinkle, gentle eye closure, open mouth smile, snarl, and lip pucker). 
These voluntary movements were captured simultaneously with the two-pod 3dMD 
system (3dMDface, 3dMD, Atlanta, USA) and the RealSense D415 (Intel, Santa Clara, USA). 
The RealSense D415 recorded with 30 frames per second at an approximate distance 
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of 35 cm to the patient, with a colour resolution of 1920 × 1080 pixels and a depth 
resolution of 1280 × 720 pixels. A static 3D image was captured with the 3dMD system 
at maximum exertion of each voluntary movement, which acted as the clinical reference 
image. 

Objective 1: Depth accuracy of the 3D image 
The method to determine the RealSense depth accuracy was described in previous work, 
which consisted of exporting the 3D images from the RealSense recording at the time of 
maximum exertion of one of the five voluntary movements, which was at the same time 
of the static 3dMD image [7]. The default temporal and spatial filters from the RealSense 
Software Development Kit were applied to the RealSense depth images. The RealSense 
depth image was cropped by a sphere placed on the pronasale, with a radius determined 
by the distance between the exocanthion and pronasale. In order to fully include the 
eye region of the face, this radius was increased by 10%. Remaining noise was removed 
from the RealSense image with a statistical outlier filter [13]. Registration between the 
RealSense image and the 3dMD image was performed with the Procrustes algorithm 
followed by the Iterative Closest Point algorithm without applying scaling or reflection 
[14]. A distance map was calculated between the RealSense depth image and the 
3dMD image for each of the voluntary movements. From this distance map, the average 
Euclidean distance was calculated, which only consisted of absolute values.
 
Objective 2: Intra- and inter-rater reliability of landmark placement
During this study, a total of 14 key facial landmarks (4 midline and 5 bilateral), selected 
on the ability to track movement during the voluntary movements, were placed on the 
RealSense and 3dMD images for each of the five voluntary movements (Figure 1). The 
landmark definitions were based on Caple & Stephan with alterations described in our 
earlier research due to limitations of the 3dMD system to capture reflective surfaces 
[7,15]. The alterations included the palpebrale superius (ps’), which was defined as the 
most inferior intersection of the upper eyelid with a vertical line through the palpebrale 
inferius (pi’).The superciliare centralis (scc’) was defined as the superior most intersection 
of the eyebrow with a vertical line through pi’ and ps’ to find the cross section of the 
eyebrow [7]. The landmarks were manually placed by two experienced observers (TtH 
and SV) on the 3D surface of both the RealSense image and the 3dMD images on all the 
five voluntary movements for each individual patient, in order to determine the intra-
rater reliability. Observer TtH placed all the landmarks a second time after three weeks, 
to determine the intra-observer reliability. The RealSense and 3dMD images were shown 
in a random order whereas the RealSense and 3dMD images could alternate, with the 
exact same sequence for the two observers.
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Objective 3 & 4: Intra- and inter-rater reliability and agreement of 
anthropometric measurements
A total of 14 anthropometric measurements were determined by calculating the Euclidean 
distance between a combination of 2 out of the 14 manually placed landmarks (Figure 1). 
The intra- and inter-rater reliability was determined separately for all 14 anthropometric 
measurements for each of the voluntary movements for both the RealSense D415 and 
3dMD images.

Statistical analysis
The statistical analysis was performed for each of the voluntary movements 
individually in order to compare the results to the face at rest. The analysis was split 
up between the healthy and palsy side of each patient for the bilateral landmarks 
and measurements and the intra- and inter-rater Euclidean distance was determined 
for both the RealSense and 3dMD landmarks individually. Due to the non-normal 
distribution of the landmark placement the Wilcoxon signed-rank test was used to 

Figure 1. Manually placed landmarks at the moment of maximum exertion of the five voluntary movements 
of the Sunnybrook Facial Grading System (SFGS). The 14 manually placed 3D landmarks are shown as 
green dots on the 3dMD image, consisting of 4 midline landmarks and 10 bilateral landmarks, with the 
landmark definitions based on Caple & Stephan with scc’ and ps’ having modified definitions as defined in 
the baseline study of the face at rest [6,7]. The midline landmarks consisted of the sellion (se’), subnasale 
(sn’), labiale superius (ls’), and labiale inferius (li’). The bilateral landmarks consisted of the superciliare 
centralis (scc’), palpebrale superius (ps’), palpebrale inferius (pi’), subalare (sbal’) and cheilion (ch’). The 
anthropometric measurements are indicated by the dotted white lines as shown on the left side of the 
face. The measurements consisted of ps’–scc’, ps’–pi’, sbal’–sn’, ch’–sn’, ch’–ls’, ch’–li’, sn’–se’, and sn’–ls’.
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determine the reliability of the intra- and inter-observer landmark placement [16]. 
The anthropometric measurements were normally distributed, and the reliability 
of these measurements was determined by the intra-class correlation coefficient 
(ICC) estimates and their 95% confidence interval (CI). An ICC of <0.5 was considered 
as poor, 0.50 to 0.75 as fair, 0.75 to 0.90 as good, and 0.90 to 1.00 as excellent [17]. 
The intra-rater reliability was calculated using a single-rater, absolute agreement, two-
way mixed effects model. The inter-rater reliability was calculated using a single-rater, 
absolute agreement, two-way random effects model [18]. Finally, the agreement of 
the anthropometric measurements was determined by the Bland-Altman method 
[19], based on the mean systematic difference between the RealSense and 3dMD 
anthropometric measurements. The analysis also included the upper and lower limit of 
agreement (LoA), which span 95% of all observations, represented as a percentage of the 
3dMD measurement.

RESULTS

Population
This study included the recordings of 30 patients with a PFP, which consisted of 11 men 
and 19 women, with an average age of 57 ± 13 years ranging from 30 to 87 years. This 
population was identical to the population included in the baseline study analysing 
the face at rest and the voluntary movements were performed immediately after the 
recording of the face at rest [7].

Objective 1: Depth accuracy of the 3D image 
The RealSense depth accuracy was determined for all individual voluntary movements 
by calculating the average Euclidean distance from the RealSense image to the 3dMD 
image. The average Euclidean distance ranged between 0.95 mm and 1.01 mm (Table 1), 
with the best and worst depth accuracy found for the gentle eye closure and open mouth 
smile, respectively.

Table 1. The average depth accuracy of the RealSense D415 for each voluntary movement of the 
Sunnybrook Facial Grading System (SFGS). The depth accuracy is expressed as the average Euclidean 
distances between the RealSense D415 surface to the 3dMD surface.

Voluntary movement of the SFGS Depth accuracy (mm)

Forehead wrinkle 0.96 ± 0.07

Gentle eye closure 0.95 ± 0.07

Open mouth smile 1.01 ± 0.10

Snarl 0.99 ± 0.10

Lip pucker 0.97 ± 0.08

3



Chapter 3

76

Objective 2: Intra- and inter-rater reliability of landmark placement
The intra- and inter-rater reliability of the manual landmark placement was determined 
for the 14 landmarks as shown in Figure 1. Table 2 shows the average Euclidean distance 
for the intra- and inter-rater landmarks based on the individual voluntary movements for 
both the 3dMD and RealSense image separately. The following five landmarks were found 
to have a statistically significant difference between the healthy and the palsy side of the 
face: (1) ps’ during the inter-rater 3dMD landmark placement of the lip pucker, (2) ps’ 
during the intra-rater placement of the RealSense landmark of the forehead wrinkle, (3 & 
4), ps’ and pi’ during the inter-rater placement of the RealSense landmark of the gentle 
eye closure, and (5) ps’ during the inter-rater placement of the RealSense landmark of the 
lip pucker. Additionally, the landmarks resulting in a significant difference between the 
3dMD and RealSense placement are shown in Table 3. A notable result in the reliability 
of the RealSense landmark placement was the subalare (sbal’), with an average intra- and 
inter-rater Euclidean distance of 1.22 mm and 1.46 mm during all voluntary movements.

Table 2. The average Euclidean distance including the standard deviation for the intra- and inter-rater 
landmark placement for each voluntary movement of the Sunnybrook Facial Grading System (SFGS) 
based on the 3dMD and RealSense D415 images.

 3dMD RealSense D415

Voluntary movement 
of the SFGS

Intra-rater 
(mm)

Inter-rater 
(mm)

 Intra-rater 
(mm)

Inter-rater 
(mm)

Forehead wrinkle 0.87 ± 0.57 1.00 ± 0.80  1.15 ± 0.76 1.46 ± 1.06

Gentle eye closure 1.01 ± 0.71 1.25 ± 0.94  1.09 ± 0.70 1.39 ± 0.90

Open mouth smile 1.02 ± 0.78 1.14 ± 0.88  1.04 ± 0.68 1.41 ± 1.08

Snarl 0.91 ± 0.63 1.14 ± 0.80  1.28 ± 0.98 1.57 ± 1.09

Lip pucker 0.90 ± 0.58 1.06 ± 0.66  1.06 ± 0.62 1.37 ± 0.92

Table 3. Overview of landmarks with a statistically significant difference between the RealSense D415 
landmark placement and their respective 3dMD landmark (p <0.05).

Voluntary movement of the SFGS Intra-rater Inter-rater

Forehead wrinkle scc’ (h), sbal’ (p & h), sn’, ls’ scc’ (p & h), sbal’ (p & h), ch’ 
(p & h), sn’, ls’, li’

Gentle eye closure sbal’ (p & h), ch’ (p), sn’, ls’ sbal’ (h), ch’ (p & h), sn’, ls’

Open mouth smile - sbal’ (p & h), se’, sn’

Snarl pi’ (h), scc’ (p), sbal’ (p & h), ch’ (p 
& h), sn’, ls’ 

scc’ (h), sbal (h’), se’, ls’, li’

Lip pucker ch’ (p), sn’, ls’ scc’ (h), sbal’ (h), sn’

The bilateral landmarks are indicated by either the palsy side (p) and the healthy side (h) of the face. See 
Figure 1 for the landmark abbreviations. SFGS = Sunnybrook Facial Grading System.
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Objective 3: Intra- and inter-rater reliability of anthropometric measurements
The intra- and inter-rater reliability (precision) was determined for the 14 anthropometric 
measurements as described in Figure 1 for each of the voluntary movements and 
separately for both the 3dMD and RealSense image. The reliability was expressed as the 
ICC and Table 4 shows the average ICC, measured length, and absolute distance of the 
14 anthropometric 3dMD measurements for each voluntary movement. Table 5 shows 
these results for the RealSense D415 measurements.

Table 4. The intra- and inter-rater reliability of the anthropometric measurements for each voluntary 
movement of the Sunnybrook Facial Grading System (SFGS) based on the 3dMD measurements.

3dMD measurements

Intra-rater Inter-rater

Voluntary 
movement of the 
SFGS

ICC Length 
(mm)

AD 
(mm) ICC Length 

(mm)
AD 
(mm)

Forehead wrinkle 0.95 (0.88 – 0.98) 28.1 0.8 0.93 (0.85 – 0.97) 28.2 0.8

Gentle eye closure 0.95 (0.91 – 0.98) 26.9 0.7 0.94 (0.87 – 0.97) 26.9 0.8

Open mouth smile 0.95 (0.88 – 0.98) 28.9 0.8 0.93 (0.87 – 0.97) 28.9 1.0

Snarl 0.96 (0.91 – 0.98) 26.7 0.7 0.94 (0.88 – 0.97) 26.7 0.9

Lip pucker 0.97 (0.91 – 0.99) 24.7 0.7 0.96 (0.92 – 0.98) 24.8 0.7

The reliability is represented as the intra-class correlation coefficient (ICC), including the lower and upper 
bound of the 95% confidence interval. Furthermore, the average length and the absolute difference (AD) 
between the observer measurements are shown.

Table 5. The intra- and inter-rater reliability of the anthropometric measurements for each voluntary 
movement of the Sunnybrook Facial Grading System (SFGS) based on the RealSense D415 measurements.

RealSense D415 measurements

Intra-rater Inter-rater

Voluntary 
movement of the 
SFGS

ICC Length 
(mm)

AD 
(mm) ICC Length 

(mm)
AD 
(mm)

Forehead wrinkle 0.90 (0.80 – 0.95) 26.6 1.1 0.87 (0.69 – 0.94) 26.8 1.3

Gentle eye closure 0.93 (0.87 – 0.97) 25.6 0.9 0.91 (0.80 – 0.96) 25.8 1.1

Open mouth smile 0.95 (0.90 – 0.98) 27.8 0.8 0.89 (0.78 – 0.94) 27.8 1.2

Snarl 0.92 (0.84 – 0.96) 25.6 1.1 0.89 (0.79 – 0.94) 25.7 1.4

Lip pucker 0.94 (0.87 – 0.97) 23.7 0.9  0.92 (0.82 – 0.96) 23.7 1.1

The reliability is represented as the intra-class correlation coefficient (ICC), including the lower and upper 
bound of the 95% confidence interval. Furthermore, the average length and the absolute difference (AD) 
between the observer measurements are shown.
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Objective 4: Intra- and inter-rater agreement of anthropometric 
measurements
The intra- and inter-rater reliability (accuracy) was determined for the 14 anthropometric 
measurements for each of the voluntary movements. The numeric representation of the 
Bland-Altman analysis including the LoA is shown in Table 6 for the average of the 14 
measurements for each of the voluntary movements. The lowest average agreement 
was found during the intra-rater measurements of the forehead wrinkle (-1.47 mm) and 
gentle eye closure (-1.36 mm). The agreement was mostly affected by the measurements 
involving ch’, with an average agreement of -2.05 mm for the palsy side and -2.7 mm 
for the healthy side of the face for the intra-rater agreement. Additionally, Table 6 
shows the LoA expressed as the percentage of the 3dMD measurement. In addition, 
the LoA percentage without the ps’ – pi’ measurement is shown in between brackets, 
due to the major increase in LoA percentage when measuring lower distances without 
impacting the agreement. For example, during the gentle eye closure, the intra-rater 
LoA percentage was 118.7% whilst having a higher agreement compared to the other 
voluntary movements for the ps’ – pi’ measurement.

DISCUSSION

This study determined the impact of the five voluntary movements on the reliability 
and agreement of anthropometric measurements, based on manually placed 3D 
landmarks on patients with a PFP, using the RealSense D415. The results from this 
study can act as a reference when implementing anthropometric measurements 
using a low cost-camera in a clinical setting or when further exploring the 3D and 4D 

Table 6. Numeric representations of the Bland-Altman analysis for the intra- and inter-rater agreement 
of the anthropometric measurements for each voluntary movement of the Sunnybrook Facial Grading 
System (SFGS).

 Intra-rater agreement Inter-rater agreement

Voluntary 
movement of the 
SFGS

Mean difference 
(mm) LoA (%) Mean difference 

(mm) LoA (%) 

Forehead wrinkle -1.47 (-4.88 – 1.95) 14.5 (13.3) -1.34 (-4.98 – 2.30) 15.1 (14.0)

Gentle eye closure -1.36 (-4.81 – 2.10) 29.1 (14.2) -1.17 (-4.62 – 2.29) 34.2 (14.2)

Open mouth smile -1.07 (-4.68 – 2.54) 16.5 (14.2) -1.16 (-4.81 – 2.49) 16.0 (14.3)

Snarl -1.02 (-5.02 – 2.97) 24.3 (16.3) -1.02 (-5.18 – 3.14) 25.4 (17.1)

Lip pucker -1.08 (-4.44 – 2.28) 19.4 (13.9)  -1.06 (-4.41 – 2.28) 19.3 (13.9)

The mean systematic difference between the RealSense D415 and 3dMD measurements (mm) 
including the limit of agreement (LoA). Additionally, the LoA is represented as the percentage (%) of the 
measured 3dMD distance. The LoA percentage in between brackets is the LoA percentage excluding the 
measurement ps’ – pi’. 
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capabilities of the RealSense. This study extends previous work, where the reliability 
and agreement of the anthropometric measurements was determined for the face 
at rest [7]. In order to compare data between the studies, the material and methods 
were kept as consistent as possible between the two studies. For example, the 
objectives, population of patients with a PFP, depth accuracy calculations, selection of 
landmarks, anthropometric measurements, observers, and statistical analysis, did not 
change between the studies. 

Objective 1: Depth accuracy of the 3D image
The first objective of this study was to determine the overall depth accuracy of the 
RealSense for each of the voluntary movements using the 3dMD image as the gold 
standard. The depth accuracy ranged between 0.95 and 1.01 mm for the voluntary 
movements (Table 1), which was in the same range as the face at rest (0.97 mm) [7]. 
These results correspond with the depth accuracy of a previous generation RealSense 
camera, the RealSense F200, which was not significantly influenced by the voluntary 
movements [20]. However, there is still a major difference between the depth accuracy 
of the RealSense D415 and the 3dMD system with a respective depth accuracy of 
0.20 to 0.25 mm for healthy subjects [10–12]. 

Objective 2: Intra- and inter-rater reliability of landmark placement
Reliability of 3dMD landmark placement
The second objective assessed the intra- and inter-rater reliability (precision) of the 
manual 3D landmark placement for the voluntary movements for both the 3dMD and 
RealSense images. The landmarks of the 3dMD are discussed first, in order to determine 
the reliability of the landmark placement in an ideal scenario with a high-quality 3D 
image. The baseline study analysing the face at rest, reported an average intra- and 
inter-rater distance of 0.84 mm and 1.00 mm, respectively for the 3dMD landmarks [7]. 
All voluntary movements were found to have a higher average landmark distance, as 
shown in Table 2. 

The landmarks in the eye region played a crucial role in the decreased landmark reliability. 
During the (partial) eye closure it was difficult to determine the location of pi’, since the 
inferior border of the lower eyelid could be blocked by the upper eyelid or eyelashes. 
The reliability of ps’ and scc’ were indirectly affected as well since these landmarks were 
derived from pi’. Due to synkinesis, eye closure could also occur during other voluntary 
movements [21]. During the lip pucker this resulted in a single significant difference of 
the inter-rater landmark placement of pi’ between the healthy and palsy side of the face. 
The landmark placement was not significantly influenced by the palsy and healthy side of 
the face for the remaining 98% of the bilateral landmarks.
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No studies were found reporting the reliability of landmark placement on patients 
with a PFP using high-quality stereophotogrammetry images. Therefore, the landmark 
placement was compared to studies based on healthy subjects with the face at rest, 
with the reliability of the landmark placement ranging from 0.76 mm to 1.32 mm 
(intra-rater) and 0.88 mm to 1.42 mm (inter-rater) landmark distances [22–26]. 
These results indicate that the reliability of landmark placement is not negatively 
impacted for patients with a PFP during the voluntary movements compared to 
healthy subjects at rest, when using high quality 3D imaging systems such as the 
3dMD. Therefore, the reliability of the 3dMD landmark placement during the voluntary 
movements was found to be sufficient to act as a reference for the RealSense landmark 
placement. 

Reliability of RealSense D415 landmark placement
The RealSense landmark placement showed an increase in landmark reliability during 
the voluntary movements, as shown in Table 2, compared to the face at rest, with an 
average intra- and inter-rater distance of 1.32 mm and 1.62 mm [7]. Additionally, the 
direct comparison between the 3dMD and RealSense landmark placement resulted in 
less statistical differences compared to the face at rest (Table 3), which also indicated a 
more reliable landmark placement. When comparing the landmark placement between 
the healthy and palsy side of the face of the RealSense image, 94% of the bilateral 
landmarks did not find a significant difference between the healthy and palsy side of the 
face.

The increase in reliability for the RealSense landmarks placement during the voluntary 
movements was mainly caused by the subalare (sbal’), with an average intra- and inter-
rater Euclidean distance of 1.22 mm and 1.46 mm compared to a respective distance of 
2.13 mm and 2.51 mm during the baseline study [7]. The difficulty of the sbal’ placement 
during the face at rest was caused by the lack of depth data around the noise region [7]. 
During landmark placement of the voluntary movements, it was noted the depth data 
was present more often around the subalare region due to a slight upward rotation of 
the face of the patients, making landmark placement more reliable. 

Objective 3: Intra- and inter-rater reliability of anthropometric measurements
Reliability of 3dMD anthropometric measurements
The third objective determined the intra- and inter-rater reliability (precision) of the 
anthropometric measurements based on the voluntary movements. The baseline 
study found an excellent intra- and inter-rater ICC of 0.95 and 0.93, respectively for the 
anthropometric measurements based on the 3dMD image [7]. All measurements based 
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on the voluntary movements had either a similar or better ICC including the lower and 
upper boundary of the confidence interval (Table 4), with an average intra- and inter-
rater reliability of 0.96 and 0.94, respectively. Therefore, the reliability of the voluntary 
movement measurements was considered as excellent. The absolute difference of intra-
raters ranged between 0.7 mm and 0.8 mm for the voluntary movements (Table 4), which 
was the same as the 0.7 mm absolute difference at rest [7]. The inter-rater absolute 
difference ranged between 0.7 mm and 1.0 mm compared to the 0.9 mm with the face 
at rest. 

Apart from the baseline study, no other studies were found analysing 3D anthropometric 
measurements based on patients with a PFP [7]. Instead, previous work focused on the 
analysis of motion or was based on 2D landmarks [27–30]. Hence an indirect comparison 
was made with studies based on healthy subjects [31–35]. The average ICC for healthy 
subjects ranged from 0.83 to 1.00 (intra-rater) and from 0.70 to 0.98 (inter-rater) [33–35]. 
The average absolute differences ranged from 0.80 mm to 0.99 mm for anthropometric 
measurements for healthy subjects [31,32,35]. Since both the ICC and the absolute 
differences of the voluntary movements were in a similar range as the baseline study 
with the face at rest and were in the highest range for the healthy subjects, the 3dMD 
anthropometric measurements were considered to be reliable results to act as the 
reference values.

Reliability of RealSense D415 anthropometric measurements
The reliability of the RealSense voluntary movement measurements increased compared 
to the face at rest, as seen with the 3dMD measurements. The average intra- and 
inter-rater ICC of the voluntary movements was 0.93 and 0.90, respectively (Table 5) 
and therefore excellent, compared to a good ICC of 0.83 and 0.80 for the face at rest, 
respectively [7]. These results were confirmed by an overall lower absolute difference 
between observers. The intra-rater absolute difference improved from 1.2 mm to 1.0 mm 
between the face at rest and the voluntary movements, respectively (Table 5). The inter-
rater absolute difference saw a similar improvement from 1.5 mm to 1.2 mm, respectively. 

The reliability of the RealSense measurements was within the range of the average ICC 
for healthy subjects ranging from 0.83 to 1.00 (intra-rater) and from 0.70 to 0.98 (inter-
rater) [33–35]. However, a higher ICC was found during the 3dMD measurements and 
the absolute difference of the intra-rater measurements for the RealSense was 1.2 
mm, which fell outside of the reported range for healthy subject of 0.8 mm to 1.0 mm 
[31,32,35]. Therefore, a lower reliability of the RealSense measurements should still be 
expected compared to the 3dMD measurements. 
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Objective 4: Intra- and inter-rater agreement of anthropometric measurements
The fourth objective assessed the agreement (accuracy) of anthropometric 
measurements using the 3dMD measurements as the gold standard. The 
Bland-Altman analysis was used to determine the differences between the 
3dMD measurements and the RealSense measurements, which would be zero in 
the case of perfect agreement. In the baseline study based on the face at rest, an 
average underestimation of -0.90 mm and -0.89 mm was found for the intra- and 
inter-rater RealSense measurements compared to the 3dMD measurements [7]. 
During the voluntary movements, this underestimation increased to an average of 
-1.21 mm and -1.16 mm for the intra- and inter-rater measurements, respectively 
(Table 6). 

A difference between the RealSense and 3dMD measurements was expected 
even in case landmarks were placed on exactly the same location, due to the 
RealSense depth accuracy of 0.98 mm for the voluntary movements (Table 1). 
However, the depth accuracy did not seem to be the main cause of the difference 
in agreement, since the voluntary movements with the lowest agreement, the 
forehead wrinkle and gentle eye closure, were found to have the highest depth 
accuracy (Table 1 & 6). The lowest agreement was found for measurements involving 
ch’ on the healthy side of the face during the forehead wrinkle and gentle eye closure. 
These two voluntary movements should not affect the mouth region significantly 
for the healthy side of the face compared to the face at rest. These results indicate 
the lower agreement was not caused by the voluntary movements or the PFP, 
but by the overall difficulty to determine ch’. The average age of the population 
in this study was relatively high, increasing the amount of skin folds around ch’. This 
made it harder to identify the location where the upper and lower vermillion border 
met and caused a higher variation in the measurements between the 3dMD and 
RealSense measurements.

The limit of agreement (LoA), showed the expected percentage difference between 
the RealSense and 3dMD measurement in 95% of the cases. A major increase in 
LoA percentage was seen during the ps’ – pi’ measurement with an intra-rater LoA 
percentage of 118.7% for the gentle eye closure compared to 20.5% for the face at 
rest [7]. However, the agreement of ps’ – pi’ was higher during the gentle eye closure 
indicating the increase of the LoA percentage was caused by the relatively short 
distance measured during the eye closure. When excluding ps’ – pi’ from the results, the 
LoA percentage changed to 14.4% and 14.7% for the intra- and inter-rater measurements, 
respectively (Table 6). This is in the same range as the face at rest, with the overall 
LoA percentage of 12.4% and 15.0%, respectively. 
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Combining the results of the Bland-Altman analysis and the LoA percentage, the overall 
agreement between the RealSense and 3dMD measurements remained relatively 
consistent between the voluntary movements and the face at rest. Therefore, 95% of the 
RealSense measurements are expected to be at least within -5.0 mm and 3.0 mm of the 
3dMD measurements during the voluntary movements. This would be a 14% difference 
compared to the 3dDM measurements. It is clear from these results that submillimetre 
accuracy should not be expected when using the RealSense to perform anthropometric 
measurement in a clinical setting. However, the clinical application will determine whether 
the agreement of the RealSense measurements is within reasonable limits and sufficient 
for the required task.

Future research
To our knowledge this is the first study to use the RealSense D415 camera to assess 
the reliability and agreement of anthropometric measurements during the voluntary 
movements in patients with a PFP. The research extended previous research based 
on the face at rest and followed a similar study design [7]. Therefore, the scope of this 
research was mainly determined by the baseline study. This leaves multiple areas of 
research to be explored.

First of all, the depth accuracy of the RealSense was determined based on the entire 
surface of the face. During this study, the depth accuracy remained stable during the 
voluntary movements and therefore differences found in the reliability and agreement 
of the anthropometric measurements were most likely not caused by differences in the 
underlying 3D depth data. However, the face could be divided in multiple regions to 
determine the effect on the depth accuracy off specific regions. The main focus of the 
current study was based on the analysis of the manually placed 3D landmarks and their 
derived anthropometric measurements. However, the use of the complete 3D and 4D 
data, as captured by the RealSense, could be of additional value in the assessment of 
a PFP [2–4,8]. Since this current study has shown a relatively consistent agreement and 
reliability of the anthropometric measurements, the inclusion of more 3D and 4D data 
could be a viable option in future research.

Due to the (partial) eye closure during the voluntary movements the landmark placement 
of pi’, ps’, and scc’ became more challenging. The overall effect on the reliability and 
agreement of the derived anthropometric measurements from these landmarks was 
minimized since the observers were measuring the same distance (e.g., zero during 
eye closure). However, in order to improve the reliability of the landmark placement the 
location of pi’, ps’, and scc’ could be based on the centre location of the endocanthion 
and exocanthion, as the endocanthion and exocanthion are less likely to be blocked 
during the eye closure.
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In contrast, ch’ had a more significant impact on the reliability and agreement of the 
anthropometric measurements. The data indicate this was not caused by the voluntary 
movements, but the overall difficulty of ch’ placement due to the presence of skin folds 
and shaded areas mainly present on the RealSense image. However, the reliability of 
the ch’ placement could potentially be increased by using the 4D data of the RealSense 
recording by tracking the landmarks over time and compare changes between frames.

The current study analysed the voluntary movements of the SFGS, where other 
grading systems use (slightly) different poses to determine the degree of the PFP [2–
4]. Additionally, a selection of 14 landmarks and anthropometric measurements were 
analysed on a total of 30 patients with a PFP. Therefore, it might be desirable to expand 
this research to include more facial poses, landmarks, and patients. 

Finally, this study can act as a foundation for the implementation of clinical measurements 
or the automatic assessment of a PFP using the RealSense D415 [2–4,8]. Due to the low-
cost and portability of the RealSense, these measurements could be implemented in 
an eHealth environment or in circumstances where a professional 4D camera would be 
too bulky or expensive. The requirements of the clinical implementation will determine 
whether the reliability and agreement of the anthropometric measurements are sufficient 
for the specific clinical implementation.

CONCLUSION

This study has assessed the reliability (precision) and agreement (accuracy) of 
anthropometric measurements of the five voluntary movements of the SFGS, based on 
manually placed 3D landmarks on patients with a PFP using the RealSense D415. First, it was 
found that the reliability of the landmark placement and anthropometric measurements 
were similar for the patients with a PFP performing the voluntary movements compared 
to healthy subjects at rest, when using high quality 3D images such as the 3dMD images 
[22–26,31–35]. Additionally, the reliability and agreement of the 3D landmark placement 
and anthropometric measurements during the voluntary movements on the RealSense 
images were relatively consistent. Therefore, the RealSense D415 can be considered as a 
viable option to perform objective measurements in case a low-cost and portable camera 
is required, e.g. in an eHealth environment.
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ABSTRACT

Purpose
In order to assess the severity and the progression of a unilateral peripheral facial palsy 
(PFP) the Sunnybrook Facial Grading System (SFGS) is a well-established grading system 
due to its clinical relevance, sensitivity, and robust measuring method. However, training 
is required in order to achieve a high inter-rater reliability. This study investigated the 
automated grading of patients with a PFP based on the SFGS using a convolutional neural 
network. 

Materials & Methods
A total of 116 patients with a unilateral PFP and 9 healthy subjects were recorded 
performing the SFGS poses. A separate model was trained for each of the 13 elements 
of the SFGS and then used to calculate the SFGS subscores and composite score. 
The performance of the automated grading system was compared to three clinicians 
experienced in the grading of a PFP. 

Results
The inter-rater reliability of the convolutional neural network was within the range of 
human observers, with an average intra-class correlation coefficient of 0.87 for the 
composite SFGS score, 0.45 for the resting symmetry subscore, 0.89 for the symmetry of 
voluntary movement subscore, and 0.77 for the synkinesis subscore.

Conclusion
This study showed the potential of the automated SFGS to be implemented in a clinical 
setting. The automated grading system adhered to the original SFGS, which makes the 
implementation and interpretation of the automated grading more straightforward. The 
automated system can be implemented in numerous settings such as online consults 
in an eHealth environment, since the model used 2D images captured from a video 
recording.
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INTRODUCTION

The partial or complete loss of facial function associated with a unilateral peripheral facial 
palsy (PFP) can have a significant impact on the physical, social, and emotional quality of 
life, due to the potential inability to blink, to eat and drink, or to communicate both verbally 
and non-verbally [1–3]. The cause and severity of the initial PFP has a major impact on 
the expected recovery rate. For example, patients with a complete idiopathic PFP have an 
overall recovery rate of 50 to 60%, whilst patients with an incomplete idiopathic PFP have 
a recovery rate of 95 to 99% [4].

In order to assess the severity and the progression of the PFP, multiple grading systems 
exist, such as the House-Brackmann scale, Sunnybrook Facial Grading System (SFGS), 
and eFACE [5,6]. One of the recommended and well-established grading systems is the 
SFGS due to its clinical relevance, sensitivity, and robust measuring method [6]. The SFGS 
is a weighted grading system where the composite SFGS score ranges from 0 to 100 [7]. 
A score of 0 indicates a complete flaccid unilateral facial paralysis (without synkinesis) and 
a score of 100 indicates normal functioning of the mimic muscles. The SFGS assesses 13 
individual elements and are grouped into three subcomponents; the resting symmetry (3 
elements), symmetry of voluntary movement (5 elements), and synkinesis (5 elements). A 
complete breakdown of the SFGS is shown in Table 1.

Despite the clinical relevance and sensitive measurements of the SFGS, there are certain 
disadvantages using a subjective grading system. First of all, training is required in order 
to achieve a high reliability between observers [8]. Additionally, the grading of the PFP 
is most commonly performed during consultation of the patients, where an increase in 
grading frequency is not always possible due to time constraints in the clinic and also due 
to travel distances of patients. These limitations could be alleviated by the automation of 
grading of a PFP based on the SFGS. The automated system would remove the learning 
curve of the SFGS and make the SFGS more accessible for e.g., researchers, students, 
clinicians in training, or other untrained co-workers. This automated system could 
then potentially be used during online consults in an eHealth environment. Ideally, the 
automated grading system would be so user-friendly it could be used by the patient 
at home without any assistance. This would enable more frequent monitoring of the 
rehabilitation process of the patient without increasing the workload of clinicians.
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Deep learning has shown great results in the automation of image based recognition and 
classification tasks [9–12]. A subtype of deep learning, the convolutional neural network 
(CNN), is particularly suitable for image based classification and is able to surpass the 
human-level performance in recognition and classification tasks [10,11]. Therefore, an 
automated SFGS based on a CNN has the potential to exceed the reliability compared 
to human observers. In order to achieve this accuracy, the CNN model is usually trained 
on a large amount of input data. This training process can take a long time and will 
sometimes require expensive hardware. However, once the training phase of model has 
been finished, the execution of the model generally can be performed within milliseconds 
on relatively affordable electronic devices such as smartphones, laptops, and desktops 
[9–12], which is ideal for the implementation in a clinical setting. 

Table 1. Overview of the Sunnybrook Facial Grading System (SFGS) assessing 13 individual elements 
during the resting symmetry (3 elements), symmetry of voluntary movement (5 elements) and synkinesis 
of the facial muscles (5 elements).

SFGS component Score range 
(discrete values)

Score for healthy 
subjects

Resting symmetry (RS)*

Eye 0 – 1 0

Cheek (naso-labial fold) 0 – 2 0

Mouth 0 – 1 0

Symmetry of Voluntary Movement (SVM)

Forehead wrinkle 1 – 5 5

Gentle eye closure 1 – 5 5

Open mouth smile 1 – 5 5

Snarl 1 – 5 5

Lip pucker 1 – 5 5

Synkinesis (SK)

Forehead wrinkle 0 – 4 0

Gentle eye closure 0 – 4 0

Open mouth smile 0 – 4 0

Snarl 0 – 4 0

Lip pucker 0 – 4 0

Subscore SFGS components

RS subscore (sum RS x 5) 0 – 20 0

SVM subscore (sum SVM x 4) 20 – 100 100

SK subscore (sum SK) 0 – 20 0

Composite score 

SVM subscore - RS subscore - SK subscore 0 – 100 100

*Multiple answers in the SFGS can result in the same score for the individual elements [7]. 
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Deep learning has been applied for studies investigating the automation of the grading of 
a PFP [13–29]. However, these studies consisted of either small cohorts with less than 30 
subjects, analysed only the composite score of the SFGS, or focused on different grading 
systems such as the House-Brackmann scale or eFace [13–30]. Since the composite 
SFGS score by itself does not differentiate which area of the face is affected by the PFP 
it is crucial all 13 individual components of the SFGS are scored during follow-up. By 
adhering to the original SFGS the resulting SFGS scores are easy to interpret for clinicians 
familiar with the SFGS. Additionally, all previous research about the clinical relevance and 
reliability of the SFGS would remain valid. This would make the automated grading system 
more straightforward to implement in daily clinical practice or in an eHealth environment.

Therefore, this prospective study investigated the automated grading of patients with a 
PFP based on the SFGS using a CNN. The long-term goal of the automated SFGS grading 
system would be to create a user-friendly system that can be used by the patient at 
home without any assistance, whilst ideally exceeding the inter-rater reliability of human 
observers. However, the scope of this study was first to determine the feasibility of an 
automated SFGS grading system based on a CNN. Therefore, the objective of this study 
was to determine the inter-rater reliability of the automated SFGS based on a CNN 
compared to human observers, experienced in the grading of the SFGS, for all 13 individual 
components of the SFGS. Additionally, the scoring key of the SFGS was used to determine 
the inter-rater reliability of the three subcomponents (resting symmetry, symmetry of 
voluntary movement, and synkinesis), and the composite SFGS score (Table 1). 

MATERIALS & METHODS 

Population 
Patients seen during facial palsy consultation at the Department of Otorhinolaryngology 
of the Radboudumc were included in this study during the period of August 2018 and 
November 2020, independent of etiology of the unilateral PFP. Additionally, healthy 
subjects were allowed to participate in this study to act as reference measurements. 
The subjects were graded during patient consultation according to the SFGS by three 
clinicians experienced in SFGS grading. The team consisted of an otorhinolaryngologist, 
a plastic surgeon, and a physical therapist, all experienced for many years in diagnosis 
and treatment of a PFP. The observers were present in the same room and discussion 
between the observers was allowed, as was standard clinical practice during the 
consultation. Approval of this study was authorized by the Ethics Committee of the 
Radboudumc (2015-1829) and was conducted in compliance with the World Medical 
Association Declaration of Helsinki on medical research ethics. Each subject provided a 
written informed consent for the participation in this study and subjects shown in this 
study provided a written informed consent for the use of their images.
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Image acquisition
Image acquisition consisted of recording the six poses based on the SFGS, i.e., neutral, 
forehead wrinkle, gentle eye closure, open mouth smile, snarl, and lip pucker. Recordings 
were performed with the RealSense D415 (Intel, Santa Clara, USA), used for previous 
studies recording patients with a PFP [31,32]. The RealSense captured 30 frames per 
second at an approximate distance of 35 cm to the patient. The RealSense simultaneously 
captured a colour recording with a resolution of 1920 × 1080 pixels and a depth recording 
with a resolution of 1280 × 720 pixels. During this study only the 2D colour images were 
used as input for the CNN. All SFGS poses were captured in a single recording. 

Pre-processing
Two frames were selected for each of the SFGS poses; the starting frame was at the 
initiation of the SFGS pose, whilst the maximum frame was selected at the maximum 
exertion of the SFGS pose (Figure 1). This resulted in 12 selected frames per subject. On 
each of the 12 selected frames, landmarks were placed on the left and right exocanthion, 
which were used for cropping the image to a 112 × 112 pixel colour image. The cropping 
centred the face of the subject and removed the majority of the background of the image. 
The 112 × 112 resolution was also required in order to make the image suitable as an 

Figure 1. Pre-processing of the RealSense recordings to optimize the input for the convolutional neural 
network, using the Sunnybrook Facial Grading System (SFGS) pose “pucker” as an example. The starting 
frame (a) was selected at the initiation of the SFGS pose, whilst the maximum frame (b) was selected at the 
maximum exertion of the SFGS pose. The original images (a & b) were cropped to a 112 × 112 × 3 pixel 
image (c & d) based on manually placed landmarks on the on the left and right exocanthion (not shown). 
Image registration was applied between the cropped starting frame (c) and maximum frame (d) to correct 
for potential movement between the frames. Finally, the difference image (e) was calculated between the 
cropped starting frame (c) and maximum frame (d), resulting in a 112 × 112 × 3 pixel image.

a c

d

e

b
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input for the CNN. Due to potential rotation between the start of the SFGS pose and the 
maximum exertion, image registration was applied between the starting and maximum 
frame using optical flow registration [33]. Finally, a third image was created, with a 
matching resolution of 112 × 112 × 3, by calculating the absolute difference between 
the start and maximum frame for each individual colour channel, creating a difference 
image between the starting and maximum frame (Figure 1). All images were normalized, 
resulting in pixels values ranging from 0 to 1 for each input image. 

Architecture
The CNN architecture was based on CNN configuration D as described by Simonyan 
& Zisserman consisting of 16 weight layers, with 13 convolution layers and 3 fully 
connected layers [34]. Due to the relatively small cohort size multiple alterations were 
made to the architecture, resulting in the CNN as shown in Appendix A, with a simplified 
overview shown in Figure 2. The input consisted of the starting frame and the maximum 
frame, each with a size of 112 × 112 × 3 pixels. The difference image, created during the 
preprocessing step and consisting of 112 × 112 × 3 pixels, was added as a third input 
during the dynamic components of the SFGS, i.e., the symmetry of voluntary movement 
and synkinesis. The input layer was followed by three data augmentation layers; a 

Figure 2. Simplified overview of the training of the convolutional neural network (CNN) with the 
Sunnybrook Facial Grading System (SFGS) pose “pucker” used as an example. The complete CNN model 
is shown in Appendix A. The input consisted of the cropped frame during the initiation of the SFGS pose 
(a), the frame during the maximum exertion of the SFGS pose (b), and the difference image between the 
starting and maximum frame (c). The difference image was only added during the dynamic SFGS poses 
during the symmetry of voluntary movement and synkinesis. Due to the relatively small cohort size data 
augmentation, early stopping, dropout, batch normalization, and Gaussian noise was used during training 
to prevent overfitting. The predicted scores of the individual elements of the SFGS were converted from 
a continuous scale to the respective nominal score of the SFGS as shown in Table 1. E.g., the final output 
score for the symmetry of voluntary movement ranged from discrete values from 1 to 5.

a

Data augmentation CNN

b

c

Score of individual 
SFGS element
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random horizontal flip, random zoom (range factor 0.8 to 1.2) and random rotation 
(range -20 to 20 degrees), which was only activated during training of the model. The 
data augmentation was followed by the CNN, with a kernel size reduced by a factor of 
four compared to CNN configuration D from Simonyan & Zisserman [34]. Additionally, 
a kernel and bias constraint with a maximum norm value of three was added and each 
maxpool layer was preceded by a batch normalization layer. The fully connected layers 
consisted of 1024 nodes. Dropout layers (p = 0.5) and batch normalization (momentum 
= 0.95) layers were added after each fully connected layer. A linear activation function 
was used for the output layer, followed by a Gaussian noise layer (σ = 0.1) for further 
regularization. Finally, the logcosh loss function was used in combination with the Adam 
optimizer.

Training
Each of the 13 elements of the SFGS were trained separately based on the output 
labels as determined by the three experienced observers. As the composite SFGS 
score is calculated from the 13 SFGS elements, the training and testing groups 
were kept consistent between the 13 SFGS elements. E.g., the trained CNN model of 
the symmetry of voluntary movement of the pucker was based on exactly the same 
training and testing group as the model of the synkinesis of the gentle eye closure. 
A stratified k-fold was applied during training, which divided the dataset into five folds, 
using 80% of the subjects for training during each fold. This meant the CNN model was 
trained and tested five times, where the testing data always consisted of completely 
new subjects during each fold (20% of the subjects per fold). The stratified k-fold was 
based on the composite SFGS score to promote a fair distribution of the subjects. Data 
augmentation was set to a random zoom factor ranging from 0.8 to 1.2 and a random 
rotation factor ranging between -20 to 20 degrees. Early stopping was used with a 
patience of 1500 epochs and a batch size of 32 was used [35]. A cyclic triangular learning 
rate was applied with a base learning rate of 1e-8, a max learning rate of 1e-3, and a step 
size of 4× (length of training dataset / batch size) [36].

Analysis
The performance of the CNN was determined by comparing the predicted SFGS 
scores of the models with the SFGS scores as graded by the experienced human 
observers during the patient consultation as described in the section Population. 
The CNN was trained for five different combinations of subjects, as determined 
by the stratified k-folds. The analysis as described below was repeated for each 
of the five folds. Due to the linear output of the CNN model, the predicted scores of 
the individual elements of the SFGS were converted from a continuous scale to the 
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respective nominal score of the SFGS as shown in Table 1. E.g., the final output score 
for the symmetry of voluntary movement ranged from discrete values from 1 to 
5. Additionally, the predicted scores were capped at the minimum and maximum 
score of each individual SFGS. From these 13 individual scores the subscores of 
the 3 SFGS components and the composite SFGS score were calculated according 
to the scoring key of the SFGS (Table 1). Therefore, no separate CNN models were 
trained to calculate the subscores of the SFGS components and the composite SFGS 
score. 

The individual scores of the resting symmetry, symmetry of voluntary movement, and 
the synkinesis were based on a nominal scale. In order to determine the agreement 
between the CNN model and the experienced human observers, confusion matrices 
were made. The confusion matrix visualized the performance of a classification model 
where the row represented the actual SFGS score, and the columns represented the 
predicted SFGS score. The cells of the matrix displayed the frequency for that particular 
combination. E.g., in case of perfect agreement all outcomes are on the diagonal of 
the confusion matrix, since the actual SFGS score and the predicted SFGS score are 
the same score. From the confusion matrices the quadratic weighted Cohen’s Kappa 
was calculated to determine the inter-rater reliability between the predicted values of 
the model and the observers [37]. A Cohen’s Kappa lower than 0.20 was considered as 
having no agreement, 0.21 to 0.39 a minimal agreement, 0.40 to 0.59 a weak agreement, 
0.60 to 0.79 a moderate agreement, 0.80 to 0.90 a strong agreement, and 0.91 to 1.00 
an almost perfect agreement [38]. 

Due to the continuous values of the SFGS components and the composite SFGS score, the 
inter-rater reliability of the total SFGS scores was expressed as the intra-class correlation 
coefficient (ICC, type 2,1) [39]. An ICC of <0.5 was considered as poor, 0.50 to 0.75 as fair, 
0.75 to 0.90 as good, and 0.90 to 1.00 as excellent [40].

RESULTS

Population
A total of 116 patients with a PFP and 9 healthy subjects were included in this study 
during the period of August 2018 and November 2020. The patients with a PFP consisted 
of 49 men and 67 women, with an average age of 53 ± 16 years ranging from 18 to 
88 years. The side of paralysis was equally distributed (50 / 50 % r / l). The 9 healthy 
subjects consisted of 3 men and 6 women, with an average age of 56 ± 17 years ranging 
from 27 to 77 years. 
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Inter-rater reliability of the individual SFGS elements
Table 2 shows the inter-rater reliability between the predicted CNN scores and the 
experienced observers for each of the 13 elements of the SFGS (Table 1), expressed as 
the quadratic weighted Cohen’s Kappa. The mean inter-rater reliability was determined 
for five different combinations of subjects, as determined by the stratified k-folds. The 
range of inter-rater reliability found for these k-folds are shown in between brackets 
in Table 2. The CNN model was first trained on 100 subjects and then tested on 25 
subjects in order to determine the inter-rater reliability of the CNN. Both the inter-rater 
reliability for the training and testing data is shown in Table 2 to determine potential 
overfitting during the training process of the CNN model. The data from Table 2 indicates 
no overfitting occurred due to the relatively minor differences between the inter-rater 
reliability of the testing and training data. When looking at the test data for the resting 
symmetry elements a minimal agreement was found between the predicted CNN scores 
and the experienced observers. The elements of the symmetry of voluntary movement 
mostly showed a moderate to strong agreement, whilst the synkinesis elements ranged 
from a minimal to moderate agreement.

Table 2. Inter-rater reliability of the individual Sunnybrook Facial Grading System (SFGS) components 
between the convolutional neural network (CNN) model and the experienced observers. 

SFGS component Inter-rater reliability 
training data

Inter-rater reliability 
testing data

Resting symmetry 

Eye 0.32 (0.03 - 0.73) 0.37 (0.00 - 0.75)

Cheek (naso-labial fold) 0.22 (-0.22 - 0.61) 0.29 (0.17 - 0.46)

Mouth 0.41 (0.03 - 0.88) 0.47 (0.34 - 0.60)

Symmetry of Voluntary Movement 

Forehead wrinkle 0.84 (0.73 - 0.89) 0.84 (0.81 - 0.90)

Gentle eye closure 0.74 (0.53 - 0.91) 0.79 (0.66 - 0.92)

Open mouth smile 0.86 (0.83 - 0.90) 0.81 (0.76 - 0.84)

Snarl 0.70 (0.10 - 0.88) 0.65 (0.32 - 0.79)

Lip pucker 0.61 (0.35 - 0.80) 0.63 (0.47 - 0.86)

Synkinesis

Forehead wrinkle 0.69 (0.54 - 0.91) 0.69 (0.56 - 0.84)

Gentle eye closure 0.64 (0.36 - 0.79) 0.56 (0.27 - 0.76)

Open mouth smile 0.37 (0.20 - 0.50) 0.54 (0.35 - 0.71)

Snarl 0.17 (-0.07 - 0.34) 0.36 (0.30 - 0.51)

Lip pucker 0.84 (0.80 - 0.89) 0.77 (0.71 - 0.90)

The mean inter-rater reliability is expressed as the quadratic weighted Cohen's Kappa and is shown for 
both the training and testing data. The values in between brackets show the range of Kappa values for 
the five k-folds.
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Inter-rater reliability of the SFGS subscores and composite score
The subscores of the resting symmetry, symmetry of voluntary movement, synkinesis 
and the composite SFGS score were calculated according to the scoring key of the SFGS 
(Table 1) and were derived from the individual SFGS components as determined in the 
previous section. The inter-rater reliability between the total scores of the CNN and the 
experienced observers is expressed as the ICC (type 2,1) and is shown in Table 3. The 
total score of the resting symmetry showed a poor agreement, whereas the symmetry 
of voluntary movement, synkinesis, and composite SFGS all showed a good agreement. 

DISCUSSION

This study investigated the automated grading of patients with a PFP based on the SFGS 
using a CNN. A separate CNN model was trained for each of the 13 elements of the SFGS 
consisting of the resting symmetry (3 elements), symmetry of voluntary movement (5 
elements) and synkinesis (5 elements). The training and testing data were kept consistent 
throughout the individual elements of the SFGS, in order to calculate the total scores of 
the SFGS using the associated scoring key (Table 1). By adhering to the original SFGS, 
the results found in this study can be compared to previous research about the clinical 
relevance and reliability of the SFGS. Additionally, the CNN model used two colour 2D 
frames as an input, which could potentially be captured by any available 2D camera such 
as a smartphone camera or a (laptop) webcam. This would make the implementation of 
the automated SFGS into daily clinical practice more straightforward. This would also allow 
for a user-friendly implementation of the automated SFGS grading system that could be 
used by the patient at home without any assistance. However, before implementing the 
automated SFGS in the clinic, the inter-rater reliability of the automated SFGS scores 
need to be compared to the expected inter-rater reliability between human observers. 
Multiple studies investigated the inter-rater reliability between human observers based 
on the SFGS, but not all studies used the same statistical analysis or included all the 

Table 3. Inter-rater reliability of the Sunnybrook Facial Grading System (SFGS) subscores and composite 
score between the convolutional neural network (CNN) model and the experienced observers. 

SFGS component Inter-rater reliability 
training data

Inter-rater reliability 
testing data

Resting symmetry subscore 0.39 (0.13 - 0.58) 0.45 (0.35 - 0.58)

Symmetry of voluntary movement subscore 0.90 (0.85 - 0.94) 0.89 (0.86 - 0.94)

Synkinesis subscore 0.75 (0.71 - 0.79) 0.77 (0.72 - 0.85)

Composite score 0.87 (0.79 - 0.91) 0.87 (0.79 - 0.93)

The mean inter-rater reliability is expressed as the intra-class correlation coefficient (ICC, type 2,1) and is 
shown for both the training and testing data. The values in between brackets show the range of ICC values 
for the five k-folds. 
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individual elements from the SFGS [6,8,29,41–44]. However, these studies did find a 
predominantly minimal to weak agreement for the individual components of the resting 
symmetry, a moderate agreement for the symmetry of voluntary movement, and a weak 
to moderate agreement for the synkinesis. Existing literature investigating the inter-rater 
reliability between human observers of the subcomponents of the SFGS, predominantly 
showed a fair agreement for the resting symmetry, where the voluntary movements and 
synkinesis showed a good agreement, and the composite SFGS score showed a good to 
excellent agreement [6,8,29,41–44]. The results shown in this current study indicate that 
the average inter-rater reliability of the CNN model falls within the expected ranges of 
human observers (Tables 2 & 3) and therefore performed similarly to human observers. 
This provides a first good indication the automated SFGS would be suitable to implement 
in a clinical setting.

After the general comparisons with existing reliability studies, a more direct comparison 
could be made with an inter-rater reliability study between human observers using the 
same methods as used in this current study [8]. In this particular study the learning 
curve of inexperienced human observers was assessed when grading 100 patients with 
a PFP based on the SFGS. In this section, we compare the inter-rater reliability of human 
observers, who evaluated 50 patients with a PFP, to the inter-rater reliability of the CNN 
model used in this current study. The largest differences were found for the resting 
symmetry where the CNN model had a lower quadratic Cohen’s Kappa compared to the 
human observers for all individual elements. This was also reflected with a high range of 
the inter-rater reliability between folds for the CNN model (Table 2). There are multiple 
factors that could contribute to the lower inter-rater reliability. The resting symmetry is 
the most difficult component of the SFGS, and previous studies reported a wide range 
of inter-rater reliability, and the CNN models still falls within this range [6,8,29,41–44]. 
However, the CNN model was trained on a relatively small cohort of 100 subjects and tested 
on 25 subjects. Considering the difficulty of grading the resting symmetry, an increase in 
cohort size could benefit the inter-rater reliability of the CNN model [34]. In contrast, 
the inter-rater reliability of the symmetry of voluntary movement and synkinesis was on 
par or exceeded the human observers after grading 50 patients with a PFP [8]. For the 
symmetry of voluntary movement, the snarl showed the largest difference between the 
human observers and the CNN model, with a respective quadratic Cohen’s Kappa of 0.77 
and 0.65. One fold of the CNN model found a quadratic Cohen’s Kappa of 0.32, lowering 
the overall agreement. This was most likely caused by a batch of difficult subjects to 
score in that particular fold and not due to the architecture of the CNN model. Especially 
since the CNN performed better on the forehead wrinkle with a quadratic Cohen’s Kappa 
of 0.84 compared to 0.75 for the human observers. During the synkinesis the largest 
differences were found for the gentle eye closure and lip pucker. The gentle eye close 
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found a quadratic Cohen’s Kappa of 0.73 vs. 0.56 and the lip pucker 0.67 vs. 0.77, for the 
human observers and CNN model, respectively. Therefore, the CNN model and human 
observers seem to be balanced in grading the synkinesis. The inter-rater reliability of the 
subcomponents and the composite score were all within an ICC range of 0.02, except 
for the symmetry of voluntary movement where the CNN outperformed the human 
observers with a respective ICC of 0.89 vs. 0.85. Overall, this comparison confirms that 
the CNN performs similar to human observers [8]. More specifically, the CNN reaches a 
comparable inter-rater reliability after inexperienced human observers have graded 50 
patients with a PFP.

The inter-rater reliability of the automated grading system could potentially be further 
improved by changing the deep learning architecture. The subjects were recorded with 
the RealSense D415, which simultaneously captured 2D and 3D images [31]. The 3D 
depth data would be able to add additional details about changes in the facial structure 
during the training of the model. Alternatively, specific (3D) facial landmarks could be 
added to focus on a select number of regions [32]. The current study used the neutral 
frame and frame of maximum exertion as a training input, whereas a Long Short-Term 
Memory (LSTM) deep learning network could provide more temporal information during 
the training of the model [45]. Another alternative deep learning network would be the 
Vision Transformer (ViT) model, which is less dependent on the spatial dependency of 
the regions of interest [46]. However, ViT models generally require large databases for 
training.

In general, deep learning models improve their accuracy by increasing the size of the 
training dataset, independent of the specific chosen deep learning architecture [34]. This 
is also the case for the CNN model used in this study, where a larger database would 
show more variations of a PFP. However, the impact of the cohort size was reduced by 
applying a high dropout rate, data augmentation, batch normalization, early stopping, 
and noise layers during training of the model (Appendix A). This resulted in relatively 
minor differences between the inter-rater reliability of the training data and testing data 
(Table 2 & 3), which indicates overfitting was minimized in this study. Additionally, the 
robustness of the CNN architecture was tested by applying five stratified k-folds, thereby 
making efficient use of the cohort, and using all 125 subjects in the testing of the CNN 
model during the five folds. The CNN model performed well with the different sets of 
subjects when taking into consideration that certain parts of the SFGS are relatively 
difficult to grade for human observers as well [6,8,29,41–44]. A potential limitation to 
improve the inter-rater reliability of the CNN might be the inter-rater reliability of human 
observers. This study used the average of three experienced observers during clinical 
consultation as was clinical standard practice, allowing discussion between the observers, 
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which made the SFGS used in this study less biased towards a single observer. However, 
it could be valuable to re-evaluate discrepancies between the human observers and the 
CNN, especially when the CNN approaches or exceeds the inter-rater reliability of human 
observers. This could result in the CNN achieving a higher inter-rater reliability compared 
to experienced human observers for the grading of patients with a PFP using the SFGS. 

CONCLUSION

This study investigated the automated grading of patients with a PFP based on the 
SFGS in a cohort of 125 subjects consisting of 116 patients and 9 healthy subjects. 
This automated grading system can make the SFGS more accessible for researchers, 
students, clinicians in training, or other untrained co-workers, by removing the learning 
curve associated with the SFGS [34]. The implemented CNN model adhered to the 
original SFGS, which makes the implementation and interpretation of the automated 
grading more straightforward in a clinical setting. Additionally, the automated SFGS 
can be implemented in a wide variety of settings such as online consults in an eHealth 
environment, since the CNN is based on 2D images captured from a video recording. This 
would allow image capture devices such as smartphones or laptop webcams to be used 
as an input for the CNN model. The inter-rater reliability of the CNN found in this study 
was within the expected ranges of human observers [6,8,29,41–44]. More specifically, the 
CNN achieved a similar inter-rater reliability as human observers who graded 50 patients 
with a PFP [8]. However, the inter-rater reliability of the automated SFGS can potentially 
exceed the reliability of human observers by increasing the size of the cohort used to 
train the CNN model [34]. Therefore, this study showed the potential of the automated 
SFGS based on the CNN as a first step towards a user-friendly automated grading system 
that can be used by the patient at home.



Automatic grading of patients with a unilateral facial palsy based on the Sunnybrook Facial 
Grading System: A deep learning study based on a convolutional neural network

 

103

REFERENCES

1. Kleiss, I. J., Hohman, M. H., Susarla, S. M., Marres, H. A. M. & Hadlock, T. A. Health-
related quality of life in 794 patients with a peripheral facial palsy using the FaCE 
Scale: A retrospective cohort study. Clin. Otolaryngol. 40, 651–656 (2015).

2. Ho, A. L. et al. Measuring quality of life and patient satisfaction in facial paralysis 
patients: a systematic review of patient-reported outcome measures. Plast. Reconstr. 
Surg. 130, 91–9 (2012).

3. Coulson, S. E., O’dwyer, N. J., Adams, R. D. & Croxson, G. R. Expression of emotion and 
quality of life after facial nerve paralysis. Otol. Neurotol. 25, 1014–1019 (2004).

4. Peitersen, E. Bell’s Palsy: The Spontaneous Course of 2,500 Peripheral Facial 
Nerve Palsies of Different Etiologies. Acta Otolaryngol. Suppl. 4–30 (2002) 
doi:10.1080/000164802760370736.

5. Samsudin, W. S. W. & Sundaraj, K. Evaluation and Grading Systems of Facial Paralysis 
for Facial Rehabilitation. J. Phys. Ther. Sci. 25, 515–519 (2013).

6. Fattah, A. Y. et al. Facial Nerve Grading Instruments: Systematic Review of the 
Literature and Suggestion for Uniformity. Plast. Reconstr. Surg. 135, 569–579 (2015).

7. Ross, B. G., Fradet, G. & Nedzelski, J. M. Development of a sensitive clinical facial 
grading system. Otolaryngol. - Head Neck Surg. 114, 380–386 (1996).

8. van Veen, M. M., Bruins, T. E., Artan, M., Werker, P. M. N. & Dijkstra, P. U. Learning 
curve using the Sunnybrook Facial Grading System in assessing facial palsy: An 
observational study in 100 patients. Clin. Otolaryngol. 45, 823–826 (2020).

9. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
10. Su, Z. et al. Deep learning-based facial image analysis in medical research: a systematic 

review protocol. BMJ Open 11, e047549 (2021).
11. Liu, Q. et al. A review of image recognition with deep convolutional neural network. in 

International onference on intelligent computing 69–80 (Springer, 2017).
12. Shen, D., Wu, G. & Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. 

Biomed. Eng. 19, 221–248 (2017).
13. Bur, A. M., Shew, M. & New, J. Artificial Intelligence for the Otolaryngologist: A State of 

the Art Review. Otolaryngol. - Head Neck Surg. (United States) 160, 603–611 (2019).
14. Guarin, D. L. et al. Toward an Automatic System for Computer-Aided Assessment in 

Facial Palsy. Facial Plast. Surg. aesthetic Med. 22, 42–49 (2020).
15. Hsu, G. S. J. & Chang, M. H. Deep Hybrid Network for Automatic Quantitative Analysis 

of Facial Paralysis. Proc. AVSS 2018 - 2018 15th IEEE Int. Conf. Adv. Video Signal-
Based Surveill. 1–7 (2019) doi:10.1109/AVSS.2018.8639156.

16. Mothes, O. et al. Automated objective and marker-free facial grading using 
photographs of patients with facial palsy. Eur. Arch. Oto-Rhino-Laryngology (2019) 
doi:10.1007/s00405-019-05647-7.

4



Chapter 4

104

17. Zhuang, Y. et al. F-DIT-V: An Automated Video Classification Tool for Facial Weakness 
Detection. 2019 IEEE EMBS Int. Conf. Biomed. Heal. Informatics 1–4 (2019) 
doi:10.1109/bhi.2019.8834563.

18. Guarin, D. L., Dusseldorp, J., Hadlock, T. A. & Jowett, N. A Machine Learning Approach 
for Automated Facial Measurements in Facial Palsy. JAMA Facial Plast. Surg. 20, 335–
337 (2018).

19. Guo, Z. et al. An unobtrusive computerized assessment framework for unilateral 
peripheral facial paralysis. IEEE J. Biomed. Heal. Informatics 22, 835–841 (2018).

20. Hsu, G. S. J., Huang, W. F. & Kang, J. H. Hierarchical network for facial palsy detection. 
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. 2018-June, 693–699 
(2018).

21. Jiang, Z., Dai, W., Wang, W. & Wang, W. A Cloud-Based Training and Evaluation System 
for Facial Paralysis Rehabilitation. Proc. - IEEE 16th Int. Conf. Ind. Informatics, INDIN 
2018 701–706 (2018) doi:10.1109/INDIN.2018.8471934.

22. Sajid, M. et al. Automatic grading of palsy using asymmetrical facial features: A study 
complemented by new solutions. Symmetry (Basel). 10, (2018).

23. Song, A., Wu, Z., Ding, X., Hu, Q. & Di, X. Neurologist Standard Classification of Facial 
Nerve Paralysis with Deep Neural Networks. Futur. Internet 10, 111 (2018).

24. Guo, Z. et al. Deep assessment process: Objective assessment process for unilateral 
peripheral facial paralysis via deep convolutional neural network. Proc. - Int. Symp. 
Biomed. Imaging 135–138 (2017) doi:10.1109/ISBI.2017.7950486.

25. Wang, T. et al. Automatic evaluation of the degree of facial nerve paralysis. Multimed. 
Tools Appl. 75, 11893–11908 (2016).

26. Kim, H. S., Kim, S. Y., Kim, Y. H. & Park, K. S. A smartphone-based automatic diagnosis 
system for facial nerve palsy. Sensors (Switzerland) 15, 26756–26768 (2015).

27. Azoulay, O. et al. Mobile Application for Diagnosis of Facial Palsy. in Proc. 2nd Int. 
Conf. Mobile Inf. Technol. Med (2014).

28. Wang, T., Dong, J., Sun, X., Zhang, S. & Wang, S. Automatic recognition of facial 
movement for paralyzed face. Biomed. Mater. Eng. 24, 2751–2760 (2014).

29. Tan, J. R., Coulson, S. & Keep, M. Face-to-Face Versus Video Assessment of Facial 
Paralysis: Implications for Telemedicine. J. Med. Internet Res. 21, e11109–e11109 
(2019).

30. Jirawatnotai, S., Jomkoh, P., Voravitvet, T. Y., Tirakotai, W. & Somboonsap, N. 
Computerized Sunnybrook facial grading scale (SBface) application for facial paralysis 
evaluation. Arch. Plast. Surg. 48, 269–277 (2021).

31. ten Harkel, T. C. et al. Depth accuracy of the RealSense F200: Low-cost 4D facial 
imaging. Sci. Rep. 7, 16263 (2017).

32. ten Harkel, T. C. et al. Reliability and Agreement of 3D Anthropometric Measurements 
in Facial Palsy Patients Using a Low-Cost 4D Imaging System. IEEE Trans. Neural Syst. 



Automatic grading of patients with a unilateral facial palsy based on the Sunnybrook Facial 
Grading System: A deep learning study based on a convolutional neural network

 

105

Rehabil. Eng. 28, 1817–1824 (2020).
33. Van Der Walt, S. et al. Scikit-image: Image processing in Python. PeerJ 2014, e453 

(2014).
34. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image 

recognition. 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc. 1–14 
(2015).

35. Prechelt, L. Early stopping - But when? in Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics) (eds. Montavon, G., Orr, G. B. & Müller, K.-R.) vol. 7700 LECTU 53–67 
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2012).

36. Smith, L. N. Cyclical learning rates for training neural networks. Proc. - 2017 IEEE 
Winter Conf. Appl. Comput. Vision, WACV 2017 464–472 (2017) doi:10.1109/
WACV.2017.58.

37. Cohen, J. Weighted kappa: nominal scale agreement provision for scaled disagreement 
or partial credit. Psychol. Bull. 70, 213 (1968).

38. McHugh, M. L. Interrater reliability: the kappa statistic. Biochem. medica 22, 276–282 
(2012).

39. Shrout, P. E. & Fleiss, J. L. Intraclass correlations: uses in assessing rater reliability. 
Psychol. Bull. 86, 420 (1979).

40. Koo, T. K. & Li, M. Y. A Guideline of Selecting and Reporting Intraclass Correlation 
Coefficients for Reliability Research. J. Chiropr. Med. 15, 155–63 (2016).

41. Volk, G. F. et al. Reliability of grading of facial palsy using a video tutorial with 
synchronous video recording. Laryngoscope (2018) doi:10.1002/lary.27739.

42. Gaudin, R. A. et al. Emerging vs time-tested methods of facial grading among patients 
with facial paralysis. JAMA Facial Plast. Surg. 18, 251–257 (2016).

43. Neely, J. G., Cherian, N. G., Dickerson, C. B. & Nedzelski, J. M. Sunnybrook facial grading 
system: reliability and criteria for grading. Laryngoscope 120, 1038–1045 (2010).

44. Coulson, S. E., Croxson, G. R., Adams, R. D. & O’Dwyer, N. J. Reliability of the “Sydney,” 
“Sunnybrook,” and “House Brackmann” facial grading systems to assess voluntary 
movement and synkinesis after facial nerve paralysis. Otolaryngol. - Head Neck Surg. 
132, 543–549 (2005).

45. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–
1780 (1997).

46. Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, (2017).

4



Chapter 4

106

APPENDIX A

Table 1. Full overview of the model architecture used for the convolutional neural network (CNN).

Layer Type Shape

0 InputLayer [(None, 112, 112, 3)]
1 InputLayer [(None, 112, 112, 3)]

2 InputLayer [(None, 112, 112, 3)]

3 Concatenate (None, 112, 112, 9)

4 RandomFlip (None, 112, 112, 9)

5 RandomRotation (None, 112, 112, 9)

6 RandomZoom (None, 112, 112, 9)

7 Conv2D (None, 112, 112, 16)

8 Conv2D (None, 112, 112, 16)

9 BatchNormalization (None, 112, 112, 16)

10 MaxPooling2D (None, 56, 56, 16)

11 Conv2D (None, 56, 56, 32)

12 Conv2D (None, 56, 56, 32)

13 BatchNormalization (None, 56, 56, 32)

14 MaxPooling2D (None, 28, 28, 32)

15 Conv2D (None, 28, 28, 64)

16 Conv2D (None, 28, 28, 64)

17 Conv2D (None, 28, 28, 64)

18 BatchNormalization (None, 28, 28, 64)

19 MaxPooling2D (None, 14, 14, 64)

20 Conv2D (None, 14, 14, 128)

21 Conv2D (None, 14, 14, 128)

22 Conv2D (None, 14, 14, 128)

23 BatchNormalization (None, 14, 14, 128)

24 MaxPooling2D (None, 7, 7, 128)

25 Conv2D (None, 7, 7, 128)

26 Conv2D (None, 7, 7, 128)

27 Conv2D (None, 7, 7, 128)

28 BatchNormalization (None, 7, 7, 128)

29 MaxPooling2D (None, 3, 3, 128)

30 Flatten (None, 1152)

31 Dense (None, 1024)

32 BatchNormalization (None, 1024)

33 Dropout (None, 1024)

34 Dense (None, 1024)

35 BatchNormalization (None, 1024)

36 Dropout (None, 1024)

37 Dense (None, 1)
38 GaussianNoise (None, 1)
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ABSTRACT

Objective
The Sunnybrook Facial Grading System (SFGS) is a well-established grading system to 
assess the severity and progression of a unilateral facial palsy (PFP). The automation of 
the SFGS makes the SFGS more accessible for researchers, students, clinicians in training, 
or other untrained co-workers and could be implemented in an eHealth environment. 
This study investigated the impact on the reliability of the automated SFGS by adding a 
facial landmark layer in a previously developed convolutional neural network (CNN).

Materials & Methods
An existing dataset of 116 patients with a unilateral PFP and 9 healthy subjects performing 
the SFGS poses was used to train a CNN with a newly added facial landmark layer. A 
separate model was trained for each of the 13 elements of the SFGS and then used 
to calculate the SFGS subscores and composite score. The intra-class coefficient of the 
automated grading system was calculated based on three clinicians experienced in the 
grading of a PFP.

Results
The inter-rater reliability of the CNN with the additional facial landmarks increased in 
performance for all composite scores compared to the previous model. The intra-class 
coefficient for the composite SFGS score increased from 0.87 to 0.91, the resting 
symmetry subscore increased from 0.45 to 0.62, the symmetry of voluntary movement 
subscore increased from 0.89 to 0.92, and the synkinesis subscore increased from 0.75 
to 0.78.

Conclusion
The integration of a facial landmark layer into the CNN showed a clear improvement in 
the reliability of the automated SFGS, reaching a performance level comparable to human 
observers. These results were attained without increasing the dataset underscoring the 
impact of incorporating facial landmarks into a CNN. These findings indicate that the 
automated SFGS with facial landmarks is a reliable tool for assessing patients with a PFP 
and is applicable in an eHealth environment.
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INTRODUCTION

There are several diagnostic tools available to determine the severity of a unilateral 
peripheral facial palsy (PFP), such as the House-Brackmann scale, Sunnybrook Facial 
Grading System (SFGS), and eFACE [1–3]. Ideally, the diagnostic tool has a high reliability 
and validity with a low learning curve and is fast to use in a clinical setting. One of these 
diagnostic tools, the SFGS, has been shown to be a robust, sensitive, and clinically 
relevant method to grade and assess a PFP [2]. The SFGS comprises of 13 elements 
that evaluate different aspects of a PFP across the following six poses; neutral, forehead 
wrinkle, gentle eye closure, open mouth smile, snarl, and lip pucker. These elements are 
grouped into three subcomponents: the resting symmetry (3 elements), symmetry of 
voluntary movement (5 elements), and synkinesis (5 elements). An overview of the SFGS 
is shown in Table 1. Each of these elements can evolve over time, either in conjunction 
with or independently from one another. For this reason, the SFGS is a robust method to 
monitor the development of a PFP over time.

Although the SFGS is a widely used diagnostic tool, there is a learning curve associated 
with the SFGS and there might be limited time within or outside the clinic to assess all 
the elements [4]. Hence, an automated SFGS was developed to make the SFGS more 
accessible for researchers, students, clinicians in training, or other untrained co-workers 
[5]. Our long-term goal is to develop a user-friendly system that can be used by the 
patient at home without any assistance, whilst ideally exceeding the inter-rater reliability 
of human observers. Therefore, the automated SFGS was designed to be relatively 
inexpensive, portable, non-invasive, and fast, to make the automated system a low barrier 
of entry in clinical practice. In addition, the automated system generated the same output 
as the manual SFGS to keep the clinical relevance, validation, and experience gained over 
the years with the SFGS. This was done by implementing a type of deep learning network, 
a convolutional neural network (CNN), which has been widely used for image-based 
recognition and image classification tasks [6–9]. The CNN analysed multiple 2D colour 
images of patients with a PFP and produced scores for all the 13 individual elements of 
the SFGS [5]. The analysed images consisted of the face at rest just before the initiation of 
the SFGS pose, the moment of maximum exertion, and a difference image which was the 
absolute difference between the two previously selected images. The three subscores 
and composite SFGS score were calculated from the 13 scores generated by the CNN 
models, replicating the process of the manual SFGS. The reliability of the automated 
SFGS was determined by comparing the automated score with the score of three human 
observers experienced in the grading of the SFGS. The automated SFGS managed to 
achieve an inter-rater reliability within the expected ranges of human observers albeit 
at the lower end of the reported range [2,4,5,10–15]. Since the CNN is based on 2D 
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images captured from a video recording, the automated SFGS can be implemented in a 
diverse range of environments, such as online consultations in an eHealth environment. 
Additionally, by adhering to the SFGS the implementation and interpretation of the 
automated SFGS is more straightforward in a clinical setting. 

One of the limitations of our previous study was the cohort size consisting of 125 
subjects [5]. However, in certain (clinical) settings there may be no option to increase 
the cohort size. Therefore, this study investigated the impact on the reliability of the 
automated SFGS by adding a facial landmark layer to the CNN, instead of significantly 
increasing the cohort size. In the original CNN model, a difference image was added as 
an input to highlight areas of movement. During the absence of movement this layer 

Table 1. Overview of the Sunnybrook Facial Grading System (SFGS) assessing 13 individual elements 
during the resting symmetry (3 elements), symmetry of voluntary movement (5 elements) and synkinesis 
of the facial muscles (5 elements).

SFGS component Score range 
(discrete values)

Score for healthy 
subjects

Resting symmetry (RS)*

Eye 0 – 1 0

Cheek (naso-labial fold) 0 – 2 0

Mouth 0 – 1 0

Symmetry of Voluntary Movement (SVM)

Forehead wrinkle 1 – 5 5

Gentle eye closure 1 – 5 5

Open mouth smile 1 – 5 5

Snarl 1 – 5 5

Lip pucker 1 – 5 5

Synkinesis (SK)

Forehead wrinkle 0 – 4 0

Gentle eye closure 0 – 4 0

Open mouth smile 0 – 4 0

Snarl 0 – 4 0

Lip pucker 0 – 4 0

Subscore SFGS components

RS subscore (sum RS x 5) 0 – 20 0

SVM subscore (sum SVM x 4) 20 – 100 100

SK subscore (sum SK) 0 – 20 0

Composite score 

SVM subscore – RS subscore – SK subscore 0 – 100 100

*Multiple answers in the SFGS can result in the same score for the individual elements [3]. 
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would deactivate. The additional facial landmark layer could potentially increase the 
reliability of the model by indicating regions of interest for the CNN even in the absence 
of motion. In order to determine the effect of adding a facial landmark layer to the CNN, 
the image dataset, processing, and training were kept as consistent as possible to our 
previous work [5].

MATERIALS & METHODS 

Dataset
To train the CNN, this study utilized the identical dataset as described in our previous 
work [5]. The dataset consisted of 116 patients with a unilateral PFP and 9 healthy 
subjects performing the six SFGS poses, recorded with the RealSense D415 (Intel, Santa 
Clara, USA) during the period of August 2018 and November 2020. The patients with a 
PFP were seen during facial palsy consultation at the Department of Otorhinolaryngology 
of the Radboudumc and were included independent of etiology of the PFP. The included 
patients consisted of 49 men and 67 women, with an average age of 53 ± 16 years ranging 
from 18 to 88 years. The composite SFGS score for the patients with a PFP ranged from 
0 to 91 with an average score of 41. The side of the PFP was equally distributed (50/50% 
r/l). The 9 healthy subjects consisted of 3 men and 6 women, with an average age of 56 ± 
17 years ranging from 27 to 77 years. 

The dataset contained the SFGS scores as graded by three clinicians (an 
otorhinolaryngologist, a plastic surgeon, and a physiotherapist) all with multiple years of 
experience applying the SFGS and in the diagnosis and treatment of patients with PFP. 
The clinicians were present within the same room and discussion between the observers 
was allowed, as was standard clinical practice during the consultation.

Approval of this study was authorized by the Ethics Committee of the Radboudumc 
(2015-1829). This study was conducted in compliance with the World Medical Association 
Declaration of Helsinki on medical research ethics. Each subject provided a written 
informed consent for the participation in this study and subjects shown in this study 
provided a written informed consent for the use of their images.

Landmark placement
Thirteen facial landmarks were manually placed by observer FB on the original 
2D colour images (1920 × 1080 pixels) using the definitions of Caple & Stephan: 
superciliare (bilateral), palpebrale superius (bilateral), palpebrale inferius (bilateral), 
subalare (bilateral), subnasale, cheilion (bilateral), labiale superius, and labiale inferius 
(Figure 1a & b) [16].
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All landmarks were placed on both the start frame, i.e., neutral position of the 
face, and frame of maximum exertion for each SFGS pose and subject. From these 
landmark positions, a colour image of 1920 × 1080 pixels was generated with the 
landmark coordinates set to a value of 255 for each colour channel and all other pixels 
set to a value of 0.

Figure 1. Pre-processing of the input images for the convolutional neural network, using the Sunnybrook 
Facial Grading System (SFGS) pose “pucker” as an example. The starting frame (a) and the maximum 
frame (b) were pre-selected in the dataset [5]. The 13 manually placed landmarks were superimposed 
and enlarged on the original images for visualization purposes (a & b). The original images were cropped 
to a 112 × 112 × 3 pixel image with image registration applied between the starting frame and frame 
of maximum exertion (d & e). The same cropping and image registration were applied to the landmark 
images, with an additional Gaussian filter, resulting in 112 × 112 × 3 pixel images (c & f).Finally, the 
difference image (g) was calculated between the cropped starting frame (d) and maximum frame (e), 
resulting in a 112 × 112 × 3 pixel image.

a

b

c

d

e

g

f
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Pre-processing
This study followed the exact same pre-processing steps as outlined in our previous work 
to generate identical input images during the training of the CNN with the additional 
landmark images (Figure 1c – g) [5]. The pre-processing pipeline consisted of cropping 
the 2D colour images to a 112 × 112 pixel image and transforming the image using 
optical flow registration. A difference image with a matching resolution of 112 × 112 × 
3 pixels was generated by calculating the absolute difference between the start (Figure 
1d) and maximum frame (Figure 1e) for each individual colour channel, which highlighted 
the movement between frames (Figure 1g). All images were normalized, resulting in pixel 
values ranging from 0 to 1 for each input image. 

Before the existing pre-processing pipeline was applied to the landmark images, a 
Gaussian filter (σ = 3) was applied to the landmark images. To keep the images perfectly 
aligned, the same cropping and the optical flow registration from the colour images 
were applied to the landmark images (Figure 1c & f). Lastly, the landmark images were 
normalized, resulting in a maximum pixel value of 1.

Architecture
A total of four inputs were given to the CNN: the starting frame image (Figure 1d), the 
landmark image of the starting frame (Figure 1c), the maximum frame image (Figure 1e), 
and the landmark image of the maximum frame (Figure 1f), each with a size of 112 × 112 
× 3 pixels. The difference image was added as a fifth input representing the dynamic 
components of the SFGS, i.e., the symmetry of voluntary movement and synkinesis 
(Figure 1g). The subsequent layers in the CNN were adapted from our previous work 
using the same training parameters [5]. The input layer was followed by three data 
augmentation layers which were only activated during training of the model, consisting 
of a random horizontal flip, random zoom (range factor 0.8 to 1.2), and random rotation 
(range -20 to 20 degrees). The data augmentation was followed by 16 weight layers, with 
13 convolution layers with 5 maxpool layers and 5 batch normalization layers [5]. This 
was followed by 3 fully connected layers with 1024 nodes, each with a dropout layer (p = 
0.5) and a batch normalization layer (momentum = 0.95). A linear activation function was 
applied to produce a linear output, which was followed by a Gaussian noise layer (σ = 0.1). 
During training, the logcosh loss function was used to measure the difference between 
the predicted and actual values and the Adam optimizer was used to minimize the logcosh 
loss function. A complete overview of the CNN architecture is shown in Appendix B.

5



Chapter 5

116

Training
All training parameters were kept consistent with our previous work, using the identical 
five different testing and training groups using a stratified k-fold based on the composite 
SFGS score [5]. The CNN model was trained and tested five times, where the testing data 
always consisted of 25 completely new subjects during each fold (20% of the subjects 
per fold). The training and testing groups were kept consistent between the 13 SFGS 
elements. A cyclic triangular learning rate was applied with a base learning rate of 1e-8, 
a max learning rate of 1e-3, and a step size of 4 (length of training dataset / batch size) 
[17]. During the training process a batch size of 32 was used and early stopping was 
implemented with a patience level set to 1500 epochs [18]. 

Analysis
The performance of the CNN was determined by comparing the predicted SFGS scores 
of the models with the SFGS scores as graded by the experienced human observers. The 
analysis was repeated for each of the five folds. The predicted scores of the individual 
elements of the SFGS were converted from a continuous scale to the respective nominal 
score of the SFGS as shown in Table 1, with the predicted scores capped at the minimum 
and maximum score of each individual element. From these 13 individual scores the 
subscores of the 3 SFGS components and the composite SFGS score were calculated 
according to the scoring key of the SFGS (Table 1). The inter-rater reliability between 
the CNN model and the human observers was determined by the intra-class correlation 
coefficient (ICC, type 2,1) for the SFGS components and the composite SFGS score [19]. 

The inter-rater reliability for the individual SFGS elements was determined both by the 
ICC (type 2,1) and by the quadratic weighted Cohen’s Kappa [20]. An ICC of <0.5 was 
considered poor, 0.50 to 0.75 fair, 0.75 to 0.90 good, and 0.90 to 1.00 excellent [21]. A 
Cohen’s Kappa lower than 0.20 was considered as having no agreement, 0.21 to 0.39 a 
minimal agreement, 0.40 to 0.59 a weak agreement, 0.60 to 0.79 a moderate agreement, 
0.80 to 0.90 a strong agreement, and 0.91 to 1.00 an almost perfect agreement [22]. 

RESULTS

The inter-rater reliability between the CNN and the experienced observers is 
shown for each of the 13 elements of the SFGS, the SFGS subscores, and the 
composite SFGS score, in Table 2. Both the ICC (type 2,1) and quadratic weighted 
Cohen’s Kappa were calculated for the 13 elements of the SFGS. All ICC values 
were higher compared to the Cohen’s Kappa, with an average difference between 
the two reliability scores of 0.008. Table 2 only shows the Cohen’s Kappa for the 13 
elements with it being the most conservative score.
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The inter-rater reliability for the SFGS subscores and the composite SFGS score all fell 
within the same ICC category when comparing the testing and training data (Table 2). 
More specifically, the symmetry subscore showed a fair agreement, the symmetry of 
voluntary movement subscore showed an excellent agreement, the synkinesis subscore 
showed a good agreement, and the composite score showed an excellent agreement. 

The majority of the inter-rater reliability for the individual SFGS elements were classified 
within the same category for both the training and testing data. Only the eye at rest and 
gentle eye closure during synkinesis deviated with one category. The elements of the 
resting symmetry showed a minimal to moderate agreement, the elements of s voluntary 
movement showed a moderate or strong agreement, and the synkinesis elements 
showed a weak to moderate agreement.

Table 2. Inter-rater reliability between the convolutional neural network (CNN) model and the experienced 
observers.

SFGS component Inter-rater reliability 
training data

Inter-rater reliability 
testing data

Resting symmetry 

Eye 0.34 (0.00 – 0.61) 0.41 (0.15 – 0.64)

Cheek (naso-labial fold) 0.47 (0.34 – 0.62) 0.52 (0.34 – 0.69)

Mouth 0.70 (0.40 – 0.96) 0.67 (0.56 – 0.84)

Symmetry of Voluntary Movement 

Forehead wrinkle 0.88 (0.83 – 0.92) 0.89 (0.85 – 0.94)

Gentle eye closure 0.81 (0.75 – 0.86) 0.81 (0.69 – 0.91)

Open mouth smile 0.88 (0.82 – 0.92) 0.86 (0.80 – 0.89)

Snarl 0.69 (0.45 – 0.86) 0.71 (0.55 – 0.85)

Lip Pucker 0.72 (0.53 – 0.83) 0.68 (0.61 – 0.74)

Synkinesis

Forehead wrinkle 0.69 (0.51 – 0.88) 0.74 (0.59 – 0.84)

Gentle eye closure 0.61 (0.31 – 0.82) 0.59 (0.46 – 0.86)

Open mouth smile 0.43 (0.34 – 0.56) 0.46 (0.34 – 0.58)

Snarl 0.49 (0.18 – 0.81) 0.49 (0.40 – 0.67)

Lip pucker 0.78 (0.61 – 0.88) 0.75 (0.68 – 0.78)

Resting symmetry subscore 0.64 (0.52 – 0.81) 0.62 (0.42 – 0.76)

Symmetry of voluntary movement 
subscore

0.92 (0.90 – 0.93) 0.92 (0.88 – 0.94)

Synkinesis subscore 0.79 (0.68 – 0.92) 0.78 (0.71 – 0.85)

Composite score 0.91 (0.89 – 0.94) 0.91 (0.88 – 0.94)

The inter-rater reliability is expressed as the quadratic weighted Cohen’s Kappa for the individual 
Sunnybrook Facial Grading System (SFGS) elements and as the intra-class correlation coefficient (ICC, type 
2,1) for the SFGS subscores and composite score. The mean inter-rater reliability was calculated from the 
five different k-folds. The values in between brackets show the inter-rater reliability range for the five k-folds.

5



Chapter 5

118

DISCUSSION

This study investigated the impact on the reliability of the automated SFGS by adding 
a facial landmark layer to a previously developed CNN [5]. The automated SFGS 
makes the SFGS more accessible for researchers, students, clinicians in training, or other 
untrained co-workers and could be implemented in settings such as online consults in 
an eHealth environment. The previous version of the automated SFGS achieved a similar 
inter-rater reliability as human observers who graded 50 patients with a PFP, which 
potentially leaves room for improvement [4,5]. As it is not always feasible to increase 
the cohort size in certain (clinical) settings, this study aimed to improve the reliability 
of the automated SFGS by adding a facial landmark layer to the training process. To 
our knowledge this is the first study to have investigated the impact of integrating a 
facial landmark layer to an existing CNN network. Previous studies have either added a 
landmark layer as a parallel model or added the landmark layer in a deeper layer of the 
model [23,24]. As the implementation is based on a separate landmark layer, it would 
be possible to add this layer to existing, validated models used for different applications, 
without changing the underlying architecture, making the implementation more broadly 
applicable. 

To compare the two CNN models, as many potential confounding variables were kept 
consistent between the two studies. Hence, the same dataset was used, consisting of 116 
patients with a PFP and 9 healthy subjects with their associated SFGS scores. All the pre-
processing pipelines were kept the same, resulting in identical input images for the training 
of the CNN, with the only difference being the added landmark images to the input (Figure 
1 c & f). The CNN architecture was kept consistent including the training parameters, and 
during the training of the CNN model the same training and testing groups were used. 
Finally, the same statistical analysis was applied to determine the reliability of the CNN 
models vs. the experienced human observers. One additional ICC analysis was calculated 
for the individual SFGS elements, as both the quadratic weighted Cohen’s Kappa and ICC 
have been used to calculate the reliability for the individual SFGS elements [2,4,5,10–15]. 
The Cohen’s Kappa and ICC deviated with an average of 0.008 with the Cohen’s Kappa 
being the most conservative score and always being lower than the ICC. Therefore, the 
reliability of the individual elements was based on the quadratic weighted Cohen’s Kappa 
and was considered a good approximation of the ICC.

By using the same dataset certain limitations were inherited from the previous study. 
For example, the cohort size of 125 subjects is relatively limited, despite this being the 
largest cohort used for the automation of the SFGS to date [25]. A larger dataset would 
show more variations of a PFP, which generally is beneficial for the reliability of CNN 
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models [6–9]. However, in the case of the SFGS there are no public databases available 
which include all the SFGS poses required for the training and testing of the model, 
highlighting the potential benefit of increasing the reliability of existing models based 
on smaller datasets [25–27]. To counteract some of the limitations of the cohort size a 
stratified k-fold was implemented which allows for a better estimation of the reliability of a 
CNN model in a smaller dataset [28]. Another aspect of the cohort should be highlighted 
as the current cohort included 9 healthy subjects out of the 125 subjects, which might 
indicate an unbalanced dataset. However, as the symmetry of voluntary movement 
or synkinesis can consist of five potential scores (Table 1) an even distribution would 
result in 25 subjects in each category considering the dataset of 125 subjects. However, 
a PFP can affect specific regions of the face, where it is possible for a patient to have 
an identical score as a healthy individual for the unaffected regions, acting as a healthy 
control. In case of the synkinesis, the eyebrow lift is expected to affect roughly 20% of the 
individuals, where 80% of the patients would act as a healthy reference [29]. Therefore, 
the addition of healthy subjects was relatively limited in the dataset, to prevent a bias 
towards healthy scores, although the ideal ratio of healthy subjects was not investigated 
in this study.

When comparing the reliability of the testing dataset between the old and new CNN 
model with facial landmarks, all subscores and the composite score showed an increase in 
reliability for the new CNN model (Table 2) [5]. More specifically, the composite SFGS score 
increased from good (0.87) to excellent (0.91), the resting symmetry subscore increased 
from poor (0.45) to fair (0.62), and the symmetry of voluntary movement subscore 
increased from good (0.89) to excellent (0.92) (Table 2) [5]. Only the synkinesis subscore 
showed the same agreement, a good agreement, for both the old model (0.77) and the 
new model (0.78). The improvement in subscores and composite score originated from 
the higher reliability of the individual SFGS elements where 12 out of the 13 elements 
showed an improvement. When calculating the average Cohen’s Kappa for each category 
the resting symmetry elements increased from 0.38 to 0.53, the symmetry of voluntary 
movement elements increased from 0.74 to 0.79, and the synkinesis elements increased 
from 0.58 to 0.66 (Table 2) [5]. These results combined indicate a clear improvement of 
the reliability of the automated SFGS when adding a facial landmark layer to the CNN.

The performance of the automated SFGS can also be compared to the reliability of 
human observers, based on historic research, with a total of 5 studies determining the 
reliability of the 13 individual SFGS elements [4,13,30–32], with 2 studies not including the 
symmetry at rest [14,15], 3 studies only reporting the subscores and composite scores 
[10,33,34], and 1 study only reporting the composite score [12]. The reliability reported 
between human observers showed a relatively high range, albeit on the higher end of 
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agreement, with the ICC ranging from 0.81 to 1.00 with an average of 0.91 for the SFGS 
composite score [4,10,13–15,30–34]. This metric corresponds with the ICC of 0.91 for 
the composite score found in this study, indicating that the automated SFGS is grading 
as well as human observers (Table 2).

Cabrol et al. attempted to reconcile the range of reliability in SFGS grading with a study 
based on 20 patients with a PFP with a wide variety of SFGS composite scores, rated by 
31 health professionals involved in the management of patients with PFP with different 
clinical backgrounds and not trained in the SFGS [15]. The new CNN model with the 
facial landmarks layer outperformed the average reliability of the 31 health professionals 
for all the subscores and the composite score, with a respective resting symmetry 
subscores of 0.62 vs. 0.55, a symmetry of voluntary movement subscore of 0.92 vs. 0.84, 
a synkinesis subscore of 0.78 vs. 0.48, and a composite score of 0.91 vs. 0.85 (Table 2) 
[15]. The new CNN was comparable to the best performing health professionals, the 
ENT specialists, with a relative resting symmetry subscore of 0.62 vs. 0.70, a symmetry of 
voluntary movement subscore of 0.92 vs. 0.89, a synkinesis subscore of 0.78 vs. 0.45, and 
a composite score of 0.91 vs. 0.89 (Table 2) [15]. These results support the conclusion 
that the new CNN model is grading at the level of human observers. 

The old CNN model was compared to the SFGS learning curve of novice observers during 
the grading of 100 patients with a PFP and the old model performed at the same reliability 
as human observers after grading 50 patients with a PFP [4,5]. The reliability of the new 
CNN model saw an improvement with a comparable reliability of human observers after 
grading 70 to 100 patients, with an average difference in Cohen’s Kappa of 0.00 when 
comparing all individual SFGS elements (Table 2) [4]. The SFGS learning curve stabilized 
for the human observers after grading 70 patients, which indicates that the automated 
SFGS is on a similar level as novice observers after an extensive 7-week training and 
feedback program [15].

The new CNN with the facial landmark layer improved the reliability of the automated 
SFGS, but the inner workings of CNNs are not easily interpretable [6–9]. However, we 
hypothesize that the facial landmarks functioned as guidance for the CNN focusing on 
key areas of the face, which worked in conjunction with the difference image already 
present in the previous CNN model highlighting areas of movement (Figure 1g). A 
potential downside of the facial landmark layer was the possibility of overfitting, where 
the model would become overly specialized, and was unable to generalize well to new 
data, resulting in a lower reliability for the testing data [6–9]. However, the difference 
between the Cohen’s Kappa of the training and testing data for the 13 SFGS elements 
was on average 0.03 for the old CNN model, whilst this was 0.01 for the new CNN 
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model, indicating decreased overfitting between training and testing data (Table 2) [5]. 
Additionally, all training data and testing data fell inside the same agreement category. 
Hence, it is unlikely the increased reliability of the new CNN model was a result of 
overfitting.

To further minimize overfitting of the data, a specific set of clearly defined landmarks 
was selected to track key areas for the SFGS poses [16]. The superciliare tracked the 
eyebrow lift, the palpebrale superius and inferius tracked the gentle eye closure and the 
resting symmetry of the eye, the subalare and subnasale tracked the snarl. Lastly, the 
cheilion and labiale superius and inferius tracked the open mouth smile, pucker, and 
resting symmetry of the mouth. The resting symmetry of the cheek is missing from this 
overview as there was no landmark available in this region that could be placed with a 
high reliability [16]. Nonetheless, the quadratic Cohen’s Kappa increased from 0.29 to 
0.52 for the resting symmetry of the cheek (Table 2) [5]. A potential explanation would 
be that the difference image would show a low amount of movement as the face was 
at rest, making it increasingly difficult for the CNN to find an area to focus on. The facial 
landmarks would still indicate key areas of the face and might be more efficient in guiding 
the areas of interest for the CNN. An improvement in reliability would be expected for 
the remaining poses at rest, which was indeed the case as the quadratic Cohen’s Kappa 
for resting symmetry of the eye increased from 0.37 to 0.41 and the resting symmetry of 
mouth increased from 0.47 to 0.67 (Table 2) [5]. 

Finally, to minimize errors introduced by the landmark placement, the landmarks were 
placed manually [16]. The impact of possible inaccurate landmark placement was further 
reduced as a Gaussian filter was applied to the landmarks with the initial purpose of 
preventing overfitting (Figure 1c & f). However, the manual placement of landmarks is 
an undesirable step as the automated SFGS should make the SFGS more accessible. As 
this study has shown the benefit of adding a landmark layer to the CNN, the automation 
of the landmark placement should be investigated in future research, with the ultimate 
goal to develop a fully automatic and highly reliable SFGS that is easily applicable to both 
health care providers and patients with a PFP. 

CONCLUSION

The integration of a facial landmark layer into the CNN showed a clear improvement in 
the reliability of the automated SFGS, reaching a performance level comparable to human 
observers. These results were attained without increasing the dataset underscoring the 
impact of incorporating facial landmarks into a CNN. These findings indicate that the 
automated SFGS with facial landmarks is a reliable tool for assessing patients with a PFP.
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APPENDIX B

Table 1. Full overview of the model architecture used for the convolutional neural network (CNN).

Layer Type Shape

0 InputLayer [(None, 112, 112, 3)]
1 InputLayer [(None, 112, 112, 3)]
2 InputLayer [(None, 112, 112, 3)]
3 InputLayer [(None, 112, 112, 3)]
4 InputLayer [(None, 112, 112, 3)]
5 Concatenate (None, 112, 112, 15)
6 RandomFlip (None, 112, 112, 15)
7 RandomRotation (None, 112, 112, 15)
8 RandomZoom (None, 112, 112, 15)
9 Conv2D (None, 112, 112, 16)
10 Conv2D (None, 112, 112, 16)
11 BatchNormalization (None, 112, 112, 16)
12 MaxPooling2D (None, 56, 56, 16)
13 Conv2D (None, 56, 56, 32)
14 Conv2D (None, 56, 56, 32)
15 BatchNormalization (None, 56, 56, 32)
16 MaxPooling2D (None, 28, 28, 32)
17 Conv2D (None, 28, 28, 64)
18 Conv2D (None, 28, 28, 64)
19 Conv2D (None, 28, 28, 64)
20 BatchNormalization (None, 28, 28, 64)
21 MaxPooling2D (None, 14, 14, 64)
22 Conv2D (None, 14, 14, 128)
23 Conv2D (None, 14, 14, 128)
24 Conv2D (None, 14, 14, 128)
25 BatchNormalization (None, 14, 14, 128)
26 MaxPooling2D (None, 7, 7, 128)
27 Conv2D (None, 7, 7, 128)
28 Conv2D (None, 7, 7, 128)
29 Conv2D (None, 7, 7, 128)
30 BatchNormalization (None, 7, 7, 128)
31 MaxPooling2D (None, 3, 3, 128)
32 Flatten (None, 1152)
33 Dense (None, 1024)
34 BatchNormalization (None, 1024)
35 Dropout (None, 1024)
36 Dense (None, 1024)
37 BatchNormalization (None, 1024)
38 Dropout (None, 1024)
39 Dense (None, 1)
40 GaussianNoise (None, 1)
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INTRODUCTION

The assessment of the severity of a unilateral peripheral facial palsy (PFP) is a crucial step 
in the treatment and monitoring of a PFP. One of the recommended grading systems to 
determine the severity of a PFP is the Sunnybrook Facial Grading System (SFGS) due to 
its validity, reproducibility, and responsiveness [1–6]. However, there is a learning curve 
associated with the SFGS, which will require the time of a trained observer to grade the 
PFP [7]. This might make the SFGS less accessible for researchers, students, clinicians in 
training, or other untrained co-workers and patients. In turn, this places limits on how 
frequently the PFP can be assessed. The automation of the SFGS could help alleviate 
these issues and potentially even exceed the reliability of human observers performing 
the SFGS manually.

Therefore, this thesis investigated the automation of the SFGS with the long-term aim to 
develop a user-friendly system that could be used by the patient at home without any 
assistance. The automated SFGS should be reliable, cost effective, portable, fast, and 
intuitive to use, in order to make the automated system a low barrier of entry in clinical 
practice. The use of non-invasive three-dimensional (3D) video imaging was preferred for 
the automation of the SFGS due to the complexity of the human face and the changes to 
the surface during the dynamic poses of the SFGS. The implementation of a professional 
3D video (4D) imaging system would not be feasible due to its size and cost. Therefore, 
the Intel RealSense™ F200 and RealSense™ D415 (Intel®, Santa Clara, USA) were 
investigated for the implementation of the automated SFGS. The first part of this thesis 
validated the depth data of the RealSense cameras, including derived 3D landmarks 
and anthropometric measurements. The second part of the thesis implemented an 
automated SFGS based on recordings of the RealSense D415. 

The research questions related to these two topics are stated in the section “Research 
questions” in Chapter 1. 

The next section of this chapter, “Discussion of the research questions”, will provide a general 
overview of the methodology and results of the presented studies and will answer the 
stated research questions. The discussion of the research questions is followed by the 
discussion of the future perspectives for the automation of the SFGS.
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DISCUSSION OF THE RESEARCH QUESTIONS

The introduction of new hardware in a clinical setting brings certain challenges with it, as 
was the case with the RealSense F200. Considering the size and price difference between 
the RealSense F200 ($100 USD) and a professional imaging system commonly used in 
clinical settings often with a cost of tens of thousands of US dollars, a difference in depth 
accuracy was expected [8,9]. This difference could affect the translation of the digital 
data into real world coordinates and subsequent data analysis. Therefore, Chapter 2 
answered the research question: “What is the depth accuracy of the RealSense F200 during 
the SFGS poses?” As the automated SFGS is intended to be used for patients with a PFP, 
the depth accuracy was determined in a cohort of 34 patients with a PFP. The subjects 
were simultaneously recorded with the RealSense F200 and the clinically validated 
3dMD system (3dMDface, 3dMD, Atlanta, USA) whilst performing the six SFGS poses, 
which includes the face at rest. The depth accuracy was determined by comparing the 
depth images of these two systems during maximum exertion of the SFGS poses. Due 
to the ipsilateral nature of the PFP, it was also possible to compare the depth accuracy 
between the healthy and palsy side of the face. The results showed that the RealSense 
F200 average depth accuracy was 1.48 mm for the face at rest and 1.49 mm during the 
voluntary movements of the SFGS, where the SFGS poses did not significantly influence 
the RealSense depth accuracy. In addition, the depth accuracy was not significantly 
affected by the PFP (1.48 mm), compared to the healthy side of the face (1.46 mm). 
However, the distance of the patients to the RealSense F200 was shown to affect the 
accuracy of the system, where the best depth accuracy of 1.07 mm was measured at a 
distance of 35 cm. To put these results in perspective, the 3dMD system has a reported 
depth accuracy of around 0.25 mm for the face at rest [8,10–13]. Therefore, the average 
depth accuracy of the RealSense F200 was roughly six times worse compared to the 
3dMD. Although no other research was found regarding the close range imaging of 
human subjects based on the RealSense F200, similar low-cost portable cameras have 
reported depth accuracies in the same millimetre range as the RealSense F200 [14–
16]. These results gave a good first indication of the expected depth accuracy of the 
RealSense F200. However, a more detailed analysis could be achieved by segmenting 
the face in predefined areas to determine the role of each area in the depth inaccuracy 
[17]. In addition, the recording of the subjects was performed in a windowless room 
with diffuse lighting, which might have overestimated the depth accuracy compared to a 
home monitoring situation [14,18,19]. Finally, the 3dMD setup captured static 3D images 
and could only compare the moment of maximum exertion during the SFGS poses. A 4D 
imaging setup could determine the depth accuracy of multiple RealSense F200 frames as 
long as the reference system would not interfere with the structured light pattern of the 
RealSense F200 [15]. These professional 4D systems have become more attainable, but 
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their use is still mostly limited to dedicated healthcare centres. While it was anticipated 
that the RealSense F200 would have a lower overall depth accuracy compared to the 
professional 3dMD system, this research has provided quantifiable measurements of its 
depth accuracy when imaging patients with PFP in a clinical setting.

A second generation of RealSense 4D cameras was released in 2018 with significant 
improvements to the software and hardware to warrant a change from the RealSense 
F200 to the RealSense D415 [9,14,18,19]. Therefore, Chapter 3 validated multiple 
aspects of the RealSense D415 where the chapter was divided into two parts. The 
first part analysed 30 patients with a PFP at rest, whilst the second part analysed the 
exact same patient population during the voluntary movements of the SFGS. In this 
discussion both parts from Chapter 3 are discussed as one. As the depth accuracy of 
the RealSense D415 was unknown in a clinical setting the following research question 
was first answered: “What is the depth accuracy of the RealSense D415 during the SFGS 
poses?” A similar methodology was used as in Chapter 2 where the 3dMD system was 
used as the gold standard to determine the depth accuracy of the RealSense F200. 
However, the diffuse lights were removed from the measurement setup to represent 
a more realistic home scenario. Furthermore, the recording distance to the patient was 
maintained more consistently at approximately 35 cm. The results showed an average 
depth accuracy for the RealSense D415 of 0.97 mm for the face at rest and 0.98 mm 
for the voluntary movements. This was around 50 percent better compared to the 
RealSense F200 but could partially be explained by the lower average recording distance. 
Other studies have reported similar depth accuracies of the RealSense D415 ranging 
from 0.5 mm to 2.0 mm at distances at or lower than 35 cm [14,16,19–22]. Although 
these studies analysed either flat planes or inanimate objects instead of human subjects, 
the results do confirm a similar depth accuracy of the RealSense D415. Considering 
the depth accuracy of the RealSense D415 and the additional software and hardware 
improvements to the camera, the RealSense D415 was considered a suitable successor 
to the RealSense F200 [23].

After the analysis of the overall depth accuracy of the RealSense D415, Chapter 3 
further explored the potential influence of the lower colour and depth image quality 
of the RealSense D415 based on the same patient cohort used to determine the depth 
accuracy. First, the reliability of manual placement of 3D landmarks was investigated, 
where the landmarks could be used for the implementation of anthropometric 
measurements or act as features for the automation of the SFGS. Therefore, the 
following research question was stated: “What is the reliability of 3D landmark placement 
on RealSense D415 images during the SFGS poses?” To answer this question two observers 
placed 14 facial landmarks on the RealSense D415 and 3dMD depth images at moment 
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of maximum exertion of the SFGS poses to determine the inter-rater reliability. The 
first observer repeated the landmark placement three weeks after the first session to 
determine the intra-rater reliability. The reliability of the landmark placement first needed 
to be determined on the 3dMD images, as there was no reference data available for 
the voluntary movements of the SFGS in a cohort of patients with a PFP. The reliability 
of the 3dMD landmark placement could then be used as a baseline for the landmark 
placement on the RealSense D415. The average landmark reliability for the face at rest 
was 0.92 mm for the 3dMD images, which was considered within the same range as 
the landmark placement for healthy subjects at rest [8,12,24–29]. The average landmark 
reliability for the voluntary movements was 1.03 mm. This indicated a trend towards 
a slightly lower reliability of the landmark placement during the voluntary movements, 
but the reliability still fell within the range for healthy subjects at rest. As the selection 
of individual landmarks might bias the overall average reliability, individual landmarks 
were compared where possible and also fell within the range of the healthy subjects at 
rest. Therefore, the 3dMD landmark placement was considered a good reference for the 
RealSense D415 landmark placement. The landmark placement on the RealSense D415 
images reported a lower average reliability of 1.47 mm for the face at rest. This resulted 
in multiple landmarks having a significant difference in reliability compared to their 3dMD 
counterpart. During the voluntary movements, the average reliability improved to 1.28 
mm, causing a lower number of landmarks to have a significant difference between 
the RealSense D415 and 3dMD landmark placement. The landmarks around the nose 
region played a major role of the improved reliability during the voluntary movements. 
It was noted that the patients had their head tilted slightly more backwards during the 
voluntary movements resulting in a better coverage of the depth data around the nose 
region. Therefore, head positioning should be an important consideration during the 
recording of subjects. However, the lack of depth data in certain regions is unfortunately 
an inherent limitation of using a compact stereo vision camera at close range, due to the 
limited spacing between the two internal cameras [30]. This could be resolved by adding 
a second RealSense D415 during the recording, but would negatively impact the cost, 
complexity, and portability of the automated SFGS, and was not considered a feasible 
solution. Another factor that influenced the overall decrease in landmark placement 
reliability was due to the lower colour quality of the RealSense D415, as a subset of the 
landmarks were placed according to certain colour transitions. Overall, the reliability 
of the landmark placement was lower on the RealSense D415 images compared to 
the 3dMD images. This study was the first to quantify the exact impact on the manual 
landmark placement using a lower quality 4D camera for all SFGS poses in a population 
of patients with a PFP. By analysing the landmark placement for both the RealSense and 
3dMD images the validation can be applied in clinical settings where either a professional 
system or a consumer grade depth camera is used.
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From the 14 manually placed 3D landmarks it was possible to derive clinically 
relevant anthropometric measurements. Although the landmark placement and 
anthropometric measurements are closely related, it is possible for the anthropometric 
measurements to be inaccurate even with perfect landmark placement. These 
discrepancies can be caused by inaccuracies in the underlying depth data or by 
basing the landmark placement on different features due to variations in colour 
quality. Therefore, a third research question was stated in Chapter 3: “What is the 
reliability and agreement of 3D anthropometric measurements on RealSense D415 images 
during the SFGS poses?” A total of 14 anthropometric measurements were derived 
from the 14 manual landmarks placed on both the RealSense D415 and 3dMD 
images during the SFGS poses. The first part of the research question addressed 
the reliability of the 3D anthropometric measurements, where the measurements 
based on the 3dMD landmarks showed an excellent reliability for all the SFGS poses. 
The average intra-class correlation coefficient (ICC) was 0.94 for the measurement 
for the face at rest and the average ICC for the voluntary movements was 0.95. This 
led to the interesting observation that although the 3D landmark placement was 
less reliable for the voluntary movements, as discussed in the previous paragraph, 
the derived anthropometric measurements became more reliable during the voluntary 
movements. Existing literature has reported a similar ICC range for anthropometric 
measurements based on high quality depth images in cohorts of healthy subjects 
at rest [10,28,31–38]. Therefore, all the 3dMD anthropometric measurements based 
on the SFGS poses were considered to be excellent reference values for the RealSense 
D415 measurements. The RealSense D415 measurements showed good reliability for 
the face at rest with an average ICC of 0.82 and increased to an excellent reliability for 
the voluntary movements with an average ICC of 0.91. This increase could be due to 
the combination of the higher reliability in the 3D landmark placement, as determined 
in the previous paragraph, and the increased reliability during the voluntary movements 
as seen on the 3dMD images. Despite this improvement, the average reliability of 
the RealSense D415 anthropometric measurements fell outside the reported range based 
on healthy subjects using high quality depth images [10,28,31–38]. The second part of 
the research question investigated the agreement of the anthropometric measurements 
of the RealSense D415 compared to the 3dMD measurements. The RealSense D415 
measurements showed an average underestimation of -0.90 mm for the face at rest 
and -1.12 mm for the voluntary movements compared to the 3dMD measurements, 
where 95% of the measurement are expected to be within a 5 mm error of the 3dMD 
measurements. Due to the differences in depth accuracy between the RealSense D415 
and 3dMD depth images, a measurement error was expected. However, the voluntary 
movement with the highest depth accuracy, showed the lowest overall agreement. This 
indicated that the landmark placement itself played a larger role in the lower agreement 
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of the measurements, which could be caused by more difficult feature detection due 
to a lower colour and depth quality of the RealSense D415. In comparison, the 3dMD 
anthropometric measurements can achieve submillimetre accuracy compared to 
direct anthropometric measurements [10,28,31–38]. The 3dMD measurements during 
the voluntary movements were not compared to direct anthropometric measurements, 
which would be infeasible for patients with a PFP. However, the analysis of the depth 
accuracy, landmark placement, and anthropometric measurements in Chapter 3 
indicated that all SFGS poses were found to be in the same range as healthy subjects 
at rest for the 3dMD images. Therefore, the influence of the voluntary movements 
was expected to be limited in this analysis. It was clear however, that submillimetre 
accuracy should not be expected during anthropometric measurements based on the 
RealSense D415.

After gaining a better understanding of the data generated by the RealSense 
cameras a first version of the automated SFGS was implemented in Chapter 4. 
A traditional machine learning approach would use features such as landmarks and 
anthropometric measurements for the automation of image processing tasks. 
However, there has been a shift towards deep learning implementations, which 
remove the need for manual feature selection, where the convolutional neural 
network (CNN) is especially suited for image feature selection [39–46]. This led 
to the following research question: “What is the reliability of an automated SFGS 
grading system based on a CNN compared to human observers?” The training and 
testing of the CNN model were based on a dataset consisting of 116 patients 
and 9 healthy subjects performing the SFGS poses recorded with the RealSense 
D415. All subjects were graded according to the SFGS by multiple observers 
experienced in the SFGS grading of patients with a PFP. From these recordings 
three two-dimensional (2D) colour images were used as the input data to train a 
separate CNN model for each of the 13 individual SFGS elements. The input images 
consisted of the face at rest just before the start of the SFGS pose, the moment 
of maximum exertion during the SFGS pose, and a difference image which was 
the absolute difference between the two previously selected images. The three subscores 
and composite SFGS score were calculated from the 13 element scores generated 
by the 13 CNN models, replicating the process of the manual SFGS. The reliability of 
the automated SFGS was determined by comparing the automated score with the score 
of the human observers. The inter-rater reliability of the automated SFGS, including the 
individual SFGS elements, fell within the reported range of human observer reliability, albeit 
at the lower end of the reported range [3,7,47–52]. More specifically, the results showed 
an average ICC of 0.87 for the composite SFGS score, 0.45 for the resting symmetry 
subscore, 0.89 for the symmetry of voluntary movement subscore, and 0.77 for the 
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synkinesis subscore. Although there have been efforts to automate the grading of a 
PFP, existing research either investigated other grading systems than the SFGS, used 
small cohorts with less than 30 subjects, or only analysed the composite score of the 
SFGS, making a direct comparison unfeasible or unreliable [53,54,63–72,55,73,74,56–62]. 
The first implementation of the automated SFGS showed promising results, but there 
were certain limitations in the methodology. The used database of 125 subjects was 
relatively small for the implementation of a CNN model [39,41,42,45,75,76]. Therefore, 
an existing CNN architecture was reduced in size to minimize the complexity of the 
CNN model [77]. In addition, the difference image used as a third input was intended 
to highlight areas of movement between the frame of rest and the frame of maximum 
exertion. Ideally, these features would automatically be detected by the CNN, but this 
was challenging for the small dataset, hence the implementation of the difference image. 
Another downside of the smaller dataset was that the same data was used for both 
model validation and testing, which could lead to an overestimation of the reliability of 
the model [78]. Therefore, a stratified k-fold was implemented to better estimate the 
inter-rater reliability of the model [79]. This meant that the model was trained 5 times, 
where each fold used a unique set of 25 subjects in the testing set. The impact of the 
small cohort size was further reduced by using data augmentation, dropout layers, noise 
layers, batch normalization, and early stopping during the training of the CNN model 
[46,80–82]. All these preventative measures resulted in a similar inter-rater reliability 
between the training and testing set, indicating that overfitting was minimized. Therefore, 
the results presented in this chapter were considered a good indication of the reliability 
of the automated SFGS, showing the potential of the clinical implementation of the 
automated SFGS.

With a first iteration of the automated SFGS, Chapter 5 investigated if the reliability 
of the CNN model could be improved without increasing the size of the dataset. 
In the original CNN model, a difference layer was added as an input to highlight 
areas of movement. During the absence of movement this layer would deactivate. 
Therefore, the hypothesis was that an input layer with facial landmarks could improve 
the reliability by indicating regions of interest for the CNN even in the absence 
of motion. This led to the following research question: “What is the impact on the 
reliability of the automated SFGS by adding a facial landmark layer to the CNN?” In order 
to compare the two CNN models, as many potentially confounding variables were 
kept consistent between Chapter 4 and Chapter 5. Hence, the same dataset was 
used, consisting of the 116 patients with a PFP and 9 healthy subjects with their 
corresponding SFGS scores. All the pre-processing pipelines were kept the same, 
resulting in identical input images for the training of the CNN, with the only difference 
being the added landmark image to the input of the model. The landmark image 
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consisted of 13 manually placed facial landmarks with a Gaussian filter applied to 
the image. The addition of the landmark layer resulted in a clear improvement in 
the reliability of the automated SFGS, reaching the level of experienced observers 
with an excellent agreement for the composite score [3,7,47–50]. More specifically, 
the ICC for the composite SFGS score increased from 0.87 to 0.91, the resting symmetry 
subscore increased from 0.45 to 0.62, the symmetry of voluntary movement subscore 
increased from 0.89 to 0.92, and the synkinesis subscore increased from 0.75 to 
0.78. The increase in reliability was unlikely to be caused by overfitting, as the overall 
difference in inter-rater reliability between the training and testing dataset decreased 
for the CNN model with the landmark layer. While the improved reliability of the 
CNN model with the facial landmarks is beneficial, there is a clear trade-off. One of the 
main advantages of deep learning is the elimination of manual feature selection, and 
introducing manual features increases the overhead for automating the SFGS [43,76]. 
For example, in this study the features were based on manually placed landmarks 
due to their reliability [31,34,83–86]. However, the manual landmark placement 
would not be feasible for the automated SFGS due to the time constraint involved. 
In turn, this would require the implementation of automated landmark placement, 
which will need to be validated. The impact of the potential errors from automated 
landmark placement might be reduced due to the use of a Gaussian filter on the 
landmark image but still needs to be investigated. In addition, the feature selection is 
expected to impact the reliability, where this study used 13 facial landmarks important 
during the movement of the SFGS poses, based on the 14 landmarks introduced in 
Chapter 3. Although the additional landmark layer would require further research, 
the increase in reliability might justify the inclusion, especially if it enables an earlier 
implementation of the automated SFGS in a clinical setting. 
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FUTURE PERSPECTIVES

This thesis investigated the automation of the SFGS with the long-term aim to develop a 
user-friendly system that can be used by the patient at home without any assistance. The 
focus for this thesis was the validation and implementation of an automated SFGS using 
a relatively affordable 4D imaging system in a clinical setting. This meant certain areas of 
research were out of scope for this thesis, such as the regulatory requirements for the 
automated SFGS. However, these unexplored topics will be important for the long-term 
implementation of the automated SFGS in a clinical or non-clinical setting. To this end we 
will first discuss possible future improvements regarding the topics more closely related 
to this thesis, followed by a broader overview of areas of research that are required for 
a successful implementation of the automated SFGS, finishing with an overview of the 
possible short-term and long-term clinical impact of the automated SFGS. 

One of the first technical improvement that come to mind for future work would be the 
implementation of the RealSense depth data, as validated in Chapter 2 and Chapter 3, in 
the automated SFGS [44]. As previously discussed, the depth data and the 3D landmarks 
and anthropometric measurements based on the RealSense recordings could play an 
important role in improving reliability of automated SFGS, due to the complex and dynamic 
features of the face during the SFGS poses [11,12,30,87]. However, in this thesis it was 
chosen to first determine a baseline for the reliability of the automated SFGS based on the 
2D images of the RealSense recordings. From this baseline it will be possible to determine 
the impact of the depth data on the reliability of the automated SFGS. A valid outcome 
could be that the 2D data is sufficient to achieve a high reliability for the automation 
of the SFGS. This would have the advantage of lowering the barrier of entry in a home 
implementation of the automated SFGS. However, this trade-off can only be made in 
case the impact of the depth data is determined. Therefore, this thesis captured and 
validated the depth data of a relatively affordable 4D camera from the start. It should be 
noted that although the RealSense F200 and D415 were used in this thesis to capture 
the colour and depth images, these cameras are not the only portable and low-cost 
4D imaging solutions available [15,16,18]. The RealSense cameras are intended as a 
representation of depth cameras with lower performance compared to professional 
systems. Technological advancements could make 4D cameras more affordable making 
it more likely patients will already have a suitable depth camera at home, such as the 
integrated depth cameras used for facial authentication in smartphones and laptops 
[88,89]. Although it would be preferred to support all these cameras to lower the barrier 
of entry of the automated SFGS, the usage of multiple depth cameras complicates the 
initial implementation and validation of the automated SFGS. Therefore, the inclusion of 
multiple depth cameras remains to be implemented in future work.
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A major challenge in this thesis was the relatively small cohort size used for the automation 
of the SFGS due to the time required for the inclusion of the patients with a PFP in a 
single centre study design. A larger dataset would show more variations of the PFP and 
would typically be beneficial for the reliability of the CNN model [41,45,46,76]. Although 
multiple mitigations were implemented during the training of the CNN model due to 
the small dataset, as discussed in Chapter 4 and Chapter 5, not all recommended 
techniques were implemented. Most notably, it was initially attempted to use pre-
existing CNN architectures that have been successfully implemented in related image 
automation tasks. This would allow the usage of a technique called transfer learning, 
where a much larger dataset is used to train the network for a related image classification 
task [41,75,80]. However, in unpublished work the implementation of these pre-trained 
networks did not result in a reliability comparable to human observers for the automated 
SFGS. Due to the potential impact of a successful implementation of transfer learning it 
would be recommended to revisit this technique in future work. Another limitation of the 
single study centre design is the relatively limited variation in demographic and recording 
circumstances represented by a single clinical centre, which might overestimate the 
reliability of the model when deployed in other clinical centres. Therefore, future work 
could benefit from a multinational multi-centre study, which would allow for a much faster 
growth of the dataset with a more varied demographic and recording circumstances. 
A larger available dataset could have further implications on the optimization of the 
existing CNN model. For example, Chapter 4 and Chapter 5 added a difference image 
and a landmark image to the CNN to increase the reliability of the CNN. However, with the 
training on a larger dataset, these features are expected to be detected by the CNN itself, 
resulting in a simplified model. Other improvements to the existing CNN model could 
include the implementation of a more complex CNN model, where all SFGS elements 
are determined simultaneously in a single model, which could take the relationship 
between different SFGS elements into account. Apart from optimizing the existing CNN 
model, it might be beneficial to implement completely new deep learning architectures or 
pre-processing pipelines in future work, especially considering the rapidly evolving field 
of deep learning. This could include the usage of depth data as discussed in the previous 
paragraph with 3D CNNs, addition of temporal data in recurrent neural networks, or the 
usage of attention mechanisms such as visual transformer networks, or the focus on 
hierarchical relationships between features using capsule networks [40,41,44,76,90–93]. 

There are also areas of research that were not explored in this thesis which need to be 
considered for the long-term implementation of the automated SFGS, such as regulatory 
requirements, workflow optimization including the development of a graphical user 
interface (GUI), multi-language support, integration with existing hospital systems, and 
logistics and financing of the distribution of software and cameras. To determine the 
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best path forward for the automated SFGS a multidisciplinary team is required, including 
the input from a representative patient population. Therefore, the following overview 
should be considered as a rough potential guideline and is expected to change based 
on the input from the multidisciplinary team. Although the home implementation of the 
automated SFGS is the final aim of this project, there are serious complexities regarding 
data management, camera availability, and overall workflow. This makes the initial 
implementation of the automated SFGS in a multi-centre study an interesting option, 
which allows for a more controlled environment and less financial and logistical challenges 
compared to a home implementation. Another advantage of a multi-centre study would 
be the limited number of staff interacting with the automated system, which will allow for 
more elaborate instructions at the start of the development of the automated SFGS as 
these instructions do not need to be repeated for each new patient. This would make the 
staff better suited to deal with (minor) challenges encountered during the development 
stage. During this process, the final aim of a home implementation should be leading 
in design choices, where a significant effort should be placed in the ease of use of the 
automated SFGS. To this extent the clinical stage can act as the beta development to 
optimize the workflow of the automated SFGS until untrained staff is able to use the 
automated SFGS. Workflow concepts that can be considered are the development of a 
single GUI that will include all the steps of the recording process, such as the positioning 
of the patient, start of the recording, capturing of all SFGS poses, and any required manual 
processing steps until the final SFGS score is calculated. Due to the usage of a depth 
camera the positioning of the patient could be indicated on screen, where audiovisual 
markers could be used to direct the patient into the right position. After the positioning of 
the patient, the GUI could indicate which SFGS pose should be recorded, with the option 
to randomize the order of SFGS poses or to perform repeated measurements, where the 
final design choices will depend on the input of the multidisciplinary team.

From this initial development of the automated SFGS there are two major paths 
that can be taken. The first is to use the existing workflow to create a fully regulated 
software package for use in dedicated clinics, where the manual SFGS is completely 
replaced by the automated SFGS. This software package will be considered a medical 
device in many countries, which will have specific regulatory requirements, such as 
the implementation of a quality management system which will include topics such 
as the documentation of control and records, data management, software and 
product design, risk management, whilst following common good manufacturing 
processes [94–96]. In addition, there are specific legal frameworks that should be 
taken into account. For example, in the European Union the General Data Protection 
Regulation (GDPR), the Medical Device Regulation (MDR), the European Health Data 
Space (EDHS), and the European Artificial (AI) Intelligence Act will play an important 
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role [96]. The process of creating a fully regulated software package is expected 
to take a long time with a significant associated cost but would allow the usage 
of the automated SFGS as a standalone application in clinics where the manual 
SFGS can be fully replaced. However, the final aim of the automated SFGS is the 
ability to implement a user-friendly system that can be used by the patient at home 
without any assistance. Therefore, the second path forward would focus on the 
home implementation of the automated SFGS, which would most likely include all 
the requirements of the application in a clinical setting but is expected to face more 
challenges. Certain questions might arise such as whether patients will be required to 
login to be able to access the software and decrypt potential raw footage and SFGS 
scores available on the local device. Is the raw footage going to be stored locally at all 
and is the patient allowed to view the footage or SFGS scores? Is there going to be a 
direct connection to hospital servers to update the medical records with the automated 
SFGS score and does this include any raw data that can be used to further train the 
deep learning model? In case the RealSense cameras are used for the recordings, 
how would these be financed and what are the logistics for lending and retrieving 
these cameras? Will there be support for multiple depth cameras to alleviate some 
of these issues or are there going to be multiple parallel deep learning models that 
can accept 2D or depth data, each with their own caveats? From these questions it is 
clear that there is a significant amount of research required by the multidisciplinary 
team during the implementation of the automated SFGS in a home setting. 
However, the potential benefits of a home implementation of the automated SFGS 
should be taken into consideration as it could offer a more personalized rehabilitation 
process for the patient. For example, the patient would be able to select their preferred 
time to take the SFGS measurement, without the need to travel or being restricted to 
regular business hours. Depending on the preference of the patient, the automated 
SFGS could also provide a more objective overview of the rehabilitation process by 
comparing the video recordings and the corresponding SFGS score over time. The home 
implementation of the automated SFGS could also have a positive impact for clinicians 
and researchers and thereby benefiting patients. With a home implementation of the 
SFGS it would become easier to increase the frequency of the SFGS measurements. 
This could help to closely monitor changes in the PFP and determine the impact of any 
modifications to the treatment. Over time, this could even facilitate the development of 
a deep learning model designed to monitor the rehabilitation process of the patient and 
the identification of patients in need of closer supervision. This model might even be 
able to identify certain patterns in the data to individualize and improve the treatment of 
the patient. These actions would be performed in close collaboration with researchers, 
where the researchers would benefit from having access to reliable data input, with a 
higher temporal frequency, with SFGS scores directly comparable to studies implemented 
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elsewhere. It might even be possible to make the SFGS more sensitive to changes in 
the PFP. Currently, the individual elements of the symmetry of voluntary movement 
and synkinesis are based on an ordinal scale. E.g., there is no differentiation between a 
score of 2.8 and 3.2 for an individual element as both scores will result in a score of 3. 
A deep learning model could create a continuous scale of the individual SFGS elements 
identifying smaller changes of the PFP. However, these changes to the SFGS should be 
approached with care, as the benefits of using the existing SFGS would potentially be lost, 
such as the existing validation of the SFGS or the direct comparison to studies not using 
the adjusted automated SFGS.

Having discussed a broad range of potential improvements to the automated SFGS, we 
will now focus on the short-term and long-term recommendations for the future steps of 
the automated SFGS and the associated clinical impact. A first recommendation would be 
to add the patients recorded after November 2020 to the dataset, which was the inclusion 
cutoff used in this thesis. Adding these recordings to the dataset will give a more accurate 
indication of the performance of the automated SFGS where a separate validation and 
testing set can be used during the training of the model. As these recordings are already 
available this could be implemented in a relatively short timeframe. This would also be 
a good opportunity to evaluate the existing CNN model against a deep learning model 
incorporating the depth data and potentially revisiting the usage of transfer learning. In 
case the reliability of the CNN model is comparable to or exceeding the higher end of the 
reliability of human observers, the automated SFGS could immediately be implemented 
in a research setting where the outcome of the SFGS does not directly influence the 
treatment plan of the patient, and where the patient cohort is based on a similar patient 
demographic as used during the training of the CNN model. From here the focus can 
shift towards optimizing the workflow of the automated SFGS as discussed in the 
previous paragraphs, preferably in preparation of a multinational multi-centre study. The 
multi-centre study would result in a dataset of order of magnitude bigger than the current 
dataset and should be achievable in the medium-term. With a dataset this size it might 
be an opportune moment to revisit other deep learning techniques as discussed in the 
future perspectives. With a broader demographic included in the multi-centre study, the 
automated SFGS could be used as a multi-national research tool, which would allow for 
a more reliable comparison between studies incorporating the SFGS, without limitations 
on the availability of observers experienced in the SFGS. Whilst the multi-centre study 
is running, the remaining requirements for a validated and regulated automated SFGS 
should be investigated and implemented in the long-term. From this point on the manual 
SFGS can be completely replaced, which will allow monitoring at a much higher frequency 
without significantly impacting the workload for the clinical staff with a potentially higher 
reliability compared to experienced human observers.
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SUMMARY

The human face plays an integral part of verbal and non-verbal communication in 
everyday life, such as during the expression of emotions and thoughts. A disturbance 
in these functions can cause major effects to the physical, social, and emotional quality 
of life for affected individuals. One of these conditions that can affect facial functioning 
is a unilateral peripheral facial palsy (PFP). The PFP causes a partial or complete loss in 
the facial muscle functionality on a single side of the face. There are numerous factors 
which can affect the facial nerve functioning, such as trauma, herpes zoster, or diabetic 
mellitus. However, the majority of PFP cases are classified as idiopathic facial palsy, which 
means that the exact cause is unknown. The treatment and expected recovery rate 
of a PFP will, among other factors, depend on the severity of the PFP. Therefore, it is 
crucial to assess the severity of the PFP and monitor this over time. There are several 
grading systems available to determine the severity of a PFP. One of the recommended 
and well-established grading systems is the Sunnybrook Facial Grading System (SFGS). 
This recommendation is due to the high reliability, sensitivity to changes in the severity 
of the PFP, and the clinical relevance of the SFGS. The SFGS achieves these properties by 
assessing the facial nerve function of the muscles most important for facial expression. 
The SFGS assesses six different facial poses which consist of the face at rest as well as five 
voluntary movements; the forehead wrinkle, gentle eye closure, open mouth smile, snarl 
(raising of the nostrils), and lip pucker. A total of 13 elements are individually assessed 
and grouped into three subcomponents; the face at rest, the symmetry of voluntary 
movement, and synkinesis. Synkinesis refers to the involuntary activation of a part of 
the face, during a deliberate movement of a different part of the face. Each of these 
three subcomponents results in a subscore, which together determine the composite 
SFGS score. The composite SFGS score is a point scale ranging from 0 to 100, where the 
score of 0 indicates a complete PFP and a score of 100 indicates normal functioning of 
the facial muscles. A more detailed overview of the SFGS is given in Chapter 1. Although 
the SFGS is a recommended grading system to determine the severity of a PFP, the SFGS 
is a subjective grading system, which is influenced by the individual input of the human 
observer. Therefore, the grading will depend on the experience of the human observer 
due to the learning curve associated with the SFGS, which may bias the SFGS grading. 
This learning curve makes the SFGS less accessible or even inaccessible for researchers, 
students, clinicians in training, other untrained co-workers, or in the usage for the home 
monitoring of patients. Therefore, this thesis investigated the automation of the SFGS 
with the long-term aim to develop a user-friendly system that could be used by the patient 
at home without any assistance. In an ideal situation, this automated system would be 
more reliable than human observers experienced in the grading of PFPs, using the SFGS. 
A more detailed background and rationale for this aim is presented in Chapter 1.
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In order to automatically determine the SFGS score a certain input will be required for the 
automated system. As the manual SFGS is based on visual examination, the choice was 
made to use a non-invasive imaging technology. Due to the complex nature of the face 
and the potential changes in the facial surface during the execution of the SFGS poses, 
the usage of a series of three-dimensional (3D) images could be of additional value for the 
automated SFGS. To make the automated system applicable for home use, the 3D video 
camera (4D) should be relatively inexpensive, portable, and easy to use. A 4D camera that 
met these requirements was the RealSense F200 (Intel, Santa Clara, USA). The RealSense 
F200 can simultaneously capture a 2D colour video and a 3D depth video in the form factor 
of a webcam with a price of $100 USD. Professional systems, such as the clinically validated 
3dMD system (3dMDface, 3dMD, Atlanta, USA), often have a cost of tens of thousands 
of dollars, which most likely will cause a quality difference between the RealSense F200 
and a professional system. Therefore, Chapter 2 determined the depth accuracy of the 
RealSense F200 in a clinical setting by recording 34 patients with a PFP performing the six 
SFGS poses. Each patient was simultaneously recorded by the RealSense F200 and the 
3dMD system. The depth accuracy of the RealSense F200 was determined at moment of 
maximum exertion for each of the SFGS poses by comparing the depth images from the 
RealSense F200 to the depth images from the 3dMD system. This analysis started with 
the alignment of the two depth images to match their position and rotation in 3D space. 
After this alignment, the depth accuracy of the RealSense F200 image was determined by 
calculating the distance from each point of the RealSense depth image to the closest point 
on the 3dMD image. The RealSense F200 depth image typically consists of thousands of 
points and this distance calculation was performed for each individual point. From these 
measurements an average depth accuracy was calculated for each patient and SFGS 
pose separately. This resulted in an average depth accuracy of 1.48 mm for the face at 
rest and 1.49 mm during the voluntary movement of the SFGS for the RealSense F200. It 
was statistically determined that the SFGS poses did not significantly influence the depth 
accuracy of the RealSense F200. When compared to the reported depth accuracy for the 
3dMD system which ranged from 0.20 mm to 0.25 mm for the face at rest for healthy 
individuals, there is a clear difference in depth accuracy between the two systems. This 
result was not unexpected due to the difference in cost, size, and complexity of the two 
systems. Taken these factors in account, the RealSense F200 provided relatively reliable 
and accurate depth data when recording a range of facial movements and was considered 
a viable option as a portable and low-cost 4D camera for the automated SFGS.

After the first generation of RealSense cameras, a successor of the RealSense F200 
was released, the RealSense D415. Due to significant improvements to the software 
and hardware of the camera the decision was made to switch to the RealSense D415. 
This meant the depth accuracy of the RealSense D415 needed to be determined. 
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However, the automated SFGS might not require the entire depth image of the 
face. Instead, the tracking of 3D facial landmarks might be sufficient. Additionally, 
it would be possible to perform facial measurements, also called anthropometric 
measurements, based on these 3D landmarks. Therefore, Chapter 3 validated the 
RealSense D415 on three different topics; the depth accuracy of the entire depth 
image, the reliability of 3D landmark placement, and the reliability and agreement of 
3D anthropometric measurements. The reliability is defined as the consistency of results 
when a measurement is repeated. The agreement is defined as how close a measurement 
is to the gold standard; in this case these are the measurements performed on the 3dMD 
image. The validation of each of the three topics was based on the same population of 
30 patients with a PFP performing the six SFGS poses, simultaneously recorded with 
the RealSense D415 and 3dMD system. The methodology to determine the depth 
accuracy of the RealSense D415 was consistent with the methodology as described in 
Chapter 2 in order to compare the depth accuracy of the RealSense F200. The facial 
landmarks were manually placed by two human observers on both the RealSense D415 
and 3dMD depth images at the moment of maximum exertion of each SFGS pose. The 
average depth accuracy of the RealSense D415 was 0.97 mm for the face at rest and 
0.98 mm for the voluntary movements. This depth accuracy improved compared to 
the RealSense F200, making the RealSense D415 a viable successor for the automated 
SFGS. The average reliability of the 3dMD landmark placement was 0.92 mm for the 
face at rest and 1.03 mm for the voluntary movements, which was within the expected 
range compared to the landmark placement on healthy subjects at rest. This indicated 
that the 3dMD results could be used as reference values for the RealSense D415. The 
reliability of the RealSense D415 landmark placement declined to 1.47 mm for the face 
at rest and to 1.28 mm during the voluntary movements, due to the reduced depth and 
colour quality of the RealSense compared to the 3dMD system. This effect was also visible 
in the anthropometric measurements, where the average reliability of the RealSense 
D415 measurements fell outside the reported range based on healthy subjects recorded 
in rest with a professional 3D system. This resulted in an average underestimation of 
the anthropometric measurements of -0.90 mm for the face at rest and -1.12 mm for 
the voluntary movements compared to the 3dMD measurements, where 95% of the 
RealSense D415 measurements were within a 5 mm error of the 3dMD measurements. 
In comparison, the 3dMD anthropometric measurements can achieve submillimetre 
accuracy compared to direct anthropometric measurements. Therefore, there is a clear 
difference between the accuracy of the RealSense D415 and the 3dMD system, where 
the specific clinical application will determine whether the performance of the RealSense 
D415 is sufficient. Overall, the results were considered as reasonable when the size 
and cost of the RealSense D415 were taken into account.
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After the validation of the RealSense D415 depth accuracy and the 3D facial landmark 
placement with their derived anthropometric measurements, a first automated SFGS 
was implemented in Chapter 4. The automated SFGS was based on a convolutional 
neural network (CNN), which is a type of deep learning network especially suited for the 
automation of image processing tasks. One of the common methods to train a CNN is 
by presenting a large amount of input data with a known output. During the training 
process of the CNN model, the input data is used to identify patterns in the dataset and 
generalize this knowledge. This allows the trained model to generate the desired output 
when unseen data from different situations is introduced. This translated into using the 
2D video recordings from the RealSense D415 as an input for the automated SFGS, with 
the known SFGS score as an output. The SFGS score was determined by three clinicians 
experienced in the grading of patients with a PFP based on the SFGS. The CNN was 
trained on the RealSense D415 recordings from 116 patients with a PFP and 9 healthy 
subjects performing the SFGS poses. Each of the 13 SFGS elements was trained on a 
separate CNN, resulting in 13 scores for the SFGS elements. From these elements the 
SFGS subscores and SFGS composite score were calculated, which is the same process 
when performing the SFGS manually. The reliability of the CNN was determined by 
comparing the automated SFGS score to the SFGS score from the three experienced 
human observers. The reliability was expressed as the intra-class correlation coefficient 
(ICC), which represents the reliability with a value between 0 and 1. An ICC value close 
to 1 would indicate a high reliability between the scores of the automated SFGS and 
the human observers, which would be the desirable result. The reliability for each SFGS 
element, subscore and composite score were determined, where an average ICC of 0.87 
was found for the composite SFGS which is considered a good agreement. The reported 
ICC of the SFGS composite score for human observers ranges between 0.81 to 1.00 with 
an average of 0.91. This meant that the reliability of the automated SFGS was similar to 
human observers manually performing the SFGS.

The first implementation of the automated SFGS showed promising results and 
Chapter 5 explored a further optimization of the CNN model by using manually placed 
2D facial landmarks as an additional input. These landmarks could help focus on the 
relevant regions of the face during the training of the CNN. To compare the results to 
the first automated SFGS as many variables were kept consistent with Chapter 4. For 
example, the exact same dataset with 125 subjects and their respective SFGS grades 
as determined by the three expert human observers were used during training of the 
CNN. The main difference compared to the old CNN model were the additional fourth 
and fifth input, consisting of 2D images of the facial landmarks during rest and maximum 
exertion of the SFGS pose. The analysis of the reliability was kept consistent with the 
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previous chapter as well, which compared the automated SFGS to the human observers, 
expressed as the ICC. The addition of the input with the 2D facial landmarks resulted in 
an increase in reliability of the automated SFGS, where the overall ICC for the composite 
SFGS increased from 0.87 to 0.91, which is considered an excellent agreement. This 
meant the automated SFGS was grading with a similar reliability as experienced human 
observers, without increasing the size of the underlying dataset. Apart from improving 
the reliability for the automated SFGS, these optimizations show the potential impact for 
clinical applications where a limited sized dataset is available.

The results presented in this thesis are a first step towards the implementation of an 
automated SFGS in a clinical setting. However, there are areas of research that have 
not been addressed in this thesis. First of all, not all available data from the RealSense 
recordings were used in the development of the automated SFGS. This thesis has 
implemented a baseline model based on 2D data to show the potential of a deep learning 
network. The depth data, 3D landmarks, and 3D anthropometric measurements from the 
RealSense D415, which have been validated in this thesis, could potentially improve the 
reliability of the automated SFGS. As it can take a significant amount of time to build a 
reasonable sized dataset, it was preferred to immediately capture 4D recordings, despite 
not using these data in the current automated SFGS. There are also areas of research 
that should be further explored with a multi-disciplinary team before the automated SFGS 
can be implemented in daily clinical practise. For example, the regulatory requirements 
and relevant legal frameworks should be taken into account before the deployment of 
the automated SFGS, especially when the automated SFGS influences the treatment 
plan of the patient. This most likely will require the further validation of the reliability of 
the automated SFGS with the inclusion of more subjects. The expansion of the dataset 
would preferable be done in different settings, such as in an eHealth environment or in 
other clinical centres. This requires the development of an easy-to-use interface, where 
the required manual steps are minimized. A larger dataset would make the further 
development of the underlying techniques of the automated SFGS an interesting option, 
where new CNN or deep learning architectures could be implemented, with the goal 
to further increase the reliability of the automated SFGS. In combination with the work 
presented in this thesis these efforts could result in the implementation of an automated 
SFGS in research, daily clinical practice, and by the patient at home in an eHealth 
environment, with a higher reliability compared to human observers.
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SAMENVATTING

Het menselijk aangezicht speelt een integrale rol tijdens verbale en non-verbale 
communicatie in het dagelijks leven, zoals tijdens de expressie van emoties en 
gedachten. Een verstoring in deze functies kan grote gevolgen veroorzaken in de fysieke, 
sociale en emotionele kwaliteit in het leven van de aangedane individuen. Eén van de 
condities die het functioneren van het gezicht kan aantasten is een unilaterale perifere 
aangezichtsverlamming (PAV). De PAV zorgt voor een gedeeltelijk of volledig verlies 
van de functie van de aangezichtsspieren aan een enkele zijde van het gezicht. Er zijn 
meerdere factoren die de werking van de gezichtszenuw kunnen aantasten, zoals een 
trauma, herpes zoster, of diabetes mellitus. Echter, de meerderheid van de PAV gevallen 
wordt geclassificeerd als een idiopathische aangezichtsverlamming, wat inhoudt dat de 
exacte oorzaak onbekend is. De behandeling en het verwachte herstel van een PAV hangt 
onder andere af van de ernst van de PAV. Daarom is het cruciaal om de ernst van de 
PAV te bepalen en deze over de tijd te monitoren. Er zijn meerdere graderingsystemen 
beschikbaar om de ernst van de PAV te bepalen. Eén van de aanbevolen en gevestigde 
graderingsystemen is de Sunnybrook Facial Grading System (SFGS). Deze aanbeveling is 
te danken aan de hoge betrouwbaarheid, gevoeligheid voor veranderingen in de ernst 
van de PAV, en de klinische relevantie van de SFGS. De SFGS behaalt deze eigenschappen 
door het beoordelen van de spieren die het belangrijkst zijn voor gezichtsuitdrukking om 
zo het functioneren van de aangezichtszenuw (n. facialis) in kaart te brengen. De SFGS 
behaalt deze eigenschappen door zes verschillende mimische posities van het aangezicht 
te beoordelen. De mimische posities bestaan uit het gezicht in rust en vijf vrijwillige 
bewegingen: het optrekken van de wenkbrauwen, het rustig sluiten van de ogen, een 
glimlach met open mond, snauwen (het optrekken van de neusvleugels), en het tuiten 
van de lippen. Er worden in totaal 13 individuele elementen beoordeeld die gegroepeerd 
zijn binnen drie onderdelen: het aangezicht in rust, de symmetrie van beweging en de 
synkinese. Synkinese verwijst hier naar de onvrijwillige activatie van een deel van de 
mimische spieren, tijdens een bewuste beweging van een ander deel van de mimische 
spieren. Elk van deze drie onderdelen resulteert in een gedeeltelijke score, welke samen 
de totale SFGS score bepalen. De totale SFGS score is een puntenschaal welke tussen 
een waarde van 0 en 100 ligt, waarbij de score van 0 een volledige PAV aangeeft en 
een score van 100 een normale aangezichtsfunctie. Een uitgebreid overzicht van de 
SFGS kan worden gevonden in Hoofdstuk 1. Ondanks dat de SFGS een aanbevolen 
graderingsysteem is om de ernst van een PAV te bepalen, wordt de SFGS beïnvloed door 
de individuele input van de menselijke beoordelaar aangezien de SFGS een subjectief 
graderingsysteem is. Daarom hangt de kwaliteit van de gradering af van de ervaring van 
de menselijke beoordelaar door de bijbehorende leercurve van de SFGS, welke de SFGS 
gradering kan vertekenen. Deze leercurve maakt de SFGS minder toegankelijk of zelfs 
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ontoegankelijk voor onderzoekers, studenten, clinici in opleiding, andere ongetrainde 
collega’s of in het gebruik van de thuismonitoring van patiënten. Daarom onderzoekt 
dit proefschrift de automatisering van de SFGS met het lange-termijn doel om een 
gebruikersvriendelijk systeem te ontwikkelen welke door de patiënt thuis gebruikt kan 
worden zonder enige externe hulp. Dit geautomatiseerd systeem zou idealiter een 
hogere betrouwbaarheid hebben ten opzichte van menselijke beoordelaars ervaren in 
het graderen van de PAV met behulp van de SFGS. Een meer gedetailleerde achtergrond 
en redenatie voor dit doel wordt uiteengezet in Hoofdstuk 1. 

Om de SFGS score automatisch te kunnen bepalen zal er een bepaalde vorm van input 
nodig zijn voor het automatische systeem. Aangezien de handmatige SFGS is gebaseerd op 
visuele inspectie, werd ervoor gekozen om een non-invasieve beeldvormingstechnologie 
te gebruiken. Door de complexe aard van het aangezicht en de mogelijke veranderingen 
in het gezichtsoppervlak tijdens het uitvoeren van de vrijwillige SFGS bewegingen, zou het 
gebruik van een reeks driedimensionale (3D) beelden een toegevoegde waarde kunnen 
hebben voor de geautomatiseerde SFGS. Om het automatische systeem toepasbaar te 
maken voor thuisgebruik, zou de 3D videocamera (4D) relatief goedkoop, draagbaar en 
makkelijk in gebruik moeten zijn. Een 4D camera die aan deze eisen voldeed was de 
RealSense F200 (Intel, Santa Clara, USA). De RealSense F200 is in staat om tegelijkertijd 
een 2D kleuren video en een 3D diepte video op te nemen, terwijl de RealSense F200 
het formaat heeft van een webcam met een prijs van $100 USD. Professionele systemen, 
zoals het klinisch gevalideerde 3dMD systeem (3dMDface, 3dMD, Atlanta, USA), hebben 
vaak een prijs van tienduizenden dollars, waardoor er naar alle waarschijnlijkheid een 
kwaliteitsverschil zal zitten tussen de RealSense F200 en een professioneel systeem. 
Daarom bepaalde Hoofdstuk 2 de diepte accuraatheid van de RealSense F200 in een 
klinische omgeving, door een video opname te maken met de RealSense F200 van 34 
patiënten met een PAV tijdens het uitvoeren van de zes SFGS mimische posities. Elke 
patiënt werd tegelijkertijd opgenomen door de RealSense F200 en het 3dMD systeem. De 
diepteaccuraatheid van de RealSense F200 werd bepaald op het moment van maximale 
uitslag van iedere SFGS mimische positie, door de dieptebeelden van de RealSense F200 
te vergelijken met de dieptebeelden van het 3dMD systeem. Deze analyse begon met het 
uitlijnen van de twee dieptebeelden om de positie en rotatie overeen te laten komen in de 
3D ruimte. Na deze uitlijning werd de diepteaccuraatheid van de RealSense F200 bepaald 
door de afstand van elk punt van het RealSense dieptebeeld naar het dichtstbijzijnde 
punt van het 3dMD dieptebeeld uit te rekenen. Het RealSense F200 dieptebeeld bestaat 
typisch gezien uit duizenden punten, en deze afstandsberekening werd bepaald voor 
elk individueel punt. Van deze metingen werd er een gemiddelde diepteaccuraatheid 
bepaald voor elke afzonderlijke patiënt en SFGS mimische positie. Dit resulteerde in 
een gemiddelde diepteaccuraatheid van 1,48 mm voor het gezicht in rust en 1,49 mm 

7



Chapter 7

158

tijdens de vrijwillige bewegingen van de SFGS voor de RealSense F200. Uit de statistische 
analyse bleek dat de SFGS mimische posities geen significante invloed hadden op de 
diepteaccuraatheid van de RealSense F200. Wanneer de accuraatheid werd vergeleken 
met de gerapporteerde diepteaccuraatheid van het 3dMD systeem, welke tussen de 
0,20 mm en 0,25 mm lag voor het gezicht in rust bij gezonde individuen, was er een 
duidelijk verschil te zien in de diepteaccuraatheid tussen de twee systemen. Dit resultaat 
was niet onverwacht gezien het verschil in kosten, formaat en complexiteit van de twee 
systemen. Rekening houdend met deze factoren voorzag de RealSense F200 van een 
relatief betrouwbare en accurate diepte data tijdens het opnemen van een scala aan 
aangezichtsbewegingen en werd daarom gezien als een goede optie voor een draagbare 
en goedkope 4D camera voor de automatisering van de SFGS. 

Na de eerste generatie van RealSense camera’s werd er een opvolger van de 
RealSense F200 uitgebracht, de RealSense D415. Door significante verbeteringen 
aan de hardware en software, werd er besloten om de overstap te maken naar de 
RealSense D415. Dit betekende dat de diepteaccuraatheid van de RealSense D415 
bepaald moest worden. Echter, de geautomatiseerde SFGS heeft mogelijk niet het 
volledige dieptebeeld van het aangezicht nodig. In plaats daarvan zou het mogelijk 
voldoende zijn om specifieke oriëntatiepunten in het gezicht te volgen, oftewel 
facial landmarks. Daarnaast zou het mogelijk zijn om metingen in het gezicht uit te 
voeren, ook wel antropometrische metingen genoemd, gebaseerd op deze 3D facial 
landmarks. Daarom valideerde Hoofdstuk 3 de RealSense D415 op drie verschillende 
onderwerpen: de diepteaccuraatheid van het gehele dieptebeeld, de betrouwbaarheid 
van de 3D facial landmarkplaatsing, en de betrouwbaarheid en overeenkomst van de 3D 
antropometrische metingen. De betrouwbaarheid is gedefinieerd als de consistentie van 
de uitkomst wanneer een meting wordt herhaald. De overeenkomst is gedefinieerd als 
hoe dicht een meting bij de gouden standaard ligt, in dit geval de metingen uitgevoerd 
op het 3dMD dieptebeeld. De validatie van deze drie onderwerpen was gebaseerd 
op dezelfde populatie van 30 PAV patiënten welke de zes SFGS mimische posities 
uitvoerden, tegelijkertijd opgenomen met de RealSense D415 en het 3dMD systeem. 
De methodologie om de diepteaccuraatheid van de RealSense D415 te bepalen was 
consistent met de methodologie zoals beschreven in Hoofdstuk 2 om de vergelijking 
met de diepteaccuraatheid van de RealSense F200 te kunnen maken. De facial landmarks 
werden handmatig geplaatst door twee menselijke beoordelaars op de RealSense en 
3dMD dieptebeelden op het moment van maximale uitslag van iedere SFGS mimische 
positie. De gemiddelde diepteaccuraatheid voor de RealSense D415 was 0,97 mm voor 
het gezicht in rust en 0,98 mm voor de vrijwillige bewegingen. Deze diepteaccuraatheid 
was beter dan die van de RealSense F200, wat de RealSense D415 een geschikte 
opvolger maakte voor de automatische SFGS. De gemiddelde betrouwbaarheid voor 
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de 3dMD landmarkplaatsing was 0,92 mm voor het gezicht in rust en 1,03 mm voor 
de vrijwillige bewegingen, wat binnen het verwachte bereik was ten opzichte van de 
landmarkplaatsing bij de gezonde personen in rust. Dit toonde aan dat de resultaten van 
de 3dMD gebruikt konden worden als referentiewaardes voor de RealSense D415. De 
betrouwbaarheid van de RealSense D415 landmarkplaatsing nam af tot 1,47 mm voor 
het gezicht in rust en tot 1,28 mm tijdens de vrijwillige bewegingen, veroorzaakt door 
de lagere diepte- en kleurkwaliteit van het RealSense D415 systeem ten opzichte van 
het 3dMD systeem. Dit effect was ook zichtbaar tijdens de antropometrische metingen, 
waar de gemiddelde betrouwbaarheid van de RealSense D415 metingen buiten het 
gerapporteerde bereik viel op metingen van gezonde personen in rust, opgenomen 
met een professioneel 3D systeem. Dit zorgde voor een gemiddelde onderschatting 
van de antropometrische metingen van -0,90 mm voor het gezicht in rust en -1,12 mm 
voor de vrijwillige bewegingen ten opzichte van de 3dMD metingen, waar 95% van de 
RealSense D415 metingen binnen een 5 mm foutmarge vielen van de 3dMD metingen. 
Ter vergelijking, de 3dMD antropometrische metingen kunnen een accuraatheid onder 
één millimeter behalen ten opzichte van directe antropometrische metingen. Daarom 
is er een duidelijk verschil tussen de accuraatheid van de RealSense D415 en het 3dMD 
systeem, waar de specifieke klinische toepassing zal bepalen of de prestaties van de 
RealSense D415 voldoende zijn. Over het geheel genomen werden de resultaten als 
redelijk gezien, wanneer er rekening werd gehouden met het formaat en de kosten van 
de RealSense D415. 

Na de validatie van de diepteaccuraatheid van de RealSense D415 en de plaatsing van 
de 3D facial landmarks en de afgeleide antropometrische metingen, werd er een eerste 
geautomatiseerde SFGS geïmplementeerd in Hoofdstuk 4. De geautomatiseerde 
SFGS was gebaseerd op een convolutional neural network (CNN), wat een type deep 
learning netwerk is, specifiek geschikt voor het automatiseren van taken gerelateerd aan 
beeldverwerking. Eén van de gebruikelijke methodes om een CNN te trainen, is door 
het aanbieden van een grote hoeveelheid input data met een bekende output. Tijdens 
het trainingsproces van het CNN model wordt de input data gebruikt om patronen in 
de dataset te identificeren en om deze kennis te generaliseren. Dit maakt het mogelijk 
voor het getrainde model om de gewenste output te genereren wanneer nieuwe data 
uit verschillende situaties wordt geïntroduceerd. Dit vertaalde zich in het gebruik van 2D 
video opnames van de RealSense D415 voor de input van de geautomatiseerde SFGS, 
met de SFGS score als de output. De SFGS score was bepaald door drie clinici ervaren in 
het graderen van patiënten met een PAV, gebaseerd op de SFGS. De CNN was getraind 
op opnames van de RealSense D415, bestaande uit 116 patiënten met een PAV en 9 
gezonde personen die de SFGS mimische posities uitvoerden. Elk van de 13 individuele 
SFGS elementen werd getraind op een aparte CNN, resulterend in de 13 scores voor de 
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13 verschillende SFGS elementen. Vanuit deze 13 scores konden de gedeeltelijke SFGS 
scores en de totale SFGS score worden uitgerekend, wat hetzelfde proces is wanneer 
de SFGS handmatig wordt uitgevoerd. De betrouwbaarheid van de CNN werd bepaald 
door de automatisch bepaalde SFGS score te vergelijken met de SFGS score van de drie 
ervaren menselijke beoordelaars. De betrouwbaarheid was uitgedrukt als het intra-
klasse correlatiecoëfficiënt (ICC), wat de betrouwbaarheid weergeeft met een waarde 
tussen 0 en 1. Een ICC waarde dichtbij 1 geeft een hoge betrouwbaarheid aan tussen de 
geautomatiseerde SFGS en de menselijke beoordelaars, wat de gewenste uitkomst zou 
zijn. De betrouwbaarheid van ieder SFGS element, gedeeltelijke score en de totaalscore 
werden bepaald, waarbij een gemiddelde ICC van 0,87 werd gevonden voor de totale 
SFGS score, wat wordt gezien als een goede overeenkomst. De gerapporteerde ICC voor 
menselijke beoordelaars ligt tussen 0,81 en 1,00 met een gemiddelde ICC van 0,91. Dit 
betekende dat de betrouwbaarheid van de geautomatiseerde SFGS vergelijkbaar was 
met de menselijke beoordelaars die de SFGS handmatig bepalen. 

De eerste implementatie van de geautomatiseerde SFGS liet veelbelovende resultaten 
zien en Hoofdstuk 5 onderzocht een verdere optimalisatie van het CNN model door het 
gebruik van handmatig geplaatste 2D facial landmarks als extra input. Deze landmarks 
zouden kunnen helpen bij het focussen op de relevante regio’s van het gezicht tijdens 
de training van de CNN. Om de resultaten te kunnen vergelijken met de eerste 
geautomatiseerde SFGS, werden er zoveel mogelijk variabelen gelijk gehouden met 
Hoofdstuk 4. Er werd bijvoorbeeld exact dezelfde dataset gebruikt tijdens het trainen 
van de CNN, bestaande uit de 125 proefpersonen met de SFGS score zoals bepaald 
door de drie menselijke beoordelaars. Het grootste verschil met het oude CNN model 
waren de extra vierde en vijfde input, bestaande uit een 2D afbeelding van de handmatig 
geplaatste facial landmarks voor het gezicht in rust en tijdens de maximale uitslag van 
de mimische positie. De analyse van de betrouwbaarheid was ook consistent gehouden 
met het vorige hoofdstuk, waarbij de geautomatiseerde SFGS werd vergeleken met de 
menselijke beoordelaars, uitgedrukt als de ICC. De toevoeging van de input met 2D facial 
landmarks zorgde voor een toename in de betrouwbaarheid van de geautomatiseerde 
SFGS, waarbij de ICC van de totale SFGS score toenam van 0,87 naar 0,91, wat wordt 
gezien als een excellente overeenkomst. Dit betekende dat de geautomatiseerde SFGS 
gradeerde met een vergelijkbare betrouwbaarheid als ervaren menselijke beoordelaars, 
zonder het uitbreiden van de onderliggende dataset. Naast het toenemen van de 
betrouwbaarheid van de geautomatiseerde SFGS, laat deze optimalisatie de potentiële 
impact zien voor klinische applicaties waar een beperkte dataset beschikbaar is.
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De gepresenteerde resultaten in dit proefschrift zijn een eerste stap naar de 
implementatie van een geautomatiseerde SFGS in een klinische setting. Er zijn echter 
bepaalde onderzoeksgebieden die niet zijn behandeld tijdens dit proefschrift. Ten 
eerste, niet alle beschikbare data van de RealSense opnames zijn gebruikt tijdens de 
ontwikkeling van de geautomatiseerde SFGS. Dit proefschrift heeft een basismodel 
geïmplementeerd gebaseerd op 2D data om de potentie van een deep learning netwerk 
te laten zien. De diepte data, 3D landmarks en 3D antropometrische metingen van de 
RealSense D415, die zijn gevalideerd in dit proefschrift, zouden de betrouwbaarheid 
van de geautomatiseerde SFGS mogelijk verder kunnen verbeteren. Aangezien het een 
significante hoeveelheid tijd kan kosten om een dataset van redelijke omvang op te 
bouwen was er de voorkeur om direct 4D opnames te maken, ondanks dat deze data 
nog niet wordt gebruikt in de huidige geautomatiseerde SFGS. Er zijn ook gebieden van 
onderzoek die nog verder moeten worden verkend met een multidisciplinair team voordat 
de geautomatiseerde SFGS kan worden geïmplementeerd in de dagelijkse klinische 
praktijk. Er moet bijvoorbeeld rekening worden gehouden met de wettelijke vereisten en 
relevante wettelijke kaders voordat de geautomatiseerde SFGS ingezet kan worden, met 
name wanneer de geautomatiseerde SFGS het behandelplan van de patiënt beïnvloedt. 
Dit zal naar alle waarschijnlijkheid een verdere validatie van de betrouwbaarheid van 
de geautomatiseerde SFGS vereisen, met de inclusie van meer proefpersonen. De 
uitbreiding van de dataset zou bij voorkeur worden gedaan in verschillende omgevingen, 
zoals in een eHealth omgeving of in andere klinische centra. Dit maakt het nodig om een 
gebruiksvriendelijke interface te ontwikkelen waarbij de benodigde handmatige stappen 
zijn geminimaliseerd. Een grotere dataset zou voor de verdere ontwikkeling van de 
onderliggende techniek van de geautomatiseerde SFGS interessant zijn, waarin nieuwe 
CNN of deep learning architecturen geïmplementeerd kunnen worden, met het doel om 
de betrouwbaarheid van de geautomatiseerde SFGS te verbeteren. In combinatie met 
het werk gepresenteerd in dit proefschrift, kunnen deze inspanningen resulteren in de 
implementatie van een geautomatiseerde SFGS in onderzoek, dagelijks klinisch gebruik 
en door de patiënt thuis in een eHealth omgeving, met een hogere betrouwbaarheid ten 
opzichte van menselijke beoordelaars.

7



Chapter 7

162

RESEARCH DATA MANAGEMENT

Ethics and privacy
This thesis is based on the results of human studies, which were conducted in compliance 
with the World Medical Association Declaration of Helsinki on medical research ethics. 
The institutional ethical review committee CMO Radboudumc, Nijmegen, the Netherlands 
has given approval to conduct these studies (CMO Radboudumc dossier number: 2015-
1829). The privacy of the participants in these studies was warranted by the use of 
pseudonymization. The pseudonymization key was stored on a secured Radboudumc 
network drive that was only accessible to members of the project who needed access to it 
because of their role within the project. The pseudonymization key was stored separately 
from the research data. Informed consent was obtained from participants to collect and 
process their data for this research project. The sensitivity and confidentiality of the raw 
qualitative data makes sharing of the data without compromising confidentiality and 
privacy impossible. Therefore, specific optional consent for the sharing of the identifiable 
data in scientific and/ or general publications was retrieved from the participants. Any 
subjects shown in the scientific publications provided the written informed consent 
for the use of their images. However, none of the participants provided consent of the 
sharing of the raw data in data repositories.

Data collection and storage
Data for Chapter 2 to 5 were obtained through recordings with the RealSense™ F200 and 
Intel RealSense™ D415 (Intel®, Santa Clara, USA) and the 3dMD system (3dMDface, 3dMD, 
Atlanta, USA). Data from Chapter 2 to 5 were stored and analysed on the department 
server and are only accessible by project members working at the Radboudumc. These 
secure storage options safeguard the availability, integrity and confidentiality of the data. 
Paper (hardcopy) data is stored in cabinets on the department. The data will be saved for 
15 years after termination of the respective studies. Using these patient data in future 
research is only possible after a renewed permission by the patient as recorded in the 
informed consent.

Table 1. Overview of the details where the data and research documentation for each chapter can be 
found on the Radboud Data Repository (RDR).

Chapter Data Acquisition Collection

2 RDR, DOI:10.34973/6gq6-pm78

3 Part 1 RDR, DOI:10.34973/6gq6-pm78

3 Part 2 RDR, DOI:10.34973/6gq6-pm78

4 RDR, DOI:10.34973/6gq6-pm78

5 RDR, DOI:10.34973/6gq6-pm78
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Data sharing according to the FAIR principles 
Chapter 2, 4, and 5 are published open access. No consent has been given by the subjects 
for sharing the raw data in (restricted) online data repositories and anonymization of the 
raw data is not possible. Therefore, the raw data are stored on a secured Radboudumc 
network drive that was only accessible to members of the project who needed access to 
it because of their role within the project. The pseudonymized data underlying Chapters 
2, 3 Part 1 & 2, 4 and 5 are published on the Radboud Data Repository in a closed access 
Data Acquisition Collection and will remain available for at least 15 years after termination 
of the studies (see Table 1 for a more detailed overview). Data were made reusable by 
adding sufficient documentation and by using preferred and sustainable data formats 
where possible, such as .txt files and .csv files. 
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het 3D Lab druk op zoek naar mogelijkheden hoe we het afstudeeronderzoek konden 
voortzetten als een PhD traject. Het was een enorme opluchting om de ondersteuning van 
jou en de KNO te ontvangen, waardoor dit onderzoek vervolgd kon worden. Daarnaast 
was het heel waardevol om jouw input te krijgen bij het opzetten van de onderzoekslijn 
en feedback te ontvangen bij de wetenschappelijke artikelen, waar ik altijd op je kon 
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Dr. Ingels, beste Koen, onze eerste ontmoeting was tijdens mijn M3 stage in 2015 tijdens 
een facialis spreekuur. We bespraken hoe we de patiëntinclusie voor het onderzoek 
konden regelen. Dit was één van de spannendste momenten voor mij, aangezien de 
patiëntinclusie één van de belangrijkste maar ook direct lastigste punten van klinisch 
onderzoek is. Hier heb ik zoveel geluk gehad om jou te ontmoeten, want je bent vanaf het 
begin super enthousiast geweest over het onderzoek, waardoor het altijd voelde alsof ik 
de wind in de rug had tijdens het onderzoek. Het was ook enorm fijn om een klankbord te 
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hebben voor mijn klinische vragen, waar je expertise over de aangezichtsverlamming mijn 
verstand ver te boven gaat. Ik zou je daarom direct als (klinisch) begeleider aanbevelen 
voor andere studenten, maar of dat er in zit? Ik denk dat je de komende jaren, zeer 
verdiend, van je pensioen gaat genieten. 

Dr. Speksnijder, beste Caroline, zonder jou was dit onderzoek er niet geweest, 
aangezien jij de oorspronkelijke bedenker was van mijn eerste stageopdracht bij het 3D 
Lab over de toepassing van spiegeltherapie bij een aangezichtsverlamming. Ik kan me 
nog goed herinneren dat ons eerste gesprek niet alleen maar over het onderzoek ging, 
maar dat je oprecht geïnteresseerd was in de persoon die tegenover je zat. Hierdoor 
zaten we al snel op dezelfde golflengte, waardoor het samenwerken me heel goed beviel. 
Jouw persoonlijke betrokkenheid was ook duidelijk te zien in het onderzoek, waar je altijd 
een drijvende kracht bent geweest om het onderzoek verder te ontwikkelen. Dit vertaalde 
zich in bizar snelle reacties op mijn vragen, uitgebreide feedback op artikelen en al die 
extra hulp die je op wetenschappelijk en persoonlijk gebied hebt gegeven. Ik weet dat je 
nog veel grotere plannen hebt met het onderzoek en ik hoop dat dit een eerste mooie 
opzet is waar in de komende jaren nog verder op gebouwd kan worden! Het zal in ieder 
geval niet aan jouw passie en drijfkracht liggen, waar de patiënten en medeonderzoekers 
zich heel gelukkig mee kunnen prijzen. 

Graag wil ik de leden van de manuscriptcommissie bestaande uit prof. dr. D.J.O. Ulrich, 
prof. dr. P.J. van der Wees en prof. dr. P.P.G. van Benthem bedanken voor de tijd 
en toewijding die zij hebben genomen om dit proefschrift te beoordelen en voor de 
aanwezigheid tijdens de verdediging.

Beste Frank en Tom, mijn paranimfen. Jullie hebben beiden een grote rol gespeeld 
in de totstandkoming van dit proefschrift en ik ben heel dankbaar dat jullie nog steeds 
aan mijn zijde staan bij de afronding van deze periode. Frank, onze 3D Lab carrière is 
vrijwel tegelijkertijd begonnen, waardoor we onze (academische) vaardigheden samen 
konden ontwikkelen en waarbij we veel heldere momenten hebben meegemaakt! 
In deze periode is onze vriendschap ook flink gegroeid, waardoor het werk vaak een 
onderbreking was van de talloze activiteiten daarbuiten. Tijdens deze momenten heb 
ik je leren kennen als een echte allemansvriend die altijd klaarstaat om anderen te 
helpen, zelfs als dit ten koste van jezelf gaat. Hier heb ik meermaals dankbaar gebruik 
van gemaakt. Of het nu ging om het beklimmen van de academische trap of wanneer ik 
’s ochtends vroeg ergens was gestrand en een lift nodig had, ik kon altijd op je leunen. 
En nu sta je opnieuw voor mij klaar op dit belangrijke moment, waar ik je ontzettend 
dankbaar voor ben! Tom, ik sta er iedere keer weer versteld van hoeveel theoretische 
en praktische kennis jij hebt. Wanneer ik denk dat ik een beetje doorheb wat jij allemaal 
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kan, verbouw jij opeens je hele huis in de kortst mogelijke tijd. Met zoveel verschillende 
kwaliteiten heb ik geluk gehad dat we aan zoveel verschillende projecten hebben 
kunnen samenwerken. Wanneer nodig konden we onze kennis ook op nieuwe gebieden 
toepassen, zoals bij het ontcijferen van versleutelde bestanden, wat buitengewoon 
handig bleek te zijn. Naast de vele koppen koffie die wij uit de door jou gerepareerde 
koffiemachine hebben gehaald, heb je ook mijn interesse in domotica aangewakkerd en 
ben je een enorme inspiratiebron geweest om meer praktisch bezig te zijn, waarvoor ik 
je graag wil bedanken. Ik kijk nu al uit naar het volgende project dat we samen kunnen 
oppakken!

Beste Arico, waar we elkaar tijdens de studie regelmatig tegen het lijf liepen, raakte onze 
vriendschap echt in een stroomversnelling tijdens onze stage bij het 3D Lab. Binnen de 
kortste keren was ik praktisch één van je huisgenoten en moesten jullie me bijna elke 
avond de deur uitzetten. Dat was niet altijd even gemakkelijk aangezien je een echte 
levensgenieter bent, waardoor de frituurpan vaak nog aan het eind van de avond werd 
aangeslingerd onder het genot van een drankje. Dat genieten doe je volgens mij nog 
steeds, waardoor je tijdens mijn verdediging ook lekker op vakantie bent. Gelukkig hebben 
we wel vaker op een onlineverbinding moeten terugvallen, al moet je dan wel een gokje 
wagen dat de internetverbinding goed genoeg is. Toch zou ik je liever binnenkort een 
keer live willen ontmoeten om te proosten op de geweldige momenten die we samen 
hebben beleefd. Met een beetje geluk bespaar je de planten om je heen van dat laatste 
halfvolle glas!

Beste (oud)collega’s van het 3D Lab, beste Anouk, Ashley, Bas, Bo, Dylan, 
Gert, Guido, Han, Harold, Jene, Jessica, Joost, Lars, Leanne, Luc, Merel, 
Rinaldo, Robin, Ruud en Tycho, in de afgelopen jaren hebben jullie niet alleen een 
grote impact gehad op mijn proefschrift, maar ook op zoveel meer aspecten in mijn 
(dagelijks) leven. Jullie hebben door de combinatie van passie voor onderzoek, humor, 
een relaxte sfeer, uiteenlopende interesses en een databank van enorme kennis, laten 
zien dat we zoveel met elkaar konden bereiken. Door deze diverse achtergronden en 
interesses was er altijd wel iets te leren over een nieuw onderwerp. Dit zorgde er vaak 
genoeg voor dat we tijd tekortkwamen tijdens de normale werkuren, dus dan zat er niets 
anders op om het gesprek maar bij de Aesculaaf of St. Anneke voort te zetten. Om een 
beetje tegengewicht te geven konden we dan toch af en toe ook nog wat wielrennen 
of boulderen, om dan weer te eindigen met een BBQ aan het Waalstrand. Het moge 
duidelijk zijn dat jullie meer dan alleen collega’s zijn geweest in de afgelopen jaren en al 
deze ervaringen hebben nog steeds een grote (positieve) impact op mijn leven, waar ik 
jullie altijd dankbaar voor zal blijven!
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Beste Freek, als het goed is, voelde je je al aangesproken in het vorige stuk over het 
3D Lab, maar ik wilde je hier nog apart noemen gezien het werk dat wij samen hebben 
gedaan binnen het aangezichtsonderzoek. Je bent begonnen als M3 student bij het 3D 
Lab en het werd al snel duidelijk dat je een zeer gemotiveerde en zelfstandige werker 
bent die feedback extreem snel oppakt. Dit kwam goed uit, aangezien je in 2020 bent 
begonnen aan je stage waardoor we elkaar in de daaropvolgende jaren meer digitaal 
hebben gesproken dan ik graag zou hebben gewild. Ondanks deze tegenvaller ben ik 
heel erg blij dat jij een plek binnen het 3D Lab hebt kunnen vinden. Daarnaast is het 
super fijn dat ik mijn taken met vol vertrouwen heb kunnen overdragen aan jou, waar ik 
ervan overtuigd ben dat jij deze beter uitvoert dan ik ooit heb gedaan.

Beste Facialisteam, klinisch onderzoek staat of valt bij de patiëntinclusie en daarom 
wil ik het hele Facialisteam bedanken voor alle inzet en hulp bij dit onderzoek! In de 
afgelopen jaren hebben we een unieke database met 2D, 3D en 4D data voor de 
aangezichtsverlamming kunnen opbouwen. Ik wil jullie ook bedanken voor de open 
ontvangst tijdens de facialis bijeenkomsten, waardoor het makkelijk was om vragen te 
stellen en om feedback over het onderzoek te ontvangen. Daarnaast was het heel erg 
mooi om te zien hoe jullie vol inzetten op het creëren van een excellente zorg voor de 
patiënt. Hopelijk kan dit onderzoek in de toekomst een mooie aanvulling zijn om deze 
kwaliteit van zorg zo hoog te houden.

Beste collega’s van de KNO & MKA, staf, aios en medewerkers van de poli, heel 
erg bedankt voor de gezellige sfeer op de afdelingen waar de toon goed wordt gezet 
wanneer je in de wandelgangen met gezang wordt ontvangen! Het was ook heel leuk 
om elkaar beter te leren kennen tijdens de gezellige dagjes uit en de (kerst)feestjes die 
nooit uit de hand liepen. Daarnaast wil ik Stefaan nog extra bedanken, aangezien een 
groot deel van mijn tijd bij het 3D Lab onlosmakelijk was verbonden aan de MKA. Deze 
integratie heeft voor veel kruisbestuiving gezorgd, wat een grote rol heeft gespeeld in 
mijn opgedane ervaringen en kennis bij het 3D Lab.

Best collega’s van het UMC Utrecht MKA en 3D FaceLab, beste Celine, Florine, 
Harmien, Hilde, Jaron, Karlien, Maartje, Marit, Nard, Robbie, Wouter, Willem 
en Laura van de KNO, tijdens het opzetten van de samenwerking tussen het 3D Lab 
en het 3D FaceLab ging het initieel over het brengen van augmented reality naar de 
operatiekamer, maar dit bleek een virtuele realiteit te zijn, aangezien mijn specialisatie 
meer lag bij de ondersteuning op het technisch vlak. Toine, het was heel fijn om jou als 
leidraad te hebben omdat je directe en duidelijke doelstellingen stelde om het onderzoek 
in de juiste banen te leiden. Daarnaast was je heel erg open in je aanpak, waardoor je 
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altijd bereid was om in gesprek te gaan hoe bepaalde zaken het beste aangepakt konden 
worden. Hierin was Marvick ook enorm waardevol, waar jij als echte duizendpoot op 
zoveel verschillende aspecten input hebt geleverd voor het onderzoek. Vaak was één dag 
in de week te weinig om alles te bereiken wat we graag wilden en ik had volgens mij zo 
fulltime aan de slag kunnen gaan bij jullie. Ik zie het in ieder geval als een positief teken 
dat de samenwerking nog steeds succesvol wordt voortgezet en hopelijk is dit het begin 
van een veel langere samenwerking.

Lieve familie en vrienden, helaas zijn jullie met te grote getalen om allemaal 
apart te kunnen bedanken, maar wat ben ik tegelijkertijd blij dat jullie met zovelen 
zijn. Al die momenten die we samen hebben gedeeld tijdens het studeren, sporten, 
kamperen, geocachen, familiedagen, reizen en zoveel meer activiteiten die we 
daaromheen hebben uitgevoerd. Ik kon op jullie rekenen wanneer het nodig was, of 
dit nu voor of tijdens (en hopelijk na) het promotietraject was. Ondanks het feit dat 
ik met een groot aantal van jullie ben overgeschakeld naar digitale afspraken, hoop ik 
dat we in de komende jaren, waar dan ook ter wereld, nieuwe momenten samen kunnen 
beleven. 

Dear Sylvia, Graeme, Andy, and grandma, it is difficult to express my gratitude to 
you, as you all have played a major part in making a new country feel like home. Although 
at a quick glance during passport control, it’s often easy to find the Dutchy in the group, 
I really feel part of your family. I’m truly appreciative of the ongoing involvement and 
support in our life. Whether it’s helping with this thesis, housing us for an indefinite 
period when we first moved overseas, sharing meals, surfing and holidays together, or 
just helping with everyday things such as babysitting, gardening, and fixing up the house, 
you are always there to support and encourage us. This makes the challenging moments 
in life, away from my original home, so much easier to deal with, for which I’m extremely 
thankful.

Lieve Madelein, Wouter en Anne-Jan, met ons viertjes thuis was er altijd wel 
iets te doen, al was het maar omdat we elkaar in de haren zaten. Natuurlijk wist ik 
dat deze vechtlust werd omgezet in hulp wanneer dat nodig was, zo ook tijdens dit 
proefschrift. Jullie waren altijd beschikbaar wanneer ik afleiding kon gebruiken en 
gelukkig hadden jullie nog wat versterking met Nynke, Klaas, Lieke en Lynn om te 
helpen wanneer er heel veel afleiding nodig was. Daarnaast was het altijd genieten 
om samen bij te praten over alles wat we allemaal hadden beleefd. Dit is nu wel één 
van de grootste uitdagingen om veel van deze ontwikkelingen op afstand mee te 
maken. Ik ben blij dat we tegenwoordig de mogelijkheid hebben om deze momenten 
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digitaal met elkaar te delen, dus blijf die foto’s en video’s doorsturen, maar het zal 
nooit een vervanging zijn om elkaar in het echt te zien. Ondanks dat ik jullie nu veel 
minder vaak zie dan ik zou willen, is het wel heel erg fijn om te weten dat we al die 
jaren zoveel tijd hebben door kunnen brengen en een speciale band hebben kunnen 
opbouwen waar we nu op kunnen steunen! 

Lieve mam (in memoriam) en pap, wat heb ik een geluk gehad om jullie als ouders 
te hebben, met alle liefde en vrijheid die jullie mij hebben gegeven. Daarnaast hebben 
jullie mij altijd gesteund en aangemoedigd bij academische, sportieve en persoonlijke 
uitdagingen, waardoor ik mezelf voortdurend verder kon ontwikkelen. Hierdoor 
heb ik uiteindelijk stappen gezet die me aan de andere kant van de wereld hebben 
gebracht. Hoewel dit praktisch gezien allemaal niet zo handig is, werd het juist met veel 
enthousiasme ontvangen dankzij jullie onvoorwaardelijke steun. Hiermee hebben jullie 
beiden een grote rol gespeeld in het ontwikkelen van de vastberadenheid om tot het 
einde door te zetten om dit proefschrift af te ronden. Zonder jullie steun zou ik dit nooit 
hebben bereikt. Dat maakt het extra moeilijk dat mam er niet bij is om deze mijlpaal 
samen te vieren, maar het laat ook zien dat jullie altijd bij me zullen blijven, op welke 
manier dan ook.

Lieve Lizzie, we hebben samen al flink wat avonturen meegemaakt en wat ben ik blij 
dat ik jou naast me heb, zodat we het (letterlijk) vallen en opstaan samen kunnen doen. 
Logischerwijs heb jij ook een ontzettend grote rol gespeeld bij dit proefschrift. Met je 
eeuwige enthousiasme, waar ik me soms van afvraag waar je al die energie vandaan 
kan toveren, heb je me continu weten te motiveren. Daarnaast herinner je me er maar 
al te graag aan dat jij de wijzere bent van ons tweeën met je twee maanden extra 
levenservaring. Hierdoor was het heel waardevol om jou als sparringpartner te hebben 
om ideeën te bespreken. Ondertussen zijn we alweer met flink wat nieuwe avonturen 
gestart, waar we het ouderschap al een beetje konden oefenen met Vita, maar waar 
we aan het grootste avontuur (tot nu toe) zijn begonnen met Peter. Wat brengen jullie 
mij een plezier, liefde en geluk met z’n allen, waardoor iedere dag weer een nieuw feest 
(en soms een beetje een gekkenhuis) is. Hoewel het hoofdstuk van dit proefschrift nu is 
afgesloten, begint het hoofdstuk van ons leven nog maar net, en ik kan niet wachten om 
te ontdekken wat er ons nog meer te wachten staat!
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