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1.1  Perception of sound

“A sound is said to exist if a disturbance propagated through an elastic material 

causes an alteration in pressure or displacement of the particles of the material 

which can be detected by a person or by an instrument” (Beranek and Mellow, 

2012). When the sound in question is speech, the elastic material is often air 

(although the own voice is partly perceived via bone conduction). The vocal 

cords of the speaker cause air molecules to vibrate, leading to small, local pressure 

variations relative to the atmospheric pressure. Due to repeated collisions with 

neighboring molecules, these pressure variations propagate through the air. 

Molecule displacements that lead to perception of sound can be smaller than 

one nanometer, and local pressure variations can be as small as one billionth of 

the atmospheric pressure. 

The hearing organ is sensitive to these tiny pressure variations. The human 

eardrum vibrates in response to the colliding air molecules and efficiently  

relays the sound energy via the middle ear ossicles to the inner ear. Here, in the 

cochlea, which is basically a fluid filled cylinder with two compartments, 

the transduction of the mechanical vibration to an action potential takes place. 

The mechanical vibration sets the basilar membrane in motion, which is 

tonotopically organized due to the variation in its width and its stiffness along 

the length axis. This tonotopicity causes the amplitude of vibration on the 

basilar membrane to be largest at the location that corresponds to the frequency 

of the presented sound. In this way, the cochlea behaves like a frequency 

analyzer, where the sharpness of the basilar membrane peak determines the 

specificity of the analyzer. The active contribution of the outer hair cells leads 

to amplification of soft sounds, but also to improved spectral and temporal 

resolution of the inner ear. The inner hair cells are activated by the motion of 

the basilar membrane and eventually they cause activation of the synapses of 

the auditory nerve fibers. The resulting electrical activity is now relayed via the 

cochlear nucleus and superior olivary nucleus to the auditory cortex. The ipsi- 

and contralateral pathways of the auditory system are combined at the level of 

the brainstem and at higher levels. 

1.2  Speech perception

In clinical practice, detection of sound is usually tested using pure tones. A pure 

tone consists of one frequency and therefore excites a small region on the 

basilar membrane, depending on the sound level of the tone. Due to their 

simplicity, pure tones are ideal for determining the hearing threshold for 



12 13

CHAPTER 1 GENERAL INTRODUCTION

C
H

A
P

T
E

R
 1

concept best as it is used in the current text. What is a pleasant conversation or 

agreeable music to one person, is troublesome noise to another, for instance if 

it hinders the intelligibility of speech. 

Stationary noise is probably the most used type of distortion in clinics and 

research. Often, noise is used with a gaussian distribution and a frequency 

spectrum that matches the spectral content of the speech material. Stationary 

noise can mask speech, making certain speech sounds inaudible. This type  

of masking is traditionally referred to as energetic masking (EM). Speech is a 

robust, highly redundant signal. Due to this redundancy, speech can be 

distorted quite a lot before intelligibility deteriorates for a normally hearing 

person. For monaurally presented Dutch sentences, the sound level of stationary 

speech-shaped noise (SSN) can be about 5 dB higher than the speech, while a 

healthy listener is still able to repeat 50% of the sentences correctly (e.g., Versfeld 

et al., 2000; Rhebergen et al., 2006). Although this signal-to-noise ratio or SNR 

of approximately –5 dB is valuable in a clinical setting, in normal circumstances 

with noise present, people usually function in SNRs between 0 and 15 dB 

(Olsen, 1998; Wu et al., 2018). At these SNRs the intelligibility of the above 

sentence material is higher than 95% (Versfeld et al., 2000). Besides this, most 

real-life background noises are not stationary, but are temporally modulated 

(Koopman et al., 2001).

1.2.1.2  Non-stationary noise

When the envelope of the noise is temporally modulated, listeners make use of 

the gaps in the noise and intelligibility increases when compared to SSN with 

the same sound level (e.g., Festen and Plomp, 1990). This fluctuating masker 

benefit or FMB is sometimes compared to the ‘picket fence’ theory (Miller and 

Licklider, 1950); a visual analogy when looking to a landscape through a picket 

fence. The brain restores the visual fragments and forms a complete image, 

instead of a fragmented version of the landscape. By using similar forms of 

top-down restoration, the speech fragments are tied together in order to 

increase intelligibility. 

However, when a masker is modulated, the modulations can also interfere with 

the speech modulations and hamper intelligibility as a result. This form of 

masking is often referred to as modulation masking (MM). Especially when the 

modulation spectra of the speech and noise overlap, the fluctuating masker 

benefit is counteracted (Fogerty et al., 2016). Houtgast (1989) concluded that the 

modulation-detection threshold is highest when the test modulation frequency 

overlaps with the masker modulation band. Dau et al. (1997a; 1997b) also conducted 

experiments regarding amplitude modulation detection and could quantitively 

explain the results using a model based on a modulation filterbank.

specific frequencies. However, detecting soft, pure tones does not fully represent 

hearing and listening in daily life. As opposed to pure tones, the speech signal 

is a highly complex and dynamic broadband sound, strongly modulated in 

time and frequency. Speech intelligibility is not a matter of mere detection, 

but the result of a complex analysis of the spectral and temporal properties of 

the speech signal. 

Two important characteristics of a speech signal are the temporal envelope  

and the temporal fine structure. The contribution of the temporal envelope to 

speech perception has been studied extensively (Houtgast and Steeneken, 

1985; Stone et al., 2010; Fogerty, 2011) and several intelligibility models were 

based on the modulations of the speech envelope (e.g., Houtgast and Steeneken, 

1978; Jørgensen and Dau, 2011; Taal et al., 2011). Drullman (1995) investigated 

the influence of the envelope and the fine structure on the intelligibility of 

speech. He found that speech with random fine structure and an intact 

envelope was perfectly intelligible, whereas intelligibility dropped to 17% when 

the fine structure was intact with a random temporal envelope. 

Decoding of the speech signal is a bottom-up process in the auditory system, 

but top-down processing is also of vital importance. Higher order factors like 

linguistic skills, contextual information, a priori knowledge, auditory attention 

and expectations of the listener contribute to speech perception (e.g., Bronkhorst  

et al., 1993). Most people take the intelligibility of speech for granted when no 

problems occur. When difficulties arise — due to difficult circumstances and/or 

hearing problems — it becomes clear what a difficult and energy consuming 

task speech intelligibility can be. This is the result of the extra resources that are 

needed for the top-down processes, to be able to compensate for the degraded 

input signal of the auditory system. 

1.2.1  Distorted speech
There are various ways to distort sounds. Several nonlinear methods are — but 

not limited to — deterministic envelope reduction (Noordhoek and Drullman, 

1997), envelope compression (Drullman, 1995; Hohmann and Kollmeier, 1995; 

Rhebergen et al., 2009), peak & center clipping (Steeneken and Houtgast, 2002), 

and spectral subtraction (Ludvigsen et al., 1993; Dubbelboer and Houtgast, 

2007). However, the current thesis only deals with room acoustics and therefore 

distortion types will be limited to noise and reverberation.

1.2.1.1  Stationary noise

Different definitions for noise may be found in the dictionary. Of these 

definitions “any sound that is undesired or interferes with one’s hearing of 

something” (Merriam-Webster.com, January 24, 2023) probably defines the 
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between direct and reverberant sound is mostly influenced by the room 

acoustics (e.g., room size and reflecting versus absorbing surfaces) and by the 

distance between the speaker and the listener.

Like other room acoustics parameters, the characteristics of the reverberation 

can be derived from the impulse response (Hak et al., 2012). It is classically 

measured by recording the reverberant sound energy after an impulse sound. 

This probe signal can be a gun shot or a popping balloon. However, a more 

robust and controlled measurement method uses a sweep as a probe signal, 

which is a sine wave with increasing frequency as a function of time (ISO3382-2, 

2008). By deconvolving the recorded signal using the original sweep signal, 

the impulse response is obtained. The impulse response provides information 

about the degree of reverberation and can also be used to estimate the 

Modulation Transfer Function (MTF) as a result of reverberation (Schroeder, 

1978; 1981). Inversely, it can also be used to convolve an existing speech signal 

in order to simulate certain acoustical conditions (e.g., George et al., 2008).

Reverberation generally leads to poorer speech intelligibility. The depth of the 

temporal modulations in speech decreases, since the gaps are filled with 

reverberant sound energy. Since modulations in the speech signal carry 

information, this modulation reduction reduces the quality of the speech signal 

(Houtgast and Steeneken, 1973). Nabelek et al. (1989) also discuss overlap-masking, 

where a consonant can mask a subsequent segment of the speech, and self- 

masking, resulting in temporal smearing of the sound energy within each 

consonant. This type of distortion is primarily caused by the effect of 

reverberation on the fine structure of the speech. 

1.2.2  Spatial separation
When the sources of noise and speech are spatially separated, intelligibility 

generally increases. This is referred to as spatial release of masking (Plomp, 

1976; Bronkhorst, 2015). Depending on the location of the speech and noise 

sources relative to the listener, this might be caused by the head shadow effect, 

leading to a more favorable SNR at the ear opposite of the noise source. Besides 

the head shadow effect, another mechanism that leads to increased intelligibil-

ity is binaural squelch, caused by the phase difference between the ears of the 

presented signals (Dieudonne and Francart, 2019). For normally hearing  

subjects and speech masked by SSN, the head shadow effect is roughly 5 – 8 dB  

and binaural squelch 2 – 5 dB (Bronkhorst and Plomp, 1989; Dieudonne and 

Francart, 2019). Since the current work primarily focuses on the monaural 

presentation of speech and noise, no in-depth description of the effects of 

spatial separation is provided here. 

Whether or not noise is purely stationary can be quite arbitrary. In fact, Stone et 

al. (2012) refers to SSN as notionally steady background noise, since random 

fluctuations exist and might be an important contributor to the masking of 

speech (Dubbelboer and Houtgast, 2008; Jørgensen and Dau, 2011). Drullman 

(1995) concluded that these random fluctuations in SSN cause spurious 

modulations that interfere with the perception of relevant speech modulations. 

Stone et al. (2011) concluded, based on experiments with vocoded speech 

and noise, that the random fluctuations in SSN have a large effect on speech 

intelligibility. Besides this, the introduction of 8 Hz modulations in certain 

(vocoded) test conditions resulted in lower intelligibility. This opposes the more 

traditional view of the fluctuating masker benefit. The authors argue that the 

masking effect of notionally steady state noise may primarily be the result of 

MM and not so much of EM.

1.2.1.3  Competing speaker

In the examples above, background noise was assumed without any fine 

structure. When the distorting noise is a competing speaker, the listener still 

benefits from the gaps in the noise. However, the informational content of the 

background noise distracts the listener and causes a decrease in intelligibility 

(Rhebergen et al., 2005; Durlach, 2006). Although a formal definition is missing, 

this form of masking is generally referred to as informational masking or IM. 

Note that a non-intelligible, but speech-like signal like the International Speech Test 

Signal or ISTS (Holube et al., 2010) does not contain any semantic information, 

but still causes some degree of informational masking, estimated at 4.6 dB 

when listening to a female Dutch speaker (Francart et al., 2011).

Auditory attention plays an important role in speech intelligibility, especially in 

complex listening environments and when competing speakers are present. 

Object formation, object selection and stream segregation are crucial in under -

standing speech in the presence of a competing speaker. Shinn-Cunningham 

(2008) defines an object as “a perceptual estimate of the content of a discrete 

physical source”, and streaming as “grouping of short-term auditory objects 

across longer time scales”.

1.2.1.4  Reverberation

Besides noise, another type of distortion that hinders intelligibility is reverberation. 

Soundwaves reflect upon a surface and reach the ear of listener ear slightly later 

than the direct sound waves. Depending on the ratio between the direct and the 

reverberant sound, the quality of the speech signal decreases. Note that early 

reflections (within 50–100 ms after the direct sound) might aid intelligibility 

(e.g., Lochner and Burger, 1964; Boothroyd, 2004; Warzybok et al., 2013). The ratio 
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recognition of words in sentences with low predictability than for words in 

sentences with high predictability (Sherbecoe and Studebaker, 1990; Bell et al., 

1992). This is an effect of context and as consequence, a different transfer 

function is needed for each type of speech corpus. 

An important application of the SII is the evaluation of communication 

channels. However, when it concerns room acoustics, noise is not the only 

factor that is detrimental to speech intelligibility. Reverberation also needs to 

be accounted for. In the seventies and eighties, the Speech Transmission Index 

(STI) was developed (Houtgast and Steeneken, 1973; Houtgast et al., 1980; 

Houtgast and Steeneken, 1985; IEC60268-16, 2011). Where the SII was based  

on audibility of speech, the STI was based on the modulations that are present 

in the speech. Both noise and reverberation lead to a reduction in modulation 

depth and a decrease in intelligibility. This modulation reduction can be 

converted to an index between 0 and 1 using several calculation steps. The STI 

is often used as a measurement method in room acoustics, like in the design of 

auditoria. In this situation, no prior knowledge about the noise or acoustics is 

needed. Alternatively, like the SII, it can also be used as a model for the estimation  

of the intelligibility of a certain speech corpus. 

Over the years, various other models have been developed that aim to predict 

speech intelligibility. Examples that are derived from the SII are the Extended 

SII (Rhebergen et al., 2005; 2006) to better deal with non-stationary noises and 

the Binaural Speech Intelligibility Model or BSIM (Beutelmann et al., 2010) for 

binaural hearing and spatial separation of sound sources. Models that use the 

speech envelope to predict intelligibility are for example the Envelope Power 

Spectrum Model or EPSM (Jørgensen and Dau, 2011), the Short Time Objective 

Intelligibility Measure or STOI (Taal et al., 2011) and different versions of the STI 

using speech as a probe signal (e.g., Payton and Braida, 1999; 2002). Lastly, 

various models that were derived from automated speech recognition systems 

were developed over the recent years. See Karbasi and Kolossa (2022) for a 

review. 

1.3.2  Speech Transmission Index (STI)

1.3.2.1  Overview

The current thesis primarily focusses on the Speech Transmission Index. 

A detailed description is provided in chapter 3, and in IEC60268-16 (2011) and 

(IEC60268-16, 2020)i. In short, the STI aims to calculate the modulation transfer 

function (MTF) as a result of noise and reverberation. Classically, this is done by 

i In the current work, IEC60268-16 (2011) was primarily referenced. However, since 2020 a revised 

edition of the standard is available (IEC60268-16, 2020). This will be discussed briefly in chapter 7.

1.2.3  Context
A topic that is important in speech intelligibility and that is widely used in the 

current work is context. Miller et al. (1951) found that the intelligibility of 

monosyllabic words increased as the size of the test vocabulary decreased. 

They also saw an increase in intelligibility when a word was presented in a 

sentence rather than in isolation. Both the a priori knowledge the listener has 

about the test vocabulary (the correct answer can only be one of 𝑁 alternatives), 

and the syntax and semantics of the sentence are examples of context. 

Especially in challenging listening environments, listeners often cannot 

identify all of the speech elements using sensory information alone. In this 

case context is used to infer what elements were missed. This process is easier 

when the topic of the conversation is known and when the listener is fluent in 

the language being spoken. In both cases the listener is better able to use 

context to aid intelligibility. Several methods are available that aim to model the 

effects of context. Most notable are the models by Boothroyd and Nittrouer 

(1988) and by Bronkhorst et al. (1993), which will be discussed more thoroughly 

in chapter 4. 

1.3  Modelling speech intelligibility

1.3.1  Overview
The first method that was used to estimate intelligibility was the Articulation 

Index or AI (French and Steinberg, 1947; Fletcher and Galt, 1950; Kryter, 1962; 

ANSI-S3.5, 1969). The AI was developed at Bell Labs in the early days of telephone 

communication as result of the ambition to improve intelligibility due to the 

poor signal quality of telephone systems. Analyses of communication channels 

using the AI were a lot cheaper than performing speech intelligibility tests. The 

AI uses the premise that the articulation error in nonsense speech is the product 

of the articulation error in lowpass and high-pass filtered speech (𝑒𝐿 and 𝑒𝐿 

respectively). This relation generalizes for 𝐾 frequency bands (often 21 critical 

bands). An important extension was provided by French and Steinberg (1947) 

when they related the articulation error to the SNR per frequency band.

The AI was used to improve telephone communication channels and British 

pilot-crew communications during the second world war. The AI eventually 

evolved into the Speech Intelligibility Index or SII (Pavlovic, 1987; ANSI-S3.5, 

1997) and can be viewed as the proportion of the total speech information that 

is audible for the listener. It is a value between zero and one, which can be 

converted to the intelligibility of a specific speech corpus via a transfer function. 

For example, under the same conditions, a higher SII (or AI) is needed for the 
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1.4  Outline of this thesis

The goal of the current thesis was to increase applicability of the STI in non- 

stationary background noise. To achieve this goal, both the measurement 

method and the fluctuating masker benefit were investigated. A secondary 

objective was to deviate as little as possible from the original calculation 

scheme. In doing so, the complexity of the model would not increase more 

than necessary, and the applicability would remain similar.

The first major drawback of the traditional STI is that the classical, direct 

measurement method is not suitable for non-stationary background noise. 

The indirect measurement method is more robust, but it is unclear under which 

circumstances performance is optimal. Chapter 2 focused on the background 

conditions that were necessary to reliably apply the indirect measurement 

method. The second major drawback of the traditional STI is that the fluctuating 

masker benefit is not accounted for. To deal with this shortcoming, an extension of 

the STI was proposed in chapter 3. This extension was based on the calculation 

and averaging of STI-values for short time windows. The new model was 

named the Extended STI or ESTI and was evaluated using new and existing 

sentence intelligibility data in various non-stationary background noises. The 

ESTI outperformed the classic STI in various noise and reverberation conditions, 

but intelligibility predictions of speech in noises with low modulation frequencies 

(< 8 Hz) were still inaccurate. The authors hypothesized that this effect might 

be related to the context of the speech material, since the probability that 

meaningful parts in the speech are fully masked by the noise bursts increases 

under these conditions. To account for this aspect, context was added to the 

ESTI-model in chapter 4 and evaluated using existing intelligibility data of 

meaningful monosyllabic words. In chapter 5 new intelligibility data was 

measured in normally hearing subjects using meaningful and nonsense 

monosyllabic words. This data was then used for the additional evaluation of 

the context-based ESTI or cESTI. Finally, chapter 6 focused on the evaluation of 

the cESTI-model using the sentence material of chapter 3.

presenting 98 separate modulated test signals by using all combinations of 

seven octave frequency bands and 14 modulation frequencies. With an average 

of 10 seconds per test signal, the full traditional STI measurement requires 

about 15 minutes. The properties of the transmission channel (e.g., a room with 

background noise and reverberation) cause changes in the signal modulations. 

After recording the signal and calculating the modulation reduction for each 

combination of octave band and modulation frequency band, the MTF can be 

calculated. The MTF is eventually converted to the STI. 

1.3.2.2  Strengths and limitations

The main advantage of the STI is its easy applicability and elaborate validation 

(Houtgast and Steeneken, 1978; Steeneken and Houtgast, 1980; Houtgast and 

Steeneken, 1985; Steeneken and Houtgast, 1999; 2002). Using a calibrated system 

with a loudspeaker and a microphone, a reasonably accurate result can be obtained 

in a relatively short time period. When using derivations such as STIPA or 

RASTI (now obsolete), the measurements even take up less time (IEC60268-16, 

2011). Over the years the STI has been widely used, validated and updated, 

which makes it a reliable method in room acoustics. 

One disadvantage is the sensitivity of the classic, direct measurement method 

to fluctuations in the background noise. The STI assumes that modulation 

reduction only occurs as a result of reverberation and stationary noise. When 

noise is non-stationary, reliability drops (IEC60268-16, 2011). When using the 

full STI and the direct measurement method it takes 15 minutes to do one 

measurement. Although this is relatively short, the probability is high that some 

noise peaks occur during the measurement (e.g., a slamming door or an 

interfering speaker). 

An alternative option is the indirect measurement method, where the MTFs as 

a result of noise (MTFSNR) and as a result of reverberation (MTFrev) are measured 

separately. The MTFSNR can easily be calculated by recording the background 

noise for any desired period of time. When the speech level is known, the SNR 

can be used to calculate the MTFSNR. The MTFrev can be calculated using the 

impulse response (Schroeder, 1978; Houtgast and Steeneken, 1985). This indirect 

measurement method is less sensitive to fluctuations in the noise. However, it 

is not clear under what circumstances this method can be used reliably.

A second disadvantage of the STI also concerns fluctuations in the noise. 

As mentioned earlier, when noise is non-stationary, the fluctuating masker 

benefit causes intelligibility to increase. If the STI measurement can be done 

reliably in non-stationary noise, the next question is how the resulting STI-value  

is related to intelligibility. There is a high probability that the STI-value will be 

too low, since the model assumes stationarity of the noise. 
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2.2  Introduction

2.2.1  Background of the original STI
The concept of the modulation transfer function (MTF) in the field of room 

acoustics was introduced by Houtgast and Steeneken (1973). Since this first 

publication, the MTF concept has been used to evaluate the speech transmission 

from a talker to a listener in a room (Houtgast et al., 1980; Steeneken and Houtgast, 

1980; Houtgast and Steeneken, 1985). The MTF can be used to describe and predict 

speech intelligibility in stationary noise and reverberation. The acoustical analysis 

of the MTF is described in detail in Houtgast and Steeneken (1985), Houtgast 

and Steeneken (2002), Houtgast et al. (1980), and IEC60268-16 (2011). In short, 

the original and transmitted signals are filtered in seven octave bands (125 – 

8000 Hz). The intensity envelopes of the filtered signals are then used to 

determine the modulation spectrum as a function of 14 modulation frequencies 

(0.63 – 12.5 Hz, in 1/3 octave bands). The modulation reduction is defined as the 

ratio between the modulation depth of the input signal and the modulation 

depth of the output signal. The modulation reduction can be a result of 

reverberation and/or background noise. A full MTF analysis is based on a 7 × 14 

matrix of modulation reduction values. Each value is converted to an apparent 

signal-to-noise ratio (SNR), after which all values for a given octave band are 

averaged, clipped (between −15 and 15 dB), and normalized to calculate a 

modulation transfer index (MTI) for that octave band. A weighted sum of the 

MTI-values across all octave bands finally results in the Speech Transmission 

Index (STI): a number between 0 and 1 to indicate the quality of the transmission  

of the signal. 

Houtgast and Steeneken hypothesized that the MTF is related to the Articulation 

Index or AI (ANSI-S3.5, 1969); today called the Speech intelligibility Index or SII 

(ANSI-S3.5, 1997). Both indices (AI and SII) reflect the significance of the SNR 

with respect to speech intelligibility, whereas the STI approach integrates the 

effects of both noise and reverberation. 

The final steps of the STI calculation are equal to the SII scheme. In fact, 

the ANSI-S3.5 (1997) recommends the use of the MTF in the SII scheme for 

predicting the speech intelligibility in reverberating conditions (Sec. 5.2). Both 

methods predict the same “effective audibility” (and therefore the same level  

of speech intelligibility) in the same listening conditions (Steeneken, 2002). 

However, the SII is a theoretical model that can only be used if the input speech 

and noise levels (i.e., SNRs) are known, whereas the STI measuring device can 

be used to directly measure the MTF with a test a) signal or original speech 

signal (Payton and Braida, 1999). 

2.1  Abstract

In the field of room acoustics, the modulation transfer function (MTF) can be 

used to predict speech intelligibility in stationary noise and reverberation and 

can be expressed in one single value: the Speech Transmission Index (STI).  

One drawback of the classical STI measurement method is that it is not validated  

for fluctuating background noise. As opposed to the classical measurement 

method, the MTF due to reverberation can also be calculated using an impulse 

response measurement. This indirect method presents an opportunity for STI 

measurements in fluctuating noise, and a first prerequisite is a reliable impulse 

response measurement. The conditions under which the impulse response 

can be measured with sufficient precision were investigated in the current study. 

Impulse response measurements were conducted using a sweep stimulus. 

Two experiments are discussed with variable absorption, different levels of 

stationary and fluctuating background noise, and different sweep levels. 

Additionally, simulations with different types of fluctuating noise were conducted 

in an attempt to extrapolate the experimental findings to other acoustical 

conditions. The experiments and simulations showed that a minimum 

 impulse-to-noise ratio of +25 dB in fluctuating noise was needed.



24 25

CHAPTER 2 MEASURING THE STI IN FLUCTUATING NOISE

C
H

A
P

T
E

R
 2

based on the modulation reduction due to reverberation and stationary noise, 

but is also determined by the modulations of the background noise, if it is not 

stationary. In some cases, this might lead to an increase in modulation depth. 

Direct STI measurements in fluctuating noise can therefore introduce inaccuracies 

(IEC60268-16, 2011). The risk of fluctuations in the background noise is increased 

due to the long measurement time of the traditional STI (up to 15 min). In order to 

reduce these effects, alternatives like the RASTI (Houtgast and Steeneken, 1985) 

were developed that allow doing a screening in 10 – 15 s. Still, to avoid fluctuating 

background noise, the STI is often measured in quiet (after work/school time) 

and afterward the effect of stationary background noise is introduced using a 

theoretical approach. This method does not account for the effects of the people 

in the room on the acoustics and does not take into account real life ambient noise. 

Rhebergen and Versfeld (2005) and Rhebergen et al. (2006) extended the Speech 

Intelligibility Index model (ESII) by calculating the instantaneous SII in time 

frames. These instantaneous SII-values were then averaged over a certain 

period of time in order to obtain a single ESII-value. This concept works fine in 

different types of non-stationary background noise in normal hearing listeners 

(Rhebergen et al., 2006; 2008) and hearing-impaired listeners (George et al., 

2006; Desloge et al., 2010; Rhebergen et al., 2010; Rhebergen et al., 2014). George 

et al. (2010) and George et al. (2012) successfully used the theoretical ESII 

concept to predict the SNR at 50% intelligibility (cSNR) in fluctuating noise and 

reverberation. 

The indirect measurement method offers an opportunity to calculate the STI 

per time frame, analogous to the ESII. When using this concept, the 𝑆𝑁𝑅 and 𝑚(𝐹) 

in Eq. (2-1) become time-dependent, and for each time frame an instantaneous 

value for the STI can be calculated. These values can then be averaged in order 

to calculate the ESTI (extended Speech Transmission Index). With this approach 

one can possibly account for fluctuations in background noise. 

One prerequisite of using the ESTI method described here is that the impulse 

response can be measured in fluctuating noise with such precision that the STI 

can be accurately determined. Hak et al. (2012) concluded that an impulse-to-

noise ratio (INR) of at least +15 dB is required to reliably measure the STI in 

stationary noise. The INR (Hak et al., 2008) is defined as the ratio between the 

peak of the impulse response and the sound pressure level of the background 

noise. It is unclear whether the criterion of +15 dB holds for fluctuating 

background noise. We therefore investigated the noise conditions under which 

the STI can be accurately determined.

The STI was originally validated for normal hearing listeners, but through the 

years other subjects were studied as well. Duquesnoy and Plomp (1980) found 

that subjects with different degrees of presbycusis need a higher STI to achieve 

50% intelligibility and that the STI remains stable for increasing reverberation 

times. Plomp and Duquesnoy (1980) further investigated the effect of reverberant 

conditions on hearing-impaired elderly subjects. They state that, for equal 

performance, the reverberation time must be decreased by a factor 0.75 – 0.82 

per dB deterioration in intelligibility in noise, depending on the proximity of 

the speaker. Van Wijngaarden et al. (2004) concluded that normally hearing 

listeners need a 1 – 7 dB higher SNR for 50% speech intelligibility in a non-native 

language, depending on the proficiency in that language. 

2.2.2  Indirect measurement of the STI 
The MTF can also be calculated indirectly, as opposed to the direct method 

described above. Schroeder (1978; 1981) described the MTF as a result of 

reverberation as the Fourier transform of the squared impulse response, 

normalized by the energy of the squared impulse response [first term between 

square brackets in Eq. (2-1)]. The MTF as a result of reverberation can thus be 

characterized completely by the impulse response. In the case of stationary 

noise and no reverberation, the modulation reduction is described by the SNR 

only [second term between square brackets of Eq. (2-1)]. Combining the 

contributions of noise and reverberation therefore leads to the following 

expression: 

(2-1)

with 𝑚 as the MTF as a function of the octave band center frequency (𝐹) and ℎ 

as the impulse response as a function of time [𝑡, see also (Houtgast et al., 1980; 

Houtgast and Steeneken, 1985)]. 

A consequence of this approach is that the indirect method requires two 

different measurements. The first being the impulse response measurement and 

the second being the measurement of the background noise at the location of 

the listener’s ear. An impulse response measurement takes a few seconds and 

the additional noise measurement can take as long as the experimenter desires. 

2.2.3  Using the indirect method in fluctuating noise 
The original STI concept assumes that the noise is stationary during the 

measurement. Fluctuations of background noise introduce additional modulations 

during the STI measurement. As a result, the determined MTF is not solely 
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as the ISTS. The ISTS is a 60 s long, non-intelligible speech signal created by 

segmenting and mixing running speech in six different languages. It is shaped 

according to the Long Term Average Speech Spectrum (Byrne et al., 1994). 

2.3.1  Experiment 1 
Experiment 1 was conducted a room of 6.6m long, 6.2m wide, and 4.8m high. 

The acoustical conditions of the room are summarized in Table 2-1. The absorption 

properties were altered using absorbing panels and curtains, resulting in conditions 

A1, A2, and A3 with reverberation times (early decay time, EDT) of 1.6 s, 1.1 s, 

and 0.6 s (averaged over 500, 1000, and 2000 Hz), respectively. See Bronkhorst 

and Plomp (1990) for a schematic diagram of the test room. Both loudspeakers 

were directed at two non-opposing corners of the room and were positioned 

∼1.5 m from each wall and from the floor, The recording microphone was 

located in the center of the room and therefore ∼2.4 m from the rear of each 

loudspeaker. An exponential sweep was played in quiet, in stationary noise, 

and in fluctuating noise. The noise level in the center of the room was 52, 67,  

or 82 dB (A) for each absorption condition, respectively. The measurement was 

repeated three times for each condition. Besides this, a 30 s long recording was 

made of the stationary and fluctuating noises at 67 dB (A) for each reverberation 

condition. The sweep gain was fixed to yield a level of 85 dB (A) in the most 

reverberant condition. The sweep level decreased with decreasing reverberation 

time. In this paper, we use the EDT instead of the 𝑇30 as outcome measure for 

the reverberations since the EDT has a higher correlation with the MTF than 

the 𝑇30 (Houtgast, 1978).

2.3.2  Experiment 2 
Experiment 2 was conducted using nine different sweep levels between 47 and 

77 dB (A). The room was 5.8 m long, 5.2 m wide, and 2.7 m high and had a fixed 

reverberation time (EDT = 0.3 s, averaged over the octave bands with frequency of 

2.3  Materials and methods
Two experiments were done in order to investigate under which conditions  

the impulse response can be reliably measured in order to calculate the STI. 

Experiment 1 was conducted in a room with variable absorption and different 

levels of background noise. Experiment 2 was conducted in a room with fixed 

absorption and background noise level, but with different stimulus levels. The two 

experiments are described separately. Besides the two experiments, simulations 

were done to extrapolate the experimental findings to other conditions. 

Impulse response measurements were conducted by playing and recording  

an exponential sweep in different acoustical conditions using Dirac software 

(version 5, Brüel & Kjær type 7841, Nærum, Denmark), according to ISO3382-1 

(2009) and IEC60268-16 (2011). The recorded sweep was then deconvolved with  

the original sweep in order to obtain the impulse response. All measurements  

were done in quiet and in stationary and fluctuating noise. The frequency of 

the sweep is defined by

(2-2)

with 𝛽 = 9.5 and 𝑓0 = 0.1 Hzii

We conducted all sound level measurements using a Brüel & Kjær Sound Level 

Meter (type 2250, Brüel & Kjær, Nærum, Denmark) at 1.2m from the floor in the 

center of the room. The sweep was played via a laptop through a JBL Control 2P 

active, 2-way loudspeaker (JBL, Northridge, US). The noise was played via a 

separate laptop through a Samson Servo 120a amplifier (Samson Technologies, 

Hicksville, US) and a Tannoy Reveal passive loudspeaker (Tannoy Ltd., 

Coatbridge, Scotland). Both loudspeakers have a flat frequency response (+/–  

3 dB) between ≤ 100 Hz and 12 kHz, which is sufficient since the STI is calculated 

using the octave bands between 125 Hz and 8000 Hz (IEC60268-16, 2011). 

Recordings were done in the center of the room using the same sound level 

meter via a Brüel & Kjær USB audio interface (ZE 0948, Brüel & Kjær, Nærum, 

Denmark) on a laptop using Dirac software (version 5, Brüel & Kjær type 7841, 

Nærum, Denmark) and CoolEdit (version 2000, Adobe Systems, San Jose, US) 

software. MATLAB (version 2010a, MathWorks Inc., Natick, US) was used for  

the simulations and Dirac software for the analyses of these simulations. In order  

to perform the experiments using a realistic approximation of a single talker, 

the International Speech Test Signal or ISTS (Holube et al., 2010) was used as 

fluctuating noise. The stationary noise used had the same spectral characteristics 

ii This low frequency was the default setting in the Dirac software and was therefore also used 

in the simulations. This means that, although the sweep length was 5.46 s, the relevant STI 

frequencies were played between 3.0 s and 5.3 s. Consequently, the “effective sweep length” was 

approximately 2.3 s.

Table 2-1: Different acoustical conditions of the room. In all conditions measurements 

were done in quiet. The EDT and T30 noted are the average values, measured in the 

octave bands with center frequency of 500, 1000 and 2000 Hz. The corresponding 

STI-values are given in the rightmost column. The standard deviations are indicated 

between brackets.

Condition Sweep level EDT (s) +/– s.d. 𝑇30 (s) +/– s.d. STI +/– s.d.

A1 85 dB (A) 1.6 (0.04) 1.6 (0.14) 0.54 (0.001)

A2 84 dB (A) 1.1 (0.06) 1.1 (0.03) 0.61 (0.002)

A3 81 dB (A) 0.6 (0.06) 0.5 (0.07) 0.75 (0.001)
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Besides the synthetic impulse responses, three realistic impulse responses 

were used from experiment 1, with EDT-values of 0.6, 1.1, and 1.6 s. A sampling 

rate of 44.1 kHz was used in all simulations. 

2.4  Results

The goal of the experiments and simulations was to determine under which 

conditions the impulse response can be estimated with sufficient accuracy in 

order to determine the STI. Fig. 2-1 shows the EDT as a function of octave center 

frequency for acoustical conditions A1, A2, and A3 from experiment 1. The top 

left panel in Fig. 2-1 shows a clear difference in EDT measured in quiet between 

the three acoustical conditions in the frequency range between 250 and  

4000 Hz. The calculated STI-values in quiet for conditions A1, A2, and A3 are 

0.54, 0.61, and 0.75, respectively. 

500, 1000, and 2000 Hz). Both loudspeakers were directed at two non-opposing 

corners of the room and were positioned ∼1.5 m from each wall and from the 

floor. The recording microphone was located in the center of the room and 

therefore ∼1.8 m from the rear of each loudspeaker. The sweep was played in 

quiet, in stationary noise, and in fluctuating noise (same noise conditions as 

experiment 1). The sound level of the noise at 1 meter from the source was 65 dB 

(A). The measurement was repeated three or six times depending on the sweep 

level [six times for the levels between 52 and 62 dB (A)]. Besides this, a 30 s long 

recording was made of the stationary and fluctuating noise at 65 dB (A).

2.3.3  Simulations 
To extrapolate the findings in experiments 1 and 2, simulations were done in 

MATLAB. This was done by summing a sweep and a noise signal and then 

bandpass filtering the resulting signal using an eighth-order IIR filter to mimic 

the loudspeaker response (with 80 Hz and 20 kHz as the −3 dB points). The 

filtered signal was then convolved with an impulse response in order to simulate 

the acoustics of the room. The filter and impulse response used here were  

the same for the sweep and the noise. This does not entirely account for the 

different positions of the two loudspeakers in the experiments. However, since 

the microphone was positioned in the center of the room, the positions of the 

loudspeaker with respect to the microphone were nearly identical. The next 

step was a deconvolution of the resulting signal with the original sweep signal 

using circular deconvolution in order to estimate the original impulse response. 

This estimated impulse response was then used to calculate the STI and the 

INR, equivalently to the experiments. 

The room acoustics and the types of noise were varied (see Table 2-2). In general, 

four categories of noise were used: stationary, ISTS, interrupted noise, and tonal 

noise. The interrupted noise was speech-shaped noise, either modulated by  

a square wave of 2, 4, or 8 Hz, or by a time-scaled maximum-length sequence 

(MLS) with a value of either zero or unity. The tonal noise was a pure tone carrier 

wave of 500 Hz, 1 kHz, 2 kHz, or 4 kHz, modulated by a sine wave of 2, 4, or  

8 Hz. To approximate a realistic measurement, the starting point of the sweep 

relative to the noise was randomly varied. To obtain information about different 

starting points of the sweep, 22 retests per condition were done. The SNR was 

increased in 5 dB steps from −40 up to +25 dB and −50 and −60 dB were added 

to account for extremely poor conditions. Synthetic impulse responses were 

generated by multiplying white noise with an exponential decay envelopeiii 

(George et al., 2008). The EDT-values were 0.1 s, 0.2 s, 0.4 s, 1.0 s, and 1.4 s. 

iii  The EDT and the time constant 𝜏 of exponential decay  are related: .

Table 2-2: Different noise types that were used in the simulations. The second column 

gives the category which will be used to refer to the noises in the remainder of the text

Noise Type Noise category

Quiet Quiet

Stationary speech-shaped noise (SSN) Stationary noise

International Speech Test Signal (ISTS) ISTS

SSN modulated with a square wave of 2 Hz Interrupted noise

SSN modulated with a square wave of 4 Hz Interrupted noise

SSN modulated with a square wave of 8 Hz Interrupted noise

SSN modulated with MLS with 2 Hz as the dominant 

modulation frequency

Interrupted noise

SSN modulated with MLS with 4 Hz as the dominant 

modulation frequency

Interrupted noise

SSN modulated with MLS with 8 Hz as the dominant 

modulation frequency

Interrupted noise

Pure tone of 500 Hz modulated with a 2 Hz sine wave Tonal noise

Pure tone of 500 Hz modulated with a 4 Hz sine wave Tonal noise

Pure tone of 500 Hz modulated with an 8 Hz sine wave Tonal noise

Pure tone of 1 kHz modulated with a 2 Hz sine wave Tonal noise

Pure tone of 1 kHz modulated with a 4 Hz sine wave Tonal noise

Pure tone of 1 kHz modulated with an 8 Hz sine wave Tonal noise

Pure tone of 2 kHz modulated with a 2 Hz sine wave Tonal noise

Pure tone of 2 kHz modulated with a 4 Hz sine wave Tonal noise

Pure tone of 2 kHz modulated with an 8 Hz sine wave Tonal noise
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The other six panels in Fig. 2-1 show the EDT as a function of center frequency for 

conditions A1, A2, and A3 measured in quiet, stationary noise, and fluctuating 

noise with levels of 52, 67, or 82 dB (A). These panels show that EDT measured 

in stationary and fluctuating noise are closely related to the EDT in quiet.

There are some deviations between the EDT in quiet and in noise but these 

differences are relatively small. To determine if these differences in EDT have 

an effect on the STI measurements, we determined the impulse response in all 

noise conditions and discarded the influence of the noise. Mathematically, this 

is equivalent to setting the SNR at +∞ such that the second term in Eq. (2-1) is 

unity and does not affect 𝑚(𝐹):

(2-3)

Using this approach, the STI can be calculated based on reverberation 

measurements in noise, as if these measurements were done in quiet. Since the 

actual STI in quiet is known for all acoustical conditions, the 𝛥𝑆𝑇𝐼 can be 

calculated:

(2-4)

According to IEC60268-16 (2011) a STI measurement is reliable when three 

measurements fall within the range of 0.03 STI units. In the following results, 

we therefore classify a STI estimation as successful when it deviates 0.015 STI 

units or less from the true STI in quiet. 

The filled symbols in the two top panels of Fig. 2-2 represent the absolute 

ΔSTI-values of experiments 1 and 2 as a function of the INR. The lines in the 

graph represent the 95th percentile of these |STI|-values. It can be seen that, for 

INR-values above +25 dB, the |STI| is smaller than 0.015 STI units. Below an INR 

of +25 dB the deviation from zero is larger, especially for the measurements 

conducted in fluctuating noise (ISTS). For stationary noise this INR limit is 

closer to +15 dB.

The four bottom panels show the |STI| as a function of INR for the simulations. 

For clarity, only the P95 lines are shown. Inspection of the middle two panels 

shows that, with a few exceptions, the |STI| falls within the range of 0.015 STI 

units if the INR is larger than +25 dB. This is similar to the results of the 

experiments. For tonal and interrupted noise (bottom two panels) deviations 

occur at an INR of around +20 dB, but the pattern is similar to that of the  

other panels. For stationary noise deviations start occurring at an INR closer  

to +15 dB, which is also in agreement with the experimental results. 

Fig. 2-1: The EDT as a function of the octave bands with center frequency for the different 

acoustical conditions of the room. (Top) Measurements in quiet for the three reverberation 

conditions. (Left) Measurements in stationary noise and (Right) measurements in fluctuating 

noise. The results from the quiet measurements for each reverberation condition are 

repeated in the corresponding noisy-measurement plots.
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the classifier was defined as a |STI|-value larger than 0.015 (i.e., the result is 

classified as inaccurate). The cutpoint of the classifier (INR) was varied to obtain 

sensitivity and specificity values, which resulted in ROC curves for the different 

noise categories (see Fig. 2-3). To identify an appropriate value of the classifier, 

we set the minimum value of the sensitivity on 99%, allowing 1 out of every 100 

The large dataset that was generated using the simulations presents the 

opportunity to investigate the INR as a classifier of the accuracy of the STI and 

construct Receiver Operating Characteristic (ROC) curves. A positive result of 

Fig. 2-2: Plot of the |ΔSTI| as a function of the INR. The horizontal dashed-dotted lines 

represent the bandwidth in which a STI estimation is classified as reliable (< 0.015). 

The solid lines represent the 95th percentile of the measured data (calculated using a 5 dB 

window for the experiments and a 2 dB window for the simulations). Due to the large 

amount of data, the simulation plots only show the P95 lines for clarity purposes
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Fig. 2-3: ROC curves with INR as classifier to judge the outcome variable (ΔSTI). There 

was not enough data available from the experiments to calculate the ROC curve for 

higher reverberation times in stationary noise. The INRs in the plots represent the values 

for which the sensitivity is larger than 99%.
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2.5  General discussion and conclusions

The classical method to estimate the STI is widely used to quantify the quality 

of speech transmission in a certain environment. An inherent problem of this 

method is measuring the STI in fluctuating noise. The goal of the current study was 

to determine under which conditions the impulse response can be measured  

in fluctuating noise in order to make a reliable estimation of the STI. This will 

facilitate the use of the STI in conditions with fluctuating background noise. 

When using a calibrated system during the measurements, it is straightforward 

to adjust the sweep level in order to accomplish a minimum SNR. In reality, it 

will occur that the background noise level is unknown. Hak et al. (2012) 

described the calculation of the INR. This is the ratio between the peak level of 

the impulse response and the noise floor. According to Hak et al. (2008) the INR 

has to be larger than +15 dB in order to reliably calculate the STI in stationary 

noise. Table 2-3 shows that this number indeed holds for stationary noise, but 

that this limit shifts to +25 dB for the fluctuating noises used in the current 

study. Since the INR can always be assessed during the measurements, one 

can decide during the measurement if the level of the sweep must be increased  

or not. 

correctly identified STI-values to be inaccurate. The authors consider this as  

an acceptable chance for an error to occur. The INR, sensitivity, and specificity 

values obtained using this criterion are depicted in Table 2-3. Using this 

criterion, an INR of +15 dB in stationary noise and of +25 dB in fluctuating noise 

appear to be suitable indicators for the reliability of the impulse response 

measurements defined above.

The INR itself is a useful criterion during the measurement, but does not provide 

information about the necessary sweep levels needed in practice. Fig. 2-4 

shows the relation between the broadband SNR (in this case the sweep-to-noise 

ratio) and the INR, averaged over all simulations. Median values and the 95th 

percentile lines are shown. An SNR of −5 dB (range −15 to +1.7 dB) corresponds 

to an INR of +15 dB. An SNR of 7.5 dB (range −4 to +15 dB) corresponds to an INR 

of +25 dB.

Table 2-3: Required values of the INR using the sensitivity criterion (𝑞 ≥ 99%). See text 

for explanation.

Required INR Sensitivity (q) Specificity (p)

EDT 
< 0.8 s

EDT 
≥ 0.8 s

EDT 
< 0.8 s

EDT 
≥ 0.8 s

EDT 
< 0.8 s

EDT 
≥ 0.8 s

Stat. noise (exp) 12 - 100% - 85.7% -

ISTS (exp) 21 20 100% 100% 51.7% 92.9%

Stat. noise (sim) 13 14 99.4% 99.2% 71.5% 80.9%

ISTS (sim) 24 19 99.3% 99.0% 61.6% 77.3%

Int. noise (sim) 16 15 99.4% 99.3% 66.6% 77.3%

Tonal noise (sim) 19 19 99.2% 99.5% 52.6% 79.0%

Fig. 2-4: The relation between the INR and the SNR. Median values are shown (solid), 

together with the 95th percentile lines (dotted). The dashed-dotted lines represent the 

median SNRs that correspond to an INR of +15 dB and +25 dB. These SNR-values are −5 

dB (range −15 dB to +1.7 dB) and +7.5 dB (range −4 dB to +15 dB), respectively
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For traditional classrooms equivalent levels up to 75 dB (A) were measured. 

Shield and Dockrell (2004) found that the average exposure in London urban 

area schools was 72 dB (A). They reported large variations in background noise 

levels between and within schools. The current findings suggest that in these 

cases a sweep level of 90 dB (A) should be used for a reliable STI measurement 

in fluctuating noise. This sweep level is quite high and might not be appropriate 

for daily practice due to hardware limitations and/or subjective factors. The INR 

of +25 dB, the SNR of +15 dB, and the noise level of 75 dB (A) are safe estimations. 

Taking into account that the noises in daily life have fewer gaps than the noises 

used in this study, we expect that in most conditions lower sweep levels can 

be used. Most importantly, the user gets direct feedback in the form of the INR 

and can repeat the measurement when the INR is too low. 

In the current study, we chose to display the majority of the results as STI 

measurements. To display more results as reverberation times would have 

gained the reader more insight in the actual consequences of adding noise to 

the measurements. However, this was not the purpose of the current paper. 

We aimed at doing the experiments with a realistic signal with sufficient 

fluctuations. Assuming that background noise in, e.g., a classroom is mainly 

the consequence of talking, a noise with multiple talkers (e.g., babble noise) 

would be more realistic. However, this noise type has got relatively few temporal 

gaps and is therefore close to stationary noise. On the other hand, interrupted 

noise will have larger troughs than a single speaker, but is less often encountered 

in real-life measurements. The ISTS is a widely available approximation of a 

single talker, which makes it most suitable for the current study. 

The disadvantage of doing real-life experiments is the limited number of 

conditions one can test. We chose a single fluctuating noise type and several 

SNRs. Besides this, in experiment 1 the absorption of the room was varied. In 

order to extend the number of conditions, the simulations were done, which 

yielded similar results as to the actual experiments. The number of conditions 

can always be extended by using more types of noise, more SNRs, and more 

absorption characteristics. However, it is our opinion that the current number 

of conditions provides enough evidence that the reverberation time can be 

estimated with sufficient precision in order to make a reliable calculation of the 

STI in conditions with fluctuating noise. Strictly, the conclusions drawn in this 

paper are only valid for the noise types used in the experiments and simulations. 

Currently, the STI has limited value in fluctuating noise and this study is a first 

step toward applying the STI in non-stationary background conditions. One 

step further is the application for people with sensorineural hearing loss. Due 

to degraded temporal and spectral resolution speech reception in noise is worse 

than in normal hearing subjects, especially in fluctuating background (e.g., 

The difference in criteria between fluctuating and stationary noise can be 

explained as follows. When stationary pink noise is used as background sound 

of the exponential sweep, the SNR in each frequency band is identical, since 

the frequency spectra of both signals are the same. In the current experiments 

speech-shaped noise was used, but the differences between frequency bands 

are still quite small and, more importantly, no significant temporal effects are 

present. When using fluctuating noise certain frequencies of the sweep 

coincide with peaks in the noise, which leads to a poorer SNR at those specific 

frequencies. However, this detrimental effect is not compensated by a positive 

effect of valleys in the noise that coincide with other frequencies. After all, one 

can assume that above a certain threshold the reliability is stable and does not 

increase further with increasing SNR. The same long-term root-mean-square 

(rms) of the background noise does therefore not lead to equal results for 

stationary and fluctuating noise. 

Various noises were used in the simulations. We chose modulated tonal noise 

to simulate a condition where all the energy was concentrated in one octave 

band. The interrupted noises were chosen to simulate a condition with an 

extremely rapid on- and offset. These conditions will be encountered in real life 

only in exceptional cases, but were used to mimic extreme measurement 

conditions. Nonetheless, based on Table 2-3 the ISTS remains the most disad-

vantageous background noise. Tonal noise led to poor conditions in only one 

octave band, but the resulting error is largely averaged out in the overall 

estimation. On the other hand, during the peaks of the interrupted noise energy 

is distributed over all frequency bands. The SNR per octave band is therefore 

relatively high, leading to robust measurements at lower SNRs. Resembling 

natural speech, the intensity peaks of the ISTS vary in frequency content over 

the course of one measurement, increasing the probability of low SNRs in 

multiple frequency bands. The peaks and values in the signal lead to the fact 

that the instantaneous SNR can be much higher or lower than the long-term 

SNR. The ISTS has therefore the disadvantages of both the amplitude modulated 

tonal noise and the interrupted broadband noise. This decreases the accuracy 

of the measurement for noise with the same spectrum as the long-term average 

spectrum of speech.

In Fig. 2-4 the relation between the INR and broadband SNR is depicted. An INR 

of +15 corresponds to an SNR of −5 dB and an INR of +25 dB to an SNR of +7.5 

dB. Taking into account the P95 lines, Fig. 2-4 shows that for 95% of the 

simulations an INR of +25 dB corresponds to an SNR between −4 dB and +15 

dB. In other words, in roughly 97.5% of the cases an INR of +25 dB corresponds 

to a broadband SNR lower than +15 dB. Picard and Bradley (2001) reviewed 

several studies that reported about levels of background noise in classrooms. 
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Festen and Plomp, 1990; Versfeld and Dreschler, 2002). To incorporate this into 

the ESTI-model and to be able to predict performance of hearing-impaired 

subjects will therefore be a challenge. 

The experiments and simulations that were done in the current study show 

that the reverberation can be measured with sufficient accuracy in fluctuating 

noise to reliably calculate the STI. A minimum INR of +25 dB is required. The next 

step will be to do speech intelligibility measurements under different acoustical 

conditions and in noise types, calculate the STI per time frame, and investigate 

the use of the ESTI. 

2.6  Acknowledgements

The authors would like to thank Tammo Houtgast and Joost Festen for fruitful 

discussions, Joost Festen for the use of the variable acoustic room at the VU 

University Medical Center Amsterdam, Constant Hak and Han Vertegaal from 

Acoustics Engineering for technical support regarding the B&K Dirac software. 

J.S. and K.S.R. contributed equally to this work. 



CHAPTER 3

THE EXTENDED SPEECH TRANSMISSION 
INDEX: PREDICTING SPEECH 
INTELLIGIBILITY IN FLUCTUATING NOISE 
AND REVERBERANT ROOMS

Van Schoonhoven, J., Rhebergen, K.S., Dreschler, W.A. (2019) 

Journal of the Acoustical Society of America 145(3): 1178-1194



42 43

CHAPTER 3 THE EXTENDED SPEECH TRANSMISSION INDEX

C
H

A
P

T
E

R
 3

3.2  Introduction

3.2.1  History
The Speech Transmission Index (STI) is used since the 1970s to determine speech 

transmission quality and to predict speech intelligibility in different acoustic 

environments (Houtgast and Steeneken, 1973; Houtgast et al., 1980; Houtgast 

and Steeneken, 1985). The concept is based on the modulation transfer function 

(MTF), which describes the modulation reduction of a modulated signal caused 

by noise and/or reverberation. The basic assumption of the model is that reduced 

modulations in speech lead to deteriorated intelligibility. 

Classically, the intensity modulated test signals are filtered into seven octave 

bands between 125 and 8000 Hz, after which the modulation reduction m is 

determined for 14 modulation frequency bands between 0.63 and 12.5 Hz per 

octave band. This results in a 7 × 14 matrix of 𝑚-values. Each 𝑚-value is corrected 

for the hearing threshold and upward spread of masking, after which an 

apparent signal-to-noise ratio (SNR) is calculated. All apparent SNRs are then 

clipped between −15 and 15 dB and divided by 30. The resulting transmission 

indices are then averaged over all modulation frequency bands within each 

octave frequency band. The weighted sum of these seven mean transmission 

indices finally results in the STI: a number between 0 and 1, which represents 

the preservation of modulations in the transmitted signal. A detailed description 

can be found in Houtgast and Steeneken (2002) and IEC60268-16 (2011).

3.2.2  Fluctuating maskers
Speech intelligibility in fluctuating background noise is usually better when 

compared to stationary noise with the same long-term root-mean-square 

(rms) value (e.g., Festen and Plomp, 1990). This is caused by the ability to “listen 

in the gaps”. Depending on the properties of the masker, informational masking 

(IM) and modulation masking (MM) might counteract this fluctuating masker 

benefit (FMB). IM occurs when “the signal and masker are both audible but the 

listener is unable to disentangle the elements of the target signal from a similar- 

sounding distracter” (Brungart, 2001), and is most prominent when an interfering 

talker is used as a masker. The effect of MM is smaller and is suggested to be 

present when the modulation spectra of speech and masker overlap (Stone and 

Moore, 2004; Apoux and Bacon, 2008). 

Also, with overlapping modulation spectra the amount of context in the speech 

material gets increasingly important. By using redundancies in speech stimuli, 

listeners are, to a certain extent, able to reconstruct temporally interrupted sentences 

and/or words (Warren, 1970; Howard-Jones and Rosen, 1993). However, when 

larger meaningful entities (e.g., words or syllables in a sentence) are masked by 

3.1  Abstract

The Speech Transmission Index (STI) is used to predict speech intelligibility in 

noise and reverberant environments. However, measurements and predictions 

in fluctuating noises lead to inaccuracies. In the current paper, the Extended 

Speech Transmission Index (ESTI) is presented in order to deal with these 

shortcomings. Speech intelligibility in normally hearing subjects was measured 

using stationary and fluctuating maskers. These results served to optimize model 

parameters. Data from the literature were then used to verify the ESTI-model. 

Model outcomes were accurate for stationary maskers, maskers with artificial 

fluctuations, and maskers with real life non-speech modulations. Maskers  

with speech-like characteristics introduced systematic errors in the model 

outcomes, probably due to a combination of modulation masking, context 

effects, and informational masking.
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3.2.3  Purpose of current study
The classic STI-method can be used in room acoustics to determine speech 

transmission quality and predict speech intelligibility. However, predictions of 

intelligibility in fluctuating noise are beyond the scope of the current standard 

(IEC60268-16, 2011). This limitation of the classic STI gives rise to problems 

during measurements in realistic environments (e.g., classrooms or office 

floors) since many background noises are non-stationary.

In the current study the Extended Speech Transmission Index (ESTI) is presented. 

The proposed approach is similar to the ESII method as introduced by Rhebergen 

and Versfeld (2005) and Rhebergen et al. (2006), and therefore primarily deals 

with the FMB. The ESTI aims to increase the applicability of the STI. However, 

the effects of IM, MM, and context are still not fully covered. This will be 

addressed in the discussion section. Since the focus of this study is on extension 

of the original STI-method, no comparisons were made between the ESTI and 

other existing models.

In the current study, speech intelligibility in stationary and fluctuating maskers 

was measured in five different reverberant conditions. An 8 Hz interrupted 

noise (IN8) and a speech-like noise were used as fluctuating maskers. A stationary 

masker served as the reference condition. The model parameters were adjusted 

to accurately model intelligibility in these conditions. Finally, data from other 

studies were used to test the validity of the model more thoroughly.

3.3  Materials and methods

Two datasets are used in the current paper. To optimize parameters of the 

ESTI-model, speech intelligibility measurements were done (see section 3.3.1). 

Throughout the paper, 𝑑𝑎𝑡𝑎𝑠𝑒𝑡01 will be used to refer to these data. To test the 

model, data from the literature were used and will be referred to as 𝑑𝑎𝑡𝑎𝑠𝑒𝑡02.

3.3.1  Speech intelligibility measurements

3.3.1.1  Subjects
Nine normally hearing subjects were recruited (three males and six females) 

with mean age 22.1 yr. (range 18 – 32 yr.). All were native Dutch speakers and  

no hearing or language problems were reported. All subjects had pure tone 

thresholds of 20 dB HL (hearing level) or better at the octave frequencies 

between 250 and 4000 Hz.

Subjects were recruited via posters. They gave written informed consent and 

received compensation for participating. Approval for the project (NL48348.018.14) 

was given by the Ethical Review Board (Medisch Ethische Toetsingscommisie, 

Amsterdam Medical Centre).

peaks in the noise, this reconstruction process becomes more difficult, 

especially when the amount of context in the speech material is low (Boothroyd 

and Nittrouer, 1988). Calculating a long-term STI-value for fluctuating background 

noise by using the classic STI-method does not account for these phenomena 

and leads to an inaccurate prediction of speech intelligibility. 

To incorporate the FMB in the STI, Bronkhorst and Houtgast (1990) already 

suggested to average the modulation reduction over a certain time interval 

instead of averaging the signal and noise intensities. However, an instantaneous 

calculation of the modulation reduction using the classic STI-method is not 

possible. Kates (1987) also used a temporal approach by suggesting the short- 

time articulation index (AI) for adaptive noise reduction systems. Rhebergen 

and Versfeld (2005) and Rhebergen et al. (2006)Rhebergen and Versfeld (2005); 

Rhebergen et al. (2006) calculated the Speech Intelligibility Index (ANSI-S3.5, 

1997) as a function of time. The averaged value — the Extended Speech Intelli-

gibility Index (ESII) — was a good predictor for speech intelligibility in fluctuating 

noise. These model adaptations are all based on audibility (AI and SII) or 

modulation reduction (STI), and therefore do not account for higher order 

phenomena such as MM and IM.

Various other models have been proposed to predict speech intelligibility in 

fluctuating noise. Examples are a binaural version of the SII and ESII 

(Beutelmann and Brand, 2006; Beutelmann et al., 2010), the ESII with speech 

input instead of stationary noise (Meyer and Brand, 2013), the multi-resolution 

speech based envelope power spectrum model or mr-sEPSM (Jørgensen et al., 

2013), the general power spectrum model or GPSM (Biberger and Ewert, 2016; 

2017), the extended short-time objective intelligibility measure or ESTOI (Taal et 

al., 2011; Jensen and Taal, 2016), and a model based on automatic speech 

recognition (Schädler et al., 2015).

Several of these intelligibility models also incorporate the effects of reverberation. 

The model by Beutelmann et al. (2010) accounts for reverberated noise, but not 

for the detrimental effect of reverberation on the speech signal. The mr-sEPSM 

(Jørgensen et al., 2013) and GPSM (Biberger and Ewert, 2016; 2017) model the 

separate effects of fluctuating noise and reverberation on intelligibility, but not 

the combined effect of both types of distortion. George et al. (2008) combined 

the STI- and ESII-models to predict intelligibility in fluctuating noise and 

reverberation. They used the STI to estimate the SNR at 50% intelligibility (critical 

signal-to-noise ratio or cSNR) in stationary noise at a certain reverberation 

time. Next, the ESII-value at the cSNR was calculated and used to estimate  

the cSNR in fluctuating noise. To our knowledge, predictions of the combined 

effects of fluctuating noise and reverberation on speech intelligibility by a 

single model have not been reported.
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corresponded to the desired reverberation times as mentioned above. Speech 

and noise signals were convolved separately with one of these four impulse 

responses, depending on the test condition. Fig. 3-2 shows the effect of 

reverberation on the two fluctuating noises in the temporal domain. Fig. 3-3 

shows the effect in the modulation domain. Although modulations appear to 

have disappeared for high reverberation times using IN8 in Fig. 3-2 (left panel), 

the 8 Hz modulations are still present.

3.3.1.4  Procedure

The SNR that was required for 50% intelligibility of complete sentences was 

measured using an adaptive procedure as described by Plomp and Mimpen 

(1979). This will be referred to as the cSNR. The first sentence of each list was 

presented at an SNR of −10 dB (for SSN) or −20 dB (for IN8 and ISTS) with the 

noise level fixed at 65 dB (A)v. This sentence was repeatedly presented, each 

v The original publication by Van Schoonhoven et al. (2019) erroneously stated that the speech level 

was fixed. All calculations were done correctly using a fixed noise level. This error is corrected in 

the current text.

3.3.1.2  Stimuli

The target speech consisted of Dutch sentences, uttered by a female speaker 

(Versfeld et al., 2000). The speech material consisted of 39 lists of 13 sentences 

each. Each sentence contained between four and nine words, and between 

seven and ten syllables. For the practice trials, sentences from Plomp and 

Mimpen (1979) were used. Three types of maskers were used. Stationary 

speech-shaped noise (SSN) was used as the reference condition. The IN8 was 

created by modulating the SSN with an 8 Hz square wave with modulation 

depth of 100% and a duty cycle of 50%. The third masker was the International 

Speech Test Signal [ISTS; (Holube et al., 2010)]. The ISTS is an unintelligible 

speech-like signal, created by segmenting and mixing female speech in six 

different languages. As opposed to the other noises, the frequency spectrum of 

the ISTS is different from that of the target speech (see Fig. 3-1).

3.3.1.3  Reverberation

Four degrees of reverberation were used: 𝑇60 = 0.1, 0.4, 0.8, and 1.2 s. Four 

artificial impulse responses were created by multiplying exponential decay 

envelopes with white noiseiv (George et al., 2008). The slope of the envelope 

iv All impulse responses with 𝑇60 > 0.1 s had a white spectrum between 125 and 8000 Hz. The impulse 

response with 𝑇60 = 0.1 s had a white spectrum above 500 Hz, but had ∼3 dB more energy at 

125 and 250 Hz.

Fig. 3-1: Frequency spectrum in 1/3 octave bands of SSN, based on the Dutch female 

sentences (Versfeld et al., 2000), and ISTS (Holube et al., 2010) at 65 dB (A)].

Fig. 3-2: One second depiction of IN8 in the left panel and the ISTS in the right panel 

(Holube et al., 2010) with different degrees of reverberation.
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than the long-term rms of the SSN masker at the same SNR. Speech and noise 

were scaled after reverberation. Signals were presented monaurally to the right 

ear through a TDH39P headphone (Telephonics Corp., Farmingdale, NY) via a 

24 bit/192 kHz Fireface 800 audio interface (RME, Haimhausen, Germany). 

Subjects were seated in a sound treated booth. MATLAB (version 2017b, 

MathWorks Inc., Natick, MA) was used for presentation of the sounds and 

analysis of the results. A sampling frequency of 44.1 kHz and a bit depth of 16 

bits/sample were used for all signals.

3.3.2  ESTI-model
The ESTI was calculated analogous to the ESII (Rhebergen et al., 2006). To 

account for reverberation, both the noise and speech signal were convolved 

using the appropriate impulse response. The speech, noise, and impulse 

response were then filtered using an octave filter bank [sixth-order class 1, 

(ANSI-S1.11, 2004)] between 125 and 8000 Hz. Analyses were done per octave 

band 𝑞 (with 𝑞 = 1, …, 7).

time with a 4 dB higher SNR than the previous presentation. After the first 

correct answer, the step size was changed to 2 dB. From this point onward, all 

remaining sentences of the list were presented only once. The SNR of the next 

sentence was increased by 2 dB after an incorrect response and decreased by 2 

dB after a correct response. Each sentence was used once per subject and the 

whole sentence had to be repeated correctly for the answer to be correct. The 

cSNR was calculated by averaging the SNRs of sentences 5 – 14 of one list 

during one trial (the 14th sentence was not actually presented, but its SNR was 

calculated based on the previous answer). All individual data points were an 

average between test and retest for the SSN and IN8 conditions. No retest was 

done for the ISTS condition. 

The total experiment was preceded by one practice trial with reverberation  

and one practice trial without reverberation. All reverberation conditions using 

one noise type (e.g., SSN) were presented within one block. The sequence  

of these three main blocks (blocks A, B, and C in Fig. 3-4) was randomized 

across subjects. Each main block was preceded by one practice trial without 

reverberation and one practice trial with reverberation. The sequence of the 

test- (and retest-) trials was balanced and pseudo-randomized across blocks 

and subjects using Latin squares (Wagenaar, 1969). Subjects were allowed a 

5-min break each 20 min. The total visit time was between 2 and 2.5 h. See Fig. 

3-4 for a visual representation of the test conditions.

The long-term rms of all noises was based on the SNR required for that 

presentation. This implicates that the peaks of the IN8 masker were 3 dB higher 

Fig. 3-3: Modulation spectra of IN8 in the left panel and the ISTS in the right panel 

(Holube et al., 2010) with different degrees of reverberation.

Fig. 3-4: Visual representation of the measurement conditions. The practice trials 𝑎 and 

𝑏 preceded the total experiment. The main section was divided into three blocks: 𝐴, 𝐵, 

and 𝐶, based on noise type. Within each block a practice trial without reverberation (𝑥) 

and a practice trial with reverberation (𝑦) were presented. Conditions 1 – 5 were presented 

twice in blocks 𝐴 and 𝐵 (test and retest) and once in block 𝐶 (test only). The sequence of 

blocks 𝐴, 𝐵, and 𝐶 was randomized across subjects. The sequence of conditions 1 – 5 

(including retest conditions 1’ – 5’ for 𝐴 and 𝐵) was pseudo-randomized across blocks 

and across subjects using Latin squares (Wagenaar, 1969).

0.5 1 2 4 8 16 32

Fmod (Hz) Fmod (Hz)

-30

-25

-20

-15

-10

m
 (d

B
)

IN8

T
60
=0.0s

T
60
=0.1s

T
60
=0.4s

T
60
=0.8s

T
60
=1.2s

0.5 1 2 4 8 16 32
-30

-25

-20

-15

-10

m
 (d

B
)

ISTS

T
60
=0.0s

T
60
=0.1s

T
60
=0.4s

T
60
=0.8s

T
60
=1.2s



50 51

CHAPTER 3 THE EXTENDED SPEECH TRANSMISSION INDEX

C
H

A
P

T
E

R
 3

3.3.2.2  Forward masking

Various studies described the masking of a target signal by a preceding masker 

(e.g., Duifhuis, 1973; Moore and Glasberg, 1983; Gifford et al., 2007; Fogerty  

et al., 2017). When a fluctuating masker is used, forward masking plays a role, 

especially when the offsets are abrupt (Rhebergen et al., 2006). The model of 

Ludvigsen (1985) was used to incorporate forward masking in the masker signal 

[see Eq. (3-3) for the general relationship]. It describes how the masked threshold 

(𝑀𝑇) decreases exponentially as a function of the time after the masker is 

interrupted (post-masker duration or 𝑡𝑝𝑚). 𝑀𝑇 is also a function of post-masker 

time (𝑇0), recovery time (𝑇𝑓), and hearing threshold (𝐻𝑇𝐿). Values of 1 ms and 150 ms 

were used for 𝑇0 and 𝑇𝑓, respectively (see section 3.5 for more information 

regarding this choice).

(3-3)

with 

The value of 𝑀𝑇 between 𝑡𝑝𝑚 = 0 and 𝑡𝑝𝑚 = 𝑇0 is equal to 𝑁(𝑝). For each time 

window 𝑝 the 𝑀𝑇 as a function of the post-masker duration was determined. 

𝑀𝑇 was then compared to 𝑁 between 𝑝 and . This has the following 

implications for the effective masking noise:

(3-4)

This calculation was done for each time window 𝑝 and each octave band 𝑞 

(𝑞 was omitted in the above equations for clarity purposes). The effect of the 

noise is constant for all modulation frequency bands 𝑟.

3.3.2.3  MTF

The modulation reduction is a result of both reverberation and noise and is 

expressed in the MTF. Based on the relation described by Schroeder (1981) the 

Fourier transform of the impulse response was used to calculate the 

reverberation component of the 𝑀𝑇𝐹: 𝑀𝑇𝐹𝑟𝑒𝑣. The acoustic conditions do not 

change over time, and therefore 𝑀𝑇𝐹𝑟𝑒𝑣 is only dependent on the modulation 

frequency band 𝑟 and octave frequency band 𝑞. Van Wijngaarden and Houtgast 

(2004) suggested that calculation of the STI was more accurate for conversational 

speech when modulation frequencies up to 31.5 Hz were incorporated. This 

resulted in 18 modulation frequency bands ranging between 0.63 and 31.5 Hz 

3.3.2.1  Time window
The indirect measurement method according to Schroeder (1981) makes it 

possible to calculate the contribution of the SNR and reverberation to the STI 

separately. In the classic STI, the temporal characteristics of the speech and 

noise are discarded since only the long-term averaged spectra are used in  

the calculations. The current ESTI-model was developed to account for noise 

fluctuations. Therefore, the noise level is calculated as a function of time. 

To limit deviations from the classic STI, a stationary test signal was currently 

used as speech input for the model. For an octave band filtered signal 𝑠(𝑡, 𝑞) of 

length 𝑇 this results in:

(3-1)

Using a sliding rectangular time window, the rms-value of the fluctuating 

noise 𝑛(𝑡, 𝑞) with length 𝑇 was calculated as a function of time: 

(3-2)

with 𝑇𝑤 as the time window length, 𝑠 as the step size, and 𝑝 as indices for the 

time windows. Both a fixed window length and a frequency dependent window 

length were tested. A fixed window with a length of 2.0 ms resulted in the best 

fit of 𝑑𝑎𝑡𝑎𝑠𝑒𝑡01 (see section 3.5 for more information regarding this choice). 

However, since this window length is shorter than the period in the octave 

bands with lower center frequencies, adjustments were made to ensure a 

minimum of one period per time window for all frequencies within each band 

(see Table 3-1). The step size 𝑠 was 2.0 ms for all octave bands.

Table 3-1: Time window lengths per octave frequency band, tested in the optimization 
phase. The step size corresponded to the window length of the highest octave band.  
The minimum window length always ensured a minimum of one period being present  
for the lowest frequency in that octave band [indicated by *; according to Van Schijndel et al. 
(1999)]. ‡ indicates time windows based on Rhebergen and Versfeld (2005). § indicates 
time windows based on Shailer and Moore (1983). A fixed time window length of 2.0 ms 
was eventually chosen (indicated by †).

Frequency (Hz) 125 250 500 1000 2000 4000 8000

Frequency dependent‡ 37.4 22.2 17.2 15.0 14.7 10.0 9.4

Frequency dependent§ 27.2 20.5 14.4 8.0 6.0 4.5 3.0

Fixed (1.0 ms) 11.3* 5.6* 2.8* 1.4* 1.0 1.0 1.0

Fixed (2.0 ms)† 11.3* 5.6* 2.8* 2.0 2.0 2.0 2.0

Fixed (4.0 ms) 11.3* 5.6* 4.0 4.0 4.0 4.0 4.0
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band 𝑞-1 is modeled with a level dependent slope of masking. See Table A.1 in 

IEC60268-16 (2011) for the values used here. Next, the apparent SNR is calculated:

(3-8)

The apparent SNR is clipped between −15 and +15 dB, and used to calculate the 

modulation transfer index (MTI):

(3-9)

A weighted sum of the modulation indices for all octave bands then results in 

the STI per time window:

(3-10)

with 𝛼𝑞 and 𝛽𝑞 as the frequency dependent octave-weighting factor and 

redundancy correction factor per octave band, respectively. The values for 𝛼𝑞 

and 𝛽𝑞 as suggested by the IEC standard, IEC60268-16 (2011), in Table A.3 were 

used in the current study. The final step is calculation of the ESTI:

(3-11)

3.3.3  Optimization and validation of the model
The SSN masker without reverberation was chosen as the reference condition. 

The ESTI in the reference condition was calculated at the cSNR, and was used 

to predict the cSNR in the other noise and reverberation conditions. These 

model predictions were compared to the observed cSNR-values.

𝐷𝑎𝑡𝑎𝑠𝑒𝑡01 was used to optimize the new model parameters regarding time 

averaging and forward masking. 𝐷𝑎𝑡𝑎𝑠𝑒𝑡02 was used to compare predictions of 

the optimized model to intelligibility data from the existing literature.

3.3.3.1  Experimental data measured in the current study (dataset01)

With the extension of the STI, two model parameters were added: time window 

length (𝑇𝑤) and forward masking time (𝑇𝑓). We varied these parameters and 

calculated the model predictions for each possible combination, and compared 

these to the observed cSNR-values. The optimal linear fit was calculated to 

with 1/3 octave intervals. 𝑀𝑇𝐹𝑟𝑒𝑣 is calculated according to Eq. (3-5), where ℎ is 

the impulse response, 𝐵𝑊𝑟 is the bandwidth of the modulation frequency band 

𝑟, and 𝐹𝑟, 𝑙 and 𝐹𝑟, 𝑢 are the lower and upper boundaries, respectively, of the 

modulation frequency band 𝑟. The nested fraction was taken from Schroeder 

(1981) and represents the 𝑀𝑇𝐹. Summation over the modulation frequencies 

yields the 𝑀𝑇𝐹 as a function of the modulation frequency band. This rectangular 

filter shape was chosen to limit the number of adjustable model parameters 

during optimization.

(3-5)

The noise component of the 𝑀𝑇𝐹 is 𝑀𝑇𝐹𝑆𝑁𝑅. In the classic STI, this part is 

independent of time. However, in the ESTI the SNR is calculated per time 

window, and therefore the following relation applies [note that 𝑆(𝑝) is a 

stationary signal and can be considered as a constant along the 𝑞-axis]:

(3-6)

The total 𝑀𝑇𝐹 is the product of the two components:

(3-7)

Like the original STI, the current model assumes that the effect of the noise on 

modulation reduction is uniform across all modulation frequencies. However, 

this only applies within each time window, which is a relatively short time scale 

compared to the modulation frequencies of interest. Therefore, all important 

masker modulations are preserved in the 𝑀𝑇𝐹. 

Note that, as a consequence of the aforementioned assumption, 𝑀𝑇𝐹𝑆𝑁𝑅 can be 

considered as a constant along the r-axis [Eq. (3-6)]. Similarly, 𝑀𝑇𝐹𝑟𝑒𝑣 is 

independent of time [Eq. (3-5)].

3.3.2.4  ESTI calculation

The resulting MTF is a function of time window number (𝑝), octave frequency 

band (𝑞), and modulation frequency band (𝑟). The subsequent calculation of the 

STI-value per time window is now equivalent to the classic STI calculation 

(Houtgast et al., 1980). The MTF is corrected for upward spread of masking and 

the hearing threshold. Upward spread of masking of octave band 𝑞 by octave 
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𝑇60 = 1.2 s, the SSN masker leads to better intelligibility than both fluctuating 

maskers (𝑝 < 0.05). See Table 3-2 and Fig. 3-5.

determine the accuracy of the predicted cSNR-values for each noise type. 

The combination of parameter values that resulted in the highest coefficient  

of determination (𝑅2) was eventually chosen. Forward masking times between 

0 and 400 ms with 50 ms steps were used during the optimization. Both fixed 

and frequency dependent time windows were used (see Table 3-1).

3.3.3.2  Experimental data derived from literature (dataset02)

Next, speech reception data using Dutch speech from existing literature in 

combination with the current data were used as input for the ESTI-model. This 

is referred to as 𝑑𝑎𝑡𝑎𝑠𝑒𝑡02. As in section 3.3.3.1, the predictions were also based 

on the reference condition (SSN masker without reverberation). The forward 

masking time and time window length that resulted in the best predictions in 

section 3.3.3.1 were used. The goal of this last step was to test the optimized 

model using more conditions than were used in the current speech intelligibil-

ity experiments. All data that were included can be found in Appendix B.

3.4  Results

3.4.1  Speech intelligibility measurements
The SNRs that were required for 50% intelligibility of complete sentences (cSNR) 

are depicted in Table 3-2. A paired t-test (using Bonferroni correction) was 

performed to test for differences between the fluctuating maskers (IN8 and 

ISTS) and the SSN. The cSNR in SSN without reverberation is −3.4 dB, which  

is relatively high compared to Rhebergen et al. (2006), who reported a value of 

−5.5 dB, but similar to Versfeld et al. (2000) and Francart et al. (2011), who 

reported cSNR-values of −4.11 dB and −3.6 dB, respectively.

As expected, the introduction of gaps using the IN8 masker led to release of 

masking, resulting in better performance. The average improvement is 11.6 dB, 

which is similar to the benefit of 12.1 dB reported by Rhebergen et al. (2006). The 

release of masking when using the ISTS masker is limited to an improvement 

of 3.6 dB and is not significant. Francart et al. (2011) reported an improvement 

of 1.9 dB using the ISTS in comparison to SSN (not tested for significance). The 

standard deviation for fluctuating maskers is larger than for the stationary 

masker, especially for the ISTS.

Intelligibility deteriorates when reverberation is introduced. Deterioration is 

largest using the IN8 masker since reverberant energy fills the gaps between 

the noise blocks most effectively. Although 8 Hz modulations appear in the IN8 

modulation spectrum until 𝑇60 reaches values as high as 5 s (see Fig. 3-3), the 

benefit of listening in the gaps has disappeared at 𝑇60 = 0.4 s. Remarkably, when 

Table 3-2: Mean cSNR of sentences of nine subjects. The standard deviation is in brackets. 

(†) indicates the conditions that were tested with eight subjects. Significant differences 

per column between the fluctuating maskers and SSN are indicated with *** (𝑝 < 0.001), 

** (𝑝 < 0.01), and * (𝑝 < 0.05).

cSNR (dB) 𝑇60 = 0.0 s 𝑇60 = 0.1 s 𝑇60 = 0.4 s 𝑇60 = 0.8 s 𝑇60 = 1.2 s

SSN -3.4 (1.0) -2.5 (0.9) 1.2 (0.9) 5.3 (2.4) 7.2 (1.0)

IN8 -15.0*** (1.8) -6.2*** (1.6) 1.5 (1.1) 5.8 (2.4) 10.1* (1.9)

ISTS -7.0 (3.3) -3.1 (1.9) 0.8 (1.4) 8.6 (3.0)† 12.0* (3.2)†

Fig. 3-5: Difference in cSNR for the SSN relative to the fluctuating maskers (IN8 and the 

ISTS) for different reverberation times. Vertical bars represent the standard deviation of 

the difference. Significant differences between the fluctuating maskers and SSN are 

indicated with ***(𝑝 < 0.001), **(𝑝 < 0.01), and *(𝑝 < 0.05).

*** ***
* *

IN8 ISTS
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gaps in the fluctuating noises are smeared, and the ESTI is dominated by the 

reverberation. This causes the three curves to converge. 

For 𝑑𝑎𝑡𝑎𝑠𝑒𝑡01, model calculations were done per individual subject. These 

calculations served to optimize the model. Since no individual data from the 

existing literature were available, model verification using 𝑑𝑎𝑡𝑎𝑠𝑒𝑡02 was done 

with group average cSNRs.

3.4.2.1  Experimental data measured in the current study

In Table 3-3 and Fig. 3-7 both the classic STI-values and ESTI-values are 

depicted for 𝑑𝑎𝑡𝑎𝑠𝑒𝑡01. These are the (E)STI-values at cSNR (see Table 3-2). 

A forward masking time (𝑇𝑓) of 150 ms and a fixed time window (𝑇𝑤) of 2.0 ms 

(see Table 3-1) resulted in the best model predictions and were used to calculate 

all ESTI-values.

3.4.2  ESTI-model
The underlying assumption of many speech intelligibility models is that a 

transfer function exists between model outcome and performance. Examples 

are the AI (Fletcher and Galt, 1950; Pavlovic, 1984; Studebaker et al., 1993), the 

ESII (Rhebergen and Versfeld, 2005), and the STI (Houtgast et al., 1980; Steeneken 

and Houtgast, 2002; IEC60268-16, 2011). In the current study, speech intelligi-

bility was measured using the cSNR so only one point of the transfer function 

between ESTI and performance was known. According to the model, a certain 

ESTI-value is needed for 50% intelligibility, independent of reverberation or noise 

type. Therefore, once the ESTI-value for the cSNR in the reference condition is 

known, the cSNR for other conditions can be predicted. However, this approach 

does not yield information about the complete transfer function between ESTI 

and intelligibility. The SSN masker without reverberation was chosen as the 

reference condition since this is the most basic test condition and was available 

in all studies.

This approach is demonstrated in Fig. 3-6 by the iso-ESTI contours for the three 

maskers SSN, IN8, and ISTS (Houtgast and Steeneken, 1985). The cSNR for SSN 

without reverberation is −3.4 dB, which corresponds to an ESTI-value of 0.411. 

Each point on all three curves in the plot corresponds to the same ESTI-value. 

As reverberation increases, a higher SNR is required to reach the same 

ESTI-value. At low reverberation times the FMB leads to a lower cSNR for the 

fluctuating maskers than for the SSN masker. At high reverberation times the 

Fig. 3-6: iso-ESTI contour for an ESTI-value of 0.411, which is the ESTI at cSNR for the 

SSN masker in this example. All points on all three curves correspond to this ESTI-value.

Fig. 3-7: (E)STI-values at cSNR of the data of the current study as a function of reverberation 

time (𝑇60)

-15-5515
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Table 3-3: ESTI- and classic STI-values for data from 𝑑𝑎𝑡𝑎𝑠𝑒𝑡01 at cSNR.

𝑇60 = 0.0 s 𝑇60 = 0.1 s 𝑇60 = 0.4 s 𝑇60 = 0.8 s 𝑇60 = 1.2 s

SSN (classic STI) 0.387 0.393 0.424 0.431 0.399

SSN (ESTI) 0.411 0.416 0.439 0.437 0.402

IN8 (ESTI) 0.419 0.440 0.459 0.446 0.427

ISTS (ESTI) 0.675 0.651 0.558 0.506 0.444
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The explained variance by the best linear fit is 81%, 93%, and 80% for SSN, IN8, 

and ISTS, respectively. In Fig. 3-8 it can be seen that the best linear fit for SSN 

and IN8 is close to the main diagonal (𝑦 = 𝑥). The slope of the best linear fit for 

the ISTS masker is close to 1, but a systematic overestimation of about 10 dB is 

seen. This might be attributable to MM, CE, and/or IM and will be addressed in 

section 3.5. Also, the best linear fit using the classic STI-model is shown (gray, 

dashed line). This fit is similar to the ESTI fit for SSN, but clearly deviates for the 

IN8 masker and to a lesser extent for the ISTS masker. This deviation reflects the 

fact that listening in the gaps is not accounted for in the classic STI-model.

3.4.2.2  Experimental data derived from literature

Fig. 3-9 and Table B-1 (see Appendix B) show 𝑑𝑎𝑡𝑎𝑠𝑒𝑡02, including cSNR calculations 

based on the ESTI-model. The ESTI at cSNR in the reference condition (SSN masker 

without reverberation) was calculated first. This ESTI-value was then used to 

Ideally, the (E)STI-values would be independent of noise type and reverberation 

time. The (E)STI-values for SSN and IN8 show a similar pattern, but the values 

are relatively high compared to other studies [e.g., the value of 0.37 was used  

by George et al. (2008)]. This topic will be addressed in section 3.5. ESTI-values 

for the ISTS masker are even higher, especially for lower reverberation times. 

This might be the effect of MM, context effects (CE), and/or IM. This will also be 

addressed in section 3.5.

Fig. 3-8 shows individual cSNR predictions. As mentioned earlier, the SSN 

masker without reverberation served as the reference condition. The ESTI-value 

found for this condition was used to predict the cSNRs for the other conditions.  

Fig. 3-8: All individual cSNR predictions of 𝑑𝑎𝑡𝑎𝑠𝑒𝑡01, separated based on masker. The 

coefficient of determination (𝑅2) was based on the best linear fit of the data per panel. 

Note that no values are plotted for SSN, 𝑇60 = 0.0 s, since this condition served as reference 

condition.
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Fig. 3-9: cSNR predictions based on the ESTI of 𝑑𝑎𝑡𝑎𝑠𝑒𝑡02 depicted in Table B-1 (see 

Appendix B). Predictions were based on the ESTI-value in stationary noise without 

reverberation for that specific study.
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predict the cSNR for the other noise and reverberation conditions of that 

specific study. In Fig. 3-10, these data are separated based on the type of 

fluctuations (stationary noises, artificial fluctuations, and speech-like fluctuations) 

and type of fine structure (artificial fine structure and speech-like fine structure).

Fig. 3-10 also shows the 𝑅2-values based on the least squares linear fit. For 

stationary noises with artificial fine structure, 95% of the observed variance is 

explained by the best linear fit. For noises with artificial fluctuations and 

artificial fine structure, this value is 87%. When maskers have speech-like 

fluctuations, the values of 𝑅2 are similar, but the best fit clearly deviates from  

the optimal model prediction. The slope of the best fit is in these cases close to 

unity, but the larger intercept points toward a systematic error of the model. 

This error is close to 3 dB for artificial fine structure and little under 10 dB  

for speech-like fine structure. When the slope of the best fit is forced to unity, 

the explained variance remains similar (76% and 92%) as well as the intercept 

(4.0 dB and 9.5 dB). Again, in all panels the best linear fit of the classic STI is also 

depicted. The deviations from the optimal fit for artificial and speech-like 

fluctuations are similar as in Fig. 3-8.

The bottom left panel in Fig. 3-10 shows the data points of the multitalker babble 

maskers that were reported by Francart et al. (2011) and Rhebergen et al. (2008). 

For this condition there are few data points with little variance, which poses 

difficulties in the calculation of the optimal fit. This explains the large confidence 

interval. 

The best linear fit was also calculated for seven datapoints using real life non- 

speech maskers (Rhebergen et al., 2008). Examples are music and construction 

noise. These data points are not shown in Fig. 3-10. The 𝑅2 for the best linear fit 

was 0.90 (𝑝 < 0.01). When forcing the slope to unity, the explained variance was 

77% with an intercept of 1.2 dB.

3.5  General discussion

The current study introduced the ESTI in order to deal with one of the primary 

limitations of the classic STI: prediction of speech intelligibility in fluctuating 

noise. Monaural speech intelligibility experiments using fluctuating and stationary 

maskers, with and without reverberation were done on normally hearing subjects 

in order to improve the model. Additionally, existing data from the literature 

were used to test the model. 

It was not the intention of the authors to provide the reader with an elaborate 

comparison of models, a theoretical framework on central auditory processing, F
ig
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dip listening but do cause MM (e.g., Kwon and Turner, 2001; Fogerty et al., 2016). 

In Fig. 3-11 it can be seen that the distribution of local SNRs in SSN and IN8 is 

similar for 𝑇60 = 1.2 s. The possibility of MM will be addressed in the discussion 

of the ESTI-model below. 

A limitation of the current experiments is the monaural presentation of speech 

and noise. Binaural effects play an important role in speech reception in noise 

and reverberation, but were not incorporated in the current model. Van 

Wijngaarden and Drullman (2008) proposed a binaural version of the classic 

STI, which might serve as a basis for a binaural version of the ESTI for fluctuating 

maskers. They used an interaural cross-correlogram for three octave bands as 

a front-end for their STI calculations. Another option to incorporate binaural 

effects is the equalization and cancellation front-end as proposed by 

Beutelmann and Brand (2006) and Beutelmann et al. (2009; 2010).

3.5.2  The ESTI-model
The ESTI-values for SSN in Table 3-3 and Fig. 3-7 are higher than the classic 

STI-values. This is caused by random fluctuations in the SSN. The long-term 

SNR of the speech and noise signal forms the basis of the classic STI. On the 

contrary, the proposed ESTI is defined as the average value of all instantaneous 

STI-values, which are based on the short-term SNR-values. Each short-term 

SNR-value is based on the long-term rms of the speech signal [Eq. (3-1)] and the 

short-term rms of the noise signal [Eq. (3-2)]. 

or an extensive review on different forms of masking. It was the goal to improve 

the classic STI-model based on the data measured in the current study and 

validate this approach using literature data.

3.5.1  Speech intelligibility measurements
As expected, intelligibility improved when gaps were introduced in the noise. 

However, with high reverberation times (𝑇60 = 1.2 s) there is a significant 

disadvantage when listening in fluctuating noise in comparison to the 

stationary masker. This is true for both IN8 and ISTS. 

It was reported earlier that, although the ISTS is unintelligible, some form of IM 

is introduced by the masker because of the speech-like characteristics (Holube  

et al., 2010; Francart et al., 2011). They tested without reverberation and reported 

that the masker can be distracting and might draw unwanted attention from 

the listener. The speech-like characteristics of the ISTS masker lead to higher 

salience than, for instance, a stationary masker, and might therefore lead to 

difficulties in object selection (Shinn-Cunningham, 2008). IM is not directly 

obvious, since the listener also benefits from the spectro-temporal gaps in the 

masker, leading to a net improvement relative to the SSN masker. Francart et al. 

(2011) broke down the factors that contributed to the difference in cSNRs 

between SSN and the ISTS. They suggested a 7.5 dB advantage due to dip 

listening, a 2.1 dB disadvantage due to spectral differences between masker and 

target, and another 4.6 dB disadvantage due to IM. Since the modulation spectra  

of the ISTS and speech signal are similar, MM might also play a role.

In the current study, the detrimental effect of reverberation (𝑇60 = 1.2 s) on 

the cSNR using SSN is 10.6 dB (see Table 3-2). The effects of reverberation on 

the masker itself are negligible, so this difference is primarily the result of 

reverberating the speech signal. On the contrary, the detrimental effect of 

reverberation with the ISTS masker is 19.0 dB. Under the assumption that 

reverberation has little effect on the amount of IM and/or MM caused by the 

ISTS, the extra 8.4 dB disadvantage as a result of reverberation is caused by 

smearing of the spectro-temporal gaps. This value is of similar magnitude as 

the 7.5 dB found by Francart et al. (2011). However, as can be seen in Fig. 3-3 

and Fig. 3-11, modulations are still present in the ISTS after reverberation. It is 

therefore possible that complete smearing of the spectro-temporal gaps would 

lead to an even larger disadvantage. 

Since IN8 does not contain any speech-like modulations or fine structures, it is 

not likely that IM plays a role when using this masker. For 𝑇60 = 1.2 s subjects 

perform 2.9 dB worse with the IN8 masker relative to the SSN masker (𝑝 < 0.05). 

One possibility is that the modulations that are still present in the noise (see Fig. 

3-3) do not provide the listener with any temporal gaps that are deep enough for 

Fig. 3-11: Distribution of local SNRs at the (long-term) cSNR for the different maskers at 

𝑇60 = 1.2 s. The histograms were calculated using a sliding 2 ms time window. A noise 

segment of 10 s was used and a constant speech level was assumed. Bins were 1 dB wide. 

The dashed vertical line represents the long-term cSNR.
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constant. In Fig. 3-12 the 𝑅2-values for SSN as a function of 𝑇𝑤 are also depicted. 

A gradual decrease with increasing window length is seen here. The lower 

𝑅2-value for 𝑇𝑤 = 1 ms is related to the post-masker time 𝑇0 of the forward 

masking model.

𝑇0 was defined by Ludvigsen (1985)as the time after interruption of the masker 

that the 𝑀𝑇 remains constant. After 𝑇0, the exponentially decaying forward 

masking function starts [see Eq. (3-3)]. When longer time windows are used (𝑇𝑤 

= 2 ms), fast fluctuations in the SSN are less prominent due to averaging. 

However, when 𝑇𝑤 = 1 ms the short peaks in the masker are artificially kept at a 

high level during 𝑇0.This decreases model accuracy for increasing values of 𝑇0 

at 𝑇𝑤 = 1 ms.

In the mr-sEPSM by Jørgensen et al. (2013) the signal is segmented using 

rectangular time windows after modulation filtering. They chose a modulation 

frequency dependent window length equal to the inverse of the center 

frequency of the corresponding modulation filter. This means that the window 

lengths ranged between 3.9 and 1000 ms. In the current ESTI-model, time 

The order of calculations has an effect on the eventual (E)STI-value, especially 

when short time windows (< 50 ms) are used, since random fluctuations are not 

averaged out. Using the ESTI, the logarithm of the instantaneous sound energy 

is taken before averaging [see Eqs. (3-7) – (3-11)]. As a consequence, peaks in the 

noise will be less dominant than when the logarithm is taken after averaging, 

as is the case for the classic STI. When peaks in the noise are less dominant, the 

instantaneous SNRs will tend to be higher than the long-term SNR and therefore 

lead to a higher ESTI. However, the primary goal of the ESTI is not to reach 

similarity to the classic STI per se. The objective is rather to predict the cSNR for 

fluctuating and stationary noises.

In the current analyses, the different maskers were characterized based on the 

type of fine structure and types of fluctuations. It should be noted that signal 

types cannot be described fully by these characteristics. Other factors also play 

a role, like the similarities between F0 of masker and target signals, the 

modulation spectrum of the masker, and the intelligibility of the masker.

3.5.2.1  Parameter estimation

In the ESTI-model, the original STI parameters were left intact [according to 

IEC60268-16 (2011)]. As mentioned in section 3.2, the time window length (𝑇𝑤) 

and forward masking time (𝑇𝑓) were introduced to account for the calculations 

over time. The influence of these parameters on the accuracy of the ESTI-model 

was studied. 

The effect of 𝑇𝑓 on the explained variance of the model (𝑅2) using the SSN and 

ISTS maskers was small. These maskers contain no or few abrupt offsets, which 

limits the effect of forward masking (Schlauch et al., 2001; Rhebergen et al., 

2005). An effect of 𝑇𝑓 on the IN8 masker is seen in Fig. 3-12, where the current 

value (𝑇𝑓 = 150 ms) was compared to the value of 200 ms as proposed by 

Ludvigsen (1985).The model results were more accurate using the value of 150 

ms than for lower or higher values. Omitting forward masking (𝑇𝑓 = 0 ms) or 

using higher values for 𝑇𝑓 (e.g., 400 ms) results in a drop in explained variance. 

This is shown in Fig. 3-12 for the default time window length of 2 ms. When 

analyzing the interrupted maskers in the literature data (𝑑𝑎𝑡𝑎𝑠𝑒𝑡02) with 

frequencies between 8 and 128 Hz, the 𝑅2-values are 0.80 and 0.86 for 𝑇𝑓 = 200 

ms and 𝑇𝑓 = 150 ms, respectively. So, the value of 150 ms also leads to better 

model performance for other interruption rates than 8 Hz.

The effect of 𝑇𝑤 on IN8 is also clear from Fig. 3-12. The explained variance 

drops dramatically from 16 ms onward. Again, this is related to the interruption 

frequency. When performing the same analysis for 𝑑𝑎𝑡𝑎𝑠𝑒𝑡02 (not shown), this 

drop is present from 8 ms onward due to the inclusion of higher interruption 

frequencies. The 𝑅2-value for shorter time windows (1, 2, and 4 ms) is relatively 

Fig. 3-12: Explained variance (𝑅2) of the ESTI-model as a function of the time window 

length (𝑇𝑤) when the slope of the linear fit is forced to unity (𝑑𝑎𝑡𝑎𝑠𝑒𝑡01). Values are 

depicted for various forward masking times and two maskers (SSN and IN8). For clarity 

purposes, the 𝑅2-values for 𝑇𝑓 = 0 ms and 𝑇𝑓 =  400 ms were only shown for 𝑇𝑤 =  2 ms. The 

effects are similar for other values of 𝑇𝑤. There was no effect of 𝑇𝑓 on the SSN masker, so 

these data are omitted. 𝑅2 drops to 0.6 when 𝑇𝑓 is increased to 800 ms (not shown). Note 

that not all values of 𝑇𝑤 were used in the optimization phase of the model, but are shown 

here for clarity purposes.
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windows of these lengths negatively affected model accuracy for the interrupted 

noises. In Table B-1 data from maskers with interruption frequencies of 32 and 

64 Hz are presented (Rhebergen et al., 2006). The masking release observed in 

these conditions is 5.6 dB and 2.0 dB. Data from Miller and Licklider (1950) also 

show that listeners still obtain benefit from 100 Hz interrupted noise as 

compared to stationary noise. In these examples, the gaps in the noise are 

equal to 15.6 ms (32 Hz), 7.8 ms (64 Hz), and 5 ms (100 Hz). In the current model, 

long time window lengths as used by Jørgensen et al. (2013) would smear out 

these fast interruptions, which does not allow accurate modeling of the 

observed benefit using interrupted maskers.

3.5.2.2  MM

For some fluctuating maskers that were investigated, envelope similarities 

between speech and masker exist, which might have contributed to MM. 

According to Fogerty et al. (2016), similarities in modulation rates in target and 

masker might limit the effect of masking release. Shinn-Cunningham (2008) 

argues that the more unique and distinct the target signal is, the better the 

masker signal is suppressed due to more robust object selection. Based on this 

statement, maskers with speech-like fluctuations and artificial fine structure 

will be less prone to IM than actual speech maskers like ISTS since no fine 

structure is present. Model discrepancies using modulated maskers without 

fine structure might be mostly related to MM. However, since IM can occur 

when target and masker have similar higher order features (Shinn-Cunning-

ham, 2008), IM cannot be completely ruled out due to the envelope similarities.

An average 3 – 4 dB error of our model was seen for these maskers (top right 

panel in Fig. 3-10). As a first-order approach, this value could be used as a 

correction factor in our model to account for MM. This is in line with the 3 – 4 

dB as suggested by Schubotz et al. (2016), based on the ESII predictions. This 

also corresponds to the 2.9 dB disadvantage of the IN8 masker as compared to 

the SSN masker using high reverberation times, which was mentioned earlier 

(based on 𝑑𝑎𝑡𝑎𝑠𝑒𝑡01). However, the effect of differences and similarities 

between target and masker envelopes must be studied more thoroughly.

3.5.2.3  CE

The current model shows a discrepancy when masker fluctuations are 

speech-like. As previously mentioned, this might be related to MM, but can also 

be due to the effect of context. The dominant modulation frequency in speech 

of 3 – 4 Hz is related to the number of syllables per second (Houtgast et al., 1980). 

Listening in the gaps at higher masker modulation rates (> 6 – 8 Hz) therefore 

gives the listener multiple “looks” per syllable, which increases the likelihood of 

correctly repeating the entire target signal. This is the result of perceptual 

restoration (Warren, 1970; Saija et al., 2014). When the dominant modulation 

frequency of the masker decreases, the listener might only get one look per 

syllable, or none at all, decreasing the possibilities of perceptual restoration. The 

dominant modulation frequency of speech-like maskers is around 3 – 4 Hz, 

which limits the number of looks per syllable and increases the likelihood of 

meaningful parts in the speech being masked.

There is an outlier in the central panel in Fig. 3-10 where intelligibility is 

overestimated by more than 10 dB. Although this concerns noise with artificial 

fluctuations (interrupted noise), the interruption frequency of 4 Hz is close to 

the dominant modulation frequency of running speech (Houtgast et al., 1980). 

How well the listener can use perceptual restoration depends on the context of 

the speech material used (Miller et al., 1951; Boothroyd and Nittrouer, 1988; 

Bronkhorst et al., 1993). Boothroyd and Nittrouer (1988) compared intelligibility 

of high predictable sentences (semantic and syntactic context), low predictable 

sentences (syntactic context), and unpredictable sentences (no context, apart 

from coarticulatory cues). Predictable sentences resulted in better intelligibility. 

Several models exist to account for this effect of context (Boothroyd and 

Nittrouer, 1988; Bronkhorst et al., 1993). Incorporation of these models in the 

ESTI-model might lead to increased model accuracy.

CE and MM are fundamentally different phenomena but play a role under the 

same circumstances: envelope similarities between target and masker. In CE, 

top-down processes play an important role, since the listener can combine 

fragments of speech with contextual information to infer the complete 

utterance. This is related to vocabulary, linguistic skills, and knowledge of the 

subject (Boothroyd and Nittrouer, 1988; Benoit, 1990; Bronkhorst et al., 1993). 

On the other hand, MM might be related to bottom-up processes like masking 

of specific modulation rate channels as described by Dau et al. (1997a). Based on 

the current results, it is not possible to distinguish between the two phenomena.

3.5.2.4  IM

Rosen et al. (2013) tested speech reception using different numbers of talkers  

in a multitalker babble masker. They also used the noise vocoded version of the 

babbles, and the envelope of the babbles to modulate Gaussian noise. For all 

number of talkers, the babble noise was the most effective masker. They found 

that the benefit of the gaps disappeared for four or more talkers, but also stated 

that this strongly depends on the speech material used. Since true babble noise 

remained the most effective masker for 8 and 16 talkers, speech-like characteris-

tics like the fine structure probably affected intelligibility. This is in line with  

the effect of reverberation using the ISTS masker in the current study since 
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spectro-temporal gaps decrease while the fine structure is largely maintained.

The bottom right panel of Fig. 3-10 shows that the intercept of the best linear fit 

of the data deviates 9 – 10 dB from the optimal model prediction for maskers 

with a speech-like fine structure. Envelope similarities between target and 

masker also play a part when using these maskers, so it is likely that MM is 

involved. A 3 – 4 dB correction factor as a first-order approach to deal with MM 

was suggested earlier. The temporal fine structure in ISTS and other speech-like 

maskers therefore lead to an extra systematic error of 5 – 7 dB. Competing 

speech signals produce IM (Durlach et al., 2003; Durlach, 2006; Holube et al., 

2010), so this error can be used as a first-order correction of the ESTI-model for 

IM. The 5 – 7 dB suggested here is similar to the 6 – 7 dB that was mentioned by 

Rhebergen et al. (2005) and Schubotz et al. (2016), based on ESII predictions. 

Again, the differences and similarities between signals must be studied more 

thoroughly in order to confirm or refute this approach.

3.5.2.5  General limitations

Although MM, CE, and IM play an important part in speech perception in 

fluctuating noise, they are currently not part of the ESTI-model. And, as already 

mentioned, there is overlap between the factors discussed above. IM is 

dominant when the masker signal is competing speech, but the envelope 

similarities between masker and target suggest that MM is also involved. These 

effects can be corrected using empirical correction factors of 3 – 4 dB for MM 

and 5 – 7 dB for IM, but more complex interactions may be involved. 

Furthermore, meaningful entities in the speech are more likely to be masked 

when the envelopes of masker and target are similar. Therefore, both IM and MM 

might also interact with CE. How these phenomena influence each other and 

are affected by bottom-up and top-down processes remains open to debate.

The correction factors for IM and MM are currently only valid for 50% speech 

reception since the full psychometric curve is not known. Furthermore, it is a 

first-order approach to deal with maskers with speech-like characteristics.  

In practice, the experimenter who conducts the ESTI measurement can use  

the noise recording to analyze the noise. When the modulation spectrum is 

speech-like, the correction for MM can be applied. If the fine structure is 

speech-like, the correction for IM can be applied. However, this is difficult to 

judge, especially when background noises are not actual speech but only have 

some speech-like characteristics. In these cases, it is not clear which correction 

value needs to be applied. When the interactions between different aspects of 

speech and maskers are better understood, as well as their influence on the 

model, the above corrections can be implemented in an algorithm with a solid 

evidence-based foundation.

Like the classic STI-model, the current ESTI-model only uses modulation 

reduction due to noise and reverberation in order to predict speech reception. 

It is therefore a relatively simple approach for the complex problem of modeling 

speech intelligibility. When encountering higher order problems in fluctuating 

noises like MM, CE, and IM, our model [and other existing models; see Schubotz 

et al. (2016)] fails to predict intelligibility accurately. This is due to the complexity 

of higher auditory and cognitive processes that play a part in speech perception 

and our incomplete understanding thereof. Also, interindividual differences 

that are independent of the hearing threshold get increasingly important in 

complex listening environments. Examples are linguistic skills (Brouwer et al., 

2012), cognitive capabilities (Koelewijn et al., 2012), and working memory 

(Zekveld et al., 2013).

STI measurements are classically done using intensity modulated test signals. 

One of the drawbacks of this method is the reduced measurement accuracy in 

fluctuating background noise. The indirect measurement method [based on 

Schroeder (1981)] overcomes this problem. An impulse response measurement 

is needed to estimate the contribution of reverberation to the MTF. A separate 

recording of the background noise is used to calculate the modulation reduction 

due to noise. Van Schoonhoven et al. (2017) described the conditions under 

which the impulse response can be measured reliably in fluctuating background 

noise in order to calculate the STI. This indirect measurement method can also 

be applied when using the ESTI.

3.6  Conclusions

We presented the ESTI-model as an extension of the classic STI in order to 

predict speech intelligibility in fluctuating noises and reverberant environments. 

The validation data presented in the current paper in combination with the 

indirect measurement method led to a broader applicability of the ESTI in room 

acoustics. Intelligibility in noises with speech-like modulations and, to a lesser 

extent, speech-like fine structure, is still systematically underestimated. This is 

probably caused by a combination of MM, CE, and IM. The next step is to 

investigate the role of these aspects and how to incorporate this into the 

ESTI-model.
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4.2  Introduction

4.2.1  Modelling speech intelligibility
Numerous methods exist to model speech intelligibility. The Articulation Index 

(AI) by Fletcher and Galt (1950) was the first detailed analysis of speech that 

made prediction of intelligibility of nonsense words possible. French and 

Steinberg (1947) related the signal-to-noise ratio (SNR) to the AI using a linear 

relation. The AI was adjusted over the years and is now known as the Speech 

Intelligibility Index (SII) (ANSI-S3.5, 1997). It is a model which is primarily based 

on audibility. Several other models which are based on the SII were developed 

in the following years (e.g., Rhebergen and Versfeld, 2005; Beutelmann and 

Brand, 2006; Meyer and Brand, 2013). 

Another group of models is primarily based on the detection and processing of 

speech modulations. The first model that used this approach was the Speech 

Transmission Index (STI) (e.g., Houtgast and Steeneken, 1973; Steeneken and 

Houtgast, 2002; IEC60268-16, 2011). It can be used to analyze modulation 

reduction in the speech due to noise and/or reverberation to obtain an index 

between 0 and 1. If a transfer function (TF) for a certain speech corpus is known, 

this STI-value can be used to predict intelligibility. Several other models have 

been constructed that use speech modulations to predict intelligibility (e.g., 

Jørgensen et al., 2013; Biberger and Ewert, 2016; Jensen and Taal, 2016). 

The original STI is only valid when the background noise is stationary. For 

applications in fluctuating background noise, Van Schoonhoven et al. (2019) 

introduced the Extended Speech Transmission Index (ESTI). They calculated 

the STI for short time windows as opposed to one long-term STI-value. In order 

to do so, the noise signal was filtered in octave bands, after which the root-

mean-square (rms) values per time window were calculated. These sliding 

rectangular time windows had a length of 11.3 ms for the lowest octave band 

and 2 ms for the highest. Especially when fluctuations in the noise are sudden, 

forward masking plays a role, which was introduced in the ESTI-model based 

on Ludvigsen (1985). The Modulation Transfer Function (MTF) as a result of the 

noise was then calculated for each time window separately. The MTF based on 

the reverberation was derived separately based on Schroeder (1981). The product 

of both MTFs was then used to calculate a STI-value per time window according 

to the original STI method described in IEC60268-16 (2011). Basically, the 

original STI was calculated for each point in time, as if the noise characteristics 

at that moment had a continuous character. These STI-values were averaged to 

calculate the ESTI. The only addition to the original STI, besides the temporal 

approach, was the introduction of forward masking. A detailed description can 

be found in Van Schoonhoven et al. (2019).

4.1  Abstract

The Extended Speech Transmission Index (ESTI) by Van Schoonhoven et al. 

(2019) was used successfully to predict intelligibility of sentences in fluctuating 

background noise. However, prediction accuracy was poor when the modulation 

frequency of the masker was low (< 8 Hz). In the current paper, the ESTI was 

calculated per phoneme to estimate phoneme intelligibility. In the next step, 

the ESTI-model was combined with one of two context models (Boothroyd  

and Nittrouer, 1988; Bronkhorst et al., 1993) in order to improve model 

predictions. This approach was validated using interrupted speech data, after 

which it was used to predict speech intelligibility of words in interrupted noise. 

Model predictions improved using this new method, especially for maskers 

with interruption rates below 5 Hz. Calculating the ESTI at phoneme level 

combined with a context model is therefore a viable option to improve 

prediction accuracy.
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and Nittrouer (1988) and by Bronkhorst et al. (1993). Both models combine  

the intelligibility of elements in isolation with the effect of context to estimate 

the intelligibility of the complete speech token.

Boothroyd and Nittrouer (1988) introduced two constants (𝑘 and 𝑗) to quantify 

the degree of context. The 𝑘-factor represents the increase in channels of 

statistically independent information due to context. Consider presenting a 

phoneme in isolation, or as part of a CVC-word. A CVC-word provides the 

listener with context, which increases the probability of recognizing the 

phoneme. This increased recognition probability is represented by 𝑘. The 

𝑗-factor reflects the number of independent channels of information in a whole 

speech token. When no context is available (e.g., in nonsense CVC-words) the 

listener needs sensory information about each phoneme to recognize the 

complete word. In this case, 𝑗 is approximately equal to the number of elements. 

When context is introduced, the value of 𝑗 decreases.

Another approach to modelling context was introduced by Bronkhorst et al. 

(1993) and was partly based on Boothroyd (1968). They presented a two-stage 

model for recognition of speech. In the first stage, identification is based on 

sensory information alone. The second stage adds the effects of context to 

account for the missed elements in stage one, represented by the context factor 

𝑐. Consider a CVC-word with the final phoneme completely missing. The 

recognition probability of the whole word is the product of the recognition 

probabilities of the first two phonemes, multiplied by the probability that the 

final phoneme can be inferred on the basis of context. The latter probability is 

represented by 𝑐.

The models by Bronkhorst et al. (1993) and Boothroyd and Nittrouer (1988) are 

fundamentally different. The advantage of the approach by Boothroyd and 

Nittrouer is that it is relatively simple and intuitive. Also, this model can be 

applied to existing data relatively easily. One drawback is that the model assumes 

equal recognition probabilities of the individual elements, which decreases its 

applicability in fluctuating background conditions. Also, in CVC-words, the 

vowels are generally more easily recognized than the consonants. Furthermore, 

the 𝑘- and 𝑗-factor both represent the effect of context, but it is not clear how 

they are interrelated. In contrast, the model of Bronkhorst can deal with these 

aspects, but it is more complex and therefore less intuitive.

4.2.3  Purpose of the current study
The goal of the current study was to revise the ESTI-model in order to improve 

its prediction accuracy for speech intelligibility in fluctuating noises at low (< 8 Hz) 

modulation rates. To achieve this, the ESTI was used to estimate intelligibility 

for each speech element instead of for each whole speech token. Next, the 

This extension of the STI-model provided the opportunity to calculate local 

STI-values for speech in fluctuating maskers. The long-term average of these 

local STI-values served as an accurate predictor of the intelligibility of Dutch 

sentences using fluctuating maskers with higher (≥ 8 Hz) modulation frequencies. 

However, at lower modulation frequencies, the probability increased that 

complete meaningful elements were masked during the noise peaks. Under these 

conditions, the ESTI-model failed to accurately predict sentence intelligibility. 

In other words, a prerequisite of the current ESTI-model is that noise modulations 

must be fast enough to guarantee glimpses at all meaningful elements. When 

this condition is not met, the ESTI overestimates intelligibility. 

To deal with this limitation, the current study focused on calculating the 

ESTI-value for each individual element (e.g., each syllable in a sentence, or each 

phoneme in a word), instead of for the whole speech token. A TF was needed to 

convert the ESTI per element to the intelligibility per element. The next step was 

to combine the intelligibility of all elements, at which point the model needed 

to account for elements that were completely masked. To achieve this goal, the 

effect of context was added to the model. This approach was based on the 

method suggested by Bronkhorst et al. (1993) in their Sec. III C, where their 

context model was used to predict intelligibility of interrupted speech, based on 

the perceived fraction of the speech signal. The current study used a comparable 

approach, only now applied to speech in fluctuating noise.

4.2.2  Context effects
Miller et al. (1951) studied speech intelligibility in noise as a function of context. 

The intelligibility of words in meaningful sentences was higher than of words 

in isolation. When one word in a sentence is missed, the number of possible 

answers is restricted as a result of context. Therefore, the chance of correctly 

guessing this missing word increases. They stated that this effect is similar to 

limiting the size of the text vocabulary since a smaller size also restricts the 

number of possible answers. In other words: the entropy of the speech decreases 

with decreasing vocabulary size. 

Boothroyd (1968) stated that the probability of recognizing a speech sound 

within a word depends on intrinsic and contextual factors. Intrinsic factors are 

the acoustical properties of the speech sound and the frequency of occurrence 

of the phoneme class. Contextual factors are related to acoustical influences of 

adjacent speech sounds, second-order phoneme probability, and first-order 

word probability. The author derived the different factors for the recognition of 

consonant-vowel-consonant (CVC) words and related them to experimental 

data. This work has inspired various models regarding context effects in speech. 

The two models that were used in the current study are those by Boothroyd 



78 79

CHAPTER 4 THE CONTEXT-BASED ESTI: MODEL DESIGN

C
H

A
P

T
E

R
 4

with the context model by Boothroyd and Nittrouer (1988). To predict intelligi-

bility of speech in interrupted noise, the ESTI (Van Schoonhoven et al., 2019) 

replaced the STF, but the rest of the approach remained the same. This led to 

several different approaches for the predictions of intelligibility of interrupted 

speech and speech in interrupted noise using both context models. The 

nomenclature used for these approaches is depicted in Table 4-1.

4.3.2.1  Interrupted speech

Bronkhorst et al. (1993) calculated the perceived fraction per phoneme (the STF) 

and linked this to the recognition probability of the isolated phoneme (𝑞𝑒). 

Once this TF was known, the perceived fractions of all elements for various 

phase shifts, DCs, and interruption rates were calculated to predict 𝑞𝑒, which 

was then used as input for the context model to predict the word score 𝑝𝑤. In the 

current study, when predicting intelligibility of interrupted speech using the 

context model by Bronkhorst et al. (cSTF1), the approach was identical to the 

method they described in Sec. III C of Bronkhorst et al. (1993). Fig. 4-1 shows a 

schematic overview of the necessary steps. 

4.3.2.2  Interrupted noise 

The main focus of the current study was to predict speech intelligibility in 

interrupted noise. In Fig. 4-2, data from Miller and Licklider (1950) together with 

model predictions based on Van Schoonhoven et al. (2019) are shown. The 

various symbols represent the observed word scores as shown in Miller and 

Licklider (1950). The dashed-dotted lines in the left panel represent the model 

predictions using the ESTI-model. It is clear that the original ESTI fails at rates 

lower than 5 Hz. 

Predicting speech intelligibility in interrupted noise was done using an approach 

similar to that described for interrupted speech. Instead of calculating the STF 

per phoneme, the ESTI per phoneme was obtained. The major difference 

between the approaches was that interrupted speech is either on or off, 

 intelligibility of all elements was combined using the context model of 

Boothroyd and Nittrouer (1988) or Bronkhorst et al. (1993). This combined approach 

assured that the amount of context determined the probability that a masked 

element was recognized. The existing data by Miller and Licklider (1950) were 

used to evaluate this method, which consists of monosyllabic words presented 

in stationary noise, in interrupted noise and with silent interruptions.

The current approach was based on the approach by Bronkhorst et al. (1993) 

who used the fraction of perceived speech in interrupted words combined with 

their own context model to predict intelligibility. To validate our approach, this 

procedure was replicated. Additionally, the context model by Boothroyd and 

Nittrouer was used in place of the Bronkhorst model to compare the two 

models. The final step was to carry out the main purpose of the current study 

by predicting intelligibility in interrupted noise using the ESTI in combination 

with each of the two context models.

4.3  Materials and methods

4.3.1  Intelligibility data
The data by Miller and Licklider (1950) were used to evaluate the modelling 

approach that was proposed in this study. They used phonetically balanced, 

monosyllabic word lists published by Egan (1948)vi. The speech was distorted 

by regularly spaced silent periods at duty cycles (DCs) of 12.5%, 25%, 50%, and 

75% and regularly spaced interrupted white noise at a DC of 50%. The long-term 

SNRs when using interrupted noise were −15, −6, +3, and +12 dBvii. Scores were 

obtained using normal hearing listeners. All data were read from Figs. 4 and 8 

from Miller and Licklider (1950). See Appendix D for the numerical data that 

were used in the current paper. 

4.3.2  Model overview 
Bronkhorst et al. (1993) modelled recognition of interrupted speech based on 

the speech time fraction (STF) using their own context model. In the current 

study, this method was replicated. In addition, their STF method was combined 

vi Note that in the original study, the speech material by Egan (1948) was used, in which not all words 

had the same structure. The majority of words were CVC-words, but also CV, VC, CCVC, CVCC, 

and CCVCC words were used during testing (where C represents consonant, and V represents 

vowel). However, we simplified the model by assuming that all words have a consonant-vowel-

consonant structure.

vii Note that the long-term SNRs are used in the current paper, where Miller and Licklider (1950) 

reported the SNR during the noise bursts. The SNRs reported here are therefore 3 dB higher than 

those reported in the original study.

Table 4-1: Nomenclature for the various methods used in this paper.

Condition Approach Context model

Interrupted speech
cSTF1 Bronkhorst et al. (1993)

cSTF2 Boothroyd and Nittrouer (1988)

Interrupted noise

cESTI1 Bronkhorst et al. (1993)

cESTI2 Boothroyd and Nittrouer (1988)

ESTI None
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reflects information about the on-/off-time of the noise, as well as information 

about the detrimental effect of the noise itself (and of the reverberation). In Fig. 

4-3, the steps of this approach are shown. 

4.3.3  Context models

4.3.3.1  Boothroyd and Nittrouer model

The context parameters in the Boothroyd and Nittrouer (1988) context model 

are 𝑘 and 𝑗. Their first assumption was that context adds channels of independent 

data, equivalent to those already available from the speech itself. This means 

that the logarithms of error probabilities of contextual and sensory channels 

are additive. In other words, either the sensory or the contextual channel is 

sufficient to recognize the complete speech element:

(4-1)

with 𝑝𝑒 as the probability of recognizing a speech element in context, 𝑞𝑒 as the 

probability of recognizing the same element from sensory information alone, 

and 𝑐𝑒 as the probability of speech recognition from context alone. An element 

can be a phoneme as a part of a word, but also a syllable or word as a part of a 

sentence. 

The authors further assumed that, since both the target speech and the context 

must be perceived under the same conditions (e.g., masking noise),  

is proportional to . Hence, the following relation applies: 

(4-2)

corresponding to a local value of 1 or 0, respectively. The average of these values 

during one phoneme corresponds to the STF per phoneme. In contrast, the 

local ESTI-value can take any value between 0 and 1, depending on the local 

SNR (and potentially on the reverberation). The ESTI per phoneme, therefore, 

Fig. 4-3: Schematic overview of the steps to predict scores in interrupted noise, based on 

the method described by Bronkhorst et al. (1993). The left box shows the steps to estimate 

the TF based on scores in stationary noise. The right box shows the steps to use this TF to 

estimate word scores in all 𝑁 conditions, based on phoneme length, interruption rate (𝐹), 

DC, SNR, and timing of the interruptions (𝜑). Subscript 𝑒 refers to element (phonemes in 

the case of CVC-words) and subscript 𝑤 refers to whole (words in the case of CVC-words). 

The context model either refers to Bronkhorst et al. (1993) (cESTI1) or Boothroyd and 

Nittrouer (1988) (cESTI2).

Fig. 4-2: Interrupted noise data by Miller and Licklider (1950) (symbols), together with the 

model predictions by the original ESTI (Van Schoonhoven et al., 2019). Triangles represent 

interruption rates < 5 Hz and circles represent interruption rates > 5 Hz. The TF was based 

on the data in stationary noise.
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Fig. 4-1: Schematic overview of the steps to predict scores in interrupted speech as 

described by Bronkhorst et al. (1993). The left box shows the steps to estimate the TF 

based on scores in interrupted speech. The right box shows the steps to use this TF to 

estimate word scores in all 𝑁 conditions, based on phoneme length, interruption rate (𝐹), 

DC, and timing of the interruptions (𝜑). Subscript 𝑒 refers to element (phonemes in the 

case of CVC-words) and subscript 𝑤 refers to whole (words in the case of CVC-words). 

The context model either refers to Bronkhorst et al. (1993) (cSTF1) or Boothroyd and 

Nittrouer (1988) (cSTF2).



82 83

CHAPTER 4 THE CONTEXT-BASED ESTI: MODEL DESIGN

C
H

A
P

T
E

R
 4

(4-6)

with

(4-7)

However, this expression is only valid for equal recognition probabilities of 

each element (𝑞𝑒). It is also possible to define different recognition probabilities 

for the separate elements. This can be useful in the case of CVC-words, where 

recognition probability of the vowel is generally higher than the consonants 

under similar conditions (Bosman, 1989; Fogerty, 2014). Besides this, it is also 

possible to define the probability of recognizing 𝑛-𝑖 elements (with 𝑖 = 0…𝑛), 

leading to a set of equations for 𝑝𝑤, 𝑛-𝑖. This can be useful when fitting the model 

since more datapoints are available. The complete set of equations for 

CVC-words is displayed in Appendix C. 

To limit the number of parameters during the fitting of the model using 

CVC-words, the vowel and consonant recognition in isolation are related by 𝜅 

using the following mathematical relation: 

(4-8)

4.3.3.3  Context factors

The context factors were needed in two steps during the current modelling 

approach. First, since the isolated phoneme scores were not reported, 𝑞𝑒 had to 

be estimated based on the reported word scores 𝑝𝑤. This step was necessary to 

estimate the TF. Next, after the TF was used to calculate a value for 𝑞𝑒 based on 

the STF (for interrupted speech) or on the ESTI (for interrupted noise), the final 

word score 𝑝𝑤 was estimated using these context factors. 

No details were available about the monosyllabic words in the study by Miller 

and Licklider (1950) to estimate the context factors for this speech material. 

Therefore, values reported by Bronkhorst et al. (1993) about the Dutch CVC-words 

by Bosman and Smoorenburg (1995) were used. They estimated the 𝑐-factors 

for their own model, and the 𝑗-factor for the context model by Boothroyd and 

Nittrouer (1988). These values are depicted in Table 4-2. Also, the values for 𝜅, 

which links the vowel and consonant scores via Eq. (4-8), are depicted. The 

𝑘-factor was not reported by Bronkhorst. 

According to Eq. (4-2), 𝑘 relates the phoneme score in isolation (𝑞𝑒) to the 

phoneme score in context (𝑝𝑒). Therefore, to estimate 𝑘, information was needed 

about these scores. Since 𝑞𝑒 was not available, the assumption was made that 𝑞𝑒 

and 𝑝𝑒 are equal in nonsense words. This assumption states that it is equally 

likely for a listener to recognize a phoneme in isolation as it is in a nonsense 

with 𝑘 as the proportionality constant which reflects the degree of context. 

Absence of context is represented by 𝑘 = 1 (𝑝𝑒 = 𝑞𝑒 and 𝑐𝑒 = 0) and a higher 𝑘 

signifies an increase in context. 

The second relation by Boothroyd and Nittrouer (1988) described the recognition  

of a whole (e.g., a CVC-word) with respect to the recognition of its elements 

(e.g., the phonemes): 

(4-3)

with 𝑝𝑤 as recognition of a whole and 𝑝𝑒 as the recognition of the elements. 

For nonsense words, the context factor 𝑗 is equal to the number of elements 

(when coarticulation cues are disregarded). When context is added, 𝑗 decreases. 

When a listener only needs one element to recognize the whole speech token, 

this means that 𝑗 = 1.

4.3.3.2  Bronkhorst model

The model by Bronkhorst et al. (1993) is a two-stage model. In the first stage, 

intelligibility depends solely on sensory information. Contextual information is 

added during the second stage. Let 𝑞𝑒 be the probability of correctly identifying 

an element based on sensory information alone, with equal probabilities for 

each element. Then, the probability of correctly identifying a complete speech 

token of 𝑛 elements based on sensory information alone is the product of the 

individual probabilities: , where subscript 0 refers to the number of 

errors made in the sensory stage. 

The second stage introduces 𝑐 as the probability of identifying an element 

based on context alone, where this element was missed in the sensory stage. 

Note that these context probabilities are not coupled to a specific element. For 

example, the probability of missing one element in the sensory stage equals 

. The probability of correctly identifying this missed element in 

the second stage using context equals 𝑐1. Consequently, correct identification 

of the whole speech token in this example using both sensory and contextual 

information equals 

(4-4)

with

(4-5)

These equations can be generalized for any missing number of elements in 

both stages, which leads to Eqs. (4-6) and (4-7) for recognition probability of the 

whole:
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The average phoneme length was 100–250 ms and the average word length 

was 600 ms (see Miller and Licklider (1950), their Fig. 3). Therefore, an 

interruption rate of 10 Hz led to at least one glimpse per phoneme. Assuming 

that the audible distortion as a result of spectral splatter is negligible up to ∼20 

Hz, the average scores at rates of 10 and 22 Hz for each DC were used to estimate  

the TF between STF and 𝑞𝑒, leading to four datapoints. 

The isolated phoneme scores were calculated using the context factors depicted  

in Table 4-2. There are theoretical arguments to either use the context 

parameters obtained in quiet or those obtained in noise for the modelling of 

the interrupted speech data. The main difference is the fact that listeners have 

less access to coarticulation cues when speech is presented near threshold in 

quiet, leading to a smaller effect of context (Bronkhorst et al., 1993). However, 

interrupted speech was presented at levels well above threshold, giving the 

listener sufficient access to these cues. It is unknown how important these cues  

are for correct identification of words under these conditions, in comparison  

to stationary noise. We chose to model interrupted speech perception based  

on the context parameters in quiet. 

4.3.4.2  Interrupted noise 

The original ESTI-model assumes that equal ESTI-values are needed to ensure 

equal intelligibility in stationary and in fluctuating noise. Therefore, the TF 

between the ESTI and 𝑞𝑒 that was needed to predict speech intelligibility in 

interrupted noise, was based on intelligibility in stationary noise. For the 

calculation of the ESTI, properties of the speech and noise had to be known. 

White noise was used as a masker [since this was originally used by Miller and 

Licklider (1950)], multiplied by a square wave in the case of interrupted noise. 

SNRs were based on the long-term rms-values in the frequency range between 

100 and 7000 Hz. For the speech signal, a stationary noise signal was used with 

the long-term average spectrum based on the International Speech Test Signal or 

ISTS (Holube et al., 2010). Note that this is not the true spectrum of the speech 

that was used in the study by Miller and Licklider (1950). 

4.3.5  Prediction of word scores 
To calculate the STF and ESTI per phoneme, information was needed about 

word and phoneme lengths, and about the duration and timing of the peaks 

and gaps of the interruptions. Word lengths were uniformly distributed between 

480 and 720 ms with relative phoneme durations of 22%, 45%, and 33% for the 

initial consonant, vowel, and final consonant, respectively. This choice was 

based on Fig. 3 from Miller and Licklider (1950). 

word. However, in reality, this is not the case, due to coarticulation, and durational 

and linguistic cues. Due to a lack of a better alternative, 𝑝𝑒 in nonsense words 

was used as a proxy for 𝑞𝑒 in meaningful words to estimate 𝑘. Using the 

nonsense words described by Bosman and Smoorenburg (1995), this resulted in  

𝑘 = 1.5 for intelligibility of meaningful words in quiet and 𝑘 = 1.3 for intelligibility  

of meaningful words in stationary noise. Note that Boothroyd and Nittrouer 

(1988) found a value of 1.32 in stationary noise.

4.3.4  Estimation of TF 
The goal of a TF is to translate the amount of speech information available to an 

estimated isolated phoneme score (𝑞𝑒). An exponential function was fitted to 

the data [see Eq. (4-9)] using a linear least squares approach:

(4-9)

Here, 𝑥 can be the STF or the ESTI. Note that this relation is different from the 

relation used by Bronkhorst et al. (1993), where only one model parameter was 

fitted (𝛾 = 1 and 𝛼 = −1). This led to 𝑞𝑒 = 1 at STF = 1 and 𝑞𝑒 > 0 for STF > 0 in their 

paper. Since this is not necessarily the case, the two additional parameters were 

introduced here. 

4.3.4.1  Interrupted speech
Miller and Licklider (1950) stated that for interrupted speech at a rate of 

approximately 10 Hz, the word score was solely dependent on the fraction of 

speech that was available to the listener (speech-time fraction or STF). This is 

visible in Fig. 6 in their paper. This rate ensured a glimpse at each phoneme, 

even for low DCs. At lower interruption rates, complete phonemes were often 

missed, leading to a decrease in speech recognition. At higher rates (especially 

between 100 and 3000 Hz), the spectral splatter created by the sidebands due to 

the abrupt interruptions interfered with speech recognition. 

Table 4-2: Context factors for meaningful words as estimated by Bronkhorst et al. (1993). 

† 𝑐3 is set to 0 since guessing was not allowed. * 𝑘-values were not reported, but were 

estimated based on the data available in Bosman and Smoorenburg (1995).

Quiet Noise

Bronkhorst model 𝑐1 0.25 0.47

𝑐2 0.11 0.20

𝑐3† 0.00 0.00

𝜅 3.9 2.6

Boothroyd and Nittrouer model j 2.7 2.2

𝑘 1.5* 1.3*
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derived from the word scores at interruption rates of 10 and 22 Hz, depicted in 

Fig. 4 of Miller and Licklider (1950). The averaged values per STF at these rates 

were used here. The 𝑞𝑒-values in interrupted noise were derived from the word 

scores in stationary noise as presented by Fig. 9 of Miller and Licklider (1950). 

Since both models apply context differently, the values of 𝑞𝑒 depend on the 

context model that is used. 

The STF in the left panel of Fig. 4-4 is equal to the DC in the corresponding 

measurement condition. The ESTI in the right panel was calculated based on 

the properties of the speech and the stationary noise. 

4.4.2  Model predictions

4.4.2.1  Interrupted speech
In Fig. 4-5, the model predictions for interrupted speech are shown, together 

with the original data from Miller and Licklider (1950). The roll-off at low rates is 

clearly visible in the model predictions using both context models. The data 

and predictions are shown up to an interruption rate of 512 Hz. Starting at 46 Hz 

at the lowest DC, spectral splatter due to the interruptions caused masking of 

the speech itself. This problem was a side effect related to the presentation 

mode. Modelling this aspect was beyond the scope of the current study.

For each word length, the start of the first interruption was varied, so that 

various phase shifts were addressed. For each phase shift, the STF or ESTI of 

each phoneme was calculated. Next, the TF was used to estimate 𝑞𝑒, which was 

then fed to either of the two context models to calculate the predicted word 

scores. All predicted word scores were averaged to calculate the mean predicted 

value 𝑝𝑤. 

4.3.6  Comparison of models
The observed and predicted scores were compared to analyze model accuracy, 

which was quantified by the coefficient of determination (𝑅2). This value was 

calculated by subtracting the ratio of the total sum of squares and the residual 

sum of squares from 1.

4.4  Results

4.4.1  Transfer function
The TF related the available speech information to the isolated phoneme score 

(𝑞𝑒). The available speech information was represented by the STF for interrupted 

speech, or by the ESTI for interrupted noise. The first step was to estimate the 

TFs for both conditions and both context models, resulting in four different 

functions. The parameters in Eq. (4-9) were fitted to the data and the resulting 

values are depicted in Table 4-3. The corresponding TFs are shown in Fig. 4-4. 

The values of 𝑞𝑒 used to fit the TFs were derived from the word scores from 

Miller and Licklider (1950) using both context models. This was done using Eqs. 

(4-2) and (4-3) for the Boothroyd and Nittrouer model, and using Eqs. (4-6) and 

(4-7) for the Bronkhorst model. The 𝑞𝑒-values in interrupted speech were 

Table 4-3: Parameters used in the fit of the TF in Fig. 4-4 using Eq. (4-9). The variable 𝑥 

can be replaced by STF for interrupted speech, and by ESTI for interrupted noise. †The values 

of 𝛼 and 𝛾 by Bronkhorst et al. (1993) were not fitted, but were set to the depicted values.

𝛼 𝛽 𝛾

Interrupted speech

cSTF1 -1.3 -8.9 0.97

cSTF2 -1.1 -6.9 0.92

Bronkhorst et al. (1993) -1† -6.5 1†

Interrupted noise
cESTI1 -1.6 -4.8 0.99

cESTI2 -1.5 -5.4 0.92

Fig. 4-4: TF between STF and 𝑞𝑒 for interrupted speech (left panel) and ESTI and 𝑞𝑒 for 

stationary noise (right panel). The 𝑞𝑒-scores in the left panel were derived from the word 

scores at interruption rates of 10 and 22 Hz using context factors in quiet. The depicted 

datapoints are the averaged values over these rates for each of the four duty cycles. The 

𝑞𝑒-scores in the right panel were derived from word scores in stationary noise at various 

SNRs using context factors in noise. In the left panel, the fit by Bronkhorst et al. (1993) is 

also shown.
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In Fig. 4-7, the observed and predicted word scores are depicted for interrupted 

noise. Prediction accuracy seems reasonably good. The accuracy increased in 

comparison to the original ESTI (see Fig. 4-2). 𝑅2 = 82% for the original ESTI, 

whereas the explained variance increased to 95% and 92% for cESTI1 and cESTI2, 

respectively. Accuracy especially increased for interruption rates lower than 5 

Hz: 𝑅2 = −0.07 for the original ESTIviii and is now 0.78 (cESTI1) and 0.62 (cESTI2). 

viii The used linear model to fit the observed and predicted data is always represented by 𝑦 = 𝑥, and  

not necessarily by the best linear fit 𝑦 = 𝑎𝑥 + 𝑏. When the mean of the data is a better predictor than 

𝑦 = 𝑥, a (counterintuitive) negative value of 𝑅2 is obtained.

4.4.2.2  Interrupted noise

In Fig. 4-6, the model predictions of speech intelligibility in interrupted noise 

are depicted. When comparing these predictions to the original ESTI predictions 

in Fig. 4-2, it appears that predictions at rates > 5 Hz are comparable to those of 

the original ESTI-model. More importantly, as opposed to the original ESTI, the 

drop in scores below 5 Hz was captured by the new model. Where the original 

ESTI showed a gradually increasing predicted intelligibility for decreasing 

interruption rates (see Fig. 4-2), the current model predicted a roll-off with a 

minimum score around 1 Hz. This trend was also visible in the original data. 

Model predictions appear reasonable for higher SNRs (+3 dB and +12 dB), 

especially using cESTI1 (the two upper lines in the left panel of Fig. 4-6). 

However, cESTI2 yielded lower intelligibility estimations at higher SNRs. 

Furthermore, both cESTI1 and cESTI2 underestimated intelligibility at lower 

SNRs ( −15 and −6 dB), especially between modulation rates of 0.5 and 2 Hz.  

The drop in word scores at these rates was the result of complete masking  

of whole phonemes by the noise peaks. The drop in model predictions was 

more dramatic than the drop in actual scores, especially around 1 Hz at lower 

SNRs. Apparently, both models overestimated the detrimental effect of masking 

complete meaningful elements. 

Fig. 4-5: Interrupted speech data by Miller and Licklider (1950) (symbols), together with 

the model predictions using cSTF1 (STF + Bronkhorst context model) and cSTF2 (STF + 

Boothroyd and Nittrouer context model). Triangles represent interruption rates < 5 Hz 

and circles represent interruption rates > 5 Hz.

Fig. 4-6: Interrupted noise data by Miller and Licklider (1950) (symbols), together with the 

model predictions using cESTI1 (ESTI + Bronkhorst context model) and cESTI2 (ESTI + 

Boothroyd and Nittrouer context model). Triangles represent interruption rates < 5 Hz 

and circles represent interruption rates > 5 Hz.
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for interruption rates lower than 5 Hz (compare Fig. 4-7 and the right panel of 

Fig. 4-2). This observation is especially true for low SNRs, where the discrepancy 

between measured data and predictions of the original ESTI-model is largest. 

The explained variance (𝑅2) for 𝐹 < 5 Hz and all SNRs increases from −0.07 to 

0.78 and 0.62 for the cESTI1 and cESTI2, respectively. 

At a broadband SNR of −15 dB, the SNR at the noise peaks is −18 dB. Since intel-

ligibility in stationary noise under these conditions is not possible (Miller and 

Licklider, 1950), we can assume that almost no speech information is available 

to the listener during the on-cycles of the noise. As a consequence, the pattern 

for interrupted noise at low rates is similar to the observed and predicted pattern 

of interrupted speech. After all, during the off-cycles of interrupted speech, 

there is also no speech information available. Furthermore, at low interruption 

rates, the effects of forward masking are negligible. The reason the model 

predictions for interrupted noise and speech at low interruption rates are not 

identical is that the local STI-value at an SNR of −18 dB is still 0.12. Therefore, the 

model still assumes there is some useable speech information available under 

these conditions. 

At higher interruption rates (> 5 Hz), intelligibility in interrupted noise starts to 

deviate drastically from interrupted speech. At these rates, the gaps between 

the noise get shorter and the relative contribution of forward masking starts 

playing a more important role. Eventually, the character of the noise gets more 

and more continuous, with an asymptote at approximately 100–200 Hz (Miller 

and Licklider, 1950; Rhebergen et al., 2006). Above this rate, intelligibility of 

speech masked by stationary and interrupted noise is similar. Since forward 

masking is accounted for by the model, this pattern is also seen in the model 

predictions. 

At SNRs higher than −18 dB, the mechanisms become more complex, since the 

listener now also has access to speech sounds during the on-cycles of the 

noise. The current model assigns a local STI-value at each point in time, which 

would be 1 during the gaps in the noise (optimal intelligibility). For interrupted 

noise at low SNRs and interrupted speech, the local STI-values at the other 

timepoints are close to 0 (no intelligibility possible). However, at higher SNRs, 

the local STI-values during the noise on-cycles will be significantly larger than 

0, leading to a contribution in predicted intelligibility. 

When perceiving speech in interrupted noise at higher SNRs, traditional 

glimpsing is augmented by the perception of higher level speech sounds 

during the on-cycles of the noise. The cESTI-model deals with this combination 

in a straightforward manner. As an example, when a complete phoneme is 

masked by noise at 0 dB, the resulting local STI-value would be roughly 0.5. 

This leads to an isolated phoneme score of around 0.85 [according to Eq. (4-9)]. 

4.5  Discussion

The main goal of the current study was to combine the ESTI (Van Schoonhoven 

et al., 2019) with one of two existing context models (Boothroyd and Nittrouer, 

1988; Bronkhorst et al., 1993) to evaluate the prediction of speech intelligibility 

in interrupted noise. This was done by predicting intelligibility at phoneme 

level using the ESTI, followed by the application of the context models to obtain 

the word scores. By combining the ESTI with a context model, bottom-up 

processes were separated from top-down processes. The ESTI itself represented 

the sensory stage, and solely reflected the quality of the acoustical information 

that was presented to the listener. The resulting local ESTI-values were then 

used as an input for higher order processes, represented by the context model. 

Although still a simplified approach, the assessment of speech quality at 

phoneme-level and the introduction of context better reflected the processing 

of speech information than the original STI and ESTI.

4.5.1  Model performance
The first, general observation is that the addition of both context models leads 

to a more accurate prediction of the data of Miller and Licklider (1950), especially 

Fig. 4-7: Interrupted noise. Predicted versus observed word scores using cESTI1 (ESTI + 

Bronkhorst mode) and cESTI2 (ESTI + Boothroyd and Nittrouer model). Triangles 

represent interruption rates < 5 Hz and circles represent interruption rates > 5 Hz. Stars  

(< 5 Hz) and plus-signs (> 5 Hz) represent predictions by the original ESTI (see also  

Fig. 4-2, right panel).
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glimpsing speech anymore, but rather an alternation between intelligibility in 

quiet and in noise. 

This explanation was tested by using the context factors in quiet for the model 

predictions of speech in interrupted noise (not shown in section 4.4). For cESTI1 

and cEST2, the 𝑅2-values decreased from 0.98 to 0.62 and from 0.98 to 0.65 

respectively for 𝐹𝑖𝑛𝑡 > 5 Hz, when being compared to context factors in noise. 

This is expected behavior since interrupted noise at higher rates behaves more 

like stationary noise. Looking at lower rates (𝐹𝑖𝑛𝑡 < 5 Hz), 𝑅2 increased from 0.62 

to 0.81 for cESTI2 and remained similar for cESTI1 at ∼0.78. A combined 

approach with different degrees of context at lower modulation rates might be 

more accurate, but inevitably increases complexity of the model. 

4.5.2  Model comparison
The main difference between performance of cESTI1 and cESTI2 is that the 

latter functions poorly at higher SNRs at all interruption rates. This becomes 

clear in Fig. 4-6, where cESTI2 underestimates the word scores at SNRs of +3 

and +12 dB. The main cause lies in the TFs, which were based on the data in 

stationary noise. As is visible in the left and right panel of Fig. 4-4, the TFs of 

cESTI1 and cESTI2 are different, especially for higher ESTI-values. The TFs 

plateau at ∼𝛾 at maximum ESTI, which is 0.99 for cESTI1 and 0.92 for cESTI2. 

This is probably caused by the lack of data at higher ESTI-values (> 0.7). When 

forcing 𝛾 to unity when fitting the TFs, the explained variance of cESTI2 

increased to 95% (not shown in section 4.4). 

The primary advantage of cESTI2 is its applicability. By knowing 𝑝𝑒 and 𝑝𝑤, a 

simple fitting procedure leads to the 𝑗-factor. When also testing nonsense 

words, a similar procedure leads to 𝑘. A prerequisite is that the characteristics 

and circumstances (e.g., speaker or SNR) are the same for nonsense and 

meaningful words. 

The theoretical disadvantage of cESTI2 is that one of the primary assumptions 

was violated. Boothroyd and Nittrouer (1988) stated that the target speech and 

the context must be perceived under the same conditions (e.g., continuous 

masking noise). This assumption formed the basis for the introduction of the 

context factor 𝑘 [see Eqs. (4-1) and (4-2)]. For example, when a listener only 

misses the first consonant in a CVC-word, the correct phoneme can be guessed 

based on the perceived vowel and final consonant. In stationary noise, all three 

phonemes are presented under same conditions. However, for speech in 

interrupted noise at lower rates, this is not the case. It is possible that the target 

speech (vowel and final consonant) coincides with a gap in the noise, and the 

context (first consonant) coincides with a noise peak. However, the consequences 

of this violation are limited, since the outcome of both models are similar, 

This predicted intelligibility is the same when 50% of a phoneme is completely 

masked by noise at a very unfavorable SNR of, for instance, −30 dB. The first half 

of the phoneme is then entirely unavailable to the listener, whereas the listener 

has complete access to the second half of the same phoneme, resulting again 

in a local ESTI-value of 0.5 and a predicted intelligibility of 0.85. Consequently, 

the cESTI approach does not distinguish between glimpsing speech or 

energetically masked speech. It is a relatively simple approach, which is not an 

accurate representation of the true mechanisms of speech perception. For 

example, the model assumes that the temporal distribution of information per 

phoneme is uniform, which is not the case (Smits, 2000; Smits et al., 2003). 

However, despite these shortcomings, the cESTI-model predicts the pattern of 

speech intelligibility at all interruption rates and SNRs rather well. 

The model predictions for both interrupted noise and speech show a 

pronounced V-shape around 1 Hz. For interrupted speech, this coincides with 

a dip in the intelligibility scores of the measured data. However, the interrupted 

noise data do not show this V-shape. Shafiro et al. (2018) discussed that (for 

interrupted speech and text) the number of words between two interruptions 

determines performance at low rates, and the number of interruptions per 

word determines performance at high rates. Assuming (for simplicity) equal 

phoneme lengths of 200 ms, there is a guaranteed glimpse at each phoneme 

above 2.5 Hz and a DC of 50% due to an increasing number of interruptions per 

word. Below 1.25 Hz the maximum number of interruptions per word is two, 

and the duration of the silent periods makes it impossible to get a glimpse of 

each phoneme. For lower interruption rates, the probability of perceiving all 

three phonemes increases again, since the number of words per interruption 

increases. Therefore, the total probability of perceiving all three phonemes 

shows a dip at 1.25 Hz, which corresponds to the observed V-shape. This 

appears to be a transition region between the dominance of the number of 

words during each speech fragment and the number of interruptions per word 

as described by Shafiro and colleagues. 

The reason for the inaccuracy of the model around this V-shape in interrupted 

noise might be related to the model choices that were made. Intelligibility of 

interrupted speech was modelled based on context factors in quiet (see Table 

4-2) and a TF based on interrupted speech (left panel of Fig. 4-4). Intelligibility 

in interrupted noise was modelled using data based on stationary noise. For 

higher interruption rates (> 5 Hz), the character of interrupted noise gets more 

and more continuous. However, at lower interruption rates the noise is 

perceived as separate blocks. For example, at a rate of 0.1 Hz the on- and 

off-cycles of the noise are 5 s. It is more logical to model intelligibility under 

these conditions separately for quiet and noise. After all, it is not a question of 
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probably because the results were averaged over all possible phase shifts of the 

interruptions. cESTI1 deals with this issue by using a more elaborate approach, 

since the recognition probabilities of the individual phonemes are treated 

separately. However, with the current speech material, the benefit of this 

approach appears to be limited. 

The chosen approach of the current study also has applications to other speech 

materials. When sentences are considered as whole speech tokens instead of 

words, the syllables can serve as elements. Bronkhorst et al. (1993), Sec. III D, 

already applied their model to sentence recognition. In the same fashion, the 

current approach could theoretically be applied to sentence intelligibility in 

interrupted noise. Due to the heterogeneity of sentence material and the larger 

contribution of context, the current study focused solely on monosyllabic 

words. Besides extrapolation to other speech materials, a next step would be the 

application to more realistic non-stationary noises, like speech-modulated 

noise or babble noise.

4.6  Conclusions

This study evaluated an improved implementation of the Extended Speech 

Transmission Index (ESTI) to estimate intelligibility of monosyllabic words. 

The new model included two key factors. First, the ESTI was calculated per 

phoneme instead of per word. Second, the ESTI was combined with either the 

context model by Boothroyd and Nittrouer (1988) or by Bronkhorst et al. (1993)  

to predict word scores in interrupted noise. Compared to the original ESTI, 

this cESTI-model better predicted the roll-off in speech scores at interruption 

frequencies below 5 Hz. 

For both context models, the performance was similar and the prediction 

accuracy was good. The ESTI combined with the Bronkhorst model was more 

elaborate and theoretically more suitable for the application to interrupted noise 

since the specific behavior of the individual phonemes could be taken into account. 

However, this theoretical benefit was barely reflected in better performance. 

Therefore, we regard the ESTI combined with the simpler Boothroyd and 

Nittrouer model to be a more suitable candidate to model intelligibility in 

non-stationary conditions. A next step would be a more thorough validation of 

the cESTI-model using speech materials with different degrees of context. 
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5.2  Introduction

5.2.1  Context effects
When elements of speech are missed, the listener is often able to fill in these 

missed items on the basis of context. The listener might have a priori information 

about the stimulus set or knowledge of the sentence topic. Also, phonological 

and lexical constraints, and syntactic and semantic rules may play an important 

part in ‘guessing’ missed elements (e.g., Boothroyd, 1968; Boothroyd and Nittrouer, 

1988). The contextual information that is available reduces the number of options 

and therefore increases the probability of correct identification of a missed 

element. 

Several authors have attempted to model the effect of context. The models by 

Boothroyd and Nittrouer (1988) and by Bronkhorst et al. (1993) are probably best 

known. Bronkhorst et al. (1993) developed a two-stage model, with recognition 

of speech elements based solely on sensory information in the first stage.  

In stage two, context was introduced to account for the missed elements in 

stage one. Using a different approach, Boothroyd and Nittrouer (1988) coupled 

the element scores in isolation to the element scores in context. This relation 

represented the increase of channels of statistically independent information 

due to context. Besides this, they coupled the element scores in context to the 

recognition scores of the entire speech token. This relation reflected the 

number of independent channels of information in a whole speech token.  

Van Schoonhoven et al. (2022) used the context model by Boothroyd and 

Nittrouer (1988) in combination with the Extended Speech Transmission Index 

(Van Schoonhoven et al., 2019) to predict word recognition in non-stationary 

background noise. 

5.2.2  cESTI
The original Speech Transmission Index (STI) was based on the relation between 

modulation reduction due to noise and/or reverberation on the one hand, 

and the decrease in speech intelligibility on the (e.g., Houtgast and Steeneken, 

1978; Steeneken and Houtgast, 2002; IEC60268-16, 2011). The extended STI  

or ESTI (Van Schoonhoven et al., 2019) was based on the STI per timeframe, 

and incorporated forward masking and averaging of all local STI-values. This 

version better dealt with fluctuating background noises, but still had difficulties 

in noises with low (< 5 Hz) modulation frequencies. 

To deal with this shortcoming, Van Schoonhoven et al. (2022) developed a 

context-based version of the ESTI: the cESTI. In this model, a transfer function 

was fitted to relate the ESTI to the isolated phoneme score instead of the entire 

word. This approach made the model more robust in case of low-frequency 

5.1  Abstract

The context-based Extended Speech Transmission Index (cESTI) by Van 

Schoonhoven et al. (2022) was successfully used to predict the intelligibility of 

meaningful, monosyllabic words in interrupted noise. However, it is not clear 

how the model behaves when using different degrees of context. In the current 

paper, intelligibility of meaningful and nonsense CVC-words in stationary  

and interrupted noise was measured in fourteen normally hearing adults. 

 Intelligibility of nonsense words in interrupted noise at −18 dB SNR was relatively 

poor, possibly because listeners did not profit from coarticulatory cues as they 

did in stationary noise. With 75% of the total variance explained, the cESTI-model 

performed better than the original ESTI-model (𝑅2 = 27%), especially due to 

better predictions at low interruption rates. However, predictions for meaningful 

word scores were relatively poor, mainly due to remaining inaccuracies at low 

interruption rates and a large effect of forward masking. Adjusting parameters  

of the forward masking function improved the accuracy of the model to a total 

explained variance of 83%, while the predicted power of previous published (c)

ESTI data remained similar.
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of the nonsense words consisted of 187 unique words, distributed over 48 lists, 

based on the 16 lists that showed the least variation in syllable score. See 

appendix A.2 of Bosman (1989) for detailed information. The cumulative 

distributions of phoneme and word lengths of meaningful and nonsense 

words are shown in Fig. 5-1.

Noise was always presented at 65 dB (A). Two types of distortion conditions 

were used. Stationary speech-shaped noise (SSN) was used as the reference 

condition at fixed SNRs of −12, −9, −6, −3, 0 and +3 dB. As a second condition, 

speech was masked by interrupted noise (IN). For this purpose, SSN was 

interrupted by silent periods using a square wave at octave frequencies between  

0.5 Hz and 16 Hz, at a duty cycle of 50%. The long-term SNR was either −18 dB 

or −9 dB. A 4 ms raised-cosine function was applied at the on- and offset of 

each interruption in order to minimize spectral splatter. The timing of the 

interruptions was randomly altered per presentation. See Table 5-1 for a summary 

of the conditions.

5.3.1.3  Procedure

Signals were presented monaurally to the right ear through TDH39P headphones 

via a 24 bit/192 kHz Fireface 800 audio interface (RME, Haimhausen, Germany). 

Subjects were seated in a sound treated booth. Matlab (version 2017b, Mathworks 

masker fluctuations that occurred during the speech token. For example, when 

only two of the three phonemes in a CVC (Consonant-Vowel-Consonant) word 

are audible, the cESTI-model treats these phonemes separately. The probability 

of correctly perceiving these two phonemes will be high, whereas the probability 

of perceiving the third phoneme will be low. When the isolated phoneme scores 

were estimated using the ESTI, the context models of Boothroyd and Nittrouer 

(1988) and of Bronkhorst et al. (1993) were applied to calculate word scores in 

interrupted noise. The ESTI in combination with both context models yielded 

similar results. Therefore, the authors chose the simpler model by Boothroyd 

and Nittrouer as the best addition to the ESTI. This cESTI-model successfully 

predicted the dip for lower interruption frequencies in the data by Miller and 

Licklider (1950) with meaningful monosyllabic words. However, it is unknown 

how this model behaves for speech materials with different degrees of context. 

5.2.3  Purpose of the current study
The purpose of the current study was to evaluate the cESTI-model described by  

Van Schoonhoven et al. (2022). To achieve this, speech intelligibility measurements 

were conducted in normal hearing subjects in stationary and interrupted noise, 

using both meaningful and nonsense CVC-words. The results were analyzed 

and compared to the cESTI predictions.

5.3  Materials and methods

5.3.1  Word intelligibility measurements

5.3.1.1  Subjects

Fourteen normally hearing subjects were recruited (six males and eight females) 

with mean age 25.9 years (range 18–44 years). All were native Dutch speakers 

and no hearing or language problems were reported. All subjects had pure tone 

thresholds of 20 dB HL or better at the octave frequencies between 250 and 

4000 Hz. 

Subjects were recruited via posters. They gave written informed consent and 

received compensation for participating. Approval for the project (NL48348.018.14) 

was given by the Ethical Review Board (METC AMC).

5.3.1.2  Stimuli

The target speech consisted of Dutch meaningful and nonsense CVC-words, 

uttered by a female speaker and presented in separate lists of 12 words. The 

corpus of the meaningful words consisted of 180 unique words, distributed 

over 45 lists created for adults [see appendix B.4 of Bosman (1989)]. The corpus 

Fig. 5-1: Cumulative distribution of phoneme and word lengths of meaningful and 

nonsense words combined
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making sure that the same number of conditions was presented to each subject, 

leading to a total number of test conditions of 35. Subjects were allowed a break 

each 20 minutes. Subjects had to repeat the words they heard. Answering with 

partial words was encouraged. All data was recorded and scoring was done post 

hoc. The conditions are depicted in Table 5-1.

5.3.2  Application of cESTI to CVC-words

5.3.2.1  Model Overview

In Van Schoonhoven et al. (2019) the calculation of the ESTI was described 

elaborately. The basis for this approach was the original STI as described in 

IEC60268-16 (2011) and the ESII-model (Rhebergen et al., 2006). To account for 

forward masking, the model by Ludvigsen (1985) was used. To calculate the 

ESTI, the impulse response and local SNR were used to determine the apparent 

SNR for short, sliding time windows (2 – 11.3 ms). Per time window, a local 

STI-value was calculated according to IEC60268-16 (2011). Eventually, all local 

STI-values were averaged to obtain one ESTI-value.

Van Schoonhoven et al. (2022) proposed to calculate the ESTI per isolated 

phoneme instead of per complete monosyllabic word. A transfer function was 

applied to estimate the intelligibility of each isolated phoneme using the ESTI, 

after which the estimated phoneme scores were combined to predict the word 

scores. In this step, context was added to the model to account for the ‘guessing’ 

of elements that were missed. At this point, the ESTI-model was combined 

with the context model by Boothroyd and Nittrouer (1988). 

The context model by Boothroyd and Nittrouer (1988) uses parameters 𝑘 and 𝑗. 
The 𝑘-factor relates the phoneme score in isolation (𝑞𝑒) to the phoneme score 

in context (𝑝𝑒). See also Eq. (5-1). When 𝑞𝑒 and 𝑝𝑒 are equal (no context), 𝑘 = 1. 

The 𝑗-factor relates the phoneme score in context to the word score (𝑝𝑤) and is 

shown in Eq. (5-2). In CVC-words, when 𝑗 = 3, information is needed about each 

phoneme to correctly identify the complete word. No context is available in this 

case. In summary, the cESTI-model calculates the ESTI per phoneme to 

estimate 𝑞𝑒, and uses 𝑘 and 𝑗 to estimate the word scores 𝑝𝑤. 

5.3.2.2  Estimation of Context Factors

For the current CVC speech material, phoneme scores (𝑝𝑒) were available for 

meaningful and nonsense words. This means that 𝑗 and 𝑘 were estimated 

using the following relations:

(5-1)

Inc., USA) was used for presentation of the sounds and for analysis of the results. 

A sampling frequency of 44.1 kHz and a bit depth of 16 bits/sample were used 

for all signals.

The conditions with distorting noise (SSN and IN) were presented in separate 

blocks. The average total word length was 633 ms (see Fig. 5-1). The 4, 8 and 16 

Hz interruptions have a relatively continuous character, since the listener had 

access to parts of all three phonemes (assuming equal phoneme lengths as a 

first order approximation). The probability of perceiving at least part of all 

phonemes for the lower interruption rates was approximately 40%, 30% and 70% 

for 0.5 Hz, 1 Hz and 2 Hz respectively. Due to this difference in continuity, the 

lower and higher interruption rates were presented in different blocks, leading 

to three main blocks: 𝑆𝑆𝑁, 𝐼𝑁𝑙𝑜𝑤 and 𝐼𝑁ℎ𝑖𝑔ℎ. The order of these blocks was 

randomly varied between subjects. 

Within each block, the speech type (meaningful or nonsense) was presented in 

subblocks with randomly varying order between blocks. The presentation 

modes (SNR and/or interruption properties) were randomly varied within each 

subblock. The order of the word lists was pseudorandomized (not completely 

randomized, since words occurred in more than one list). Each word list was 

presented once per subject. 

The total experiment was preceded by one list of meaningful words and one list 

of nonsense words in a random condition. Each of the three main blocks (𝑆𝑆𝑁, 

𝐼𝑁𝑙𝑜𝑤 and 𝐼𝑁ℎ𝑖𝑔ℎ) was preceded by a practice list of either nonsense or meaningful 

words. The first word of a list was always used as practice. Subjects had a priori 

knowledge about the type of words and about the condition.

To reduce the test time, not all conditions were presented to all subjects. The SNRs 

of −12 dB and +3 in stationary noise were presented to seven of the fourteen 

subjects. These conditions were pseudo randomly distributed over all subjects, 

Table 5-1: All conditions, including number of subjects per condition (N). These 

conditions apply to the presentation of both meaningful and nonsense words. 

Interruptions of speech and noise were spaced regularly at octave frequencies (so at 0.5, 

1, 2, 4, 8 and 16 Hz). See main text for further details.

SNR N 𝐹 (Hz) -18 dB SNR -9 dB SNR

SSN

-12 dB 7

IN

0.5 14 14

-9 dB 14 1 14 14

-6 dB 14 2 14 14

-3 dB 14 4 14 14

0 dB 14 8 14 14

+3 dB 7 16 14 14
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5.4  Results

5.4.1  Speech intelligibility measurements

5.4.1.1  Stationary noise

In Fig. 5-2 the results for meaningful and nonsense words are presented with 

SSN used as a masker. Word scores (𝑝𝑤) are depicted in the left panel and 

phoneme scores (𝑝𝑒) are depicted in the right panel. At −12 dB, there is no 

difference between scores in nonsense and meaningful words. In poor 

conditions, the access to contextual information is very limited, leading to no 

advantage due to context.

5.4.1.2  Interrupted noise

In Fig. 5-3 the results are presented for meaningful and nonsense words in 

interrupted noise. When performing multivariate ANOVA with type (meaningful 

or nonsense words), 𝐹𝑖𝑛𝑡 and 𝑆𝑁𝑅 as grouping variables, the scores at 8 Hz 

significantly differ from those at 1 Hz (𝑝 < 0.001) and at 0.5 Hz (𝑝 < 0.05). 

Furthermore, the scores at 4 Hz are significantly higher than the scores at 1 Hz 

(𝑝 < 0.05). No other significant effects were found. 

In Fig. 5-3, a typical dip around 1 Hz can be seen in nonsense word scores at −9 

dB SNR. This pattern is also visible in the data by Miller and Licklider (1950) for 

(5-2)

Because 𝑞𝑒 was not available, the value of 𝑝𝑒 in nonsense words was used as a 

proxy. Note that coarticulation cues were disregarded, possibly overestimating 

the value of 𝑞𝑒 and underestimating 𝑘. Also, by definition this choice led to 𝑘 = 1 

for nonsense words.

5.3.2.3  Estimation of Transfer Function

The transfer function related the ESTI to the isolated phoneme score. To apply 

the model to non-stationary maskers, the transfer function was based on the 

results in stationary noise (SSN). For CVC-words in SSN, the isolated phoneme 

score 𝑞𝑒 was estimated based on the values of 𝑝𝑒 when 𝑘 was known. Because 

the ESTI for each condition was also known, a transfer function between ESTI 

and 𝑞𝑒 was calculated. As in Van Schoonhoven et al. (2022), the transfer function 

was of the form:

(5-3)

5.3.2.4  Prediction of Intelligibility

To predict word intelligibility in interrupted noise, the ESTI was calculated for 

each phoneme in the utterance. An average word length of 633 ms (+/– 116) was 

used and an average duration of 161 ms (+/– 74 ms), 201 ms (+/– 63) and 271 ms 

(+/– 72 ms) for the initial consonant, vowel and final consonant, respectively 

(see Fig. 5-1).

The start of the speech token relative to the noise was varied, resulting in 

different phase shifts. For each phase shift, the ESTI was calculated for all 

phonemes in the speech token. Using the transfer function, values of 𝑞𝑒 were 

calculated based on the ESTI-value per phoneme. The context model was then 

applied to estimate intelligibility of the whole speech token based on the values 

of 𝑞𝑒. The calculation is depicted in Eq. (5-4), where 𝑀 represents the number of 

phonemes per word (3 in this case).

(5-4)

Fig. 5-2: Word and phoneme scores of meaningful and nonsense CVCs in stationary 

noise. Vertical bars represent standard deviations. Dashed lines represent the best fit of a 

linear regression model using a binomial distribution.
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5.4.2.2  Transfer function

Based on the phoneme score 𝑝𝑒 in stationary noise and the values for 𝑘, the 

isolated phoneme score 𝑞𝑒 was calculated. Also, per phoneme the local 

ESTI-value was determined. These results were used to fit the transfer function 

according to Eq. (5-3). The data and the fit are depicted in Fig. 5-4. Here, the fit 

from van Van Schoonhoven et al. (2022) is also shown. In Table 5-3 the 

corresponding parameter values are displayed. 

monosyllabic words in interrupted speech and noise, and Shafiro et al. (2018) 

for interrupted speech. However, in the other conditions of the current study 

this pattern is not so obvious. In the left panel of Fig. 5-3 a plateau around 1 Hz 

is visible at −18 dB, but not at −9 dB. Nonsense word scores at −18 dB SNR also 

do not show this pattern. In the latter condition, intelligibility is more or less the 

same for interruption frequencies between 0.5 and 16 Hz. 

5.4.2  Application of cESTI to CVC-words

5.4.2.1  Context factors

Using the results in SSN, the context factors for CVC-words were calculated 

based on Eqs. (5-1) and (5-2). This resulted in values of 𝑘 = 1.4 and 𝑗 = 2.2 in 

meaningful words, and 𝑘 = 1 (by definition) and 𝑗 = 2.7 in nonsense words. 

Bronkhorst et al. (1993) reported 𝑗-values for the same speech material of 2.2 

and 2.8 for meaningful and nonsense words respectively. 

Fig. 5-3: Word scores of meaningful and nonsense CVCs in interrupted noise at rates 

between 0.5 and 16 Hz, long-term SNRs of −9 and −18 dB and a duty cycle of 50%. Vertical 

bars represent standard deviations. The open symbols represent the theoretical scores at 

infinitely low and high interruption frequencies, based on the (estimated) scores in 

stationary noise at −21 dB and −12 dB

Fig. 5-4: Transfer function which relates the local ESTI-value to the isolated phoneme 

score (𝑞𝑒). Both data for meaningful and nonsense words are depicted. See Table 5-3 for 

details of the fit. The relation found by Van Schoonhoven et al. (2022) is also shown.
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Table 5-2: Context-values found in the current study and those reported by Bronkhorst 

et al. (1993) [based on the data from Bosman and Smoorenburg (1995)]

Current study Bronkhorst et al. (1993)

Meaningful words
𝑘 1.4 1.3

𝑗 2.2 2.2

Nonsense words
𝑘 1.0 1.0

𝑗 2.7 2.8

Table 5-3: Parameters according to Eq (5-3). The data is visualized in Fig. 5-4.

𝛼 𝛽 𝛾

cESTI (current) -1.3 -2.6 1.17

cESTI Van Schoonhoven et al. (2022) -1.5 -5.4 0.92
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The ellipses in Fig. 5-6 show the confidence intervals of meaningful and 

nonsense words separately. The longitudinal axis of both ellipses runs parallel 

to the main diagonal (deviation of the angle < 1°). The distance between the 

diagonal corresponding to the nonsense words and the main diagonal is < 1%. 

On the contrary, meaningful word scores are underestimated by 6.6% on 

average.

5.5  Discussion

The main goal of the current study was to evaluate the cESTI-model (Van 

Schoonhoven et al., 2022) using meaningful and nonsense CVC-words in 

interrupted noise. Word intelligibility in stationary and interrupted noise was 

measured using normally hearing subjects. After estimating the context factors 

and a single transfer function based on the word scores in stationary noise, the 

cESTI-model was applied to the results in interrupted noise at two SNRs and six 

interruption rates. The explained variance of the model for meaningful and 

nonsense data combined was 75% (based on the line 𝑦 = 𝑥). This prediction 

accuracy can largely be attributed to the high precision when modelling 

nonsense words. The values for 𝑅2 for meaningful and nonsense words are 38% 

and 69% respectively. 

The fit shows some similarities to the fit found by Van Schoonhoven et al. 

(2022). However, the main difference is the behavior at higher (> 0.6) ESTI-values. 

Where the 2022 TF plateaus around 0.9, the current TF reaches its maximum of 

1 at an ESTI below 0.8. Unfortunately, both transfer functions were based on 

ESTI-values lower than 0.7. Therefore, the data at lower ESTI-values determined 

the curvature of the fit, influencing the behavior at high ESTI-values. Intuitively, 

it might make sense that optimal conditions (ESTI = 1) lead to maximum intel-

ligibility of 100%. 

5.4.2.3  Model predictions in interrupted noise

After the context values and transfer function were estimated, the results in 

interrupted noise were modelled. Results are depicted in Fig. 5-5. It appears that 

predictions for nonsense words show the best correspondence to the observed 

scores. When looking at all data combined, an 𝑅2 (based on 𝑦 = 𝑥) of 75% was 

found (see Fig. 5-6), compared to 𝑅2 = 27% for the original ESTI-model (Van 

Schoonhoven et al., 2022).

Fig. 5-5: Word scores in interrupted noise as a function of interrupted rates for meaningful 

words (left panel) and nonsense words (right panel). The different symbols represent the 

different SNRs. The dash-dot lines represent the cESTI-model predictions with default 

parameters. The thin dotted lines represent model predictions with an adjusted forward 

masking parameter 𝑇0, set to 0.15 ms instead of 1 ms. See section 5.5 for more details.

Fig. 5-6: Relation between observed and predicted word scores using the cESTI mode 

(with default parameter values). The total 𝑅2 is 75%. 𝑅2 for meaningful words equals 38%, 

𝑅2 for nonsense words equals 69%. Ellipses show the 95% confidence intervals of the data 

concerning meaningful (MF) and nonsense (NS) words.
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5.5.1.2  Nonsense words

Both the typical plateau around 1 Hz and the optimum around 8 Hz are not 

clear when observing the nonsense word scores at −18 dB SNR (see Fig. 5-3 and 

Fig. 5-5). The nonsense word scores are relatively constant between 0.5 and 16 

Hz at 25% to 35%. So, why do the listeners barely benefit from more frequent 

gaps in the noise like they do in meaningful words? One explanation might be 

the tendency to give up quicker in difficult circumstances, especially when 

listening to nonsense words. However, when analyzing this tendency to give 

up, it does not occur at rates above 1 Hz. At these rates, listeners have access to 

multiple phonemes and always guess when phonemes are missed, both when 

listening to nonsense and meaningful words. Another explanation might be 

the bias towards answering with meaningful words when listening to nonsense 

words (Bosman, 1989). Sense bias can be defined as the number of meaningful 

answers relative to the total number of incorrect answers when presenting 

nonsense words. In stationary noise, this amounts to 46%. As a comparison, 

the nonsense bias when presenting meaningful words is 10%, which mostly 

occurs at low rates, since often one or two phonemes are completely masked 

and the listener answers only what was intelligible. The sense bias in interrupted 

noise is 48% for both −18 dB SNR and −9 dB SNR and does therefore not differ 

from the value in stationary noise. Also, there is no relation between sense bias 

and interruption rate. Note that Bosman (1989) reported a sense bias of 48% for 

young normally hearing subjects in stationary noise. 

Another possible explanation of the pattern in nonsense words at −18 dB might 

be the relation between phoneme score and word score. As shown in Eq. (5-2), 

𝑗 can be used to express this relation. However, note that in this case 𝑗 is not a 

measure of context per se, but more a way to express how high the phoneme 

score should be to reach a certain word score. A higher value of 𝑗 means that a 

higher phoneme score is needed and vice versa. At infinitely low interruption 

rates, both phoneme score and word score are 50% at −18 dB, represented by 𝑗 = 

1. This immediately emphasizes the statement that in this case 𝑗 does not 

represent context, since 𝑗 = 1 normally represents maximum context. 

The relation between phoneme and word score as a function of interruption 

rate is depicted in Fig. 5-7. As expected, the value of 𝑗 is low for low rates, after 

which it increases until a rate of 2 Hz. Apparently, although a dip in word score 

is typically seen around 1 Hz, listeners need the most phonemic information 

around 2 Hz in order to reach a certain word score. Above 2 Hz, 𝑗 drops again. 

Obviously, 𝑗 is lower for meaningful words than for nonsense words due to the 

difference in context of the speech material. At 4 Hz 𝑗 reaches a stable value for 

meaningful words at around 95% of the stationary noise value. On the contrary, 

the 𝑗-value for nonsense words never drops below 110% of the stationary noise 

5.5.1  Speech intelligibility measurements

5.5.1.1  General

During the noise peaks of the −18 and −9 dB SNR conditions in interrupted 

noise, the local SNRs are −21 dB and −12 dB respectively. In the current study, 

word scores in stationary noise were not measured at −21 dB. However, Bosman 

and Smoorenburg (1995) did test at this SNR using the same speech material 

(see their Fig. 3a) and found a word score of 0% and a phoneme score of 1% for 

both meaningful and nonsense words. The current assumption is therefore 

that intelligibility in interrupted noise is virtually impossible during the noise 

peaks at a long-term SNR of −18 dB. Note that the STI-value at an SNR of −21 dB 

is 0, which is in line with this statement. 

Therefore, in interrupted noise at −18 dB, the listener only had access to speech 

information during the gaps in the noise, which is similar for interrupted 

speech. At infinitely low interruption rates, there is an asymptote at 50% for both 

word and phoneme recognition. At higher rates, the phoneme score gradually 

increases, since the probability of perceiving one or more (partial) phonemes 

also increases. However, the word score first typically decreases at higher rates 

in both interrupted noise and speech, with a dip at 1 Hz for meaningful words 

(e.g., Miller and Licklider, 1950; Shafiro et al., 2018). Looking at the current results, 

the dip is most significant for nonsense words at −9 dB. In the meaningful word 

data, the dip is not obvious, but there is a plateau visible around 1 Hz at −18 dB. 

At these rates, the probability of perceiving all three (partial) phonemes is at its 

lowest point. Around 1 Hz the length of each noise block (and of the glimpses 

between the noise blocks) is approximately equal to the length of two phonemes, 

which means that the listener has access to all three phonemes only for about 25% 

of the time (assuming equal phoneme lengths). At lower rates, the probability that 

three (partial) phonemes fall between two noise blocks increases. At higher rates, 

especially when the noise blocks are shorter than one phoneme, the probability 

to get access to all phonemes through multiple glimpses also increases, leading 

to a higher word score.

So, increasing the rate beyond ∼1 Hz results in more glimpses per word, but at 

the cost of less speech information per glimpse. Normally, the benefit of more 

glimpses outweighs the shorter duration, hence the increased intelligibility. 

The listener profits from more frequent glimpses to reconstruct the utterance 

(Miller and Licklider, 1950; Cooke, 2006). Eventually, this effect is counteracted 

by forward masking, directly after the rapid offset of a noise block. Based on the 

data of Miller and Licklider (1950) the effect of forward masking increases at 

rates above 2 Hz, since the scores for interrupted speech and interrupted noise 

scores start to deviate. Optimal intelligibility in interrupted noise lies around a rate of 

8 Hz (e.g., Rhebergen et al., 2006), also depending on the nature of the speech. 
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cues to restore the speech. Semantic cues appear to be more robust under these 

conditions, causing intelligibility of meaningful words to be in line with stationary 

noise. 

Note that in the situation above, the value of 𝑗 approaches infinity when one of 

the three phonemes is always masked, the other two phonemes are fully 

intelligible and context is low. After all, the word score will be close to 0%, but the 

phoneme score will be around 67%. According to Eq. (5-2), the logarithm of a 

very small value in the numerator leads to a large value for 𝑗. This might explain 

the peak at 2 Hz. But at higher rates there is always at least part of a phoneme 

accessible to the listener, which makes it less likely that this causes the higher 

value of 𝑗. Furthermore, the 𝑗-values for nonsense words are generally based on 

lower word scores than those for meaningful words. This might introduce a 

bias in the data described above. However, according to Boothroyd and 

Nittrouer (1988) and Smits and Zekveld (2021) 𝑗 tends to increase with increasing 

word score, which is opposite from the pattern seen in Fig. 5-7. 

5.5.1.3  Meaningful words

In meaningful words, a plateau around 1 Hz is visible at −18 dB SNR, but not at 

−9 dB SNR (see Fig. 5-3 and Fig. 5-5). In interrupted noise, the listener must 

combine information during the glimpses and during the noise fragments. 

The ability to reconstruct the complete word depends on the amount of context 

in the speech material and/or on speech information present during the noise 

peaks. At −9 dB there appears to be just enough information available during 

the noise blocks that can be combined with the speech information during the 

glimpses in order to make use of context effectively. 

5.5.2  Model predictions
Prediction accuracy is higher for nonsense words than for meaningful words. 

Two observations regarding the model predictions are 1) the underestimation 

of meaningful word scores and 2) the rapid drop off at high interruption rates (8 

and 16 Hz) at −18 dB. 

5.5.2.1  Context factors

The underestimation of meaningful word scores is especially true for 0.5, 1 and 

2 Hz. When noise gets a more continuous character at higher rates, model 

predictions are more accurate. Van Schoonhoven et al. (2022) observed a 

similar pattern and successfully tested the hypothesis that modelling using the 

transfer function and context factors obtained in quiet was more appropriate 

for lower interruption rates. The underlying motivation was the fact that 

interrupted noise at low rates does not have a continuous character anymore. 

value. In other words, at higher rates (≥ 4 Hz) listeners need about the same 

phoneme score when listening to meaningful words in interrupted noise  

as they would in stationary noise to reach the same word score. However, to 

reach the same nonsense word score, they need a higher phoneme score in 

interrupted noise than they would in stationary noise. An explanation might  

be that glimpsing speech in interrupted noise is relatively hard in the absence 

of context. Listeners might not be able to make use of coarticulatory cues as 

efficiently as they do in stationary noise. 

Glimpsing speech in interrupted noise heavily depends on top-down restoration  

of the missed elements using syntactic, semantic and lexical constraints, 

expectations, and context (e.g., Warren, 1970; Verschuure and Brocaar, 1983; 

Baskent et al., 2010). In nonsense words, the listener need to rely more on 

coarticulatory, allophonic and durational cues to extract the missing phoneme 

(Bronkhorst et al., 1993), since other contextual information is limited. Various 

studies state that top-down processes fail to improve speech intelligibility when  

the bottom-up signal is degraded beyond a certain point (Baskent, 2012; Patro 

and Mendel, 2016). The degradations in these studies are mostly in the spectral 

domain. A possible explanation of the current results is that, in interrupted noise, 

degradations to the signal cause the listeners to fail to use these coarticulatory 

Fig. 5-7: Relation between phoneme and word scores in interrupted noise as a function 

of interruption rate, expressed by 𝑗. Note that 𝑗 does not reflect context per se, but only the 

relation between phoneme and word score. The values for meaningful and nonsense 

words are depicted. As a reference, the values of 𝑗 for SSN are also shown
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(5-5)

for 

Here, 𝑁 is the noise level, 𝑀𝑇 is the masked threshold, 𝑡𝑝𝑚 is the post-masker 

duration, 𝑇0 is the intersection point (set at 1 ms), 𝑇𝑓 is the recovery time (set at 

150 ms) and 𝐻𝑇𝐿 is the hearing threshold. After a noise peak, 𝑀𝑇 remains at 𝑁 

during 𝑇0. Between 𝑇0 and 𝑇𝑓, 𝑀𝑇 decreases exponentially to 𝐻𝑇𝐿, after which it 

remains at that level. The post-masker duration where the masked threshold 

decreases with 20 dB relative to the initial value more than doubles for the 

different noise values (3.0 ms for 108 dB versus 7.5 ms for 68 dB). Consequently, 

at a given SNR the predicted influence of forward masking on speech intelligi-

bility is larger for lower noise levels.

Ludvigsen (1985) based his model on experiments on four normally hearing 

and 13 sensorineurally hearing-impaired subjects. Masked thresholds for 1.5 s 

long pure tones in octave band filtered white noise were compared to masked 

thresholds in interrupted octave band filtered white noise. The interruption rate 

was 14.3 Hz with a 50% duty cycle, resulting in noise bursts and gaps of 35 ms 

long. Two masker levels were used. In order to fit the data to Eq. (5-5), the author 

set 𝑇𝑓 to 200 ms, based on earlier results by Plomp (1964) and Kidd and Feth 

(1981), 𝑇0 to 3 ms and 𝑡𝑝𝑚 to 35 ms. The latter value corresponds to the length of 

gaps in the noise. Using these values, the experimental data was predicted 

reasonably well. Although not described in the original publication, the value 

for 𝑇0 is probably taken from Plomp (1964), where the minimal detectable gap 

between two noise pulses was investigated as a function of sensation level. 

When the sensation level of both pulses was the same, the just noticeable gap 

was optimally between 2 and 3 ms. 

Jesteadt et al. (1982) proposed another forward masking model, based on a 

different type of experiment. They presented a pure tone masker of 296 ms, 

followed by a pure tone probe signal of 24 ms of the same frequency with a 

varying delay. Thresholds of the probe tone were obtained in four normally 

hearing subjects. The delays between masker and probe ranged from 5 to 40 

ms and were measured between the 0-voltage points of the masker offset and 

signal onset ramp. Masker levels depended on frequency and ranged between 

20 and 90 dB (SPL). They fitted the parameters 𝑎, 𝑏 and 𝑐 separately for five 

octave frequencies to calculate the amount of masking (𝑀):

For example, at 0.5 Hz, the listener perceives separate noise blocks of 1 second, 

separated by silent intervals of 1 second. This is more a matter of combining 

intelligibility in noise with intelligibility in quiet, and not so much of glimpsing 

speech. 

When using the transfer function and the context factors from Van Schoonhoven 

et al. (2022) for interrupted speech, an improvement in model accuracy is seen 

for rates below 4 Hz. In the current study, when using the new context factors 

only at the rates of 4 Hz and higher, 𝑅2 drops from 75% to 70% for meaningful 

and nonsense words combined. This decreased accuracy is expected, since 

interrupted noise at higher rates behaves more like continuous noise. However, 

applying the context factors only to rates below 4 Hz 𝑅2 increases from 0.68 to 

0.85 for nonsense and meaningful words combined. This increase can largely 

be attributed to the higher explained variance for meaningful words at low 

rates: 73% versus 11%. This confirms the earlier hypothesis that the transfer 

function and context factors derived in speech in quiet and in interrupted 

speech are more suitable at lower interruption rates.

5.5.2.2  Forward masking

Another aspect is the sharp drop off that the model predicts at 8 and 16 Hz at −18 

dB in both meaningful and nonsense words. It appears that the peak word 

score of the model (at 4 Hz) does not correspond to the peak word score of the 

data. This pattern was not observed by Van Schoonhoven et al. (2022) where the 

data by Miller and Licklider (1950) was modelled. In their Fig. 6 it is clear that the 

model predictions closely follow the observed data and that the drop off occurs 

above 20 Hz. As mentioned earlier, forward masking counteracts the benefit of 

more glimpses per word at higher rates. So, either the model underestimates 

the benefit of more glimpses per word, or the effect of forward masking is 

stronger in the model predictions than in the observed data. 

One important difference between the intelligibility data of Miller and Licklider 

(1950) and the current study is the presentation level. In their study, the speech 

level was held constant at 90 dB (SPL) and the noise level was varied based on 

the desired SNR. For a long-term SNR of −15 dB, this means that the noise peaks 

were as high as 108 dB (SPL). In the current study, the noise level was fixed at 65 

dB (A), which means that the noise peaks were at 68 dB (A). This 40 dB difference 

influences the forward masking function. 

The forward masking as incorporated in the ESTI-model by Van Schoonhoven 

et al. (2019) was defined by Ludvigsen (1985) as:
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So, what is the most suitable forward masking function parameter to adjust, in 

order to increase the model accuracy? The chosen value of 𝑇𝑓 = 150 ms was 

based on speech intelligibility data by Van Schoonhoven et al. (2019) and, 

although it slightly deviates from the value of 200 ms suggested by Ludvigsen 

(1985), it falls well within the normal range of 100 – 200 ms (Moore, 2007). When 

varying 𝑇𝑓 to optimize the model predictions, values below 100 ms are found. 

Since this deviates too much from values normally found in the literature, the 

authors chose to keep 𝑇𝑓 fixed, On the other hand, based on the above 

discussion, the original value of 1 ms for 𝑇0 might not be optimal. 

In order to evaluate the influence of 𝑇0 on the model predictions, this parameter 

was varied between 0.01 and 3 ms. In Table 5-4, the explained variance is 

displayed as a function of 𝑇0. Both data from the current study and from Van 

Schoonhoven et al. (2022) are displayed here. Word scores from the current 

study appear to be predicted better by the cESTI-model when 𝑇0 is smaller, with 

an optimum between 0.05 and 0.3 ms. However, 𝑅2 for the 2022 data slightly 

decreases. At 𝑇0 = 0.15 ms, the current data appears to be optimally predicted. 

The thin, dotted lines in Fig. 5-5 show the model predictions with 𝑇0 = 0.15 ms. 

The increase in meaningful word score prediction accuracy from 38% to 60% is 

largest at this value. A slight decrease from 𝑅2 = 0.92 to 0.89 is seen for the 2022 

data. Also, a decrease in model accuracy for the data by Van Schoonhoven et al. 

(2019) using Dutch sentence material is seen. This is particularly true for maskers 

with artificial fluctuations and artificial fine structure (mostly interrupted 

(5-6)

The masked threshold (𝑀𝑇) is then found by adding the signal threshold in 

quiet:

(5-7)

Where the function of Ludvigsen remains at 𝑁 until 𝑇0 ms, the model by 

Jesteadt estimates 𝑀𝑇 = 𝑁 at < 1 ms for all octave frequencies and < 0.1 ms for 

250, 500 and 1000 Hz. 

Moore and Glasberg (1983) conducted a similar experiment, but now using 

noise as a masker. The duration of the steady state part of all signals was 20 ms. 

They varied the signal delay between 0 and 20 ms when calculated between 

the 0-voltage points of the masker offset and signal onset ramp. Note that fitting 

Eq. (5-6) for data points at 𝑡𝑝𝑚 = 0 ms would yield an infinite slope of the masking 

function. Therefore, the authors based their fit on the −6 dB points of the offsets 

of both the masker and the signal. Similar to the results of Jesteadt et al. (1982), 

they found a linear relation between  and the amount of masking 

between the shortest and longest signal delay they investigated. Furthermore 

[and also similar to the results by Jesteadt et al. (1982)], when plotting the 

amount of masking as a function of masker level (i.e., growth-of-masking 

function), the slope was smaller than unity for all signal delays that were tested. 

This slope is generally close to one for simultaneous masking and smaller than 

one for non-simultaneous masking Moore (2007). Note that the slope of the 

growth-of-masking function corresponding to Eq. (5-5) by Ludvigsen (1985) is 

unity when 𝑡𝑝𝑚 = 𝑇0.

The derivative of the growth-of-masking function of Jesteadt et al. (1982) with 

respect to the masker level is:

(5-8)

Based on the derived values for a and b by Jesteadt et al. (1982) in their Table III, 

the value for 𝑡𝑝𝑚 in Eq. (5-8) ranges between 2.4e-4 and 0.3 ms. Using the values 

by Moore and Glasberg (1983) in their Table III, 𝑡𝑝𝑚 ranges between 1.3 and 1.7 

ms. The latter values are difficult to interpret, since the delay was defined as the 

duration between the masker offset and the signal offset with a signal duration 

of 20 ms (excluding the ramps). When correcting for the signal duration, the 

post-masker duration would be negative.

Table 5-4: values of 𝑅2 for different values of 𝑇0. Values are provided for the current data 

and for the data by Van Schoonhoven et al. (2022)

Meaningful and 

nonsense combined
Meaningful Nonsense

Current Current 2022 Current

𝑇0 = 0.01 ms 0.81 0.60 0.89 0.68

𝑇0 = 0.05 ms 0.82 0.61 0.89 0.72

𝑇0 = 0.1 ms 0.82 0.61 0.89 0.74

𝑇0 = 0.15 ms 0.83 0.60 0.89 0.75

𝑇0 = 0.2 ms 0.82 0.60 0.89 0.76

𝑇0 = 0.3 ms 0.82 0.58 0.90 0.76

𝑇0 = 0.5 ms 0.81 0.54 0.91 0.75

𝑇0 = 1.0 ms 0.75 0.38 0.92 0.69

𝑇0 = 2.0 ms 0.49 -0.28 0.85 0.49

𝑇0 = 3.0 ms 0.30 -0.73 0.80 0.17
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noises). Here, the model tends to overestimate intelligibility compared to the 

original value of 𝑇0. The explained variance of this data based on 𝑦 = 𝑥 drops 

from 0.88 to 0.81 when using 𝑇0 = 0.15 ms. 

A cause for the observed discrepancies might be that the current model 

parameters were fitted by Van Schoonhoven et al. (2019) on 50% intelligibility 

data, all measured using a fixed noise level of 65 dB (A). Firstly, no complete 

transfer function was available, so it is not clear how the model behaves at other 

points on the psychometric curve. Secondly, the forward masking function 

behaves different at different noise levels and this was not incorporated in the 

fitting of the parameters. However, despite these discrepancies, the model still 

functions well, with 75% explained variance for the standard forward masking 

parameters, and 83% for the adjusted value of 𝑇0.

5.6  Conclusion

This study evaluated the cESTI-model (Van Schoonhoven et al., 2022) using 

monosyllabic words with different degrees of context presented in interrupted 

noise. A single transfer function was used to estimate the isolated phoneme 

score based on the local ESTI-values. After that, context was introduced to 

predict meaningful and nonsense word scores. 

Word scores were relatively low when nonsense words were presented at an 

SNR of −18 dB, especially at higher rates. Under these conditions, listeners 

barely profited from more frequent glimpses at the speech. Glimpsing speech 

might be more difficult in the absence of context in adverse listening conditions, 

possibly because listeners rely less on coarticulatory cues than in stationary 

noise. 

The cESTI-model performed well and explained 75% of the total variance. 

However, predictions for meaningful word scores were relatively poor, mainly 

due to inaccuracies at low interruption rates and a large effect of forward 

masking. Adjusting parameters of the forward masking function improved the 

accuracy of the model to a total explained variance of 83%, while the predicted 

power for previously published cESTI data remained the same.

5.7  Acknowledgements

This work was financially supported by the Heinsius-Houbolt foundation. The 

authors would like to thank Arjan Bosman for providing the speech material.



CHAPTER 6

A CONTEXT-BASED MODEL TO 
PREDICT THE INTELLIGIBILITY OF 
SENTENCES IN NON-STATIONARY NOISES

Van Schoonhoven, J., Rhebergen, K.S., Dreschler, W.A. (2023) 

Manuscript to be submitted for publication in the Journal of the Acoustical 

Society of America



122 123

CHAPTER 6 PREDICTING INTELLIGIBILITY OF SENTENCES USING THE cESTI

C
H

A
P

T
E

R
 6

6.2  Introduction

The Extended Speech Transmission Index (ESTI) was introduced by Van 

Schoonhoven et al. (2019) and was an extension of the original Speech 

Transmission Index or STI (Houtgast and Steeneken, 1978; Steeneken and 

Houtgast, 1980; Houtgast and Steeneken, 1985; IEC60268-16, 2011). See chapter 

3 for an elaborate description of the ESTI. The classic STI was based on the 

observation that a reduction of the modulation depth in speech leads to a 

decrease in intelligibility. Especially the effects of linear distortions in the field 

of room acoustics (like reverberation and stationary noise) were predicted 

accurately. However, the classic STI is relatively inaccurate when distortions are 

nonlinear and when maskers are non-stationary (IEC60268-16, 2011).

To deal with the latter shortcoming of non-stationary maskers, Van Schoonhoven 

et al. (2019) suggested calculating the STI per time frame (ESTI). This concept 

was based on the work by Rhebergen and Versfeld (2005), who proposed a 

similar extension of the Speech Intelligibility Index (SII). With the introduction 

of forward masking, the ESTI accurately predicted the point of 50% intelligibility 

(cSNR) of sentences in various types of non-stationary background noise. 

However, inaccuracies remained when noises had speech-like properties.  

It was hypothesized by the authors that this could be an effect of Modulation 

Masking (MM), Informational Masking (IM) and/or context effects. Van 

Schoonhoven et al. (2022) suggested to add context to the ESTI-model (cESTI) 

to check the latter hypothesis. To add context to the model, the ESTI-value was 

calculated per phoneme of monosyllabic words. Using a transfer function, the 

isolated phoneme score for each element was estimated based on the ESTI per 

phoneme. As a last step, one of two existing context models was applied to 

obtain the word scores (Boothroyd and Nittrouer, 1988; Bronkhorst et al., 1993).

6.2.1  Context models
For an elaborate description of the Boothroyd and Nittrouer context model and 

the Bronkhorst context model the reader is referred to the original work or to 

Van Schoonhoven et al. (2022). See also chapter 4. Both context models relate 

the intelligibility of speech elements to the intelligibility of whole utterance. 

This can be the phoneme score to the word score, but also the word score to the 

sentence score. The manner in which this relation is modelled, is fundamentally 

different between both models. 

The Boothroyd and Nittrouer model uses the 𝑘- and the 𝑗-factor. The 𝑘-factor 

[see Eq. (6-1)] is defined as the ratio between the log error probabilities of an 

element in context and in isolation. When no context is available, 𝑘 is equal  

to 1. When the listener utilizes context, the recognition error of the element 

6.1  Abstract

The context-based Extended Speech Transmission Index or cESTI (Van 

Schoonhoven et al., 2022) was successfully applied to predict the intelligibility 

of monosyllabic words with different degrees of context in interrupted noise. 

The current study aimed to use the same model for the prediction of sentence 

intelligibility in different types of non-stationary noise. The necessary context 

factors and transfer functions were based on values found in existing literature.  

The cESTI performed similar to or better than the original ESTI when noise had 

speech-like characteristics. We hypothesize that the remaining inaccuracies 

in model predictions can be attributed to the limits of the modelling approach 

with regard to mechanisms like modulation masking and informational 

masking.
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masking. After application of an alternative forward masking function the 

prediction accuracy of the cESTI model increased to 83%, while the predicted 

power of previously ESTI and cESTI data remained similar. 

6.2.2  Goal current study
The main motivation to add context to the ESTI-model in the first place was  

the observation by Van Schoonhoven et al. (2019) that prediction of sentence 

intelligibility was inaccurate when the noise had speech-like characteristics. 

However, thus far only monosyllabic words were used to evaluate the cESTI- 

model. Therefore, the current work focused on the evaluation of the cESTI- 

model using the same sentence material that was used by Van Schoonhoven 

and colleagues in 2019. 

6.3  Materials and methods

Generally, three steps were necessary to use the cESTI-model for the prediction 

of sentence intelligibility (see Fig. 6-1). Two of these steps were the same as 

described by Van Schoonhoven et al. (2022; 2023). See also chapters 4 and 5. 

First, the ESTI-value per phoneme was related to the isolated phoneme score 

(𝑞𝑒) using an appropriate transfer function. Next, 𝑞𝑒 was converted to the isolated 

sentence word score (𝑄𝑒) using a context-based transform (see Dingemanse 

and Goedegebure, 2019). Finally, 𝑄𝑒 was converted to a sentence score (𝑃𝑤), 

again using a context model. Note that two types of word scores are used in this 

section. The isolated word score in a sentence is referred to as 𝑄𝑒. Besides this, 

and consistent with the terminology in chapters 4 and 5, the CVC word score is 

referred to as 𝑝𝑤.

decreases and 𝑘 will be larger than 1. The 𝑗-factor [see Eq. (6-2)] is defined as the 

ratio between the log recognition probabilities of a whole (𝑝𝑤) and of an element 

in context (𝑝𝑒). When no context is available, the listener needs access to all the 

elements to perceive the whole utterance, which means that 𝑗 is equal to the 

number of elements in the whole (𝑁). When context is used, 𝑗 decreases (1 ≤ 𝑗 ≤ 𝑁). 

(6-1)

(6-2)

The Bronkhorst model consists of a sensory stage and a context stage. In the 

first stage, the intelligibility of elements (𝑞𝑒) is only based on the sensory 

information that is available to the listener. In this stage, the probability that a 

complete speech token of 𝑛 elements is identified based on sensory information 

alone is the product of the individual probabilities: . Here, subscript 0 

refers to the number of errors made in the sensory stage.

In the second stage, the context parameters 𝑐𝑖 are introduced. Here, 𝑐𝑖 represents 

the probability of correctly identifying one of the 𝑖 missing elements. For 

example, the probability of missing one of three elements in the sensory stage 

equals . The probability of correctly identifying the missed element  

in the second stage using context is equal to 𝑐1. Consequently, correct 

identification of the whole speech token in this example using both sensory 

and contextual information equals 

(6-3)

Van Schoonhoven et al. (2022) used existing intelligibility data of monosyllabic 

words by Miller and Licklider (1950) to evaluate the cESTI-model. The authors 

observed that both the addition of the Bronkhorst, and the Boothroyd and 

Nittrouer model led to a clear improvement when speech was masked by 

interrupted noise at lower modulation rates (< 5 Hz). Since the addition of both 

context models led to similar results, it was suggested by the authors that the 

simpler Boothroyd and Nittrouer model was the more suitable choice as part of 

the cESTI-model. Van Schoonhoven et al. (2023) measured the intelligibility of 

meaningful and nonsense CVC-words in normally hearing subjects and 

compared the results to estimations using the cESTI. Model accuracy was 

higher in comparison with the original ESTI-model, although predictions of 

meaningful word intelligibility was low, particularly due to remaining 

inaccuracies at low interruption rates and a relatively large effect of forward Fig. 6-1: Steps to go from the ESTI per phoneme to the sentence score 𝑃𝑤
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6.3.2  Transfer function
As with monosyllabic words, the transfer function for sentences aims to relate 

the local ESTI-value to the phoneme score in isolation (𝑞𝑒) using Eq. (6-4).

(6-4)

The best option was to use the transfer function that was obtained by Van 

Schoonhoven et al. (2023). They found values of −1.3, −2.6, and 1.17 for 𝛼, 𝛽, and 

𝛾 respectively. A disadvantage of this approach is that words in sentences are 

more than two times shorter than the CVC-words presented in isolation [302 

ms versus 670 ms for the female speaker of Versfeld et al. (2000)] and have on 

average 1.4 (+/– 0.2) syllables and 4.4 phonemes. As a result, the average 

The context models by Bronkhorst et al. (1993) or by Boothroyd and Nittrouer 

(1988) were both used as part of the cESTI-model. The terms cESTI1 and cESTI2 

are used to refer to these models respectively, consistent with Van Schoonhoven 

et al. (2022). The Bronkhorst model was used as the basis of the current work. 

This choice was related to the availability of the values of the context parameters 

and will be explained below. The context values of the Boothroyd and Nittrouer 

model were derived in a later stage from those of the Bronkhorst model.

6.3.1  Sentence material
A prerequisite for the choice of sentence material was the ability to calculate the 

context factors necessary for the estimation of sentence scores. In the literature 

values of chapter 3, only the SNR at 50% sentence intelligibility (cSNR) was 

provided. This required the use of context factors estimated elsewhere. The 

work by Dingemanse and Goedegebure (2019) was chosen for this purpose. 

They calculated context factors based on 6-word sentences uttered by a female 

speaker (Versfeld et al., 2000). Note that the sentences in the original corpus 

consist of four to nine words, so only a subset of these sentences was used. 

Furthermore, Bronkhorst et al. (1993) also calculated the context factors for  

the speech corpus developed by Plomp and Mimpen (1979), based on the 

 intelligibility data by Bosman and Smoorenburg (1995), but only the data 

corresponding to the cSNR in quiet was used. It is not clear how these values 

relate to the context factors in noise and since the same study also showed that 

the difference between the use of context around threshold in quiet and in 

noise is relatively large, these context factors were not used here. 

Since the context factors for female sentences from Versfeld et al. (2000) 

were available, only studies using this speech corpus were selected from Van 

Schoonhoven et al. (2019). Because Versfeld and colleagues used the same 

selection procedure for male and female sentences, the contextual information 

in both corpora was expected to be the same. The speaking style is of course 

different, but the sentences spoken by a male speaker were included in the 

current analyses. This was a pragmatic choice in order to increase the amount 

of data available. For more information on the used sentence material, the 

reader is referred to Appendices B and D. See Fig. 6-2 for the properties of the 

sentence material. In this figure, the similarities between the sentences spoken 

by the female and male speaker can also be observed. 

Fig. 6-2: Properties of the sentence material by Versfeld et al. (2000). The top row shows the 

data of the female speaker and the bottom row the data of the male speaker. The dashed 

lines represent the average values.
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found that these subjects tend to make more use of contextual information 

than normally hearing subjects, these values were not applicable for the current 

analyses. Therefore, the context values of the 5-phoneme transform were 

estimated based on the sentence data from the literature used in the current 

work. An important limitation was the number of datapoints available, since 

this estimation was only based on the averaged SNR at 50% intelligibility in SSN. 

In the optimization procedure to estimate the optimal context values for the 

5-phoneme transform, 𝑐5 was set to 0 (Bronkhorst et al., 1993). Dingemanse and 

Goedegebure (2019) suggested that 𝑐1 and 𝑐2 take on a higher value, since it is 

relatively easy to guess a 5-phoneme word when only one or two phonemes are 

missed. On the other hand, 𝑐3 and 𝑐4 were believed to take on lower values, 

since it is relatively hard to guess the word when half of the phonemes are 

missed. To limit the number of free parameters in the current optimization 

procedure, the aim was to maximize 𝑐1, while keeping 𝑐2 > 0.5, 𝑐3 < 0.5, 𝑐4 < 0.2 

and 𝑐5 = 0, while satisfying the criterion 𝑐1 > 𝑐2 > 𝑐3 > 𝑐4 > 𝑐5. The boundary 

conditions itself are rather arbitrary, but follow the above arguments, and follow 

the typically descending trend of context parameters (Bronkhorst et al., 1993; 

Bronkhorst et al., 2002). 

6.3.3.2  Sentences (Qe to Pw)

The context factors by Dingemanse and Goedegebure (2019) were based on 

6-word sentences. In the literature data, all sentences of the original corpus 

were used and consisted of four to nine words. Bronkhorst et al. (2002) suggested 

that the value of the context parameters can be expressed as a function of the 

number of elements per sentence. They obtained Eq. (6-5) as the relation 

between the parameters from 𝑐1, 𝑛 to 𝑐𝑛-1,𝑛 (with 𝑛 as the number of elements per 

sentence), and Eq. (6-6) as the relation between the values for 𝑐1, 𝑛 for different 

values of 𝑛. Based on the available context factors for 6-word sentences, 𝛼𝑐 and 

𝑐𝑚𝑖𝑛 were estimated using Eq. (6-5). The value for 𝛼𝑙 was obtained using the 

suggested values by Bronkhorst et al. (2002) and Smits and Zekveld (2021).

(6-5)

(6-6)

phoneme length in CVC-words is approximately three times longer than in 

sentences (223 ms versus 69 ms). How the phoneme length influences the 

isolated phoneme score will be discussed in section 6.5. 

The estimated intelligibility using the ESTI was based on the assumption that 

listeners require the same ESTI-value in SSN as they do in non-stationary noise 

to reach 50% intelligibility (Van Schoonhoven et al., 2019). To this end, the 

ESTI-value at cSNR in SSN was calculated per study and used as a reference for 

the conditions with non-stationary noise of the same study (i.e., the same 

group of listeners). To be able to use the same approach in the current chapter, 

the transfer function needed to be customized using the cSNR in SSN for each 

study separately. To achieve this, the estimated context factors (see section 

6.3.3) were used to determine the value of 𝑞𝑒 based on the point of 50% sentence 

intelligibility in SSN. In this way, per study, one point on the transfer function 

between ESTI and 𝑞𝑒 was known. The transfer function found for CVC-words 

was then customized to include this point with minimal adjustment to the 

function itself, by minimizing the squared difference between the old and new 

values of 𝛼, 𝛽, and 𝛾 of Eq. (6-4). In this way, a family of transfer functions was 

derived from the transfer function found by Van Schoonhoven et al. (2023).

6.3.3  Context models
The goal of the context models was to relate the isolated phoneme score 𝑞𝑒  

to the sentence score 𝑃𝑤. The most challenging part was to relate 𝑞𝑒 to 𝑄𝑒.  

The transfer function to determine 𝑞𝑒 was based on CVC-words, which have 

different characteristics (e.g., length, number of phonemes, and number of 

syllables) than words in sentences (𝑄𝑒). Therefore, a transformation was 

necessary.

6.3.3.1  Transform (qe to Qe)

Dingemanse and Goedegebure (2019) based this transformation on the average 

number of phonemes in the sentence words, which they set to five (the first 

integer larger than the true average of 4.4). To obtain the isolated phoneme 

score, they first transformed 𝑝𝑤 in CVC-words back to 𝑞𝑒 using the context 

parameters that were estimated for these CVC-words. Note that in the current 

work, 𝑞𝑒 is already available using the ESTI and an appropriate transfer function, 

so 𝑝𝑤 was not used. After 𝑞𝑒 was known, the authors estimated 𝑄𝑒 based on 𝑃𝑤 

using the context parameters that were found for sentences. Finally, they 

estimated a new set of context factors for the transformation from 𝑞𝑒 to 𝑄𝑒, 

based on words of five phonemes. The same approach was used in the current 

study. However, Dingemanse and Goedegebure used this transformation 

model only with data obtained in cochlear implant recipients. Since the authors 
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6.4  Results

6.4.1  Transfer function
The parameters from Eq. (6-4) were optimized to find the appropriate transfer 

function per study. This resulted in a family of transfer functions around the 

original version, caused by the variation in cSNRs over all the studies (see Fig. 

6-4). The deviation of the fitting parameters ranged between 0 and 5% compared 

to the original values found by Van Schoonhoven et al. (2023).

6.3.3.3  Boothroyd and Nittrouer model

The Bronkhorst model and the Boothroyd and Nittrouer model both aim to 

estimate the effect of context using a different approach. Bronkhorst et al. (2002) 

expressed 𝑗 and 𝑘 as a function of 𝑐𝑖 (and 𝑞𝑒) in their appendix. These 

mathematical relations were used in the current study to estimate the context 

factors 𝑗 and 𝑘. Since these context factors depend on the element score  

(e.g., Boothroyd and Nittrouer, 1988; Dingemanse and Goedegebure, 2019),  

the values were calculated using the value of 𝑞𝑒 corresponding to 50% sentence 

 intelligibility. 

6.3.4  Estimation of sentence score
In the previous paragraphs, the methods of obtaining the context factors and 

the transfer functions were described. Based on this information, the sentence 

score was estimated. The calculation scheme of estimating 𝑃𝑤 was similar to 

the earlier works on the cESTI (Van Schoonhoven et al., 2022; 2023). For each 

condition, the ESTI per phoneme in the sentence was calculated for all possible 

phase shifts of the sentence with respect to the noise (with steps of 2 ms). Note 

that no real sentences were used, but the location of a virtual phoneme with 

respect to the noise was used to estimate the ESTI of that phoneme. To this end,  

the timing of the phonemes and words in virtual sentences was based on the 

data of the actual sentences used in the speech intelligibility tests (see Table 

6-1). A total of 100 virtual sentences were constructed to satisfy these conditions. 

When the ESTI per phoneme was known, the transfer function was used to 

calculate the values of 𝑞𝑒. The 5-phoneme transform was then applied to 

determine 𝑄𝑒, after which 𝑃𝑤 could be calculated. In Fig. 6-3 the steps are 

visualized to calculate 𝑃𝑤 based on the ESTI. 

ix Note that this value is lower than the 69 ms reported earlier. This is caused by the difference in the 

actual number of phonemes per word (4.4) compared to the number of phonemes per word used 

for the model (5). 

Table 6-1: Average length of the speech elements used in the current study. 

Average length (+/– s.d.)

Sentences 1.8 s (+/– 0.2)

Words 0.3 s (+/– 0.05)

Phonemes 61 msix (+/– 11)

Fig. 6-3: Calculation steps to estimate 𝑃𝑤 using the ESTI of an example sentence in 8 Hz 

interrupted noise at cSNR. The width of the plot represents one sentence. Thin dotted 

vertical lines represent phoneme boundaries. Thick dashed lines represent word 

boundaries. The top plot shows the variation in local STI based on the SNR. The grand 

average of these values would yield the ESTI. The second plot shows the ESTI-value per 

isolated phoneme. Using the transfer function, the isolated phoneme score per phoneme 

(𝑞𝑒) is calculated (third plot). Based on the context factors of the 5-phoneme transform, 

the sentence word score in isolation (𝑄𝑒) is then estimated for each word (fourth plot). 

Finally, the sentence score (𝑃𝑤) was calculated (fifth plot). 

0

1

S
T

I
(l

o
ca

l)

0

1

E
S

T
I 

/ 
p

h
o

n
em

e

0

1

q
e

0

1

Q
e

0 1 2

Time (s)

0

1

P
w



132 133

CHAPTER 6 PREDICTING INTELLIGIBILITY OF SENTENCES USING THE cESTI

C
H

A
P

T
E

R
 6

6.4.2.2  Sentences (Qe tot Pw)

When fitting Eq. (6-5) to the context factors found by Dingemanse and 

Goedegebure (2019), the parameters 𝑐𝑚𝑖𝑛 and 𝛼𝑐 were used as free fitting 

parameters, which resulted in a root-mean-square error (𝑅𝑀𝑆𝐸) of 0.017 for 𝛼𝑐 = 

1.89 and 𝑐𝑚𝑖𝑛 = 0. When using one free fitting parameter and fixing 𝑐𝑚𝑖𝑛 to the 

value of 0.035 suggested by Bronkhorst et al. (2002), the 𝑅𝑀𝑆𝐸 increased slightly 

to 0.019. Due to the small amount of data available, the latter value was chosen, 

corresponding to 𝛼𝑐 = 2.00. This is lower than the value 2.69 found by Bronkhorst 

et al. (2002) for German sentence material, but higher than the value of 1.78 that 

was found by Smits and Zekveld (2021) who used the same speech corpus as 

the current work, but only selected 6-word sentences. The latter value was 

estimated using intelligibility data of the same sentence material, but at four 

different SNRs. A higher value of 𝛼𝑐 means that there is a sharper drop of 𝑐𝑖 at 

higher values of 𝑖.
The parameter 𝛼𝑙 determines the relation between the values of 𝑐1 for sentences 

of different lengths. Bronkhorst et al. (2002) found a value of 2.23 for meaningful 

German sentences. A higher value means larger differences between 𝑐1-values 

for different sentence lengths. The above value was used as a starting point for 

the current estimations. Using the context parameters that resulted from the 

above parameters, the isolated phoneme score 𝑞𝑒 corresponding to 50% 

sentence intelligibility was 48%. However, the estimated sentence intelligibility 

at this value for 𝑞𝑒 ranged between 32% for 4-word sentences to 75% for 9-word 

sentences. The weighted average (using the data in the left panel of Fig. 6-2) of 

the intelligibility for all sentence lengths equaled 50%, but the variance was 

relatively large. Since Versfeld et al. (2000) selected the sentences to be equally 

intelligible, 𝛼𝑙 was varied to minimize variance between sentence intelligibility 

6.4.2  Context factors
Context factors for the 5-phoneme transform and for the sentences were 

estimated using the Bronkhorst model. The context factors for the Boothroyd 

and Nittrouer model were derived from these values. All context factors are 

depicted in Table 6-2.

6.4.2.1  Transform (qe to Qe)

The optimization procedure in order to fit the context parameters for the 

transform (from 𝑞𝑒 to 𝑄𝑒) resulted in 𝑐1 = 0.65, 𝑐2 = 0.54, 𝑐3 = 0.26 and 𝑐4 = 0.05 (𝑐5 

was set to 0). Especially 𝑐1 and 𝑐2 are lower than the values of 0.98 and 0.89 that 

were obtained by Dingemanse and Goedegebure (2019), calculated for cochlear 

implant recipients. This finding itself is expected since the authors already 

suggested that these subjects make more use of context than normally hearing 

subjects. However, especially the value for 𝑐1 appears low, since the expectation 

is that a listener — when identifying four out of five phonemes correctly — has 

a higher probability than 65% of guessing the fifth element. This will be 

discussed more elaborately in section 6.5. 

Fig. 6-4: Family of transfer functions used in the current study based on Eq. (6-4). The thick 

solid line represents the main function found by Van Schoonhoven et al. (2023). The other 

functions (thin dotted lines) were estimated based on the main transfer function, the cSNR 

per study of the data analyzed by Van Schoonhoven et al. (2019), and the context factors 

from Table 6-2.
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Transfer functions Table 6-2: All context values found for the different sentence lengths (first column) and 

for the 5-phoneme transform. Note that 𝑘 and 𝑗 from the Boothroyd and Nittrouer model 

were derived from 𝑐𝑖 per sentence length at the point of 50% sentence intelligibility using 

the mathematical relations provided by Bronkhorst et al. (2002).

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑘 𝑗

4-word 0.80 0.65 0.45 0 - - - - - 2.0 2.3

5-word 0.86 0.75 0.58 0.63 0 - - - - 2.2 2.6

6-word 0.91 0.83 0.70 0.50 0.28 0 - - - 2.2 2.8

7-word 0.94 0.88 0.79 0.63 0.42 0.21 0 - - 2.3 2.9

8-word 0.96 0.92 0.85 0.73 0.56 0.34 0.15 0 - 2.4 3.0

9-word 0.97 0.95 0.90 0.82 0.68 0.48 0.26 0.10 0 2.4 3.0

Transform 0.65 0.54 0.26 0.05 0 - - - - 1.5 3.5
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In Table 6-3, the corresponding values for 𝑅2 are depicted, together with the 

root-mean-squared error (𝑅𝑀𝑆𝐸). Note that the used linear model to fit the 

observed and predicted data is represented by 𝑦 = 𝑥, and not necessarily by the 

best linear fit 𝑦 = 𝑎𝑥 + 𝑏. When the mean of the data is a better predictor than 𝑦 = 

𝑥, a (counterintuitive) negative value of 𝑅2 is obtained. Since only a subset of the 

sentence material from chapter 3 was used, the values in the first column are 

Table 6-3 are different than the values found by Van Schoonhoven et al. (2019). 

The cESTI1 reached similar or better performance than the original ESTI for all 

noise types. No significant differences in prediction accuracy of male and 

female speakers were found. For noises with an artificial envelope and fine 

structure, cESTI2 tends to overestimate the cSNR. This is especially true for 

noises where intelligibility is higher (and the cSNR is lower). A slight trend is 

visible where predictions of intelligibility with a cSNR lower than −10 to −5 dB 

deviate from the diagonal. On the other hand, for noises with speech-like 

modulations and artificial fine structure, cESTI2 outperformed both the cESTI1 

and the classic ESTI. However, although the performance of both cESTI1 and 

cESTI2 is similar or better than the original ESTI, inaccuracies remain for noises 

with speech-like characteristics. 

6.5  Discussion

The goal of the current chapter was to apply the cESTI-model to the sentence 

materials that were used to evaluate the original ESTI. Generally, a modest 

increase in prediction accuracy was observed, although inaccuracies remain 

for noises with speech-like envelopes. 

at values of 𝑞𝑒 between 10% and 90%. This resulted in 𝛼𝑙 = 1.56. This reduced the 

variance at 50% intelligibility and now ranged between 49% and 52%. 

6.4.3  Model predictions
The model predictions are displayed in Fig. 6-5. The results were separated 

based on three noise types. Noises with an artificial envelope and an artificial 

fine structure are for instance interrupted noises or sinusoidally intensity-mod-

ulated noise. Both other noise types have speech-like envelopes, but differ in 

their fine structure, which is either artificial [e.g., ICRA-5 noise by Dreschler et 

al. (2001)] or speech-like [e.g., a competing speaker or the ISTS by Holube et al. 

(2010)]. All corresponding values are depicted in Table E-1 in Appendix E.

Fig. 6-5: Relation between the observed cSNR and the predicted cSNR using the ESTI, 

cESTI1 or cESTI2. Each row represents a different category of noises. Open symbols 

depict conditions without reverberation. Closed symbols depict conditions with 

reverberation. Corresponding values for 𝑅2 and 𝑅𝑀𝑆𝐸 are found in Table 6-3. 
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Table 6-3: Values for 𝑅2 for three types of noise and three models. This value is based on 

𝑦 = 𝑥. The root-mean-square error (𝑅𝑀𝑆𝐸) is provided in parentheses. The corresponding 

data is depicted in Fig. 6-5 and Table E-1.

Original ESTI cESTI1 cESTI2

Artificial fluctuations / 

Artificial fine structure
0.88 (2.9) 0.84 (3.4) 0.68 (4.9)

Speech-like fluctuations / 

Artificial fine structure
0.19 (5.1) 0.36 (4.6) 0.71 (3.1)

Speech-like fluctuations / 

Speech-like fine structure
-0.36 (9.6) -0.23 (9.1) 0.27 (7.1)
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rate. Intelligibility of monosyllabic nonsense words decreased from 85% to 26%, 

and of disyllabic nonsense words from 78% to 10%. 

Although the word material is different, the context factors 𝑗 and 𝑘 in quiet 

found by Bronkhorst et al. (1993) and Van Schoonhoven et al. (2022) were 

applied to the monosyllabic word scores. For meaningful monosyllabic words, 

𝑞𝑒 dropped from 98% to 73% between the normal and the fastest rate. The isolated 

phoneme score for nonsense monosyllabic words dropped from 95% to 66%. 

So, despite the large differences between meaningful and nonsense word 

scores, the isolated phoneme scores are relatively close for each speech rate. 

This might indicate that listeners use context similarly in normal and time- 

compressed speech, but reach lower word scores due to lower intelligibility of the 

isolated phonemes. Although time-compressed speech has different properties 

than natural speech, and more data is needed to investigate this more thoroughly, 

these results possibly indicate that a different transfer function between ESTI 

and 𝑞𝑒 would be more appropriate. 

6.5.2  Context factors

6.5.2.1  Transform (qe to Qe)

Using several constraints, the context factors for the 5-phoneme transform 

were found using a nonlinear optimization procedure. Although the new 

values were expected to be lower than the values of Dingemanse and 

Goedegebure (2019) for cochlear implant recipients, the drop in 𝑐1 from 0.98 to  

0.65 seems large. This discrepancy is possibly related to the inaccuracy of the 

transfer function. In the previous paragraph, it was suggested that the current 

transfer function might overestimate the intelligibility of isolated phonemes in 

sentences. During the optimization of the context factors, the goal was to relate 

the value of 𝑞𝑒 (based on the ESTI-value at cSNR) to 𝑄𝑒 (based on 50% sentence 

intelligibility). When 𝑞𝑒 is relatively high, the optimal context values are relatively 

low. Conversely, when 𝑞𝑒 would be lower, the context factors would increase in 

comparison to the current values. The problem is that no reference values are 

available, except those of CI recipients. Both the transform and the transfer 

functions are unknowns, so additional research regarding these concepts is 

needed to resolve this issue. 

Another cause of inaccuracy is the variable number of phonemes per word. As 

Dingemanse and Goedegebure (2019) already stated, it would be more accurate 

to calculate a weighted average using all transforms corresponding to the 

different number of phonemes per word. However, since this would result in 

too many parameters, the current approach using 5 phonemes was used. Note 

that the number of phonemes per word in the sentence material ranges from 

one (for u, the Dutch formal version of you) to 11 (e.g., for scheidsrechter, Dutch 

Three steps were necessary to model sentence scores (see also Fig. 6-1 and Fig. 

6-3). First, a transfer function was needed to convert the local ESTI-value to 𝑞𝑒. 

This transfer function was taken from Van Schoonhoven et al. (2023) and was 

adjusted based on the results of sentence intelligibility in SSN per study. Second, 

𝑞𝑒 was converted to 𝑄𝑒 using a 5-phoneme transform based on the work of 

Dingemanse and Goedegebure (2019). The values of the context parameters for 

this transform were based on the 𝑄𝑒-values corresponding to the averaged 

cSNR in SSN across all studies used by Van Schoonhoven et al. (2019). Finally, 𝑄𝑒 

was converted to a sentence score based on the context values presented by 

Dingemanse and Goedegebure (2019) for 6-word sentences. To calculated the 

context factors for the other sentence lengths, a nonlinear optimization 

procedure was used to fit Eqs. (6-5) and (6-6). All three steps are separately 

discussed below.

6.5.1  Transfer function
The transfer function between ESTI and 𝑞𝑒 was based on the CVC-data by Van 

Schoonhoven et al. (2023). The average phoneme length of the CVC-word 

corpus is approximately three times longer than the average phoneme length 

of the sentences (223 ms versus 69 ms). Although the 5-phoneme transform 

aimed to adjust for the differences in context between the CVC-words and  

the isolated sentence words, it did not account for the difference in speech rate. 

A higher speech rate can lead to a decrease in intelligibility (e.g., Adams and 

Moore, 2009; Adams et al., 2012; Saija et al., 2014). Adams et al. (2012) found a 

significant difference in sentence intelligibility in noise when presenting the 

sentences at slow speed (120 words per minute or wpm), at average speech (170 

wpm), or at high speed (234 wpm). Based on the average word length, the 

current sentences have a speech rate of 198 wpm and the CVC-words of 90 

wpm. Also, Schlueter et al. (2014) found a 6-7 dB increase in cSNR when 

time-compressing matrix sentences to 30% of the original length. However, it 

is difficult to compare the effects of speech rate on sentence versus word intel-

ligibility. Important differences are the use of context and working memory 

(Dingemanse and Goedegebure, 2019), and possibly forward masking. 

Does the phoneme length influence intelligibility, provided that the speech 

quality (i.e., ESTI) is the same? Obviously, there must be a lower limit of the 

phoneme length at which a phoneme can still be perceived accurately. In her 

dissertation, Janse (2003) tested intelligibility in quiet of time-compressed 

meaningful and nonsense Dutch words (both mono- and disyllabic) at normal 

speed, and at 40% and 35% of the original duration (original word lengths and 

presentation levels were not provided). Intelligibility of mono- and disyllabic 

meaningful words decreased from 99% at normal rate to 66–69% at the fastest 
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for referee). The simplification of only 5-phoneme words inevitably leads to  

a decrease in accuracy, but it is not straightforward to predict the exact 

consequences. After all, the discrepancy is influenced by the combination of 

context values. and by the isolated phoneme score. A sufficient amount of 
 intelligibility data would be needed for all word lengths to be able to estimate 

context factors with higher accuracy. 

6.5.2.2  Sentences (Qe to Pw)

Smits and Zekveld (2021) discussed a new context model and reviewed other 

context models. They used the same speech material as Dingemanse and 

Goedegebure (2019) and also used only the 6-word sentences. The context 

values they found were generally higher than the values used in the current 

study. Differences between both studies mainly concern the presentation of 

the sentences. Smits and Zekveld (2021) used existing intelligibility data that 

was obtained using all sentences in the original corpus. For the analyses, only 

6-word sentences were used. On the contrary, Dingemanse and Goedegebure 

(2019) only presented 6-word sentences. Also, at least part of the data used by 

Smits and Zekveld (2021) was based on the scoring of keywords correct, instead 

of all words correct. Finally, a large part of the data by Smits and Zekveld (2021) 

was obtained using a 2-up/1-down and a 1-up/2-down scoring method leading 

to the SNRs corresponding to 29% and 71% respectively. This is also different 

from the stochastic approximation method applied by Dingemanse and 

Goedegebure (2019). Altogether, these differences indicate that there are risks 

involved when using context factors from literature, possibly due to differences 

in methodologies. Furthermore, the values of the context factors by Smits and 

Zekveld (2021) were influenced by the SNR at which the sentences were 

presented. The value of 𝑐5 ranged from 0.30–0.35 at −7 dB SNR to 0.7 at −4 dB 

SNR. So, over the range of 3 dB, the value of this parameter doubled. Like Smits 

and Zekveld (2021), it is a possibility to extend our model with SNR- or 

𝑞𝑒-dependent context factors to increase the accuracy. A complicating factor is 

the use of context in modulated noises, since the local SNR shows temporal 

variations. 

6.5.3  Model predictions
Van Schoonhoven et al. (2019) hypothesized that the inaccuracies that were 

observed in the ESTI-predictions of intelligibility when using speech-like 

maskers were the result of modulation masking, informational masking, and/

or context effects. To test the latter hypothesis, the cESTI was developed. 

Although an increase in accuracy was observed in the current study, model 

performance was still suboptimal under these conditions, especially for noises 

with a speech-like fine structure like a competing speaker. The original goal of 

the ESTI was to improve the original STI with regard to non-stationary noises. 

It is possible that the limits of the STI methodology based on the MTF are 

reached. Possible alternatives for the MTF are the speech-based STI where 

speech is used as a probe signal (e.g., Payton and Braida, 2002; Payton and 

Shrestha, 2013). This presents the opportunity to compare the speech and 

noise envelopes, for instance by using linear regression (e.g., Ludvigsen et al., 

1990; Goldsworthy and Greenberg, 2004) or the normalized covariance (Holube 

and Kollmeier, 1996). However, to be able to model higher-order processes like 

auditory attention that are involved in informational masking are beyond the 

reach of signal-based intelligibility models like the STI. 

6.6 Conclusion

In the current chapter, the cESTI-model was used to predict the intelligibility of 

sentences. For all noise types, model performance relative to the original 

ESTI-model remained similar or improved. However, performance was still 

suboptimal for noises with speech-like characteristics. The concept of the STI 

is based on the reduction of temporal modulations in speech. To a certain 

extent, the ESTI and cESTI are able to deal with temporally modulated noises, 

but complex interactions between the speech and noise envelopes, together 

with modulation masking and informational masking, remain beyond the 

reach of the current model design. However, resolving uncertainties about the 

shape of the transfer function between ESTI and 𝑞𝑒, and about the transform 

from 𝑞𝑒 to 𝑄𝑒 might increase the accuracy of the model.
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7.1  Main findings

The focus of the current thesis was to improve the Speech Transmission Index 

or STI (IEC60268-16, 2011) for conditions with non-stationary background 

noise. Based on the noise and/or reverberation of a transmission channel, 

the STI can take on a value between 0 and 1, providing information about the 

quality of the transmitted speech. This index value can be correlated with 

speech intelligibility by using a transfer function, making the STI a useful tool 

in the prediction of intelligibility. However, the classic STI performs suboptimally 

when background noise is non-stationary.

Chapter 2 focused on the measurement method, and it was found that a 

minimum impulse-to-noise ratio of +25 dB in fluctuating noise was needed for 

accurate STI measurements. In chapter 3, an extended version of the classic STI  

was introduced with the aim to predict 50% intelligibility of sentence materials  

in literature. The outcomes of this ESTI-mode were accurate for stationary 

maskers, maskers with artificial fluctuations, and maskers with real-life,  

non-speech-like modulations. However, maskers with a speech-like envelope 

introduced systematic errors in the model outcomes, probably due to a 

combination of modulation masking (MM), context effects, and/or informational 

masking (IM). 

To deal with these inaccuracies, a context model was added to the ESTI-model 

in chapter 4. This cESTI-model was used to estimate the intelligibility of the 

phonemes in monosyllabic words. These isolated phoneme scores were then 

used as input to the context model in order to estimate word scores. It was 

found that model predictions for monosyllabic words improved using this 

method, especially for maskers with interruption rates below 5 Hz. In chapter 5,  

the cESTI-model was evaluated using both meaningful and nonsense 

monosyllabic words, resulting in an explained variance of 75% of the measured 

intelligibility data. When using an alternative forward masking function in  

the cESTI-model, the explained variance increased to 83%. In chapter 6,  

the cESTI-model was used to predict the intelligibility of the sentence material 

from chapter 3. The model accuracy improved in comparison to the original 

ESTI, but the performance was still relatively poor when using maskers with 

speech-like envelopes, probably as a result of MM and IM.
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squelch play an important role in speech intelligibility. For this reason, Van 

Wijngaarden and Drullman (2008) presented a binaural version of the classic 

STI. They used binaural cross-correlations to model interaural auditory 

processing, and a “better ear” principle to model the head shadow effect. Results 

showed that the relation between the binaural STI and word scores closely 

resembled the STI reference curve. 

Van Wijngaarden and Drullman (2008) only calculated the interaural cross-cor-

relograms for the octave bands centered around 500, 1000, and 2000 Hz, since 

binaural interactions beneficial for speech intelligibility take place between 500 

and 1500 Hz (Akeroyd, 2006). The correlograms were calculated per 30 ms time 

window and the signal power was calculated for interaural time delays of 

maximally +/– 2 ms. For each time delay at these octave bands, the MTF was 

calculated using the direct measurement method. The MTFs that contributed 

to the highest overall STI were chosen. For the remaining octave frequency 

bands, the left and right ear MTFs were calculated and the highest MTF was 

chosen to base the STI on. Note that the presented material was filtered using 

measured and simulated binaural impulse responses. These impulse responses 

could also have been used to obtain the MTF using the indirect measurement 

method. 

The time window lengths that were used for the current ESTI calculations 

equaled 2.8 ms, 2.0 ms, and 2.0 ms for octave band frequencies 500, 1000, and 

2000 Hz respectively. This is short with respect to the 30 ms time windows the 

interaural cross-correlograms were based on, so it is questionable if this is a 

practical front end for a possible binaural ESTI. Longer ESTI time windows will 

result in lower prediction accuracy, especially when noise on- and offsets are 

abrupt. Van Wijngaarden and Drullman (2008) did mention that shorter binaural 

time windows will lead to less accurate estimates, but suggested that the 

differences were small. However, 2 ms windows seem too small, since the 

range of interaural time delays was also set to 2 ms. 

Another option is to use the equalization cancellation method as a front end 

(Beutelmann and Brand, 2006; Beutelmann et al., 2010). In their (short-time) 

Binaural Speech Intelligibility Model (BSIM and stBSIM) the SNR per frequency 

band was based on the difference between the signals at the left and right ear. 

The left ear signal was attenuated and delayed with a value that yielded the 

highest SNR after subtraction. The stBSIM used effective time window lengths 

of around 12 ms, but the authors argued that an extra time window of 100 ms 

was needed to simulate binaural “sluggishness” (e.g., Culling and Summerfield, 

1998). They found an effective rectangular window length of around 100 ms 

that reflected the minimum integration time of the binaural auditory system. 

Thus, to obtain an accurate version of a binaural ESTI, different time constants 

7.2  IEC standard

In the current work, the 4th edition of the IEC60268-16 (2011) was referenced 

mostly. However, since 2020 the 5th edition is available (IEC60268-16, 2020). In 

both editions, conditions with fluctuating noise are only mentioned briefly. 

The new standard clearly states in its scope that it does not cover conditions 

with fluctuating noise. In both editions, general comments regarding fluctuating 

noise are provided in the sections about limitations and the measurement 

procedure. Below, the differences between both editions are discussed.

The 5th edition states that the STI in impulsive or fluctuating background noise 

should be lower than 0.3 to ensure that the effect of the noise fluctuations on 

the probe signal is minimal. In edition 4, this threshold was stricter and set on 

0.2. Also, it is advised in edition 5 that the probe signal level is 20 dB above the 

fluctuating background noise level, as opposed to the less strict 15 dB in edition 

4. Although not explicitly stated, this presumably regards the direct measurement 

method. However, both editions state that the indirect method should be used 

when background noise is non-stationary. When using a sine-sweep to 

measure the STI (i.e., the indirect method) it is advised in edition 5 that the SNR 

per octave band is at least 20 dB. No criterion was provided in the 4th edition. 

Both editions of IEC60268-16 predominantly focus on the measurement 

procedure with regard to fluctuating noise, and not on the fluctuating masker 

benefit. The differences between both editions are minor. No reference is 

provided for the suggested sweep-to-noise ratio of +20 dB in edition 5. In 

chapter 2 of the current work, an INR of +25 is suggested when performing 

measurements in fluctuating background noise using a sine-sweep. This 

corresponds to a sweep-to-noise ratio between –4 dB and +15 dB (95th 

percentile). The maximum sweep-to-noise ratio that was found in the results of 

chapter 2, was +17.5 dB. Based on these values, a minimum sweep-to-noise 

ratio of +20 dB is on the safe side, but is a reasonable suggestion. Overall, no 

changes were found in the 5th edition compared to the previous version that 

would influence the contents of the current thesis.

7.3  Strengths and limitations

7.3.1  Monaural presentation
During all psycho-acoustical experiments in chapters 3, 4, 5, and 6 speech and 

noise were presented monaurally to the listeners. This is in conjunction with 

the traditional STI (IEC60268-16, 2011; 2020), but is not representative for 

real-life listening conditions, where the head shadow effect and binaural 
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(𝑝 < 0.01) and at 0 s (𝑝 < 0.05). Note that ISTS was left out of this statistical analysis  

due to the contribution of informational masking.

To investigate the reason for this difference, the modulation reduction caused 

by reverberation and noise was assessed separately. This was done by calculating 

the STI in the various conditions solely based on 𝑀𝑇𝐹𝑆𝑁𝑅 [according to Eq. (3-6)] 

or on 𝑀𝑇𝐹𝑟𝑒𝑣 [according to Eq. (3-5)]. It makes sense that the contribution of 

noise on the STI is largest at 𝑇60 = 0 s and smallest at 𝑇60 = 1.2 s. The results are 

shown in Fig. 7-1. The contributions of noise and reverberation on the total STI 

are equal at approximately 0.6 s. This is also the point where the STI deviates 

most from the reference value. So, at 50% intelligibility, the STI is highest  

when contributions of 𝑀𝑇𝐹𝑟𝑒𝑣 and 𝑀𝑇𝐹𝑆𝑁𝑅 are equal. In other words, when 

noise and reverberation equally contribute to modulation reduction, this is 

more detrimental to intelligibility than modulation reduction due to noise or 

reverberation alone.

Duquesnoy and Plomp (1980) tested sentence intelligibility for normally hearing 

and hearing-impaired subjects using a similar procedure as Van Schoonhoven 

et al. (2019) at reverberation times between 0 and 2.3 seconds. They found 

significantly higher STI-values at T = 0.4 s at 50% intelligibility in comparison to 

the other reverberation times. They varied the reverberation by recording the 

sentences in a room with variable acoustics and attributed this deviation to the 

might have to be incorporated into the model, with the inevitable consequence 

of increased complexity of the calculation scheme. Given the objectives of the 

current work, this is undesirable. 

7.3.2  Reverberation

7.3.2.1  Artificial impulse responses

In chapter 3, intelligibility measurements were done using noise and reverberation. 

The impulse responses that were used to reverberate the presented signals were 

artificial. They were constructed by multiplying exponentially decaying envelopes 

with fragments of white noise (George et al., 2008). Since white noise has a flat 

spectrum, the reverberation did not cause any significant changes in the 

spectral content of the signals. Also, unwanted effects of room acoustics were 

avoided using this method. However, this choice is not representative for 

real-life listening conditions. 

Rennies et al. (2014) studied the combined effect of noise and reverberation on 

speech intelligibility and listening effort by using the STI. They simulated 

reverberation by convolving the signals using white noise-based impulse 

responses (similar to our approach described in chapter 3) and by using more 

realistic, impulse responses that were simulated using room acoustics software. 

Real impulse responses were also used. When the MTF was only based on the 

SNR and on 𝑇60 (see Houtgast and Steeneken, 1985), intelligibility deviated for 

different types of reverberation at the same STI-value. Intelligibility was higher 

for more realistic reverberation compared to artificial reverberation. The 

problem was that not all properties of the impulse response were used for the 

STI calculations. When calculating the STI using the method by Schroeder 

(1981), intelligibility was more consistent with the STI-values. Clearly, the 

calculation of the MTF based on the normalized Fourier transform of the 

squared impulse response resulted in a more accurate value of the STI, also 

when using impulse responses based on white noise. Despite the fact that 

artificial impulse responses were used in the current study, the ESTI calculation 

using the method by Schroeder appears to be robust. 

7.3.2.2  Reverberation combined with noise

In Table 3-3 and Fig. 3-7, it was shown that the classic STI- and ESTI-values 

were not constant across all reverberation times. Especially at 𝑇60 = 0.4 and 0.8 

s the (E)STI was higher than the reference condition without reverberation. At 

reverberation times of 0.1 s and 1.2 s, the STI was similar to the reference 

condition. When performing a multivariate ANOVA, the ESTI of SSN and IN8 

combined was significantly higher at 𝑇60 = 0.4 s than at 0 and 1.2 s (𝑝 < 0.001) 

and also higher than at 0.1 s (𝑝 < 0.05). The ESTI at 0.8 s was higher than at 1.2 s 

Fig. 7-1: The classic STI at cSNR (see also Fig. 3-7), together with the STI based on 

reverberation only, and the STI based on the SNR only. See Table 3-3 for the corresponding 

values of 𝑇60 and the cSNR.
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the  intelligibility of isolated phonemes, expressed in the transfer function in  

Fig. 4-4. The cESTI-model took this approach one step further. It was based on 

the assumption that there exists a fixed relation between the ESTI-value per 

phoneme and the intelligibility of the same phoneme in isolation (𝑞𝑒). As a 

consequence, the cESTI does not distinguish between speech information in a 

gap between noise bursts, and speech information as a result of masking noise. 

This was already discussed in section 4.5. 

The data for low interruption frequencies presented in chapter 5 can be viewed  

in a different way (see Fig. 7-2). Here, the 𝑥-axis displays the fraction of the word  

that was completely audible to the listener. The axis is scaled to the lengths of 

the phonemes. So ⅓ and ⅔ represent the transition between the different 

phonemes. The value 0 means that the complete word was masked at either −18  

or −9 dB SNR. The value ½ means that half of the word was masked and the 

other half was completely audible. The value 1 means that the entire word was 

completely audible. It can be viewed as a ‘noise-curtain’ that is opened step by 

step. Note that the graphs are only displayed from left to right, but data was used 

where the ‘noise-curtain’ was opened from either side. Therefore, the value ⅓ at 

the 𝑥-axis represents the data where the initial consonant of the word was 

audible and the final two phonemes were masked, combined with the data 

where the final consonant was audible and the first two phonemes were 

masked. A limitation of this approach is the presence of coarticulatory cues 

around the phoneme transitions at 𝑥 = ⅓ and 𝑥 = ⅔.

Based on Fig. 7-2 several observations can be made. At an SNR of −18 dB (top 

panels), no speech information was available during the noise peaks. This is 

illustrated by the word score of 0% when only (a part of) one consonant was 

audible. Note that context did not play a role in this situation. When the vowel 

became audible (at 𝑥 ≥ ⅓), a difference between meaningful and nonsense 

words is observed. When half of the vowel was audible (at 𝑥 = ½), the meaningful 

word score increased to 39% (top-left panel), whereas the nonsense word score 

remained below 5% (top-right panel). This is most likely the result of a difference 

in context.

At an SNR of −9 dB (bottom two panels), differences between meaningful and 

nonsense words were larger. From the bottom-left panel, it is clear that the 

word score was around 18% when the complete word was masked by noise. 

Note that this value is slightly higher than the stationary noise data at −12 dB 

displayed in Fig. 5-2. However, when only a part of one consonant was 

completely audible, the intelligibility of the entire word increased to 70%. It is 

possible that this point is an outlier, but the meaningful word score was in any 

case larger than the nonsense word score when the listener had access to (part 

of) the first two phonemes (at 𝑥 ≤ ⅔). So, when the word was completely masked 

different frequency response at this reverberation time. Payton et al. (1994) 

mentioned that the STI overestimated intelligibility when speech was severely 

degraded by both noise and reverberation. It is possible that listeners can more 

easily handle one type of distortion, than two types simultaneously. 

7.3.2.3  Adaptive procedure

Another aspect that deserves attention is the procedure to determine the SNR 

at 50% intelligibility. After an initial stepsize of 4 dB, a 2 dB stepsize was employed 

in the adaptive procedure. At 𝑇60 = 0 s, this means that the stepsize was equal to 

0.067 STI units. However, when increasing the reverberation time, the 

contribution of the 2 dB stepsize was less dominant on the total STI. For 𝑇60 = 1.2 

s, the stepsize was only 0.025 STI units (when decreasing the SNR with 2 dB) 

and 0.019 STI units (when increasing the SNR with 2 dB). This is equivalent to 

0.74 and 0.58 dB respectively for the condition without reverberation. The 

asymmetry in the equivalent stepsize was caused by the log-transform when 

calculating the apparent 𝑆𝑁𝑅 based on the MTF [see Eq. (3-8)]. This operation is 

the exact inverse of Eq. (3-6), where the 𝑀𝑇𝐹𝑆𝑁𝑅 was calculated using the 𝑆𝑁𝑅. 

However, the 𝑀𝑇𝐹 that was used to calculate the apparent 𝑆𝑁𝑅 in Eq. (3-8) is the 

product of the 𝑀𝑇𝐹𝑆𝑁𝑅 and the 𝑀𝑇𝐹𝑟𝑒𝑣. Therefore, when reverberation is present, 

this asymmetry cannot be resolved.

So, the equivalent stepsize decreased at higher reverberation times and was 

biased towards lower SNRs. At 𝑇60 = 0.4 and 0.8 s, the stepsize in STI units was 

10–20% larger when decreasing the SNR than when increasing the SNR. This 

bias made the intelligibility task more difficult and had the potential effect that 

the cSNR-values were higher than expected. However, although noise 

contributed less at higher reverberation times, one would expect this effect to 

increase at 𝑇60 = 1.2 s. However, this was not the case. An interesting option 

would be to adjust the stepsize based on the reverberation time, ensuring 

equivalent STI steps in the procedure. For the reverberation times tested here, 

this would result in a stepsize between 2 and 4 dB when decreasing the SNR, 

and a stepsize between 2 and 10 dB when increasing the SNR. Especially for  

𝑇60 = 1.2 s, the stepsize is unrealistically large. However, a compromise might be 

found to increase the accuracy of the measurement when using reverberated 

speech. 

7.3.3  Use of context
In chapters 4 and 5 a context model was added to the ESTI-model presented in 

chapter 3. This cESTI-model was based on the approach described by Bronkhorst  

et al. (1993) regarding interrupted speech. Their fundamental assumption  

was the existence of a fixed relation between the speech-time-fraction and  
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Model predictions using context factors in noise and in quiet are not very 

different in three out of the four conditions. However, when looking at the 

bottom-left panel, the model appears to better predict the data when context 

factors in quiet are used. This is partly a consequence of the difference in 

context factors between quiet and noise (see Table 4-2), but also of the difference 

in transfer functions (compare Fig. 4-4 and Fig. 5-4). Note that the explained 

variance is highest for the context factors in quiet (see Table 7-1). Here, 

predictions using the Bronkhorst model are also displayed. 

This alternative approach confirms the statement from chapters 4 and 5 that 

context factors based on intelligibility in quiet are more suitable for low 

interruption rates than context factors based on intelligibility in noise. 

7.3.4  Short time windows
In chapter 3 the choice was made to comply with Van Wijngaarden and 

Houtgast (2004) and use modulation bands between 0.63 and 31.5 Hz. The 

periods corresponding to the different modulation frequencies range from 31 

ms to over 1.5 sec. In the ESTI-model, local STI-values were calculated for time 

windows as short as 2 ms, depending on the octave frequency band (see Table 

3-1). These local values were then averaged, which resulted in one ESTI-value. 

A similar approach was used for the ESII (Rhebergen et al., 2006), where 

audibility was assessed per time window. So, if speech is audible 50% of the 

time, a total of 50% of the speech information is available, which is intuitively 

correct. However, the ESTI uses modulations in the speech as a measure of the 

quality, and not the audibility. So, what is the significance of the time window 

lengths with respect to these speech modulations?

When speech is masked by interrupted noise at a low interruption rate, most 

speech modulations can be assessed during one glimpse. For example, at a rate 

by noise at an SNR of −12 dB, intelligibility was between 0 and 20%. However, 

when part of a consonant became fully audible, the listener was capable of 

combining this extra information with the context of the word, which caused 

a clear increase in word score. 

Fig. 7-2: Word scores at low interruption frequencies. The x-axis displays the fraction of 

the CVC-word that was not masked by noise. The x-axis is scaled to the length of the 

phonemes, so ⅓ and ⅔ represent the transitions between the different phonemes. Two 

model predictions are displayed per panel: using the transfer function and context 

factors for quiet, and for noise. Only predictions using the Boothroyd and Nittrouer 

model are displayed.
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Table 7-1: 𝑅2-values for the model predictions using the context models by Boothroyd 

and Nittrouer, and by Bronkhorst. Both context factors in quiet and in noise were used. 

Also, the explained variance is displayed for meaningful and nonsense words separately 

and combined. Note that in Fig. 7-2 only predictions using the model by Boothroyd and 

Nittrouer are displayed.

Boothroyd and Nittrouer model Bronkhorst model

Noise Quiet Noise Quiet

Total 0.77 0.90 0.78 0.83

Meaningful 0.70 0.90 0.68 0.86

Nonsense 0.81 0.90 0.84 0.79
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(7-2)

with  and 

This results in the following relations for the STI and SII:

(7-3)

(7-4)

Without reverberation, the apparent SNR is not dependent on modulation 

frequency (𝑟), and thus, when speech and noise are spectrally matched and at 

normal vocal effort, the SII and STI are identical. Despite the fact that the SII was 

originally based on audibility and the STI on modulation reduction, the practical 

implementation converged over the years. Even though the choice of short 

time windows is theoretically not the most sound option for the ESTI, in 

practice lessons were learned from the success of the ESII. Because of the 

similarities, similar choices were made for the ESTI. Another goal of the current 

extension was to make the ESTI relatively easy to implement. When assessing 

interactions between speech and noise modulations more thoroughly, it is an 

option to implement a modulation filterbank (e.g., Jørgensen and Dau, 2011)  

or a speech-based version of the STI (e.g., Payton and Shrestha, 2013). However,  

the calculation scheme of the ESTI compared to the STI would have been 

drastically changed, which was not the objective of this research. An important 

advantage of the ESTI is that the calculation per time window exactly follows 

the calculation scheme of the classic STI. 

7.3.5  Hearing threshold
At regular speech levels, the hearing threshold does not play a role in the classic 

STI. After all, in this situation modulation reduction is a supra-threshold 

phenomenon. However, for lower speech levels the hearing threshold becomes 

increasingly important. It is modelled as an internal noise (Pavlovic, 1987) and 

is defined in (IEC60268-16, 2011; 2020). Since the ESTI was designed to deal 

with non-stationary maskers, the hearing threshold plays a more prominent

of 0.5 Hz, the glimpses are 1 second long, so all but the lowest two modulation 

frequency bands can be analyzed accurately between two noise blocks. Here, 

the parallel with the ESII is clear: if 50% of the speech is available, a total of  

50% of the speech modulations is available. On the contrary, when glimpsing 

speech in interrupted noise (and also when glimpsing interrupted speech) at 

higher rates, the listener forms a complete picture of the speech by combining 

several glimpses (e.g., Miller and Licklider, 1950; Cooke, 2006). At these rates, 

modulations are not assessed between two noise blocks but are followed across 

the different glimpses, like in the visual analogy of the picket fence (Miller and 

Licklider, 1950). This listening across the glimpses is not accounted for in the 

ESTI-model. After all, averaging the local STI-values for a 16 Hz interrupted 

noise with 50% DC yields the same result as for a 2 Hz interrupted noise 

(ignoring forward masking).

For a better analysis of the choice of time windows, a closer look at the SII  

and STI is needed. When comparing the classic SII and STI, there are more 

similarities than differences. Even though the SII is audibility-based and the 

STI is based on modulations, and the SII does not account for reverberation.  

For simplicity, the current assumption is that speech and noise are spectrally 

matched, meaning that the SNR in each frequency band is the same. Also, a 

pure exponential impulse response is assumed, which means that reverberation is 

the same across frequency bands. This means that the apparent SNR only 

depends on the modulation frequency and the 𝑀𝑇𝐼 is constant over all frequency 

bands. When the 𝑀𝑇𝐼 does not depend on the octave frequency bands, this 

means that frequency weighting and redundancy correction can be discarded:

(7-1)

Now, for the SII we can assume that speech does not exceed normal vocal effort  

by more than 10 dB. This means that 𝐿𝑞 (Level Distortion Function) is equal to 

one. Since the band importance functions add up to one, the following relations 

hold:
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to the alternative hearing threshold were caused by the temporal approach of 

the ESTI and not by the introduction of forward masking. This effect was 

caused by intrinsic modulations in stationary noise. For example, when 

calculating the sound level per time window in the 125 Hz octave band for SSN 

at 65 dB (A), the levels per window range between 40 and 80 dB. Since the 

auditory threshold in this band is 46 dB according to IEC60268-16 (2011), the 

calculations for this band were affected by the auditory threshold. In conclusion, 

although choosing one point of reference for all calculations would be a more 

thorough approach, the effects are relatively small and probably will not affect 

the main conclusions.

7.4  ESTI versus other models

7.4.1  Classic STI
When suggesting an alternative for a widely used, proven metric, it is important 

to focus on the changes in practice. After all, it is not desirable to change 

outcomes that were not inaccurate in the first place. In the current situation, 

this means that results for stationary noise with or without reverberation should 

ideally remain the same. Payton and Shrestha (2013) stated that any short-time 

version of an established metric such as the STI should approach the long-term 

results when averaged over many frames, unless the long-term STI is inaccurate. 

Van Wijngaarden and Drullman (2008) further suggested that STI parameters 

should not be tuned to a specific application and that added complexity of a 

modification should be proportional to the increase in accuracy.

When assuming a situation without background noise, the total MTF only 

depends on the reverberation and does not depend on time. The MTF-value for 

each time window will be exactly equal. As a result, the eventual ESTI-value will 

be the same as the classic STI-value, which is desirable and in line with the 

earlier statements. 

For the effects of stationary noise, the classic STI and the ESTI should ideally 

retrieve the same results. In Fig. 7-3 the behavior of the STI and ESTI as a 

function of SNR in SSN is shown. Although both metrics follow the same 

general pattern, there are two important differences. First, in the linear portion 

of the relation between SNR and (E)STI, there is a systematic deviation of 0.024 

STI units on average. The second difference is most clear at the boundaries of 

the linear portion around +/– 15 dB. Where the original STI shows discontinu-

ities in these regions due to the clipping of the apparent SNR, the ESTI changes 

more gradually.

 role than in the classic STI. It serves as a virtual noise floor during the gaps in 

the noise, and as the lower limit of the exponentially decaying forward masking 

function [see Eq. (3-3)]. For the latter purpose, the estimate of the minimal 

audible pressure (MAP) by Killion (1978) was used. 

To analyze the effect of the auditory threshold on the STI calculation, a point of 

reference is needed. It is important to define where the sound level is measured, 

for instance in a 6cc coupler, or at the position of the head in the free field (with 

the head absent). The exact point of reference is not of particular importance, as 

long as the same point is used throughout the calculations. In this paragraph, 

the sound pressure level at the eardrum is used for this purpose. 

When presenting speech in stationary noise to a listener via headphones, the 

SNR at the eardrum is pretty much equal to the SNR originally presented. After 

all, the linear transformation as a result of the headphones and outer ear equally 

influences speech and noise. When presenting speech in quiet (or in interrupted 

noise, during the silent intervals), the situation becomes more complex, 

especially when speech is soft. The hearing threshold remains fixed, but the 

speech level is influenced by the transducer and the characteristics of the ear 

canal (Bentler and Pavlovic, 1989). 

So, what would the effect of these adjustments be on the ESTI-values? To check 

this, the ESTI was calculated for SNRs between −60 and +30 dB with the noise 

level fixed at 65 dB (A). This was done for stationary SSN and 8 Hz interrupted 

noise. The speech and noise were filtered using a 2000th order FIR filter to 

account for the frequency response of the TDH39 headphones that were used 

in the majority of the experiments. Furthermore, the MAP by Killion (1978) was 

used as the internal noise instead of the values in Table A.2 of IEC60268-16 

(2011). Finally, the output of the headphones was transformed to the sound 

pressure level at the eardrum using the transfer functions provided by Bentler 

and Pavlovic (1989) in column E of their Table 1. These steps were done before 

the calculation of the forward masking. Note that the transformation values for 

125 and 8000 Hz were not available, but were visually extrapolated based on the 

existing data. 

As expected, there were slight differences between both calculation schemes. 

The maximum differences using the SSN- and IN8-masker were less than 0.01 

and 0.015 STI units respectively. These differences fall well within the accepted 

measurement error of 0.03 STI units (IEC60268-16, 2011). The larger error in 

interrupted noise was expected due to the largest effect of the hearing threshold. 

When zooming in on SSN, the classic STI was not influenced by the change in 

hearing threshold. This was expected. However, when calculating the ESTI 

with the alternative hearing threshold, but without forward masking, the same 

differences were observed. In other words, the observed differences in SSN due 



156 157

CHAPTER 7 GENERAL DISCUSSION

C
H

A
P

T
E

R
 7

As is visible in Fig. 7-3 this also has an effect at SNRs above −15 dB and below 

+15 dB. Since the range of levels after windowing with the current choice of 

time windows can be as large as 30 dB for the lower octave band frequencies, 

this effect is also noticeable at SNRs close to 0 dB. Increasing the time window 

length would reduce this effect, but in chapter 3 it was shown that this reduces 

model accuracy. 

Clearly, discrepancies between the STI and ESTI are not desirable. However, it is 

the question if these effects are entirely unwanted. The classic transfer function 

between SNR and STI contains discontinuities around +/– 15 dB due to the 

‘hard’ clipping of the index. Between −15 and +15 dB, the STI increases by 

approximately 0.033 per dB SNR. Outside of this range, the SNR does not affect 

the STI-value. The ESTI, without discontinuities around the edges, appears 

more natural. After all, the cumulative amplitude distribution of speech is 

shaped like a regular performance intensity function (Drullman, 1995; 

Boothroyd, 2008; Rhebergen et al., 2009). The amount of speech information 

that becomes available per dB increase in SNR is not distributed equally. So, a 

smooth transfer function between the SNR and a measure for speech quality is 

not necessarily a disadvantage. Besides this, small modulations in stationary 

noise are traditionally disregarded, but can certainly affect speech intelligibility 

(e.g., Stone et al., 2012). 

As opposed to the ESTI, the addition of context should not be viewed as a 

generalization of the STI. The first two chapters of this thesis aimed at extending 

the usability of the STI to conditions where noise is non-stationary. The end 

result of the calculations was still a single ESTI-value. This single value was 

used to predict speech intelligibility, but could also serve to quantify the 

acoustical and/or noise-related properties of a transmission channel. This is 

different when context is added, since the intelligibility per phoneme is then 

assessed based on the local STI-value. The transfer function that is used to 

relate the STI-value to intelligibility is now part of an intermediate step, and not 

of the final step. It must therefore be viewed as an addition to the existing 

measure, since the specific application is only the prediction of intelligibility. It 

cannot be used as a complete replacement of the STI or the ESTI. 

The first, systematic discrepancy is related to the fundamental difference 

between calculating the classic STI and the ESTI. With the classic STI (in case of 

noise, but without reverberation), the rms-value of the total signal is calculated, 

after which it is transformed to the STI. Basically, the SNR between −15 and +15 

dB is linearly mapped to an index between 0 and 1. With the ESTI on the other 

hand, the rms per time window is calculated in order to calculate the local 

STI-value first. The same linear transformation thus takes place, but now per 

time window instead of per the complete signal. As opposed to the local 

rms-values, the local STI-values are not distributed normally and the skewness 

of the distribution causes the discrepancy between the ESTI and classic STI. 

The longer the time windows, the smaller this effect is, since peaks and valleys 

in the noise are averaged out. Also, the discrepancy depends on the type of 

stationary noise that is used, but is generally between 0.02 and 0.03 (see Table 

7-2), which is equivalent to a difference in SNR less than 1 dB. 

Another cause of the discrepancy between the STI and ESTI for SSN is the 

following. Given a long-term SNR of −15 dB, the classic STI would be 0 

(disregarding octave weighting and redundancy correction). However, as 

mentioned earlier, SSN is not purely stationary and shows random temporal 

fluctuations (Stone et al., 2011). As a result, the SNRs per time window are not all 

equal to −15 dB, but form a distribution around −15 dB. The local SNRs that fall 

below −15 dB are clipped to −15 dB, but the higher SNRs yield a local STI-value 

larger than 0. As a consequence, when averaging all local STI-values, the total 

ESTI-value will be slightly larger than 0. The opposite is also true: if the 

long-term SNR equals +15 dB, the ESTI will be slightly smaller than 1. 

Fig. 7-3: Relation between SNR and (E)STI to illustrate the differences in behavior. In the right 

panel, the derivatives with respect to the SNR of the relations in the left panel are shown.
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Table 7-2: The differences in STI and ESTI for different types of stationary noise (𝑇𝑤 = 2 ms).

Noise Classic STI ESTI

CVC meaningful 0.500 0.524

CVC nonsense 0.500 0.529

VU female 0.500 0.524

VU male 0.500 0.525

White noise 0.500 0.521
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Beutelmann and Brand (2006) also used the SII, but combined this with an 

Equalization Cancellation (EC) front-end to model binaural hearing. This model 

later evolved into the Binaural Speech Intelligibility Model (BSIM). Its predictive 

power was good for stationary noise and reverberant conditions, but the effect 

of reverberation on the speech itself was not taken into account since only 

near-field speech was used. Beutelmann et al. (2010) successfully introduced a 

short-time implementation of their model (stBSIM), similar to the ESII. They 

used an effective frame length of 12 ms, similar to the frame length by 

Rhebergen and Versfeld (2005) where the ESII was introduced without forward 

masking. Note that the introduction of forward masking to the ESII required 

shorter frame lengths of 4 ms (Rhebergen et al., 2006). Beutelmann et al. (2010) 

observed a performance improvement compared to the original EC/SII-model, 

but still only used near-field speech. Rennies et al. (2011) modelled several 

extensions to the BSIM to deal with the detrimental effect of reverberation on 

intelligibility. They found better model predictions than the original BSIM  

when the effect of reverberation was strong. The stBSIM was not investigated  

in this study. 

Lavandier and Culling (2010) chose a similar approach as Beutelmann and 

Brand (2006) but replaced the EC frontend with a BMLD (Binaural Masking 

Level Difference) estimation step. A high correlation was found between model 

predictions and speech intelligibility measurements in reverberation and 

stationary noise. Collin and Lavandier (2013) tested the same model but also for 

speech-modulated interferers. They based their effective window lengths of 12 

ms on Beutelmann et al. (2010) and found a similar performance to their stBSIM.

7.4.2.2  Feature-based models based on modulations

Various alternative measures for the classic STI were proposed over the years. 

Notable examples are the speech-based STI (Ludvigsen et al., 1993; Drullman, 

1995; Hohmann and Kollmeier, 1995; Payton and Braida, 1999; 2002), the 

Covariance- based STI or CSTI (Ludvigsen et al., 1990; Holube and Kollmeier, 

1996; Goldsworthy and Greenberg, 2004), the quasi-stationary STI or QSTI 

(Schwerin and Paliwal, 2014) and the eSTI (Prodi and Visentin, 2019). 

Payton et al. (1994) demonstrated that the intelligibility of clear speech is better 

than that of conversational speech, even though the long-term spectra are 

similar. Since the STI is not sensitive to differences in speaking style, Payton 

and Braida (1999) chose to use speech instead of modulated noise as a probe 

signal. However, the problem arose that the degradation of speech using noise 

caused spurious modulation components, leading to artifacts. To account  

for these artifacts, MTFs were truncated based on the coherence between the 

clean and degraded speech envelopes. A good correspondence between the 

7.4.2  Other models
Intelligibility models can be categorized in several ways. Feng and Chen (2022) 

distinguished between intrusive and nonintrusive models, based on the 

presence or absence of a reference signal respectively. The STOI (Taal et al., 

2011) is a typical intrusive model, since short-time temporal envelope segments  

of clean and degraded speech are compared by using a covariance metric. 

Nonintrusive models are usually less accurate, but are typically used when no 

reference signal is available, like when real-time monitoring of intelligibility is 

desirable. For example, in state-of-the-art hearing devices nonintrusive models 

can be used for the real-time adaptation of the device settings to optimize 

 intelligibility when acoustic circumstances change (e.g., Falk et al., 2015). Since 

real-time monitoring of intelligibility was not a goal of the (E)STI, this type of 

model is beyond the scope of the current research.

Furthermore, the distinguishment between conventional feature-based (using 

acoustical features), non-conventional data-based, and neurophysiological 

models can be made (Feng and Chen, 2022; Karbasi and Kolossa, 2022). This 

last category uses features derived from signals like EEG (Verschueren et al., 

2020) or oculometry (Favre-Félix et al., 2018) to retrieve additional information 

about speech intelligibility. Since these models — or additions to existing 

models — do not use speech as the primary source of information, these are 

also beyond the scope of the current work. 

Due to the large number of models that exist to predict speech intelligibility,  

it is virtually impossible to create an overview that is complete. In the sections 

below the focus lies on conventional feature-based models which are based on 

modulation reduction and audibility. Besides this, ASR-based models are 

discussed briefly since the number of applications and their importance rapidly 

increase.

7.4.2.1  Feature-based models based on audibility

The foundation for modelling speech intelligibility was laid at Bell Telephone 

Laboratories, New York in the form of the Articulation Index or AI (French and 

Steinberg, 1947; Fletcher and Galt, 1950). It is a speech audibility measure that 

later evolved into the Speech Intelligibility Index or SII (ANSI-S3.5, 1997). Several 

models exist that are based on the SII. Rhebergen and Versfeld (2005) and 

Rhebergen et al. (2006) introduced a temporal approach by calculating the SII 

using 4 ms windows to better deal with non-stationary maskers. This ESII- 

model formed the basis of the current ESTI method. Meyer and Brand (2013) 

proposed the ESIIsen, where speech was used as the test signal instead of 

stationary noise. Results were comparable to those of the original ESII. 
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nonlinear interactions between speech and noise. The SNRmod better dealt 

with these nonlinear interactions than the STI. A downside to this method was 

that the modulation noise floor could not be estimated from the clean speech 

or the noise separately, but had to be inferred from the noisy speech using an 

artificial probe signal. This approach made it hard to generalize the concept of 

the SNRmod.

A similar approach was the Envelope Power Spectrum Model or EPSM (Dau et 

al., 1999; Ewert and Dau, 2000) and used a modulation filter bank. At first, it was 

used to predict amplitude modulation detection based on the signal-to-noise 

ratio of the envelope power (SNRenv) at the output of the modulation filter. This 

model only considered target and noise modulations, not interaction 

modulations like the SNRmod. Jørgensen and Dau (2011) introduced the 

speech-based EPSM or sEPSM to evaluate speech intelligibility. The results of 

the model were in accordance with speech intelligibility data for reverberated 

noisy speech (SSN) and spectral subtraction. Especially in the latter, nonlinear 

condition, the sEPSM outperformed the STI.

The multi-resolution sEPSM or mr-sEPSM (Jørgensen et al., 2013) aimed to also 

include non-stationary maskers by estimating the SNRenv for each combination 

of modulation and peripheral filters in temporal segments. The lengths of these 

temporal segments were based on the modulation filter and ranged between 

3.9 and 1000 ms. The mr-EPSM was again successfully applied to conditions 

with stationary interferers and reverberation, and spectral subtraction. It also 

accounted for fluctuating interferers with gradual modulations, like sinusoidally 

amplitude modulated noise, two interfering talkers, and ISTS. Other extensions 

of the EPSM were introduced to deal with phase distortions (Chabot-Leclerc et 

al., 2014), the addition of a ‘traditional’ PSM branch with a decision backend to 

deal with more types of masking (Biberger and Ewert, 2016; 2017) and a binaural 

extension (Chabot-Leclerc et al., 2016).

The spectro-temporal modulation index or STMI by Chi et al. (1999) is a 

biologically motivated model. It compares the cortical representations of the 

spectro-temporal modulations in clean and distorted speech. Elhilali et al. 

(2003) showed that it performed similarly to the classic STI for reverberated 

speech in stationary noise, but performed better for nonlinear distortions like 

phase jitter or linear phase-shifting. The main reason is that the speech 

envelope remains intact after these distortions, which explains the insensitivity 

of the STI. The STMI was updated to the OSTMI by Edraki et al. (2019) and the 

wSTMI by Edraki et al. (2021a) to enhance performance. Edraki et al. (2021b) and 

Edraki et al. (2022) also introduced a spectro-temporal glimpsing index (STGI) 

to better deal with modulated noises, noise reduction, and reverberation. The 

STGI outperformed other metrics like the ESII, ESTOI, and wSTMI on a variety 

speech-based and classic STI was found. Goldsworthy and Greenberg (2004) 

discussed a variety of existing and novel speech-based STI approaches to deal 

with nonlinearly processed speech. Two notable approaches were an alternative 

implementation of the Envelope Regression or ER method by Ludvigsen et al. 

(1990) and the Normalized Correlation method, which was derived from the 

Normalized Covariance Method or NCM (Holube and Kollmeier, 1996). When 

using ER, the envelope of the probe and response signals are compared by 

means of linear regression. In NCM the normalized covariance between the 

envelopes of the probe and response signals are calculated. In both approaches, 

the output is used as a surrogate for the MTF when calculating the apparent 

SNR (see Eq. (3-8), where 𝑀𝑇𝐹 would be substituted for the alternative metric). 

Payton and Shrestha (2013) took it one step further and designed a short-time 

speech-based version of the STI based on the ER method suggested by 

Goldsworthy and Greenberg (2004). Speech was degraded using SSN, SSN 

combined with reverberation, and babble noise. Various time window lengths 

were used, ranging between 78 ms and 107 s (the length of the entire probe 

signal). The optimal value was 300 ms, since for shorter windows the ER 

algorithm followed the noise envelope during the pauses in the speech, leading 

to non-zero values. Evaluation of speech intelligibility was only done using SSN 

and showed a good correlation with the STI. Other short-time speech-based 

versions were developed by Schlesinger (2012) using 400 ms windows and Falk 

et al. (2010) using 256 ms windows. 

The Short-Time Objective Intelligibility measure (STOI) was developed by Taal 

et al. (2011) and updated to the ESTOI by Jensen and Taal (2016). It is, like the 

CSTI (Goldsworthy and Greenberg, 2004), based on a covariance metric 

between clean and distorted speech. In contrast to the CSTI, the STOI calculates 

the correlation coefficient for short time segments. It was tested with window 

lengths varying between 20 − 30 ms and more than one second. The final 

model works with overlapping windows of 384 ms. The ESTOI uses the same 

window lengths, but calculates the correlation coefficients in the spectral 

domain instead of in the temporal domain. The authors claimed that the effects 

of time-modulated maskers were better captured in this way. According to 

Karbasi and Kolossa (2022), the STOI has become a widely used benchmark in 

the field of speech processing. 

Another concept that is closely related to the STI was introduced by Dubbelboer 

and Houtgast (2008). They suggested the signal-to-noise ratio in the modulation 

domain (SNRmod) to better deal with nonlinear distortions such as spectral 

subtraction. The SNRmod is the ratio between the speech modulations and the 

modulation noise floor. This modulation noise floor was said to consist of the 

original noise modulations, but also contains modulations as a result of the 
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7.4.3  Model comparisons
When comparing models, a quantitative comparison is desirable. For this 

purpose, two existing models were selected from the literature: the ESTOI 

(Jensen and Taal, 2016) and the mr-sEPSM (Jørgensen et al., 2013). This choice 

was partly based on the applicability to non-stationary noises, but also — 

pragmatically — on the online availability of the MATLAB-code.

Using these models, the cSNRs of the speech material in chapter 6 were 

estimated. Again, the metric was calibrated using the cSNR in SSN per study. 

Since the ESTOI is expected to have a monotonic increasing relation with intel-

ligibility, the same approach as for the ESTI and cESTI was used. At cSNR the 

listener is expected to reach the same ESTOI-value in SSN as in non-stationary 

noises. Clean and distorted speech were used as the input signals. 

For the mr-sEPSM the fitting procedure was more complex. Distorted speech 

and noise alone were used as input signals and were used to calculate the 

speech-to-noise envelope power ratio or 𝑆𝑁𝑅𝑒𝑛𝑣. To convert 𝑆𝑁𝑅𝑒𝑛𝑣 to 𝑑’ 
(the sensitivity index of an “ideal observer”), the parameter 𝑘 was fitted according 

to Eq. (6) from Jørgensen et al. (2013) based on the cSNR in SSN per studyx.  

To convert 𝑑’ to an intelligibility score, several parameters that were suggested 

by Jørgensen and Dau (2011) based on Danish meaningful sentences were 

used in the current estimations. Especially the parameter 𝜎s, which was 

assumed to be primarily related to the redundancy of the speech material, 

might need extra tuning. For example, as opposed to the Dutch sentence 

material (Versfeld et al., 2000), the level of the sentences of the Danish speech 

corpus was adjusted to equalize intelligibility (Nielsen and Dau, 2011). Finally, 

the fitted parameter 𝑘 was applied to 𝑆𝑁𝑅𝑒𝑛𝑣 for all non-stationary noise 

conditions from the same study. Since the ESTOI and the mr-EPSM use real 

speech as input signals, 100 sentences were selected from the total speech 

corpus for computational reasons.

The root-mean-square error (𝑅𝑀𝑆𝐸) between observed and predicted cSNRs 

are depicted in Table 7-3. The ESTOI had difficulties with reverberation, 

especially when 𝑇60 was 0.8 s or higher. Therefore, the 𝑅𝑀𝑆𝐸 is depicted for all 

conditions combined, and for the conditions without reverberation (within 

parentheses). Since the spread of the data was relatively low, especially when 

the conditions with reverberation were omitted, the 𝑅𝑀𝑆𝐸 was used instead of 𝑅2. 

x This parameter 𝑘 should not be confused with the context factor from the Boothroyd and 

Nittrouer model.

of distortions including reverberation, modulated noises, and competing 

speakers. However, the authors state that the STGI-model has 44 parameters 

fitted to the training dataset, which makes the model prone to overfitting. 

7.4.2.3  Data-based models
Data-based models use machine learning techniques that are applied in 

automated speech recognition (ASR). These methods are used to either predict 

speech intelligibility directly, or to use the output (or internals) of an ASR-system 

for the same purpose. These models show great potential for a wide range of 

acoustic scenarios (e.g., Andersen et al., 2018; Zezario et al., 2020), provided that 

large training sets are available and extensive work is done on parameter 

optimization. The direct consequence is that these models generally have high 

complexity and low explainability, which is the main disadvantage compared 

to conventional feature-based models. 

The Framework for Auditory Discrimination Experiments or FADE (Schädler 

et al., 2015; Schädler et al., 2016) is a model that uses the accuracy of the ASR 

transcription to estimate speech intelligibility. It used Mel Frequency Cepstral 

Coefficients (and their temporal derivatives) as a front-end, and whole-word 

Hidden Markov Models as a backend. It performed well on sentence tests and 

has been extended to model binaural hearing (Kollmeier et al., 2016) and 

impaired hearing (Schädler et al., 2018). However, since a FADE simulation for 

one condition required several hours of signals, a data-reduced version was 

developed (Hülsmeier et al., 2021). This version reduced the amount of time to 

30 minutes of recorded speech per condition and performed within 1 dB of 

FADE for speech in stationary noise. However, the difference in performance 

was approximately 5 dB for non-stationary noises. Spille et al. (2018) introduced 

a model based on machine learning with a front-end using features from an 

amplitude modulation filterbank and a deep neural net (DNN) based backend. 

This model outperformed the ESII, STOI, and mr-EPSM on various modulated 

maskers. The advantage compared to the FADE-model was that the DNN-based 

model was not trained using the same type of data as in the testing phase. 

However, this came at the cost of needing more training data and more 

computational resources. 

Various other ASR-based models are available, but a complete discussion is 

beyond the scope of the current work. See Karbasi and Kolossa (2022) for a 

recent and extensive review. Speech intelligibility prediction using deep neural 

networks is rapidly developing and super-human performance in recognizing 

speech seems to be within reach (Nguyen et al., 2020). It is therefore likely  

that ASR-based speech intelligibility prediction will further improve during the 

next decade and that conditions with fluctuating noises, binaural hearing, 

sensorineural hearing loss, and hearing aids will be modelled more accurately. 
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accurately model intelligibility for a wide range of non-stationary noises, 

including interrupted noises. One of the problems with other models that were 

designed for non-stationary noises, is the use of relatively long time windows. 

Interrupted noises at high rates still provide the listener with useable glimpses 

as short as 8–10 ms (Miller and Licklider, 1950; Rhebergen et al., 2006). For 

example, only the filters of the modulation filterbank by Jørgensen et al. (2013) 

that are tuned to 128 and 256 Hz have windows that are short enough to capture 

these glimpses. However, modulations in speech at these frequencies play a 

minor role in intelligibility. The temporal window that corresponds to the 

dominant modulation frequency in speech of ∼4 Hz (Houtgast and Steeneken, 

1978) is approximately 250 ms long. The higher inaccuracies in interrupted 

noise of the mr-sEPSM shown in Table 7-3 are a consequence of this modelling 

choice. It is of course the question how relevant interrupted noises are in daily 

life. A competing speaker is a more frequent occurring form of distortion and 

both the ESTOI and the mr-sEPSM outperform the ESTI and cESTI, especially in  

the absence of reverberation. 

It is obvious that a relatively simple acoustic measure like the STI and its 

derivations cannot compete with the powerful performance of ASR-based 

models. Not now, and certainly not within the near future, since the accuracy 

of methods based on machine learning will only improve. However, ASR-based 

models tend to be highly complex, and need a large amount of training data, 

often for each separate condition. In theory, these models are interesting, but 

the practical implementation is therefore not always straightforward. And this 

point is exactly the major strength of the STI: a single noise recording, together 

with a recording of an impulse response is sufficient to calculate the STI and 

directly draw conclusions. Besides its easy applicability, the STI is thoroughly 

evaluated over the past decades and clearly specified in IEC60268-16 (2011; 

2020).

7.5  ESTI and hearing loss

The focus of the current study was on normally hearing subjects. Of course, in 

clinical practice, the STI can be a valuable tool to evaluate the (acoustical) 

circumstances in which hearing-impaired people have to function. What role 

can the ESTI play here? People with sensorineural hearing impairment 

experience less fluctuating masker benefit than normally hearing subjects (e.g., 

Festen and Plomp, 1990). The fluctuating masker benefit in people with normal 

hearing is adequately modelled by the ESTI, especially when noises do not have 

speech-like characteristics (see chapter 3). 

For noises with artificial fluctuations and fine structure, the ESTI performed 

best. Especially the mr-sEPSM had difficulties with abrupt fluctuations in  

the noise. As was already clear from chapter 3, the ESTI had problems when 

fluctuations are speech-like. Although the cESTI is a clear improvement, 

especially the ESTOI performs better in the absence of reverberation. Note that all 

models perform relatively poor for competing speakers and ISTS (third row)  

in the presence of reverberation. Taal et al. (2011) mention that the original STOI 

was not tested for conditions with reverberation. 

Real-life background noise was added as an additional category and contained 

signals like multi-talker babble, music, and car noise (Rhebergen et al., 2008; 

Francart et al., 2011). These are more representative of daily listening conditions, 

but vary highly in their temporal and spectral characteristics. In this category, 

the ESTOI and mr-sEPSM perform surprisingly poor. 

The model prediction using the ESTOI and mr-sEPSM were used with the 

standard set of available parameters. To fit the current speech data more accurately, 

extra tuning of these parameters is required. Results from the original publications 

of the model with similar noise types show a higher accuracy. However, 

the results from Table 7-3 clearly show a trend. The mr-sEPSM has problems 

with interrupted noises and the accuracy of the ESTOI diminishes when 

reverberation is present. 

7.4.4  In summary
An added value of models like mr-sEPSM, the ESTOI, and the short-time 

speech-based STI-models, is the better applicability to nonlinear signal 

processing. Here, these models perform better than the classic STI (and also 

than the ESTI). However, the current extension of the STI was not focused on 

nonlinear processing, but was designed for room acoustics and aimed to 

Table 7-3: 𝑅𝑀𝑆𝐸-values of model prediction with reverberation. In parentheses are the 

values when data with reverberation was removed. No conditions with reverberation 

were tested in the category in the bottom row, so no values between parentheses are 

provided.

ESTI cESTI1 cESTI2 ESTOI mr-sEPSM

Artificial fluctuations /  

Artificial fine structure
2.9 (3.0) 3.4 (3.5) 4.9 (5.1) 5.5 (5.0) 11.5 (12.2)

Speech-like fluctuations /  

Artificial fine structure
5.1 (5.9) 4.6 (5.0) 3.1 (3.4) 4.8 (2.8) 4.1 (4.7)

Speech-like fluctuations /  

Speech-like fine structure
9.6 (9.6) 9.1 (8.5) 7.1 (6.4) 8.6 (3.1) 5.2 (2.4)

Real-life background noise 4.8 4.8 3.4 10.9 8.9
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certain qualification interval. In Table I.1 of IEC60268-16 (2011), four qualification 

intervals are provided which are coupled to STI-values. Generally, a STI of 

0.75–1.00 represent excellent circumstances, 0.60–0.75 good, 0.45–0.60 fair, 

0.30–0.45 poor, and 0.00–0.30 bad. These are the labels for normally hearing 

persons. For aged listeners with an average hearing loss of 30 dB, a STI of 0.51  

is classified as Bad-Poor, and 0.66 is classified as Poor-Fair. Higher qualifications 

cannot be achieved. Adjusted qualifications are necessary for the ESTI, since 

the current versions underestimate acoustic circumstances with non-stationary 

noises. After all, the hearing-impaired subjects described above needed a regular 

ESTI in SSN of 0.494 to reach 50% intelligibility. However, they needed an ESTI 

of 0.653 in interrupted noise. 

7.6  Suggested applications

An important application of the ESTI is the suitability for conditions with 

non-stationary background noise. A good example is a classroom where a 

teacher experiences problems with speech intelligibility. To investigate the 

acoustic circumstances in which the teacher has to work, the STI can be used. 

In order to avoid inaccuracies due to non-stationary background noise, 

measurements are often done after school hours. However, several factors are 

not taken into account in this situation, such as the true noise characteristics, 

the influence of the children on the acoustical properties of the room and the 

daily noises from outside the classroom. With the ESTI, this limitation can be 

overcome by applying the indirect measurement method using the conditions 

described in chapter 2, and the ESTI calculation scheme of chapter 3. As a 

consequence, the results of the ESTI measurement will better reflect the actual 

circumstances of the classroom during school hours.

Another possibility that has opened up with the new calculation scheme of the 

ESTI, is a time-dependent visualization of the STI. As an example, an employer at  

a train station might experience difficulties in understanding speech, but only 

when trains pass by, or stop at the station. With the classic STI, the train noise 

would have caused measurement inaccuracies, invalidating the measured 

STI-value. With the indirect measurement approach as suggested in section 4.4 

of IEC60268-16 (2011), this issue would be resolved. However, the fluctuations 

would probably average out in the separate noise recording, leading to a 

STI-value which is more representative for the quiet intervals between passing 

trains, but not for the situation where the actual problem occurs. The current 

ESTI approach presents the opportunity to visualize the ESTI as a function of 

time. The quiet intervals could then be analyzed separately from the moments of 

To provide a brief overview of the possibilities of the ESTI and hearing loss,  

the intelligibility data by De Laat and Plomp (1983) was used. This data was later 

re-examined by Rhebergen et al. (2010). Subjects with normal, and mildly to 

moderately impaired hearing were tested using SSN and 10 Hz interrupted 

noise as a masker. In each condition, all subjects were tested with stationary 

noise levels of 65, 75, and 85 dB (A) and interrupted noise levels of 62, 72, and  

82 dB (A). The adaptive procedure by Plomp and Mimpen (1979) was used to 

determine the cSNR. 

In normally hearing subjects, the ESTI-value at cSNR was 0.37 (+/– 0.008) when 

using SSN as a masker. For the 10 Hz interrupted masker the average ESTI-value 

was 0.296 (+/-0.03). Here, the ESTI tended to increase with increasing noise 

levels, but overall, it was slightly lower for non-stationary noise than for SSN. 

The ESTI in SSN for hearing-impaired subjects was 0.494 (+/– 0.02). This 

corresponds well to the classic STI data found by Duquesnoy and Plomp (1980) 

who found values between 0.46 and 0.51 for the subgroup with similar auditory 

thresholds. In interrupted noise the average ESTI was 0.653 (+/– 0.05). In this 

case, the ESTI was heavily influenced by the noise level, with an increase of 

0.01 STI-units per dB of noise. The average ESTI at cSNR was 0.15 units higher 

in interrupted noise than in stationary noise. This reflects the limited benefit 

hearing-impaired subjects receive from gaps in the noise. 

Implementation of individual hearing thresholds seems to be an important 

factor here. A first order approximation was to adjust the hearing thresholds as 

they are currently used in the ESTI-model. A moderate, slightly sloping hearing 

loss that satisfied the average thresholds provided in Table 1 of Rhebergen et al. 

(2010) was superimposed on the auditory thresholds already available in the 

model. The resulting ESTI-values at cSNR in stationary noise were 0.356 

(+/– 0.05) and in interrupted noise 0.331 (+/– 0.02). Note that only audibility and 

the forward masking function were adjusted here. The distortion factor as in 

the model by Plomp (1986) was not accounted for. Duquesnoy and Plomp (1980) 

stated that this distortion factor (i.e., the hearing loss in dB for speech in SSN) 

can be expressed as a shift of 0.033 STI units per dB distortion. In order to model 

intelligibility in fluctuating noise for hearing-impaired subjects more accurately, 

the individual distortion factor should also be taken into account. This is in line 

with the statement by Meyer and Brand (2013) that the pure tone audiogram 

does not seem to be sufficient to estimate the cSNR in non-stationary noises. 

An important question here is how the ESTI should be applied to hearing- 

impaired subjects. One option is to predict intelligibility as discussed above. 

In order to do so, the individual hearing threshold and distortion factor could be 

included in the model. Another option is to calculate the ESTI according to the 

normal calculation scheme from chapter 3, and relate the resulting values to a 
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passing trains. This can be the basis of a more thorough, quantitative assessment 

of the working place. 

As mentioned earlier, the STI and SII converged over the years and their 

calculation schemes now show a lot of similarities. It is therefore a logical 

option to also investigate the added value of a context-based approach of the 

ESII. For example, Rhebergen et al. (2006) showed that the ESII could accurately 

predict 50% sentence intelligibility for speech in interrupted noise with rates  

of 8 Hz and higher. However, the ESII drastically overestimated intelligibility  

in 4 Hz interrupted noise, because context was not accounted for. A similar 

approach might resolve this issue and is relatively easy to implement.

7.7  Future of the Speech Transmission Index

The STI is a relatively simple but powerful measure, developed in the 1970s and 

1980s. What is the role of the STI in the current landscape of complex, AI-based 

models? A simple search in Web of Science tells us that the term Speech 

Transmission Index was used as a topic in scientific papers almost 300 times 

since 1980. When analyzing this data more thoroughly, a trend is visible towards 

more uses of the term each year, with a plateau of approximately 17 per year 

since 2013 (see Fig. 7-4). Of course, the body of research in general has rapidly 

grown over the past forty years, so it is more accurate to display this number 

relative to all the publications available. Still, the number of mentions per million 

articles on Web of Science shows an increasing trend until 2014. After that, 

a decrease is seen. 

So, in the past decade a scientific paper about the STI is published almost every 

three weeks. Recent citations span a variety of topics, ranging from classroom 

acoustics (Leccese et al., 2018) to open-plan offices (Cabrera et al., 2018), and 

from the estimation of MTFs using neural networks (Duangpummet et al., 

2022) to the assessment of the recording quality of a new type of acoustic 

actuator (Dipassio et al., 2022). 

The STI is a metric that is subjected to ongoing research. It is likely that 

technologies based on artificial intelligence will play a role in the estimation 

and optimization of the STI. As mentioned earlier, novel models will continue 

to emerge with an increasing pace due to the explosion of algorithms driven by 

machine learning. However, the need for a simple and powerful measure of 

speech quality will remain. Since the STI is embedded within today’s standards,  

it is likely that it will continue to be used for this purpose in the future. Of course, 

metrics evolve and the current research is a contribution to this evolution.  

But the modulation-based assessment of speech intelligibility will remain as 

important as it is today.

Fig. 7-4: Scientific publications found on Web of Science with the term “Speech 

Transmission Index” in the topic. The solid line represents the absolute number of 

publications per year (corresponding to the left y-axis). The dashed line represents the 

number of publications per million for each year (corresponding to the right y-axis).
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General conclusions

In section 1.4 the objectives of the current work were formulated. The primary 

goal was to increase the usability of the STI in non-stationary background 

noise. Besides this, the authors aimed to remain close to the original calculation 

scheme in order to minimize complexity and maintain robustness. 

 Generally speaking, this thesis consisted of three topics:

1) The circumstances under which (E)STI measurements in non-stationary 

noise should take place (chapter 2)

2) The introduction of a temporal extension of the classic STI to account for the 

increase in intelligibility when gaps in the noise are introduced (chapter 3)

3) The addition of context models to the Extended STI to account for noises 

with slow modulations (chapters 4, 5 and 6)

The ESTI-model was developed to deal with two limitations of the classic STI. 

First, the model needed to account for the fluctuating masker benefit. Besides this, 

the measurement method needed to be suitable for non-stationary background 

noises. The latter aspect was addressed in chapter 2. The indirect measurement 

method in non-stationary noise proved to be suitable to estimate the impulse 

response that was necessary to calculate the Modulation Transfer Function. 

This conclusion paved the way for the introduction of the temporal extension 

of the STI in chapter 3. When calculating the STI per time window and averaging 

all values across the entire signal to obtain one index, the prediction accuracy 

increased when compared to the classic STI. This was the case for all non- 

stationary noises and reverberation times that were analyzed, although predictions 

in noises with speech-like properties still showed inaccuracies. 

The primary objective of this thesis was met in chapters 2 and 3. The combination 

of the suggested measurement conditions and the extension of the STI clearly 

increased the usability in non-stationary noises. The complexity of the calculation 

scheme did increase as a result of the introduction of forward masking and  

the temporal extension, but, in the opinion of the author, this increase is 

proportional to the higher accuracy.

The formulation and evaluation of a context-based version of the ESTI in 

chapters 4, 5 and 6 aimed to deal with the remaining inaccuracies discussed in 

chapter 3. The addition of context was successful in predicting the intelligibility  

of monosyllabic words in interrupted noise with low interruption rates. It was 

particularly accurate when predicting the typical dip in intelligibility that is 

often seen in interrupted noise around a rate of 1 Hz. However, the model still 

showed inaccuracies for maskers with speech-like characteristics in the 

prediction of sentence intelligibility.
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The introduction of context to the ESTI marked an important deviation from 

the classic STI. The outcome of the classic STI and the ESTI is a single index 

value that can be used to predict intelligibility when a transfer function is 

available. This index value can also be used to evaluate the quality of speech 

transmission from a talker to a listener (which was the original purpose of the STI). 

On the contrary, the outcome of the cESTI is an estimate of intelligibility only 

and the index values are merely calculated as an intermediate step. In other 

words, the cESTI cannot be used as a direct replacement for the STI or ESTI, 

since it is not suitable to evaluate the quality of a transmission channel. However, 

this addition does show how a context model can be successfully used in 

combination with traditional methods for estimating speech intelligibility. 

An important limitation of the ESTI-model is its poorer performance in 

non-stationary noises with speech-like characteristics. Stationary noises are 

relatively homogeneous, with the primary variation in their spectral content. 

Non-stationary noises are infinitely more variable, leading to difficulties in 

constructing a model that explains all outcomes. Intelligibility models are 

inherently an oversimplification of human speech recognition. Keeping a 

model relatively simple and usable is impossible to unite with a model that 

accurately predicts intelligibility in all possible conditions. Merely the concept 

of modulation reduction cannot account for complex interactions between the 

envelopes of speech and noise, or for modulation masking and informational 

masking. An important objective of the current research was to make the ESTI 

applicable in the same way the STI is being used today. Within that framework 

and despite the remaining inaccuracies, the ESTI led to a significant increase 

in prediction performance when compared to the classic STI. 
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SUMMARY

Summary

The Speech Transmission Index or STI is a widely used metric that was designed  

for the evaluation of the quality of speech transmission from a talker to a 

listener. It can be applied in communication technology and room acoustics 

to evaluate the transmission channel without having to conduct speech 

 intelligibility measurements for that specific condition. Examples of use are  

the design and construction of auditoria and theatres, and the evaluation of  

a working environment when problems with speech intelligibility occur. 

The STI is a relatively simple but robust index between 0 and 1 that is based on 

the reduction of modulations in the speech as a result of background noise 

and/or reverberation. This modulation reduction correlates well with the degree 

of speech intelligibility. The foundation of the STI is the Modulation Transfer 

Function. This MTF is calculated based on recordings that were traditionally 

made using the direct measurement method, by using modulated noise as a 

probe signal. An alternative approach is the indirect measurement method, 

which uses a separate recording of the background noise in combination with 

an impulse response measurement. When the MTF is known, it is converted to 

a STI-value in several steps. A STI-value of 0 represents a situation where no 

intelligibility is possible at all. An index of 0.75 or higher corresponds to 

circumstances where intelligibility is good to excellent. An index lower than 

0.30 corresponds to bad/poor intelligibility. Note that this only applies to 

normally hearing, native listeners. When a transfer function between the STI 

and intelligibility is known for a certain speech corpus, speech intelligibility 

can be estimated based on the STI-value.

Despite the robustness and thorough evaluation of the STI, there are several 

weaknesses. When nonlinear distortions like compression or spectral subtraction 

occur, the accuracy of the STI decreases. However, the current research focused 

on room acoustics and therefore only dealt with linear types of distortions. 

Another limitation of the STI is its usability when background noise is non-

stationary. This was the primary motivation for the current research. The 

background of this limitation is twofold. First, the traditional, direct measurement 

method which uses modulated noise as a probe signal is sensitive to fluctuations 

in the background noise. This can lead to under- or overestimation of the STI. 

Second, speech intelligibility increases in normally hearing subjects when gaps 

in the noise are introduced. This is caused by the ability to glimpse speech in 

temporal regions where the speech is least affected by the background noise. 

The STI is unable to deal with this so-called fluctuating masker benefit, leading 

to a STI-value that is not representative for the actual circumstances. The goal 

of the current thesis was to increase the usability of the STI in non-stationary 
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that speech elements are fully masked by the longer noise bursts and are not 

intelligible. The listener can then rely on contextual information to “guess” the 

missed elements. To account for this mechanism in speech intelligibility, 

context was added to the ESTI. First, the ESTI was calculated per speech element 

instead of for the whole signal. Then, a transfer function was estimated that 

related the ESTI per element to the isolated element score. When the latter score 

was known, the intelligibility of the whole utterance could be estimated using a 

context model. To evaluate the performance of this context-based ESTI or 

cESTI-model, existing intelligibility data of meaningful monosyllabic words in 

interrupted noise was analyzed. The addition of two existing context models 

was compared, referred to as cESTI1 (with the Bronkhorst model) and cESTI2 

(with the Boothroyd and Nittrouer model). The prediction accuracy of the new 

model clearly improved for interruption frequencies below 5 Hz. The model 

versions cESTI1 and cESTI2 resulted in comparable performance.

The cESTI-model was evaluated in chapter 5 using newly measured CVC-words  

in stationary and interrupted noise. Both nonsense and meaningful words 

were used. Only cESTI2 (using the more simple of the two context models from 

chapter 4) was used in this chapter. The model outperformed the ESTI-model 

for both meaningful and nonsense words. However, despite the increased 

performance, intelligibility of meaningful words at rates below 5 Hz was still 

underestimated. Higher context values might be more suitable at low interruption 

rates and led to an improved prediction accuracy. Furthermore, model predictions 

showed a clear drop off at interruption rates of 8 and 16 Hz, possibly related to 

an overestimation of the effect of forward masking. The model accuracy 

increased when an alternative forward masking function was used. 

In chapters 4 and 5, the cESTI-model was evaluated using monosyllabic words. 

However, the original motivation for adding context to the model was the 

observed prediction inaccuracy in sentences masked by noises with speech-like 

characteristics in chapter 3. Therefore, chapter 6 discussed the performance of 

the cESTI-model using the sentence intelligibility data from chapter 3. Both the 

cESTI1 and cESTI2 were again evaluated. Prediction accuracy of the cESTI1 

remained similar or increased in comparison with the ESTI predictions. On the 

contrary, the accuracy of the cESTI2-model decreased for non-stationary 

background noises without speech-like characteristics. However, cESTI2 

outperformed cEST1 for speech-like noises, like a competing speaker. In 

general, inaccuracies with regard to speech-like noises remained. Adjusting 

the values of the context factors and the transfer function might lead to 

improvement, but it is likely that modulation masking and informational 

masking remain an important factor in the discrepancies between intelligibil-

ity and model predictions. 

background noises by addressing both the measurement method and the 

fluctuating masker benefit.

In chapter 2, the conditions under which the STI can be accurately measured 

were investigated. The focus was on the indirect measurement method where 

the MTF was derived from an impulse response measurement and a long-term 

noise recording. This method is less sensitive to fluctuations in the noise, but 

under which conditions the measurement can be done reliably is not known. 

To investigate this more thoroughly, two experiments were carried out. Impulse 

response measurements (using a sweep signal) and noise recordings were 

conducted in a room with variable absorption, different levels of stationary and 

fluctuating background noise, and different sweep levels. In order to extrapolate 

the experimental findings to other acoustical conditions, a large number of 

other recording conditions were simulated. The experiments and simulations 

showed that a minimum impulse-to-noise ratio of +25 dB (corresponding to a 

sweep-to-noise ratio of −4 to +15 dB) in non-stationary noise was needed to 

accurately measure the STI.

The Extended STI or ESTI was introduced in chapter 3. The aim of the revised 

model was to account for the increased intelligibility when gaps in the noise are 

introduced. The primary adaptation was the calculation of the STI per 2 ms 

time windows instead of for the long-term signal. The average of all local 

STI-values yielded one ESTI-value. To deal with rapid offsets of the noise, 

forward masking was also introduced in the model. The model parameters 

were tuned using newly measured sentence intelligibility data in normally 

hearing subjects. The point of 50% intelligibility (cSNR) was measured using an 

adaptive procedure. Speech was distorted using a combination of noise 

(stationary noise and two types of non-stationary noise) and five degrees of 

reverberation. Model evaluation was done using intelligibility data from 10 

studies in the literature. The ESTI proved to predict intelligibility better than the 

classic STI for all non-stationary noises that were used. Prediction inaccuracies 

were observed when background noise had speech-like characteristics. When 

only the noise envelope was speech-like, the offset between observed and 

predicted cSNR was approximately 3 – 4 dB. When the fine structure of the 

noise was also speech-like, an extra offset of 5 – 7 dB was found. The authors 

hypothesized that these inaccuracies were the result of modulation masking, 

informational masking, and/or context effects.

In chapter 4 the hypothesis was tested that these inaccuracies were caused by 

context effects. When glimpsing speech in non-stationary noise with high 

modulation rates, the listener has access to parts of all speech elements. These 

elements can be the phonemes as part of a word, but also the words as part of a 

sentence. When modulations in the noise are slow, the probability increases 
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Samenvatting

De Speech Transmission Index of STI is een veelgebruikte maat die ontworpen 

is voor de evaluatie van de kwaliteit van spraak tussen een spreker en een 

luisteraar. De STI kan worden toegepast in de communicatietechnologie en 

zaalakoestiek om een transmissiekanaal te evalueren zonder spraakverstaan-

baarheidsmetingen te hoeven uitvoeren voor een specifieke conditie. Voorbeelden 

van het gebruik zijn het ontwerpen en de constructie van auditoria en theaters, 

en de evaluatie van een werkomgeving wanneer er problemen optreden bij het 

verstaan van spraak.

De STI is een relatief eenvoudige maar robuuste index tussen 0 en 1 die is 

gebaseerd op de vermindering van modulaties in de spraak als gevolg van 

achter grondruis en/of nagalm. Deze modulatiereductie blijkt gecorreleerd met 

de mate van spraakverstaan. De basis van de STI is de Modulatie Transfer 

Functie. Deze MTF wordt berekend op basis van opnames die traditioneel 

werden gemaakt met behulp van de directe meetmethode, door een 

gemoduleerde ruis als meetsignaal te gebruiken. Een andere benadering is de 

indirecte meetmethode, waarbij een separate opname van de achtergrondruis 

wordt gemaakt in combinatie met een meting van de impulsrespons. Wanneer 

de MTF bekend is, wordt deze omgerekend naar een STI-waarde in verschillende 

stappen. Een STI-waarde van 0 staat voor een situatie waar spraakverstaan-

baarheid onmogelijk is. Een index van 0.75 of hoger staat voor omstandigheden 

waarbij goede tot excellente spraakverstaanbaarheid mogelijk is. Een index 

onder de 0.30 duidt op slechte tot zeer slechte spraakverstaanbaarheid. Merk op 

dat dit enkel van toepassing is op normaalhorende luisteraars in de eigen 

moedertaal. Wanneer een transferfunctie tussen de STI en de spraakverstaan-

baarheid bekend is voor een bepaald spraakcorpus, kan de spraakverstaan-

baarheid geschat worden met behulp van de STI-waarde. 

Ondanks de robuustheid en grondige evaluatie van de STI zijn er verschillende 

zwakke punten. Wanneer non-lineaire vervormingen zoals compressie of 

spectrale subtractie plaatsvinden, gaat de nauwkeurigheid van de STI achteruit. 

Echter, het huidige onderzoek richtte zich op zaalakoestiek, waardoor alleen 

vervormingen die lineair van aard zijn, werden meegenomen. Een andere 

beperking van de STI is de bruikbaarheid wanneer achtergrondruis niet 

stationair is. Dit aspect was de belangrijkste aanleiding voor het huidige 

onderzoek. De achtergrond van deze beperking is tweeledig. Ten eerste is de 

traditionele, directe meetmethode met gemoduleerde ruis als meetsignaal 

gevoelig voor fluctuaties in de achtergrondruis. Dit kan leiden tot onder- of 

overschatting van de STI. Ten tweede neemt de spraakverstaanbaarheid  

bij normaalhorende luisteraars toe wanneer er dips in de ruis worden 

Compared to many existing audibility-based models, the suitability of the ESTI 

for use in reverberant conditions is an important advantage. When compared 

to other modulation-based models, the use of short time windows makes  

the ESTI-model better suited for use in interrupted noise. However, several of 

these models tend to perform better when speech is masked by noises with 

speech-like characteristics. When compared to models based on machine 

learning, the simplicity and easy usage of the ESTI are the main advantages. 

An important aspect that was largely left unaddressed in the current work is  

the applicability of the model for sensorineurally hearing-impaired persons. 

The use of the individual tone audiogram can be useful, but this does not 

account for the temporal and spectral distortions that usually occur with this 

type of hearing loss. An additional individual distortion factor based on the 

hearing loss for speech in noise might improve the model further.

The ESTI proved to be a valuable extension of the classic STI for the use in 

non-stationary noises. With only a single recording of the background noise 

and an impulse response measurement, a reliable ESTI-value can be obtained. 

This value can then be used to predict speech intelligibility in a variety of 

non-stationary background noises. The addition of context improved the 

model further, but at the cost of higher complexity. It did show how a context 

model can be successfully used in combination with traditional methods for 

estimating speech intelligibility.
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STI in alle soorten niet-stationaire ruis die werden gebruikt. Onnauwkeurighe-

den in de voorspellingen werden geobserveerd wanneer achtergrondruis 

spraakachtige eigenschappen vertoonde. Wanneer enkel de omhullende ka-

rakteristieken van spraak vertoonde, was het verschil tussen de waargenomen 

en voorspelde cSNR ongeveer 3 – 4 dB. Wanneer de fijnstructuur van de ruis 

ook op spraak leek, werd er een extra verschil van 5 – 7 dB gevonden. De 

hypothese van de auteurs was dat deze onnauwkeurigheden het resultaat 

waren van modulatiemaskering, informational masking en/of contexteffecten.

In hoofdstuk 4 werd de hypothese getest dat deze onnauwkeurigheden 

veroorzaakt werden door contexteffecten. Bij het waarnemen van spraakfrag-

menten in niet-stationaire ruis met hoge modulatiefrequenties heeft de 

luisteraar toegang tot delen van alle spraakelementen. Deze elementen kunnen 

fonemen als deel van een woord zijn, maar ook woorden als deel van een zin. 

Wanneer de modulaties in de ruis traag zijn, neemt de waarschijnlijkheid toe 

dat elementen in de spraak volledig gemaskeerd worden door de langere 

ruisfragmenten en daardoor niet verstaanbaar zijn. De luisteraar kan in dat 

geval terugvallen op contextuele informatie om het gemiste spraakelement te 

“raden”. Om dit mechanisme bij het verstaan mee te nemen, werd context 

toegevoegd aan het ESTI-model. Eerst werd de ESTI per spraakelement 

berekend in plaats van voor het gehele signaal. Daarna werd een transferfunc-

tie geschat om de ESTI per element te koppelen aan de elementscore in isolatie. 

Wanneer deze score bekend was, kon de verstaanbaarheid van de gehele uiting 

geschat worden met behulp van een context model. Om de prestatie te 

evalueren van dit op context gebaseerde ESTI-model (cESTI-model) werd 

bestaande spraakverstaanbaarheidsdata van betekenisvolle, monosyllabische 

woorden in onderbroken ruis geanalyseerd. De toevoeging van twee 

verschillende contextmodellen werd vergeleken, aangeduid als cESTI1 (met het 

Bronkhorst contextmodel) en cESTI2 (met het Boothroyd en Nittrouer 

contextmodel). De nauwkeurigheid van de voorspellingen van het nieuwe 

model verbeterde aanzienlijk voor interruptiefrequenties lager dan 5 Hz. De 

prestaties van de twee modelversies cESTI1 en cESTI2 waren vergelijkbaar. 

Het cESTI-model werd geëvalueerd in hoofdstuk 5 met behulp van nieuw 

gemeten CVC-woorden in stationaire en onderbroken ruis. Zowel nonsens als 

betekenisvolle woorden werden gebruikt. Alleen cESTI2 (met het eenvoudigere 

van de twee contextmodellen uit hoofdstuk 4) werd gebruikt in dit hoofdstuk. 

Het model presteerde beter bij zowel nonsens als betekenisvolle woorden. 

Echter, ondanks de verbeterde prestaties werd de verstaanbaarheid van 

betekenisvolle woorden bij interruptiefrequenties onder de 5 Hz nog steeds 

onderschat. Hogere contextwaarden bleken mogelijk meer geschikt te zijn bij 

lage interruptiefrequenties en leidden tot een verbeterde nauwkeurigheid van 

geïntroduceerd. Deze winst wordt veroorzaakt door het vermogen om spraak-

fragmenten waar te nemen op de momenten dat de spraak het minst wordt 

beïnvloed door de ruis. De STI kan niet omgaan met de winst in het verstaan 

door deze fluctuaties in de ruis, waardoor de uitkomst niet representatief is voor 

de werkelijke omstandigheden. Het doel van het huidige werk was om de 

toepasbaarheid van de STI in niet-stationaire achtergrondruizen te verbeteren 

door zowel de meetmethode als de winst door fluctuaties in de ruis te 

onderzoeken. 

In hoofdstuk 2 werden de condities onderzocht waaronder de STI nauwkeurig 

gemeten kan worden. Hierbij lag de focus op de indirecte meetmethode, 

waarbij de MTF werd afgeleid van een meting van de impulsrespons en een 

langdurige opname van de achtergrondruis. Deze methode is minder gevoelig 

voor fluctuaties in de ruis, maar onder welke omstandigheden de metingen 

betrouwbaar uitgevoerd kunnen worden, was niet bekend. Om dit verder te 

onderzoeken werden twee experimenten uitgevoerd. Metingen van de 

impulsrespons (met een zogenaamd sweep-signaal) en ruisopnames werden 

uitgevoerd in een ruimte met variabele absorptie, verschillende niveaus van 

stationaire en fluctuerende ruis, en verschillende niveaus van het sweep-signaal. 

Om de experimentele bevindingen te kunnen extrapoleren naar andere 

akoestische condities, werd een groot aantal andere omstandigheden 

gesimuleerd. De experimenten en simulaties toonden aan dat de minimale 

 impuls-ruisverhouding van +25 dB (overeenkomend met een sweep-ruis-

verhouding van −4 tot +15 dB) in niet-stationaire ruis benodigd was om de STI 

nauwkeurig te kunnen meten.

De Extended STI of ESTI werd geïntroduceerd in hoofdstuk 3. Het doel van het 

aangepaste model was om rekening te houden met de verbeterde spraakver-

staanbaarheid wanneer er dips in de ruis aanwezig zijn. De belangrijkste 

aanpassing was de berekening van de STI per tijdsinterval van 2 ms, in plaats 

van voor het volledige signaal. De uiteindelijke ESTI-waarde was het gemiddelde 

van alle lokale STI-waarden. Om rekening te houden met abrupte fluctuaties in 

de ruis werd ook voorwaartse maskering (forward masking) toegevoegd aan 

het model. De fijnafstelling van de modelparameters werd gedaan op basis van 

nieuw uitgevoerde spraakverstaanbaarheidsmetingen bij normaalhorenden 

waarbij zinnen werden aangeboden. Door middel van een adaptieve procedure 

werd de signaal-ruisverhouding gemeten waarbij 50% van de zinnen werden 

verstaan (cSNR). De spraak werd vervormd door verschillende ruizen te 

gebruiken (stationaire ruis en twee soorten niet-stationaire ruis), dan wel 

nagalm toe te voegen in vijf gradaties. Evaluatie van het model vond plaats met 

behulp van data van 10 studies uit de bestaande literatuur over spraakverstaan-

baarheid. De ESTI voorspelde de spraakverstaanbaarheid beter dan de klassieke 
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impulsresponsmeting kan een betrouwbare ESTI worden berekend. Dit 

resultaat kan vervolgens worden ingezet om de spraakverstaanbaarheid te 

voorspellen in een verscheidenheid aan niet-stationaire achtergrondruizen. 

Het toevoegen van context verbeterde het model verder, maar wel ten koste van 

een hogere complexiteit. Het liet wel zien hoe een contextmodel succesvol 

gebruikt kan worden in combinatie met traditionele methodes voor het 

voorspellen van spraakverstaan. 

de voorspellingen. Verder lieten modelvoorspellingen een duidelijke afname 

zien bij interruptiefrequenties van 8 en 16 Hz, mogelijk gerelateerd aan een 

overschatting van het effect van voorwaartse maskering. De nauwkeurigheid 

van het model nam toe bij het gebruik van een alternatieve functie voor de 

voorwaartse maskering. 

In de hoofdstukken 4 en 5 werd het cESTI-model uitsluitend geëvalueerd met 

behulp van monosyllabische woorden. Echter, de oorspronkelijke reden voor 

het toevoegen van context was de onnauwkeurigheid van de voorspellingen 

van zinnen die gemaskeerd werden door ruizen met spraakachtige kenmerken 

in hoofdstuk 3. Om deze reden werd in hoofdstuk 6 de prestatie van het 

cESTI-model onderzocht op basis van de spraakverstaanbaarheidsdata van 

zinnen uit hoofdstuk 3. Zowel de cESTI1 als de cESTI2 werden opnieuw 

geëvalueerd. De nauwkeurigheid van de voorspellingen van cESTI1 bleef 

vergelijkbaar of nam toe in vergelijking met de ESTI-voorspellingen. 

Daarentegen nam de nauwkeurigheid van het cESTI2-model juist af voor 

niet-stationaire achtergrondruizen zonder spraakachtige kenmerken. Echter, 

cESTI2 presteerde beter dan cESTI1 bij spraakachtige ruizen, zoals bijvoorbeeld 

een andere spreker. In het algemeen bleven de voorspellingen met betrekking 

tot spraakachtige ruizen relatief onnauwkeurig. Het aanpassen van de 

contextwaarden en de transferfuncties kunnen mogelijk tot een verbetering 

leiden, maar het is waarschijnlijk dat modulatiemaskering en informational 

masking een belangrijke rol blijven spelen in de discrepantie tussen spraakver-

staanbaarheid en de modelvoorspellingen. 

In vergelijking met veel modellen gebaseerd op hoorbaarheid, is de 

toepasbaarheid van de ESTI in condities met nagalm een belangrijk voordeel. 

Vergeleken met andere modellen gebaseerd op spraakmodulaties, maakt het 

gebruik van korte tijdsintervallen de ESTI beter geschikt voor onderbroken ruis. 

Echter, een aantal van deze modellen lijkt beter te presteren wanneer spraak 

gemaskeerd wordt door ruizen met spraakachtige kenmerken. Wanneer de 

ESTI vergeleken wordt met modellen gebaseerd op machine learning, zijn de 

eenvoud en het gebruiksgemak van de ESTI de belangrijkste voordelen. 

Een belangrijk aspect dat nauwelijks genoemd werd in het huidige werk is de 

toepasbaarheid van het model bij mensen met een perceptief gehoorverlies. 

Het gebruik van het individuele toonaudiogram zou bruikbaar kunnen zijn 

voor deze groep, maar deze benadering houdt geen rekening met de temporele 

en spectrale vervorming die normaliter optreedt bij dit type gehoorverlies. Het 

toevoegen van een vervormingsfactor op basis van het gehoorverlies voor 

spraak in ruis kan het model mogelijk verder verbeteren.

De ESTI is een waardevolle toevoeging op de klassieke STI voor het gebruik in 

niet-stationaire ruizen. Met een enkele opname van de achtergrondruis en een 
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Appendix A: List of abbreviations

Table A-1: All general abbreviation that are used in the current work, except for the speech 

intelligibility models. These are described in Table A-2.

𝛼
Parameter of the transfer function between the 𝐸𝑆𝑇𝐼 or 𝑆𝑇𝐹 and 𝑞𝑒. This 
parameter primarily influences the point of intersection with the 𝑥-axis 
[see Eqs. (4-9) and (5-3)]

ASR Automatic Speech Recognition

𝛽
Parameter of the transfer function between the 𝐸𝑆𝑇𝐼 or 𝑆𝑇𝐹 and 𝑞𝑒. This 
parameter primarily influences the slope of the curve and the intersection 
with the 𝑥-axis [see Eqs. (4-9) and (5-3)]

𝛾
Parameter of the transfer function between the 𝐸𝑆𝑇𝐼 or 𝑆𝑇𝐹 and 𝑞𝑒. This 
parameter primarily influences the intersection with right vertical axis 
[see Eqs. (4-9) and (5-3)]

CE Context Effects

𝑐𝑖

Context factors according to Bronkhorst et al. (1993), which represent the 
probability of correctly guessing one of the elements that were missed in 
the sensory stage. See Eqs. (4-6), (4-7), and (C-1) – (C-5)

cSNR Critical SNR (SNR at 50% speech intelligibility)

DC
Duty cycle of interrupted speech or noise. In practice, this is the similar 
to the STF. However, DC is a global property of the interrupted speech, 
whereas STF is the local fraction of speech perceived

EDT Early Decay Time

EM Energetic Masking

ER Envelope Regression

𝐹𝑖𝑛𝑡 Interruption frequency of interrupted speech or interrupted noise

FMB Fluctuating Masker Benefit

IIR Infinite Impulse Response

IM Informational Masking

IN8 Interrupted Noise with an interruption rate of 8 Hz

INR Impulse-to-Noise Ratio

ISTS International Speech Test Signal (Holube et al., 2010)

𝑗

Context factor according to Boothroyd and Nittrouer (1988), which 
represents the number of statistically independent parts in a whole. 
Mathematically, it is the ratio between the log probability of a whole (𝑝𝑤) 
and an element (𝑝𝑒), both in context. See Eqs. (4-3) and (5-2)

𝑘

Context factor according to Boothroyd and Nittrouer (1988), which 
represents the proportional increase in number of channels of statistically 
independent information as a result of context. Mathematically it is the 
ratio between the log error probabilities of an element in context (1-𝑝𝑒) and 
without context (1-𝑞𝑒). See Eqs. (4-2) and (5-1)
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Table A-1: Continued.

MLS Maximum Length Sequence

MM Modulation Masking

𝑀𝑇
Masked Threshold. Parameter used in the forward masking function in 

Eqs. (3-3) and (5-5)

𝑀𝑇𝐹 Modulation Transfer Function. See Eq. (3-7)

𝑀𝑇𝐹𝑟𝑒𝑣
Part of the Modulation Transfer Function influenced by reverberation. See 

Eq. (3-5)

𝑀𝑇𝐹𝑆𝑁𝑅 Part of the Modulation Transfer Function influenced by noise. See Eq. (3-6)

MTI Modulation transfer index. See Eq. (3-9)

NCM Normalized Covariance Method

𝑝𝑐 Consonant score in context

𝑝𝑒
Element score in context. In the current work always of a phoneme as part 

of a word

𝑝𝑣 Vowel score in context

𝑝𝑤 Score of a whole. In the current work always of a word

𝑃𝑤 Score of a whole. In the current work always of a sentence

𝑝𝑤,𝑛 𝑛-phoneme score (when 𝑛 equals the number of elements, 𝑝𝑤,𝑛 = 𝑝𝑤)

𝑞𝑐 Consonant score in isolation

𝑞𝑒
Element score in isolation. In the current work always of a phoneme as 

part of a word

𝑄𝑒
Element score in isolation. In the current work always of a word as part of 

a sentence

𝑄𝑖

The total probability of missing 𝑖 elements without context in the sensory 

stage of the model of Bronkhorst et al. (1993) as described in Eqs. (4-4), 

(4-5), and (C-6) – (C-9)

𝑞𝑣 Vowel score in isolation

rms Root mean square

RMSE Root Mean Square Error

ROC Receiver Operating Characteristic

SNR Signal-to-Noise Ratio

SNRenv
Speech-to-noise envelope power ratio, as used in the EPSM and related 

models.

SNRmod
Signal-to-Noise Ratio in the modulation domain (Dubbelboer and 

Houtgast, 2008)

SSN Stationary Speech-shaped Noise

STF

Fraction of speech perceived. In practice this is the similar to DC. 

However, DC is a global property of the interrupted speech, whereas STF is 

the local fraction of speech perceived

Table A-2: All speech intelligibility models that are referred to in the current work.

AI
Articulation index, later known as the SII (French and Steinberg, 1947; 

Fletcher and Galt, 1950; Kryter, 1962; ANSI-S3.5, 1969)

BSIM
Binaural Speech Intelligibility Index, based on the EC/SII (Beutelmann  

et al., 2009)

cESTI

Method to predict speech intelligibility in interrupted noise using the 

ESTI combined with the Boothroyd and Nittrouer context model (Van 

Schoonhoven et al., 2022)

cESTI1
Method to predict speech intelligibility in interrupted noise using the ESTI 

combined with the Bronkhorst context model (Van Schoonhoven et al., 2022)

cESTI2
Identical to cESTI, but with the subscript 2 when used in combination 

with cESTI1

cSTF1

Precursor of the cESTI1, using the STF instead of the ESTI in combination 

with the Bronkhorst context model to model interrupted speech 

(Van Schoonhoven et al., 2022).

cSTF2

Precursor of the cESTI2, using the STF instead of the ESTI in combination 

with the Boothroyd and Nittrouer context model to model interrupted 

speech (Van Schoonhoven et al., 2022)

CSTI 
Covariance-based STI (Ludvigsen et al., 1990; Holube and Kollmeier, 1996; 

Goldsworthy and Greenberg, 2004)

EC/SII
Binaural speech intelligibility model using Equalization Cancellation in 

combination with the SII (Beutelmann and Brand, 2006)

EPSM Envelope-Power Spectrum Model (Dau et al., 1999; Ewert and Dau, 2000)

ESII
Extended Speech Intelligibility Index (Rhebergen and Versfeld, 2005; 

Rhebergen et al., 2006)

ESIIsen ESII using sentences as input (Meyer and Brand, 2013)

eSTI Extended Speech Transmission Index (Prodi and Visentin, 2019)

ESTI Extended Speech Transmission Index (Van Schoonhoven et al., 2019)

ESTOI
Extended Short-Time Objective Intelligibility measure (Jensen and Taal, 

2016)

FADE
Framework for Auditory Discrimination Experiments (Schädler et al., 2015; 

Schädler et al., 2016)

GPSM General power spectrum model (Biberger and Ewert, 2016; 2017)

mr-sEPSM
Multi-resolution speech-based Envelope-Power Spectrum Model 

(Jørgensen et al., 2013)

NCM 
Normalized Covariance Method (Holube and Kollmeier, 1996; 

Goldsworthy and Greenberg, 2004)

QSTI Quasi-stationary STI (Schwerin and Paliwal, 2014)

RASTI
Rapid STI, using nine modulation frequencies in two octave bands  

(now obsolete)
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Appendix B: ESTI predictionsTable A-2: Continued.

sEPSM Speech-based Envelope-Power Spectrum Model (Jørgensen and Dau, 2011)

SII
Speech intelligibility Index, formerly known as the AI (Pavlovic, 1984; 

Pavlovic, 1987; ANSI-S3.5, 1997)

stBSIM short-time Binaural Speech Intelligibility Model (Beutelmann et al., 2010)

STI
Speech transmission index (Houtgast and Steeneken, 1985; Houtgast, 

1989; Steeneken and Houtgast, 2002; IEC60268-16, 2011)

STIPA
Faster method of measuring the STI by applying two unique modulation 

frequencies to each of the seven octave bands

STGI Spectro-temporal Glimpsing Index (Edraki et al., 2022)

STMI Spectro-temporal Modulation Index (Chi et al., 1999)

STOI Short-Time Objective Intelligibility measure (Taal et al., 2011)
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Appendix D: Data by Miller and LickliderAppendix C: Equations Bronkhorst context model

Model equations for CVC-words (Bronkhorst et al., 1993) where recognition 

probabilities of the initial and final consonants are assumed equal (Bosman, 

1989).

(C-1)

(C-2)

(C-3)

(C-4)

(C-5)

with

(C-6)

(C-7)

(C-8)

(C-9)

Table D-1: Interrupted speech data by Miller and Licklider (1950). Word scores are depicted 

and were read from Fig. 4 in the original paper. NA represents values that were not 

measured. 𝐹 represents the interruption frequency of the speech and DC represents 

the duty cycle.

𝐹 (Hz) DC=12.5% DC=25% DC=50% DC=75%

0.1 NA NA 0.47 NA

0.22 NA NA 0.44 NA

0.46 NA NA NA NA

1.0 0.03 0.09 0.44 0.81

2.2 NA NA 0.62 NA

4.6 NA NA 0.84 NA

10 NA 0.67 0.84 0.94

22 0.24 0.66 0.89 NA

46 0.08 0.66 0.90 NA

1.0x102 0.05 0.64 NA 0.96

2.2x102 0.02 0.32 0.80 NA

4.6x102 0.02 0.46 0.70 NA

1.0x103 0.20 0.47 0.74 0.88

2.2x103 0.51 0.74 0.87 NA

4.6x103 0.83 0.90 0.96 NA
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Appendix E: cESTI predictionsTable D-2: Interrupted noise data by Miller and Licklider (1950). Word scores are depicted 

and were read from Fig. 8 in the original paper. NA represents values that were not 

measured. 𝐹 represents the interruption frequency of the speech and SNR represents the 

long-term signal to noise ratio. Note that the SNR is 3 dB higher than in the original 

paper, since Miller and Licklider documented the local SNR during the on-time of 

the noise.

𝐹 (Hz) SNR=-15 dB SNR=-6 dB SNR=+3 dB SNR=+12 dB

0.1 0.49 0.57 0.79 0.90

0.22 0.43 0.61 0.78 0.93

0.46 NA NA NA NA

1.0 0.60 0.67 0.80 0.90

2.2 0.66 0.80 0.86 0.92

4.6 0.72 0.85 0.90 0.96

10 0.72 0.78 0.93 0.95

22 0.69 0.78 0.90 0.92

46 0.34 0.70 0.86 0.92

1.0x102 0.03 0.36 0.76 0.92

2.2x102 0.01 0.36 0.73 0.88

4.6x102 0.00 0.18 0.62 0.85

1.0x103 0.01 0.15 0.68 0.91

2.2x103 0.01 0.26 0.56 0.93

4.6x103 0.00 0.38 0.69 0.86
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