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Hearing is an important element in communication, social interaction, and human 
wellbeing. It is, therefore, essential to identify hearing loss in an early stage and to 
rehabilitate hearing loss adequately. Hearing loss can generally be rehabilitated with a 
hearing aid, except if there is a severe sensorineural hearing loss. Sensorineural hearing loss 
is often associated with damaged or deficient cochlear hair cells, resulting in an inability 
to translate sounds into neural signals traveling toward the brain. In that case, just sound 
amplification by a hearing aid is no longer effective and other means of rehabilitations 
need to be sought. Some decades ago, the population of deaf and hard of hearing people 
was dependent on written language, sign language or lip reading. However, with the 
advent of cochlear implants (CIs) new perspectives arose (Shannon 1983). A CI is a device 
that delivers sound directly to the auditory nerve by electrical stimulation via an electrode 
array in the cochlea. Although CIs do not work equally well for everyone, most people 
with a CI can again communicate via spoken language.

1.1. Cochlear implant
A CI consists of two parts: (1) an external part, which is called the sound processor and is 
worn on the ear, and (2) an internal part, which is the actual implant located under the 
skin. Figure 1.1 shows the different components of a CI and their position relative to the 
human anatomy. The first step in hearing with a CI is the recording of sound signals by 
the microphones of the sound processor. Next, the sound is pre-processed, e.g., noise is 
reduced and speech is amplified. The optimized sound signal is then divided over different 
frequency bands using bandpass filters. The sound energy per frequency band, typically 
coded by the envelope of the signal, forms the basis for calculating the stimulation pattern 
across the spectral channels. After calculating the stimulation pattern, the pattern is sent 
wirelessly to the implant via a coil located in the headpiece. In the implant, the stimulation 
pattern is transformed into electrical current pulses. These pulses go through multiple 
wires bundled in the electrode lead to different electrode contacts in the cochlea, where 
they deliver frequency specific stimulation. Finally, the electrical pulses will stimulate the 
auditory nerve and the CI-user perceives a sound. The CI uses the tonotopical organization 
of the cochlea, whereby high-frequency sounds are encoded at the base of the cochlea 
and low-frequency sounds in the apex of the cochlea. 

1.2. Electrically evoked compound action potential
After electrical stimulation, the current spreads through the cochlea and excites multiple 
nerve fibers. In each excited nerve fiber, an action potential arises, which is a wave of electrical 
charge traveling over the nerve fiber membrane towards the brain. Due to the short and 
strong stimulus, all action potentials are generated simultaneously and together they form 
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an electrically evoked compound action potential (eCAP). The eCAP is a measurable electrical 
potential that represents the synchronous firing of multiple nerve fibers (Abbas et al. 1999; 
Hughes 2013). It is important to realize that the eCAP is a complex result of several factors: 
the number of firing nerve fibers, the position of the measuring electrodes, synchronicity of 
the excitation and the electrical conduction of the tissue (Mens 2007).

1
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Figure 1.1. A cochlear implant consists of several components: microphones (1), sound processor and implant 
(2), and the electrode array in the cochlea (3). Via these components acoustic sounds are converted into electrical 
signals that directly stimulates the auditory nerve (4). Image courtesy of Advanced Bionics.
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1.2.1. Recording eCAPs
All modern CIs have a built-in telemetry function for recording eCAP signals (Hughes 
2013). Figure  1.2 schematically shows how an eCAP signal can be measured. A CI 
contains a current source that provides electrical stimulation via one of the electrode 
contacts located in the cochlea. Subsequently, an eCAP arises, which can be measured 
via an adjacent electrode contact and a reference contact located outside the cochlea. 
In general, the eCAP is measured using an intra-cochlear contact close to the source, i.e., 
the excited neurons. This is favorable for the amplitude of the signal and therefore for 
the signal-to-noise ratio. The recorded signal can be read-out via the speech processor 
and a computer. Typically, the eCAP is recorded as a waveform with a negative peak (N1) 
followed by a positive peak or plateau (P1). The amplitude of the eCAP is measured from 
N1 to P1 and can reach values up to 1.5 mV. 
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Figure 1.2. Schematic representation of an eCAP measurement. The CI (gray) has a current source (green arrow) 
that provides electrical stimulation (green pulse) via one of the electrode contacts in the cochlea (blue). Due to 
electrical stimulation, there arises an eCAP (black signal in the graph) which can be measured using the telemetry 
function of the CI, including a neural amplifier (represented by the triangle) and an artifact rejection method. CI 
indicates cochlear implant; eCAP, electrically evoked compound action potential, AR, artifact rejection.
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Two different electrical signals play a role in recording eCAPs: the stimulus and the eCAP 
signal. The stimulus is typically a biphasic pulse with an amplitude of a few hundred micro-
amperes. A biphasic pulse is charge-balanced, which means that the delivered net charge 
is zero in order to prevent tissue damage due to charge build-up. The stimulus creates a 
large electrical potential (factor 10,000 greater than the eCAP) which has a disruptive effect 
on the measurement amplifier and causes an artifact in the eCAP recording. An amplifier is 
necessary to increase the relatively small eCAP signal in order to make optimal use of the 
dynamic range of the analog-to-digital converter. However, the stimulus potential exceeds 
the input range of the amplifier, consequently causing saturation of the amplifier and 
blocking the signal from passing through. This blocking is temporary and lasts generally a 
bit longer than the stimulus duration (50-100 µs). After the stimulus artifact has ended, the 
magnitude of the potential will decrease exponentially and as soon as it is smaller than the 
input range of the amplifier the amplifier will provide a reliable output again.

1.2.2. Artifact rejection paradigm
The stimulus artifact thus has a disruptive effect on the eCAP recording. To minimize 
this effect, the recording contact is often chosen at some distance from the stimulating 
contact. However, a larger distance between the recording contact and the firing nerve 
fibers negatively affects the amplitude and the shape of the eCAP. In practice, a distance 
of one or two physical contacts between the stimulating and recording contacts is often 
chosen as optimum. Another difficulty is that the eCAP already occurs while the amplifier 
is still in the recovery phase (Figure 1.3). So, the eCAP is (partly) hidden in the stimulus 
artifact and these two signals must be separated in order to enable a proper eCAP 
assessment. Over years, several methods have been developed to separate the eCAP 
signal from the stimulus artifact (Miller et al. 2000; Klop et al. 2004; Hughes et al. 2016; 
Baudhuin et al. 2016), whereby forward masking (FM) and alternating polarity (AP) were 
most commonly used.
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Figure 1.3. As long as the stimulus lasts (gray area) the neural amplifier delivers an unreliable output. The output 
signal (black line) looks like the stimulus potential, but valuable information about the eCAP is totally blanked. 
When the stimulus has ended, the stimulus potential decreases exponentially and meanwhile the eCAP (dotted 
line) occurs. This eCAP can be extracted from the recorded signal using an artifact rejection method. eCAP 
indicates electrically evoked compound action potential.

The FM paradigm makes use of the refractory properties of the auditory nerve to separate 
the eCAP from the stimulus artifact. The method used two different stimuli: a masker 
stimulus and a probe stimulus. Using a combination of these stimuli, four different 
recordings can be made, which can be subtracted from each other to extract the eCAP 
(Figure 1.4). First, the masker stimulus (M) is delivered, which results in a stimulus artifact 
of the masker including an eCAP signal. Then the masker and the probe (MP) are delivered 
with a masker-probe interval time of typically 300-500 µs. Due to the masker, the nerve 
fibers are in their absolute refractory state and are insensitive to the probe stimulus. 
This results in a recording that contains twice a stimulus artifact and one eCAP (after the 
masker only). When all nerve fibers are recovered from their refractory state, the probe (P) 
is delivered again resulting in a probe stimulus artifact including an eCAP. The eCAP can 
now be eliminated from these three recordings by calculating: eCAP = M + P - MP. Finally, 
a fourth measurement is often subtracted from the measurement signals, the so-called 
‘system signature’. In this recording, the stimulus levels are set to zero which leads to a 
recording that contains system properties such as interference and noise, for which can 
be corrected (Frijns et al. 2002).
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Figure 1.4. Graphical representation of two commonly used artifact rejection paradigms: forward masking (left 
column) and alternating polarity (right column). The forward masking paradigm consists of four different frames 
(M, MP, P and S) which can be combined mathematically to extract the eCAP from the stimulus artifact. The AP 
paradigm consists of three frames (A, C and S) which also can be combined to extract the eCAP. eCAP indicates 
electrically evoked compound action potential.

The AP paradigm makes use of the eCAP property that the polarity of the eCAP signal 
does not change when the stimulus polarity is reversed, while the stimulus artifact 
adopts the polarity of the stimulus. This property can be used to filter the eCAP from the 
measurement signal (Figure 1.4). For that purpose, two recordings were obtained. First 
a recording using a biphasic stimulus with a positive phase followed by a negative one 
(anodic-first, A), and second a recording using a negative phase followed by a positive one 
(cathodic-first, C). Both stimuli result in an eCAP with the same polarity, while the polarity 
of the stimulus artifact is opposite. Now the eCAP can be recovered by calculating: eCAP = 
(A + C) / 2. Lastly, the recording can be corrected for the system signature (S).

1.3. ReaSONS project
Although a rejection paradigm reveals a major part of the eCAP signal, we still do not know 
what the real shape of the eCAP is in the timespan that the amplifier is saturated and delivers 
an unreliable output. Considering all difficulties in recording eCAPs, we can conclude that 
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there is need for a method that enables measuring eCAPs without being bothered by the 
stimulus artifact. The Real-time Sensing Of Neural Signals project pursues this. The ReaSONS 
project is funded by the Technological Sciences Foundation under number 11693. The 
project consists of two parts: (1) developing a new neural amplifier for reliable and accurate 
eCAP measurements and (2) investigating the clinical applicability and relevance of eCAP 
measurements. These two components have been elaborated by respectively a PhD 
student at Technical University Delft and a PhD student at the Leiden University Medical 
Center. A brief description of the development of the neural amplifier is given below, while 
the research focusing on the human eCAP measurements will be the content of this thesis.

The new neural amplifier developed at the Technical University Delft uses a compression 
technique to prevent amplifier saturation. As soon as the recorded signal grows beyond 
the input dynamic range of the amplifier, the input signal will be corrected (shifted 
downward) so that it does not exceed the dynamic range of the amplifier. This technique 
is also called companding. By precise registration of all corrections, the original signal can 
be reconstructed later, after conversion of the signal to the digital domain by an analog to 
digital converter. Doing this, the new amplifier has a dynamic range of 126 dB, so that both 
the stimulus artifact (up to 20V) and the neural response (up to 10µV) can be registered 
reliably (Bes et al. 2010). After signal reconstruction and artifact rejection, there remains 
an eCAP signal that has been measured reliably throughout the whole recording time. In 
addition, the new amplifier is relatively small compared to the electronic components in 
current CIs. This means that in the future multiple amplifiers will fit into the CI housing, and 
eCAPs can be measured simultaneously on several electrode contacts. So, the application 
of the new measuring amplifier seems promising for future research in the field of eCAPs.

1.4. Content of this thesis
This thesis focuses on the clinical applicability and the relevance of eCAP measurements. 
The goal is to gain more insight into CI functioning and into the effect of electrical 
stimulation on the auditory nerve. More knowledge about these topics may be useful to 
further improve CI technology, potentially leading to better CI listening experience. 

The first study of this thesis is about the applicability of eCAPs as an objective measure 
to guide CI fittings. For some CI users, e.g., small children, it can be difficult to find the 
best CI fitting, because they do not provide adequate feedback to adjustments made by 
the audiologist. Therefore, it would be valuable if there is an objective tool that helps the 
audiologist to guide these fittings. With the improvement of the CI telemetry functions, it 
has been suggested that eCAP measurements may ease this fitting challenge (Brown et 
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al. 2000). In the last decades, several studies concluded that the eCAP threshold, which 
is the minimum amount of current required to generate an eCAP, would be a good 
predictor of the T-level at the same electrode contact (Botros & Psarros 2010; Kaplan-
Neeman et al. 2004; Lai et al. 2009; Mittal & Panwar 2009; Morita et al. 2003; Muhaimeed 
et al. 2010; Pedley et al. 2007; Walkowiak et al. 2011) while others were less conclusive 
(Franck 2002; Smoorenburg et al. 2002; Potts et al. 2007; Holstad et al. 2009; Jeon et al. 
2010; Raghunandhan et al. 2014). Inspired by the contradictory outcomes in the literature, 
we perform a systematic literature review to clearly state how much evidence there is 
that eCAPs can be used in fitting CIs (Chapter 2). Another question we have regarding 
eCAP thresholds is: Why is there often no relationship between the eCAP thresholds and 
the subjective hearing thresholds of the CI user, while most researchers and clinicians 
expect this relationship? We may be missing important details of the eCAP because these 
details are not registered by the current measurement systems. On the other hand, it is 
also possible that the outcome measures (eCAP thresholds and subjective thresholds) are 
not precise and accurate enough, as there is a lack of reporting measurement errors in the 
literature. To further investigate this, we looked at the precision of the eCAP thresholds 
(Chapter 3).

Besides eCAP thresholds, it is also possible to derive the spread of neural excitation (SOE) 
from eCAP recordings. SOE is a measure linked to the specificity of the electric-neural 
interface, and can be estimated objectively from spatial forward masking (SFM) curves 
(Cohen et al. 2003; Abbas et al. 1999; Hughes & Abbas 2006b; van der Beek et al. 2012). 
With knowledge about SOE, stimulation strategies can be improved, e.g., by making 
them more selective and having more control about the induced pitch. The expectation 
is that selective stimulation is better for the audibility of different sounds and therefore 
for speech understanding. However, to date, no clear relationships between eCAP-based 
SOE and speech performance outcomes have been found. In the context of this thesis, 
we will critically look at the measure of SOE used thus far, that is, the width of the SFM 
curve. We think that the width of the SFM curve is not an adequate measure of SOE, and 
we propose a new method to objectively determine the excitation patterns and SOE of 
individual electrode contacts in CI (Chapter 4). Using that method, we can also study the 
effect of stimulus level on excitation patterns in more detail (Chapter 5).

The final study of this thesis focuses on a new method for testing pitch discrimination in CI 
users. Several studies have investigated whether there is a relationship between the eCAP 
and psychophysical measures such as spatial resolution (Firszt et al. 2007; Koch et al. 2007; 
Snel-Bongers et al. 2012). In these studies, the pitch discrimination of CI users was often 
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measured very accurately, but due to time limitations it was collected on a limited number 
of electrode contacts only. We would like to have a method that tests pitch discrimination 
on all electrode contacts in a relatively short test time. This knowledge can be used to 
further improve stimulation strategies and it can be used in studying SOE across the whole 
electrode array. We develop a new method for testing channel discrimination across all 
contacts of the electrode array, and we evaluate how well the channel discrimination 
ability from CI recipients correlate with their speech perception (Chapter 6).

Finally, the thesis ends with a general discussion, wherein we discuss some complexities in 
recording eCAPs and elaborate on the future perspectives of the eCAP measures (Chapter 7).
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Use of electrically evoked compound 
action potentials for cochlear 
implant fitting: a systematic review

Johan J. de Vos*, Jan Dirk Biesheuvel*, Jeroen J. Briaire, 
Pieter S. Boot, Margriet J. van Gendt, Olaf M. Dekkers, Marta Fiocco, 
Johan H. M. Frijns

* These authors contributed equally to this study

Ear and Hearing, 2018, 39(3):401-411



Objective: The electrically evoked compound action potential (eCAP) is widely used in 
the clinic as an objective measure to assess cochlear implant functionality. During the 
past decade, there has been increasing interest in applying eCAPs for fitting of cochlear 
implants. Several studies have shown that eCAP-based fitting can potentially replace 
time-consuming behavioral fitting procedures, especially in young children. However, 
a closer look to all available literature revealed that there is no clear consensus on the 
validity of this fitting procedure. This study evaluated the validity of eCAP-based fitting 
of cochlear implant recipients based on a systematic review of the recent literature. 

Design: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) were used to search the PubMed, Web of Science, and Cochrane Library 
databases. The term ‘eCAP’ was combined with ‘cochlear implants’, ‘thresholds’, and 
‘levels’, in addition to a range of related terms. Finally, 32 studies met the inclusion 
criteria. These studies were evaluated on the risk of bias and, when possible, compared 
by meta-analysis.

Results: Almost all assessed studies suffered from some form of risk of bias. Twenty-
nine of the studies based their conclusion on a group correlation instead of individual 
subject correlations (analytical bias); 14 studies were unclear about randomization 
or blinding (outcome assessment bias); 9 studies provided no clear description of 
the populations used, for example, prelingually or postlingually implanted subjects 
(selection bias); and 4 studies had a high rate of loss (>10%) for patients or electrodes 
(attrition bias). Meta-analysis of these studies revealed a weak pooled correlation 
between eCAP thresholds and both behavioral T- and C-levels (r = 0.58 and r = 0.61, 
respectively). 

Conclusions: This review shows that the majority of the assessed studies suffered 
from substantial shortcomings in study design and statistical analysis. Meta-analysis 
showed that there is only weak evidence to support the use of eCAP data for cochlear 
implant fitting purposes; eCAP thresholds are an equally weak predictor for both T- 
and C-levels. Based on this review, it can be concluded that research on eCAP-based 
fitting needs a profound reflection on study design and analysis in order to draw well-
grounded conclusions about the validity of eCAP-based fitting of cochlear implant 
recipients. 
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2.1. Introduction
A cochlear implant (CI) is a device that can partially restore hearing in patients who are 
profoundly deaf or severely hard of hearing. To successfully restore speech perception, the 
settings of the CI must be optimized for the individual patient, called fitting. When fitting 
a CI, the behavioral threshold (T) and maximum comfortable hearing levels (C-level/M-
level/MCL, terminology varies depending on manufacturer) for each electrode contact of 
the electrode array are set. In this review, these levels will be denoted as T- and C-levels, 
respectively. Because of intracochlear changes (e.g., intracochlear fibrosis) and patient 
adaptation to the implant, the T- and C-levels are prone to change during the first few 
months after implantation (Hughes et al. 2001), or gradually throughout the life cycle of 
an implant (Smoorenburg et al. 2002). Therefore, it is necessary to fit the CI periodically. 
CI fitting is often a time-consuming process, which preferably is conducted by an 
experienced audiologist. Vaerenberg et al. (2014) showed that the applied fitting method 
differs between CI-centers and even between audiologists; there is no golden standard for 
fitting CIs. The actual fitting profile is a product of both the audiologist and the CI patient, 
whereby the patient must respond to presented stimuli. However, not all CI recipients 
can respond adequately, especially young children, elderly (e.g., due to cognitive decline) 
and mentally challenged patients. Consequently, the fit may be suboptimal, resulting 
in possibly limited speech recognition or a delay in language development in children 
(Caner et al. 2007).

Since the advent of modern CIs with telemetry function, clinical research has focused 
on the use of the electrically evoked compound action potential (eCAP) for fitting as an 
additive or alternative  to behavioral fitting  (Brown et al. 2000). The eCAP represents the 
neural response of spiral ganglion cells lining the inner part of the cochlea (Rosenthal’s 
channel) and can be measured in response to electrical stimulation by the telemetry 
function of a CI. Although all CIs measure the same electrophysiological response, 
each CI manufacturer has its own measurement method and terminology to depict the 
measurement of these neural responses: Neural Response Telemetry (NRT) by Cochlear 
(Sydney, Australia), Neural Response Imaging (NRI) by Advanced Bionics (Valencia, 
CA), and Auditory Response Telemetry (ART) by MED-EL (Innsbruck, Austria). As all 
terms denote the same principle, the general term eCAP will be used throughout the 
paper for this type of measurement. To enable the use of eCAP in clinical practice, CI 
manufacturers embedded eCAP measurement features in the fitting software. Especially 
the latest generation fitting software, for example, Custom Sound (Cochlear), Soundwave 
(Advanced Bionics), and Maestro (MED-EL), have made the use of objective data to obtain 
direct baseline fitting maps easily accessible. In parallel with this development, objective 
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fitting of CIs has become of more interest; the feasibility of this approach has been studied 
extensively in the last decades, however, with contradictory results.

The aim of this systematic review was to assess whether eCAPs can be used for CI fitting 
purposes. Relevant literature was analyzed using the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) method (Rosenfeld 2010). The studies 
were assessed on both study design and statistical methodology. Our analyses revealed 
that the quality of the various studies differs largely and that some conclusions are based 
on incorrect analysis methods. It is of main importance that the conclusion of most papers 
about objective fitting is not representative for the individual subjects. In the literature we 
reviewed, the correlation between eCAP and behavioral thresholds was mostly analyzed 
using grouped data, while the correlation within individuals is essential to investigate 
eCAP-based fitting; the group correlation can be qualitatively different from the within-
subject association. To clarify, due to the inter-subject variability, individual correlations 
disappear when the individual threshold values are combined in a grouped data set. This 
phenomenon, which is better known as Simpsons’ Paradox (Julious & Mullee 1994), could 
lead to an analytical bias. This review will show that the prevention of this bias is of great 
importance in the research of eCAP thresholds.

2.2. Methods
2.2.1. Literature selection
To ensure that the review included all relevant literature, the initial search included terms 
encompassing all suitable objective neural response measurements (eCAP, electrically 
evoked stapedius reflex threshold, and electrically evoked auditory brainstem response). 
These terms were combined with ‘cochlear implants’, ‘thresholds’, and ‘levels’, and extended 
with a range of related terms to include all relevant literature. We searched for papers 
published from 1995 to June 22, 2015. The search strategy (see Supplemental content 2.1) 
was developed in cooperation with a trained librarian at Leiden University Medical Centre. 
The PubMed, Web of Science, and Cochrane Library databases were searched at June 22 
and 26, 2015. From these papers, all studies concerning eCAPs were manually selected 
for final analysis using the PRISMA guidelines to minimize publication bias and improve 
reproducibility.

Consecutively, all papers were screened based on title and abstract to determine whether 
they met the inclusion criteria: English, Dutch, or German language; measurements 
conducted in humans; comparison of eCAP and T/C-levels; and the use of Pearson’s 
correlation coefficient for the analysis. We screened on the most commonly used Pearson’s 



2

Use of electrically evoked compound action potentials for cochlear implant fitting   |   23

correlation coefficient, because a uniform correlation coefficient was required for proper 
meta-analysis. Furthermore, the inclusion criteria were applied regardless of study quality, 
because the quality of the study was assessed in a later stage of the review. Papers from 
the same author were checked for an overlap of study participants. When two papers used 
identical populations and similar measurement techniques, the papers were treated as 
one study. When one of the papers was written based on preliminary data and the follow-
up study data were available in the second paper, only the final data were used.

2.2.2. Risk of bias assessment
The study quality was assessed using a risk of bias (ROB) assessment. All included papers 
were assessed on four types of bias relevant in their field of research: attrition bias, 
selection bias, outcome assessment bias and analytical bias (Table 2.1).

Table 2.1. Overview of the test conditions to score the different risks of bias.
Design characteristic Test condition
Attrition bias Is the loss to follow-up higher than 10%?
Selection bias Are eligible patients not representative for the population intended to be 

analyzed?
Outcome assessment bias Are the researchers not blinded or comparing linked measurements?
Analytical bias Are the data not analyzed appropriately for answering the research question?

2.2.2.1 Attrition bias
This describes the loss of study participants during follow-up. The ROB was considered 
high for studies with >10% loss to follow-up (Dumville et al. 2006). We encountered some 
studies that excluded poor eCAP responders, while other studies considered them as 
attrition. To be consistent, poor eCAP responders were treated as excluded subjects in this 
review and not scored as attrition.

2.2.2.2. Selection bias
This is the selection of data in such a way that it is not representative of the population 
intended to be analyzed. To prevent selection bias, the subjects should be selected on 
predefined selection criteria in accordance with the research question. Moreover, the 
subject must be selected randomly. For example, CI recipients are a heterogenic group 
consisting of prelingually and postlingually deaf subjects with large variation in age 
of implantation and duration of hearing loss. Depending on these factors, language 
development and overall performance can differ during fitting (Petersen et al. 2013). 
When eligible patients were randomly selected from the intended population the risk of 
selection bias was low.
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2.2.2.3. Outcome assessment bias
This is an error made by comparing two measurements which are not independent, or 
are linked to each other. The following cases were scored as being at risk for outcome 
assessment bias: (1) when eCAP threshold profiles were adjusted to T- or C-levels using 
behavioral information, for example, as applied by Willeboer & Smoorenburg (2006); and 
(2) when the objective and behavioral measurements are performed by the same person, 
whereby the knowledge of objective performance can severely influence the results of 
behavioral measurements.

2.2.2.4. Analytical bias
This is an error introduced when data are not analyzed appropriately for answering the 
research question. For example, when answering the question whether eCAP thresholds 
could be used to predict fitting levels, correlation analysis of eCAP threshold with T- and 
C-levels (hereafter denoted as T-eCAP and C-eCAP, respectively) should be performed at 
the level of individual subjects and not for the population as a whole.

2.2.3. Meta-analysis
A meta-analysis was performed on the studies that provided Pearson’s correlation 
coefficient for T-eCAP or C-eCAP analysis. The analysis was performed in the R software 
environment (Free Software Foundation’s GNU General Public License, version 2.18). The 
T-eCAP and C-eCAP correlations of each study were pooled in order to estimate their overall 
correlation and associated confidence interval (c.i.). For studies showing the correlation 
coefficients of individual patients (Franck & Norton 2001; Franck 2002; Potts et al. 2007; 
Holstad et al. 2009), the mean of the individual correlations for T-eCAP and C-eCAP was 
used as study-specific correlation. The study-specific correlations were transformed by 
using Fisher’s r-to-z transformation (Hedges & Olkin 1985) and, subsequently, a weighted 
pooled correlation of these transformed scores has been computed (Borenstein 2009). 
For both T-eCAP and C-eCAP, a fixed and random effects model was estimated. The fixed 
model assumes that the variation between study results is due to chance alone. The 
random model also takes into account between study differences, for example, sample 
size. Additionally, an overall measure of heterogeneity between studies was reported, 
whereby the I2 shows the percentage of variance attributable to study heterogeneity and 
τ2 is an estimate of the between-study variance in the random effects model (DerSimonian 
& Laird 1986). A sensitivity analysis was performed to investigate the robustness of the 
meta-analysis by looking how the results are affected by different types of studies. The 
tested groups were: studies based on group correlations (n  =  11), studies based on 
individual correlations (n = 3), studies with adequate blinding (n = 10), studies with adults 
only (n = 6), and studies with children only (n = 2).
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2.3. Results
2.3.1. Overview of selected literature
Figure 2.1 shows the flow diagram of our PRISMA analysis. The search strategy provided 
1972 papers, 1515 after removing duplicates. A total of 160 papers met our inclusion 
criteria as defined in the methods section. Assessing the papers for eligibility provided 
68 items, 37 of which used eCAP as objective measure (others were electrically evoked 
stapedius reflex threshold and electrically evoked auditory brainstem response). These 37 
papers were finally included in the review (see Table 2.2 for references). Papers from the 
same author were checked for an overlap of study participants. Ten papers were combined 
into five studies: Franck & Norton (2001) with Franck (2002); Thai-Van et al. (2001) with 
Thai-Van et al. (2004); Akin et al. (2006) with Akin et al. (2008); Lorens et al. (2004) with 
Walkowiak et al. (2011); Gordon et al. (2004a) with Gordon et al. (2004b). This reduced the 
total of number of unique studies to 32.

Records identified 
through PubMed

(n = 1061)

Records identified 
through Web of Science 

(n = 875)

Records identified 
through Cochrane Library 

(n = 36)

Records after duplicates 
removed

(n = 1515)
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(n = 1515)

Records excluded
(n = 1355)

Full-text articles 
assessed for eligibility 

(n = 160)

Full-text articles 
excluded with reasons 

(n = 92)

Full-text articles split for 
eCAP as measure 

(n = 68)

Full-text articles with 
eSRT and eABR

(n = 31)

Articles included in 
qualitative synthesis 

(n = 37)
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Figure 2.1. PRISMA flow diagram. Adapted from: PLOS Med, 6:e1000097. eCAP indicates electrically evoked 
compound action potential; eSRT, electrically evoked stapedius reflex threshold; eABR, electrically evoked 
auditory brainstem response, PRISMA, preferred reporting items for systematic reviews and meta-analyses.
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In addition, Supplemental content 2.2 provides an overview of the judgment on eCAP 
based fitting, study design and used cochlear implants of each study. One study used 
Ineraid implants (Brown et al. 1996), while all other studies use modern cochlear implants 
from Cochlear (22 studies), Advanced Bionics (7 studies) and MED-EL (2 studies). Further, 
most studies have compared eCAP threshold profiles with both T- and C-levels (23 studies), 
whereas a few studies made the comparison for either T-levels (1 study) or C-levels (8 
studies). A total of 11 studies provided a group correlation coefficient for T-eCAP usable for 
meta-analysis (Figure 2.2, studies without asterisk) and 12 studies for C-ECAP (Figure 2.3,  
studies without asterisk). In addition, 3 studies provided individual correlations for both 
T-eCAP and C-eCAP (Franck & Norton 2001; Franck 2002; Potts et al. 2007; Holstad et al. 
2009).

Study

Fixed effect model
Random effects model

Heterogeneity: 
I2 = 55.4%
t2 = 0.0528
p = 0.0063

Brown (2000)
Brown (1996)
Cullington (2000)
Di Nardo (2003)
Han (2005)
Hughes (2000)
Lai (2009)
Mittal (2009)
Muhaimeed (2010)
Polak (2006)
Smoorenburg (2002)
Franck (2001/2002)*
Holstad (2009)*
Potts (2007)*

Subjects

390

 44
 20
 30
 12
  9

 20
 17
 90
 47
 30
 13
 12
 34
 12

−0.5 0 0.5

Correlation of  T-eCAP (based on Fisher’s z transformation)
  

r

0.56
0.61

0.55
0.89
0.67
0.62
0.68
0.70
0.78
0.33
0.57
0.72
0.64
0.50
0.24
0.58

95% c.i.

[ 0.48- 0.63]
[ 0.49- 0.71]

[ 0.30- 0.73]
[ 0.73- 0.95]
[ 0.41- 0.83]
[ 0.07- 0.88]
[ 0.02- 0.92]
[ 0.37- 0.87]
[ 0.48- 0.92]
[ 0.13- 0.50]
[ 0.34- 0.74]
[ 0.49- 0.86]
[ 0.14- 0.88]

[−0.10- 0.83]
[−0.11- 0.53]
[ 0.01- 0.87]

    weight
    (fixed)

100%
−−

11.8%
 4.9%
 7.8%
 2.6%
 1.7%
 4.9%
 4.0%

25.0%
12.6%
 7.8%
 2.9%
 2.6%
 8.9%
 2.6%

    weight
    (random)

−−
100%

 9.9%
 6.8%
 8.5%
 4.7%
 3.5%
 6.8%
 6.1%

11.9%
10.1%
 8.5%
 5.0%
 4.7%
 9.0%
 4.7%

* Mean r calculated from individual data 

Figure 2.2. Forest plot showing the meta-analysis of T-eCAP. The first and second column shows the included 
studies and number of subjects, respectively. In the middle, a graphical representation of the study results 
is depicted, whereby the gray square indicates the group size, the vertical line Pearson’s r and the horizontal 
line the 95% confidence interval of r. The values of r, 95% confidence interval, weight in the fixed model, and 
weight in the random model can be found in the last columns, respectively. The dark dotted line is the pooled 
correlation found for the fixed model, and the lighter dotted line is the pooled correlation found for the random 
model. eCAP indicates electrically evoked compound action potential; c.i., confidence interval.
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Study

Fixed effect model
Random effects model

Heterogeneity: 
I2 = 32.7%
t2 = 0.019
p = 0.1072

Alvarez (2010)
Brown (2000)
Caner (2007)
Cullington (2000)
Di Nardo (2003)
Hughes (2000)
Lai (2009)
Mittal (2009)
Muhaimeed (2010)
Polak (2006)
Smoorenburg (2002)
Walkowiak (2011)
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Holstad (2009)*
Potts (2007)*
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0.58

0.53
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0.69
0.72
0.72
0.80
0.65
0.38
0.79
0.39
0.44
0.44
0.26
0.66

95% c.i.

[ 0.51- 0.64]
[ 0.49- 0.67]

[ 0.29- 0.71]
[ 0.32- 0.74]

[−0.02- 0.79]
[ 0.43- 0.84]
[ 0.25- 0.92]
[ 0.40- 0.88]
[ 0.52- 0.92]
[ 0.51- 0.75]
[ 0.11- 0.60]
[ 0.60- 0.90]

[−0.21- 0.77]
[−0.07- 0.77]
[−0.18- 0.81]
[−0.07- 0.54]
[ 0.14- 0.89]

    weight
    (fixed)

100%
−−

11.5%
10.3%
 3.3%
 6.8%
 2.3%
 4.3%
 3.5%

21.8%
11.0%
 6.8%
 2.5%
 3.3%
 2.3%
 8.3%
 2.3%

    weight
    (random)

−−
100%

10.4%
 9.7%
 4.4%
 7.5%
 3.3%
 5.4%
 4.7%

13.9%
10.1%
 7.5%
 3.6%
 4.4%
 3.3%
 8.6%
 3.3%

* Mean r calculated from individual data 

Figure 2.3. Forest plot showing the meta-analysis of C-eCAP. The results were presented similarly as in Figure 2.2. 
eCAP indicates electrically evoked compound action potential; c.i., confidence interval.

2.3.2. ROB assessment
Table 2.2 shows the ROB scores from the assessment of all 32 studies on attrition bias, 
selection bias, outcome assessment bias and analytical bias. A black dot indicates a positive 
score (bias present), a white dot a negative score (bias absent), and a question mark indicates 
that the paper did not provide enough information to score that bias. To summarize Table 2.2, 
only four studies had more than 10% attrition (Akin et al. 2006, 2008; Franck & Norton 2001; 
Franck 2002; Han et al. 2005; Holstad et al. 2009). However, note that most studies screened 
for available eCAPs before or during their research, because CI subjects without measurable 
eCAP are unusable. There was no clear evidence for studies suffering from selection bias, 
however, nine studies did not provide sufficient information about the selection procedure 
or the randomization  (Brown et al. 1996, 2000; Akin et al. 2006; Caner et al. 2007; Pedley et al. 
2007; Botros & Psarros 2010; Jeon et al. 2010; Wesarg et al. 2010; Raghunandhan et al. 2014). 
These studies have an increased risk for selection bias and were scored with a question 
mark. Concerning outcome selection bias, three provided an inadequate description of 
the measuring procedure (Kiss et al. 2003; Gordon et al. 2004a,b; Lai et al. 2009). Seven 
studies used fitting software with embedded eCAP measurement feature, (Soundwave by 
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Advanced Bionics or Custom Sound by Cochlear), while the use of this feature has not been 
reported explicitly. These studies have an increased risk of outcome selection bias and are 
also marked with a question mark (Han et al. 2005; Akin et al. 2006, 2008; Caner et al. 2007; 
Wolfe & Kasulis 2008; Jeon et al. 2010; Muhaimeed et al. 2010; Raghunandhan et al. 2014). 

Table 2.2. Rating of the risk of bias analysis per study. A filled circle indicates a positive score, that is, the bias is 
present, while an open circle indicates the study did not suffer for that type of bias. When there was uncertainty 
about the risk of bias in a study by lack of data in the methods section, this was scored with a question mark.

Study Year
Bias

Attrition Selection Outcome assessment Analytical
Potts 2007 ○ ○ ○ ○
Franck 2001/2002 ● ○ ○ ○
Holstad 2009 ● ○ ○ ○
Alvarez 2010 ○ ○ ○ ●
Cullington 2000 ○ ○ ○ ●
Di Nardo 2003 ○ ○ ○ ●
Hughes 2000 ○ ○ ○ ●
Kaplan-Neeman 2004 ○ ○ ○ ●
King 2006 ○ ○ ○ ●
Mittal 2009 ○ ○ ○ ●
Morita 2003 ○ ○ ○ ●
Polak 2006 ○ ○ ○ ●
Thai-Van 2001/2004 ○ ○ ○ ●
Van den Abbeele 2012 ○ ○ ○ ●
Lorens/Walkowiak 2004/2011 ○ ○ ○ ●
Brown 1996 ○ ? ○ ●
Gordon 2004a/2004b ○ ○ ? ●
Kiss 2003 ○ ○ ? ●
Lai 2009 ○ ○ ? ●
Muhaimeed 2010 ○ ○ ?C ●
Wesarg* 2010 ○ ? ○ ●
Pedley 2007 ○ ? ○ ●
Wolfe 2008 ○ ○ ?S ●
Cafarelli Dees 2005 ○ ○ ● ●
Smoorenburg 2002 ○ ○ ● ●
Caner 2007 ○ ? ?S ●
Jeon 2010 ○ ? ?S ●
Brown 2000 ○ ? ● ●
Botros 2010 ○ ? ● ●
Raghunandhan 2014 ○ ? ?S ●
Han 2005 ● ○ ?S ●
Akin 2006/2008 ● ? ?S ●

Total 32 37 4 9? 4/10? 29
? At risk; not enough information available
● Positive score (bias present)
○ Negative score (bias absent)

s Use of Soundwave software (Advanced Bionics)
c Use of Custom Sound software (Cochlear)
* Use of three populations
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Four studies suffered from inadequate blinding; they adjusted eCAP threshold profiles 
to match T- and C-levels (Brown et al. 2000; Smoorenburg et al. 2002; Cafarelli Dees et 
al. 2005; Botros & Psarros 2010). Wesarg et al. (2010) used 3 groups of subjects, with the 
third group making use of subjective fitting based on eCAP thresholds. Only three studies 
were not suffering from the analytical bias, providing individual T-eCAP and C-eCAP 
correlation coefficients (Franck & Norton 2001; Franck 2002; Potts et al. 2007; Holstad et 
al. 2009). In addition to Table 2.2, a more comprehensive overview for study analysis and 
assessment of different subject populations can be found in Supplemental content 2.3 
and 2.4, respectively. 

2.3.4. Meta-analysis
Meta-analyses for T-eCAP and C-eCAP are shown in Figure 2.2 and Figure 2.3, respectively. 
The figures show study name, population size (subjects), correlation coefficient (r) and 
95% c.i. for each study. Additionally, the study’s weight in the meta-analysis is shown in 
the last two columns, separately for the fixed and random effects model. Results based on 
both fixed and random effects model are shown. Because the studies are heterogeneous, 
results based on the random effects model are more appropriate. A total of 390 subjects 
from 14 studies were analyzed for T-eCAP (Figure 2.2). Pearson’s correlation coefficients 
varied from r  =  0.24 (Holstad et al. 2009) to r  =  0.89 (Brown et al. 2000). The weighted 
pooled correlation for T-eCAP was weak (r = 0.56, c.i. 0.48 to 0.63). The pooled correlation 
in the random effects model was similar (r = 0.61, 95% c.i. 0.49 to 0.71). The percentage 
of variance in study results attributable to heterogeneity (I2) was 55.4%. For the C-eCAP 
(Figure 2.3), a total of 444 subjects from 15 studies were analyzed. The correlation 
coefficients varied between r  =  0.26 (Holstad et al. 2009) and r  =  0.80 (Lai et al. 2009). 
The pooled correlations in the fixed and random effects models were identical (r = 0.58), 
though the c.i. was slightly broader for the random effects model. The I2 for C-eCAP was 
32.7%. Note that the correlation for Franck (2002), Holstad et al. (2009) and Potts et al. 
(2007) was calculated based on individual correlations.

Figure 2.4 shows the results of the sensitivity analysis for the meta-analysis of both T-eCAP 
and C-eCAP. From left to right the outcomes of the meta-analyses are shown based on 
all studies, studies reporting group correlations, studies reporting individual correlations, 
studies with adequate blinding, studies with adults only, and studies with children 
only. The correlation coefficient was slightly lower for the ‘individual correlations’ group 
(T-eCAP: r  =  0.36 and C-eCAP: r  =  0.38) and the ‘Children’ group (T-eCAP:  r  =  0.42 and 
C-eCAP: r = 0.35). Notably, the T-eCAP correlation in children had an uninformatively large 
95% c.i. due to the small sample size. The pooled average of groups with an adequate 
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number of studies (‘group correlations’, ‘blinded’ and ‘adults’) showed no significant 
difference when comparing T-eCAP and C-eCAP (whiskers representing the 95% c.i. do 
overlap).
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Figure 2.4.Sensitivity analysis graph showing in gray bars the number of studies included (left ordinate) and 
in black dots the pooled correlation coefficient (right ordinate) for each analyzed group. The whiskers indicate 
the 95% confidence intervals of the pooled correlation coefficient. From left to right the outcomes of the meta-
analyses are shown for: all studies, studies based on group correlations, studies based on individual correlations, 
studies with adequate blinding, studies with adults only, and studies with children only. eCAP indicates 
electrically evoked compound action potential.

2.3.5. Individual correlation data
To investigate the use of eCAP for fitting individual subjects, comparison of eCAP and 
behavioral thresholds within individuals is highly preferable. However, only three studies 
reported individual T-eCAP and C-eCAP correlations (Franck & Norton 2001; Franck 2002; 
Potts et al. 2007; Holstad et al. 2009). In Figure 2.5 a histogram is plotted which shows 
the distribution of the individual correlation coefficients, separately for T-eCAP (top) and 
C-eCAP (bottom). The correlation coefficients were spread across a wide range. Franck 
(2002) reported both the T-eCAP and C-eCAP data for 12 subjects, ranging from r = -0.36 
to r = 0.97 for T -eCAP and from r = -0.29 to r = 0.86 for C-eCAP. The T-eCAP and C-eCAP 
data from Potts et al. (2007) (n = 15) revealed individual T-eCAP correlations ranging from 
r = 0.07 to r = 0.88 and C-eCAP correlations ranged from r = 0.23 to r = 0.95. Holstad et al. 
(2009) reported the largest group of individual correlation data (n = 36 subjects) for both 
T-eCAP and C-eCAP. For T-eCAP, correlations varied from r  =  -0.67 to r  =  0.97, while for 
C-eCAP, the correlations varied from r = -0.63 to r = 0.97. 



2

Use of electrically evoked compound action potentials for cochlear implant fitting   |   31

Fr
eq

ue
nc

y

 

0

2

4

6

8

10

12 T-eCAP
Franck et al.
Potts et al.
Holstad et al.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Correlation coefficient (r)

0

2

4

6

8

10

12 C-eCAP

Figure 2.5. Histogram of T-eCAP (top) and C-eCAP (bottom) correlation coefficients (x-axis) from individual 
subjects as reported by Franck et al. (2001/2002), Potts et al. (2007) and Holstad et al. (2009). Correlation 
coefficients were grouped in bins with a width of 0.1. Black indicates individuals from the study of Holstad et al., 
dark gray from the study of Potts et al. and light gray from the study of Franck et al. eCAP indicates electrically 
evoked compound action potential.

2.4. Discussion
This systematic review evaluated 37 papers describing 32 unique studies for their evidence 
of eCAP-based fitting of CIs. The studies were reviewed using the PRISMA method and 
a ROB assessment. The ROB assessment was chosen because the overall study quality 
did not enable the common screening for level of evidence. The ROB assessment scored 
overall study quality on attrition bias, selection bias, outcome assessment bias and 
analytical bias.

2.4.1. ROB assessment
2.4.1.1. Attrition bias
Attrition more than 10% was found in only four studies (Akin et al. 2006, 2008; Franck 
& Norton 2001; Franck 2002; Han et al. 2005; Holstad et al. 2009). However, there was 
no clear consensus on reporting CI users with poor eCAPs; some studies exclude poor 
responders prior to the study, whereas others count these subjects as lost in follow-up. 
Since the exclusion of subjects with poor or no measurable eCAPs will not necessarily 
influence the results, it would be valid to exclude these poor eCAP responders. Therefore, 
we did not count poor responders as attrition in the ROB assessment. On the other hand, 
it is important to report the amount of poor eCAP responders, because it provides insight 
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in the success rate and applicability of objective fitting for CI recipients. The exclusion of 
poor eCAP responders can therefore also be seen as a selection bias.

2.4.1.2. Selection bias
We found that the studied populations differed considerably between studies. 
Some studies used a heterogenic group of CI recipients, whereas other studies used 
specific subpopulations, for example, prelinguals, postlinguals, children or adults (see 
Supplemental content 2.3). Therefore, the selection bias was scored with respect to the 
intended population. As long as the subjects were selected randomly from within the 
intended subpopulation and there was a proper representation of the population intended 
for the conclusion, we scored studies positive for randomization. When the randomization 
was not described clearly, the study was scored by a question mark indicating that there 
is an increased risk on selection bias (Table 2.2).

A more hidden form of selection bias is the overrepresentation of one manufacturer 
(Cochlear) both in literature and the reviewed studies: 24 Cochlear, 7 Advanced Bionics, 
1 Ineraid, and 2 MED-EL (see Supplemental content 2.2). Brand-related differences in 
hardware (e.g., noise floor) and software (e.g., eCAP detection method, linear versus 
logarithmic current scale) might lead to differences in eCAP thresholds and fitting levels. 
Consequently, the correlation between these two measures could be (slightly) different 
for each manufacturer. Therefore, a more balanced representation of all manufacturers is 
desirable to get a more general answer on the question whether eCAP could be used for 
objective fitting. 

2.4.1.3. Outcome assessment bias
The use of objective measures to set the behavioral fitting parameters was scored as a 
lack of blinding. Such data cannot be used to investigate the predictive value of eCAP 
thresholds for fitting levels, because the behavioral data are not independent from 
objective measurements. The risk for this specific form of bias is especially high in more 
recent studies, as modern fitting software (Soundwave, ART, and AutoNRT) enables the 
user to easily adjust the behavioral map by using the objectively measured eCAP data. 
Unfortunately, it was not feasible to determine the exact influence of this fitting software. 
To avoid underreporting outcome assessment bias, we scored studies that used modern 
fitting software while the use of the eCAP feature has not been reported explicitly as 
‘unknown’ for blinding. 
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Of special interest was the use of behavioral data to adjust the objective threshold profile. 
Brown et al. (2000) introduced a method to shift the eCAP threshold profile toward hearing 
level using the behavioral threshold at one electrode contact. The shift does not influence 
the correlation between the objective and behavioral thresholds as long as it is performed 
within subjects. For this reason, applying the shift in combination with a within subject 
correlation, for example as Frank & Norton (2001), was not scored as outcome assessment 
bias. For group correlation, the shift could increase the correlation dramatically (Franck & 
Norton 2001). However, group correlation does not provide reliable results for individual 
patients (see section 2.4.1.4. Analytical bias). Therefore, shifting eCAP threshold prior to a 
group correlation received a positive score for outcome assessment bias, for example as 
Brown et al. (2000). In addition to the shift, Smoorenburg et al. (2002) introduced a tilt to 
further improve the fit between the objective and behavioral profiles, better known as 
the ‘shift and tilt’ method. However, the ‘shift and tilt’ approach provides eCAP threshold 
profiles which are no longer fully independent from the behavioral profiles. Therefore, 
the use of the ‘shift and tilt’ approach was scored as an outcome assessment bias, for 
example, as in Smoorenburg et al. (2002) and Cafarelli Dees et al. (2005). In the study of 
Botros & Psarros (2010), shifted eCAP threshold profiles were additionally scaled. This 
scaling resulted in flatter profiles at higher stimulation level, because the scaling factor 
was inversely related to the stimulus level. Though less obvious, the eCAP-based profiles 
were not independent of the behavioral profiles, thus, these studies were scored positive 
for outcome assessment bias.

2.4.1.4. Analytical bias
Besides properly collected data, a correct (statistical) analysis is also a prerequisite for 
reliable results and valid conclusions. Therefore, all studies were scored on analytical 
bias. Van der Beek et al. (2015) showed a great inter-subject variability in both eCAP 
thresholds and behavioral T/C-levels. The correlation analysis between eCAP thresholds 
and behavioral fitting levels should therefore ideally be based on subject level. However, 
only three studies showed the correlation within individual subjects (Franck & Norton 
2001; Franck 2002; Potts et al. 2007; Holstad et al. 2009). The correlation coefficients 
reported in these studies (plotted in a histogram in Figure 2.5) show great variation 
per individual subjects. Based on their results, Holstad et al. (2009) suggested that the 
individual variation was too large for reliable objective fitting of children without the use 
of subjective data. Potts et al. (2007) mentioned that when behavioral measures cannot 
be obtained consistently, eCAP thresholds can provide valuable information about the 
level associated with an auditory response on each electrode. However, eCAP thresholds 
should be used conservatively to create an initial speech processor map. In contrast 
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to these three studies, all other studies did not take into account the within-subject 
correlation; they based their conclusion on a grouped correlation only. The problem of a 
group correlation is that the correlation is driven by the (large) inter-subject variation and 
can be qualitatively different form the within-subject association. Being not aware of this 
effect, which is also called the Simpsons’ Paradox (Julious & Mullee 1994), will result in a 
high risk for incorrect conclusions. Given the contradictory outcomes and conclusions of 
several studies (see Supplemental content 2.2), the suspicion arises that not all studies 
are calculating the correlations in a proper way. This notion is supported by the fact that 
studies using grouped correlations were positive about the role of eCAP data in fitting 
procedures (Morita et al. 2003; Kaplan-Neeman et al. 2004; Pedley et al. 2007; Lai et al. 
2009; Mittal & Panwar 2009; Botros & Psarros 2010; Muhaimeed et al. 2010; Walkowiak 
et al. 2011), whilst Holstad et al. (2009) and Potts et al. (2007), who base their analysis on 
individual correlations, are dismissive.

2.4.2. Meta-analysis
A meta-analysis on the included studies that reported a Pearson’s correlation coefficient 
revealed that the use of eCAP thresholds is a weak predictor of both T- and C-levels. We 
found a pooled correlation of r = 0.61 for T-eCAP and C-eCAP had a slightly lower pooled 
correlation of r = 0.58. Note that two types of correlation coefficients are included in the 
analysis: grouped correlations and means of individual correlations (studies with asterisk). 
Whereas the majority of the reviewed studies reported a group correlation, the individual 
correlations were included as well, because they provide useful information (see section 
2.4.1.4. Analytical bias). The sensitivity analysis showed that including both types of 
correlation coefficients did not change the results of the meta-analysis significantly (Figure 
2.4). Franck & Norton (2001) provided both grouped and individual correlations. Comparing 
both types of correlation coefficients revealed that the group correlation between eCAP 
thresholds (visual) and T-levels (80 Hz) was stronger than the mean individual correlation 
(r = 0.77 versus r = 0.50, respectively). However, similar comparison for C-eCAP revealed 
the opposite: a group correlation of r = 0.03 and a mean individual correlation of r = 0.44. 
This example clearly demonstrates that: (1) individual correlations can be totally different 
than a grouped correlation on the same data (Simpson’s paradox), and (2) the choice of 
analysis method has major consequences for the results and conclusion.

The majority of the studies included in the T-eCAP and C-eCAP meta-analysis used Cochlear 
devices. From the 15 studies, only 2 studies used implants of Advanced Bionics (Han et 
al. 2005; Caner et al. 2007) and 2 studies of MED-EL (Alvarez et al. 2010; Walkowiak et al. 
2011). Due to the low number of Advanced Bionics and MED-EL studies, we could not 
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statistically test the effect of manufacturer on the pooled correlation coefficients. However, 
based on the distribution of the correlation coefficients of the Cochlear studies, we might 
conclude that the results of the meta-analysis are representative for Cochlear. Further, the 
sensitivity analysis did not show any significant difference when a meta-analysis performed 
on all studies was compared with the meta-analysis performed by selectively incorporating 
studies with adequate blinding, studies with children only, and studies with adults only 
(Figure 2.4). This indicates that the meta-analysis was robust for all subpopulations. 

2.4.3. Towards eCAP based fitting
This review revealed several issues with respect to study design and statistical analysis, as 
well as contradictory outcomes between different studies (see Supplemental content 2.2) 
and a large variation in individual correlations (Figure 2.5). Hence, we must conclude that 
there is currently no evidence for the validity of eCAP based fitting of CIs. To be able to 
answer the question whether eCAP thresholds can predict fitting levels, at least the biases 
reported in this study must be avoided. In other words, the subjects must be selected 
randomly and the exclusion of poor eCAP responders should be reported, because this 
affects the success rate of eCAP based fitting. Further, the behavioral levels must be 
measured blinded from the eCAP measurements, and both the eCAP and behavioral 
measurements should be described in detail. Finally, the correlation between eCAP and 
behavioral levels must be investigated within individual subjects to draw valid conclusions 
for eCAP-based fitting of individuals. 

In addition, we want to highlight the following considerations in eCAP threshold research:

2.4.3.1. Measurement data
Review of the applied fitting strategies showed that most of the studies did not elaborate 
in detail on the applied strategy. This challenges the systematic review of eCAP-based 
fitting, because it is unknown whether the different study results are based on comparable 
data. Three studies reported that the T-levels were set as 10% of the C-level (default in the 
SoundWave fitting software of Advanced Bionics), but these levels were not used in a 
correlation analysis (Caner et al. 2007; Akin et al. 2008; Raghunandhan et al. 2014).  One 
study reported that the C-level was typically set a predefined number of programming 
units above T-level, because they are dealing with children (Hughes et al. 2000). All other 
studies reported that the behavioral levels were measured, fitted by an audiologist, or 
they only mentioned that the fitting levels were collected. When reviewing the fitting 
strategies, we found many differences due to manufacturer, used software, measurement 
properties, audiologist experience and CI-center. A few studies used comparable fitting 
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strategies, for example, the default fitting method recommended by the manufacturer, or 
a fitting method based on the Hughson-Westlake approach (Thai-Van et al. 2004; Pedley 
et al. 2007; Jeon et al. 2010).

It is likely that the encountered methodological differences affect the actual fitting levels 
and thus the correlation. However, it was not possible to include the applied methods 
in the ROB- and meta-analysis; they could not be classified and the number of available 
studies was too low for statistical analysis. Additionally, one might wonder whether current 
CI devices and fitting software do a better job than previous versions thereby improving 
the correlation. However, the Figures 2.2 and 2.3 do not support this; more recent studies 
did not show a better correlation between eCAP and behavioral measures. For example, 
Figure 2.2 shows that the highest correlation coefficients originate from the oldest study 
(Brown et al. 1996).

2.4.3.2. Stimulation rate
Another factor possibly affecting the correlation is the applied stimulation rate. Behavioral 
fitting levels are routinely measured at high-rate pulse trains (250 to 3500 Hz) (Arora et al. 
2012), while eCAP-based telemetry is performed at much lower rates (35 to 80 Hz). Brown 
et al. (1998) and Franck & Norton (2001) found that the correlation between behavioral 
and eCAP thresholds is best at equal stimulation rate for behavioral and eCAP stimulation. 
Based on these findings, we can conclude that, if the eCAP would be used to predict 
fitting levels, the pulse rate for eCAP measurements ideally should be close to the (high) 
rate used for behavioral measurements. However, Charasse et al. (2004) showed that 
increasing the stimulus frequency for the measurement of eCAP responses saves time 
during measurements but has a degrading effect on the quality and amplitude of the 
eCAP response. Further, McKay et al. (2013) investigated whether high rate behavioral 
thresholds can be predicted by eCAP thresholds combined with rate-dependent eCAP 
characteristics (e.g., loudness growth and temporal integration). However, they still 
conclude that it is unlikely that the lower rate eCAP thresholds can be combined with the 
high-rate behavioral fitting levels. 

2.4.3.3. Measurement error
When comparing measurements, the measurement error should be considered in order 
to correctly interpret the differences. However, we encountered no study that included 
a measurement error for the eCAP and behavioral measurements. eCAP thresholds and 
fitting levels were handled as fixed data points, even though they have an uncertainty 
depending on the measurement properties and conditions. Therefore, the precision of the 
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measurements probably differs between studies and affects the presented correlations. 
Potentially, including the measurement error will lead to better measurements and could 
enhance the usability of eCAPs in clinical practice.

2.4.3.4. Speech perception
Several papers were encountered that used speech perception as outcome measure for 
eCAP-based fitting rather than the behavioral fitting levels (Frijns et al. 2002; Sun et al. 
2004; Guedes et al. 2007; Cosetti et al. 2010; D’Elia et al. 2012; Zhang et al. 2013; Bournique 
et al. 2014; Scheperle & Abbas 2015).  Seyle & Brown (2002) even used different types 
of eCAP based fitting maps to investigate objective fitting with speech perception as 
outcome measure. These studies propose that speech perception, though it is subjective, 
is more directly related to the quality of hearing in CI recipients than the fitting levels. 
Consequently, speech performance potentially is a better outcome measure for assessing 
eCAP-based fitting than behavioral T/C-levels (Seyle & Brown 2002; Guedes et al. 2007; 
Zhang et al. 2013). Although it is an interesting topic, it is beyond the scope of this paper 
to review the objective fitting based on speech perception, for example, whether and, if 
so, which speech perception test is best suited for this purpose.

2.5. Conclusions
This systematic review shows that many of the included studies dealt with methodological 
shortcomings in randomization, blinding, population etiology and statistical analysis. 
Considering statistical analysis, studies building their conclusions on group analysis, 
thereby negating within subject variation, have a high risk on analytical bias whereby 
the conclusion is not representative for individual subjects. We conclude that most of the 
reviewed studies are not optimal to answer the research question whether the eCAP could 
be used to predict fitting levels of individual CI recipients. Additionally, the three studies 
which applied appropriate statistical analyses do not support the use of eCAP threshold 
data only for CI fitting purposes. In future studies, we recommend emphasizing correct 
blinding, a well-defined study design and the use of appropriate statistical analyses. Finally, 
we point out to multiple studies which suggest speech perception as potentially better 
outcome measure for assessing eCAP-based fitting, rather than comparing objective 
eCAP thresholds to behavioral fitting levels.
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Supplemental

Supplemental Table 2.1. Literature search
Database Search strategy Date and 

time
No. hits

PubMed (“Cochlear Implants”[Mesh] OR “Cochlear Implantation”[Mesh] 
OR “cochlear implants”[all fields] OR “cochlear implant”[all fields] 
OR “cochlear implantation”[all fields] OR “Cochlear Prosthesis 
Implantation”[all fields] OR “Cochlear Prosthesis Implantations”[all 
fields]) AND (“electric stimulation”[All Fields] OR “electrical 
stimulation”[All Fields] OR “electric stimulation”[MeSH] OR 
“electrically evoked compound action potential”[all fields] OR 
“ECAP”[all fields] OR “EAP”[all fields] OR “evoked potentials”[All 
Fields] OR “evoked potential”[All Fields] OR “evoked 
potentials”[MeSH] OR “evoked potentials, auditory”[MeSH] OR 
“Cochlear Microphonic Potentials”[Mesh] OR “neural response 
telemetry”[all fields] OR “neural response imaging”[all fields] 
OR “NRT”[all fields] OR “NRI”[all fields] OR “eSRT”[All Fields] OR 
“SRT”[all fields] OR “Stapedius reflex”[all fields] OR “Auditory 
Nerve Response Telemetry”[all fields] OR “ART”[all fields] OR 
“electrically evoked auditory brainstem response”[All Fields] OR 
“eABR”[All Fields] OR “ABR”[All Fields] OR “eBAER”[All Fields] OR 
“eBERA”[all fields] OR “BAER”[All Fields] OR “BERA”[all fields]) 
AND (“thresholds”[all fields] OR “threshold”[all fields] OR 
“level”[all fields] OR “levels”[all fields]) AND (“1995/01/01”[PDAT] : 
“3000/12/31”[PDAT])

22 June 
2015 10:00

1061 results

Web of 
Science

TS=(“Cochlear Implants” OR “Cochlear Implantation” OR “cochlear 
implant” OR “Cochlear Prosthesis Implantation” OR “Cochlear 
Prosthesis Implantations” ) AND TS=(“electric stimulation” OR 
“electrical stimulation” OR “electrically evoked compound action 
potential” OR “ECAP” OR “EAP” OR “evoked potentials” OR “evoked 
potential” OR “Cochlear Microphonic Potentials” OR “neural 
response telemetry” OR “neural response imaging” OR “NRT” OR 
“NRI” OR “eSRT” OR “SRT” OR “Stapedius reflex” OR “Auditory Nerve 
Response Telemetry” OR “ART” OR “electrically evoked auditory 
brainstem response” OR “eABR” OR “ABR” OR “eBAER” OR “eBERA” 
OR “BAER” OR “BERA” ) AND TS=(“thresholds” OR “threshold” OR 
“level” OR “levels”)

26 June 
2015 11:00

875 results
(418 after 
deduplication 
with PubMed 
search)

Cochrane 
Library

(cochlear implant* OR Cochlear Prosthesis Implantation*) AND 
(“electric stimulation” OR “electrical stimulation” OR “electrically 
evoked compound action potential” OR “ECAP” OR “EAP” OR 
“evoked potential*” OR “Cochlear Microphonic Potentials” OR 
“neural response telemetry” OR “neural response imaging” OR 
“NRT” OR “NRI” OR “eSRT” OR “SRT” OR “Stapedius reflex” OR 
“electrically evoked auditory brainstem response” OR “eABR” 
OR “ABR” OR “eBAER” OR “eBERA” OR “BAER” OR “BERA”) AND 
(“threshold*” OR “level*”)

26 June 
2015 11:00

36 results
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Supplemental Table 2.2. Study overview

Study
Judgement on eCAP 

based fitting
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Akin 2 2006/2008 ○ ○ ○ ● ○ ● ○ ○ ● ○ ● ○ ○
Alvarez 1 2010 ○ ○ ○ ● ○ ● ○ ● ● ○ ○ ● ○
Botros 1 2010 ○ ○ ○ ○ ● ● ○ ● ● ● ○ ○ ○
Brown 1 2000 ○ ○ ○ ● ○ ● ○ ● ● ● ○ ○ ○
Brown 1 1996 ○ ○ ○ ● ○ ● ○ ● ● ○ ○ ○ ●
Caner 1 2007 ○ ○ ○ ● ○ ● ○ ○ ● ○ ● ○ ○
Cullington 1 2000 ○ ○ ● ○ ○ ● ○ ● ● ● ○ ○ ○
Cafarelli Dees 1 2005 ○ ○ ○ ● ○ ● ○ ● ● ● ○ ○ ○
Di Nardo 1 2003 ○ ○ ● ○ ○ ● ○ ● ● ● ○ ○ ○
Franck 2 2001/2002 ○ ●* ○ ○ ●* ● ● ● ● ● ○ ○ ○
Gordon 2 2004/2004 ○ ○ ○ ● ○ ● ○ ● ● ● ○ ○ ○
Han 1 2005 ○ ○ ○ ● ○ ● ○ ○ ● ○ ● ○ ○
Holstad 1 2009 ● ○ ○ ○ ○ ● ○ ● ● ● ○ ○ ○
Hughes 1 2000 ○ ● ○ ○ ○ ● ○ ● ● ● ○ ○ ○
Jeon 1 2010 ○ ● ○ ○ ○ ● ○ ● ● ○ ● ○ ○
Kaplan-Neeman 1 2004 ○ ○ ○ ○ ● ● ○ ● ● ● ○ ○ ○
King 1 2006 ○ ○ ○ ● ○ ● ○ ○ ● ● ○ ○ ○
Kiss 1 2003 ○ ○ ○ ● ○ ● ○ ● ○ ● ○ ○ ○
Lai 1 2009 ○ ○ ○ ○ ● ● ○ ● ● ● ○ ○ ○
Mittal 1 2009 ○ ○ ○ ○ ● ● ○ ● ● ● ○ ○ ○
Morita 1 2003 ○ ○ ○ ○ ● ● ○ ● ● ● ○ ○ ○
Muhaimeed 1 2010 ○ ○ ○ ○ ● ● ○ ● ● ● ○ ○ ○
Pedley 1 2007 ○ ○ ○ ○ ● ● ○ ● ● ● ○ ○ ○
Polak 1 2006 ○ ○ ○ ● ○ ● ○ ● ● ● ○ ○ ○
Potts 1 2007 ○ ● ○ ○ ○ ● ○ ● ● ● ○ ○ ○
Raghunandhan 1 2014 ○ ● ○ ○ ○ ● ○ ○ ● ○ ● ○ ○
Smoorenburg 1 2002 ● ○ ○ ○ ○ ● ○ ● ● ● ○ ○ ○
Thai-Van 2 2001/2004 ○ ●* ○ ●* ○ ● ○ ● ● ● ○ ○ ○
Van den Abbeele 1 2012 ○ ○ ○ ● ○ ● ○ ○ ● ○ ● ○ ○
Lorens/Walkowiak 2 2004/2011 ○ ○ ○ ○ ● ● ○ ○ ● ○ ○ ● ○
Wesarg 1 2010 ○ ○ ● ○ ○ ● ○ ● ● ● ○ ○ ○
Wolfe 1 2008 ○ ○ ● ○ ○ ● ○ ○ ● ○ ● ○ ○

Total 32 37 2 6 4 13 9 32 1 24 31 22 7 2 1
● Positive score.
○ Negative score.
* Studies consist of multiple papers, resulting in multiple judgments.
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Supplemental Table 2.3. Study analysis
Study Quality Population Methods Loss
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Akin 2006/2008 ?S ○ ? 19 ● ● ● ● ○ ○ ● 10 53
Alvarez 2010 ● ○ ● 49 ● ● ● ● ○ ● ○
Botros 2010 ● ○ ? 13 ○ ● ? ? ○ ○ ○
Brown 2000 ● ○ ? 44 ○ ● ○ ● ○ ○ ○
Brown 1996 ● ○ ? 20 ○ ● ○ ● ○ ○ ○
Caner 2007 ?S ○ ? 16 ● ○ ● ○ ○ ● ○ 1 7
Cullington 2000 ● ○ ● 30 ● ● ? ? ○ ● ○
Cafarelli Dees 2005 ● ○ ● 74 ● ● ○ ● ○ ○ ○
Di Nardo 2003 ● ○ ● 12 ● ● ● ● ○ ○ ○
Franck 2001/2002 ● ○ ● 15 ○ ● ○ ● ○ ○ ● 3 20
Gordon 2004a/2004b ? ○ ● 68 ● ○ ? ? ○ ● ○ 5 7
Han 2005 ?S ○ ● 9 ● ● ? ? ○ ○ ● 1 11
Holstad 2009 ● ● ● 41 ● ○ ● ○ ○ ○ ● 5 12
Hughes* 2000 ● ○ ● 20 ○ ● ? ? ○ ● ○
Jeon 2010 ?S ● ? 12 ○ ● ○ ● ○ ○ ○
Kaplan-Neeman 2004 ● ○ ● 10 ● ○ ● ○ ○ ● ○
King 2006 ● ○ ● 21 ○ ● ? ? ○ ○ ○ 1 4
Kiss 2003 ? ○ ● 27 ● ● ? ? ○ ○ ○
Lai 2009 ? ○ ● 17 ○ ● ○ ● ○ ○ ○
Mittal 2009 ● ○ ● 90 ● ● ? ? ○ ○ ○
Morita 2003 ● ○ ● 12 ● ● ● ● ○ ○ ○
Muhaimeed 2010 ?S ○ ● 47 ● ○ ● ○ ○ ● ○
Pedley 2007 ● ○ ? 8 ○ ● ○ ● ○ ○ ○
Polak 2006 ● ○ ● 30 ○ ● ● ● ○ ○ ○ 1 3
Potts 2007 ● ● ● 12 ○ ● ○ ● ○ ○ ○
Raghunandhan 2014 ?S ○ ? 10 ● ○ ● ○ ○ ● ○
Smoorenburg 2002 ● ○ ● 13 ○ ● ○ ● ○ ○ ○
Thai-Van 2001/2004 ● ○ ● 49 ● ○ ? ? ○ ● ○
Van den Abbeele 2012 ● ○ ● 73 ● ● ? ? ○ ○ ○
Lorens/Walkowiak 2004/2011 ● ○ ● 16 ○ ● ○ ● ○ ○ ○

● 29
Wesarg** 2010 ● ○ ? 22 ○ ● ○ ● ○ ○ ○

○ 20
Wolfe 2008 ?S ○ ● 19 ? ? ● ● ○ ○ ○ 1 5

Total 32 37 19/10? 3 23/9? 17/1? 24/1? 11/10? 17/10? 0 9 4
s	 Use	of	Soundwave	software	(Advanced	Bionics).	 ●	 Positive	score.
c	 Use	of	Custom	Sound	software	(Cochlear).	 ○	 Negative	score.
?	 Unknown,	not	described	in	the	paper.
*	 Hughes	et	al.	use	of	2	groups,	unknown	blinding	for	Cochlear	subjects,	 

adequate	blinding	for	Advanced	Bionics	subjects.
**	 Wesarg	et	al.	use	of	3	groups.
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Objective: An amplitude growth function (AGF) shows the amplitude of an electrically 
evoked compound action potential (eCAP) as a function of the stimulation current. AGFs 
can be used to derive the eCAP threshold, which represents the minimum amount of 
current needed to elicit a measurable eCAP. eCAP thresholds have been widely used 
clinically to, for example, assist with sound processor programming. However, no eCAP 
precision has been included to date. The aim of this study was to investigate the preci-
sion of eCAP thresholds and determine whether they are precise enough for clinical use. 

Design: The study is retrospective and the data comprised 826 AGFs, intra-operatively 
measured in 111 patients implanted with a HiRes90K cochlear implant (Advanced 
Bionics). For each AGF, the eCAP threshold was determined using two commonly used 
methods: linear extrapolation (LE) toward the x-axis and detection of the last visible 
(LV) eCAP. Subsequently, the threshold confidence interval (TCI) of each eCAP threshold 
was calculated to serve as a metric for precision, whereby a larger TCI means a lower 
precision or reliability. Additionally, the eCAP thresholds results were compared with 
most recent behavioral fitting thresholds (T profile) to put the eCAP threshold analysis in 
clinical context. Thereby, the association between eCAP and behavioral thresholds was 
calculated, both for all subjects together (group analysis) and, in contrast to previous 
studies, within individual subjects.

Results: Our data show that the TCIs were larger with the LE method than with the LV 
method. The eCAP thresholds estimated by the LE method were systematically smaller 
than those estimated by the LV method, while the LE thresholds with the smallest TCIs 
correlated best with the LV thresholds. Correlation analysis between eCAP and behavioral 
thresholds revealed correlation coefficients of r = 0.44 and r = 0.54 for the group analysis 
of LE and LV thresholds, respectively. Within individual subjects, however, the correlation 
coefficients varied from approximately –1 to +1 for both LE and LV thresholds. Further 
analysis showed that across subjects the behavioral thresholds fell within the TCIs of the 
eCAP threshold profiles.

Conclusion: This study shows that eCAP thresholds have an uncertainty that can be 
estimated using TCIs. The size of the TCI depends on several factors, for example, the 
threshold estimation method and measurement conditions, but it is often larger than 
one would expect when just looking at the threshold values. Given these large TCIs, 
future research on eCAP thresholds should be accompanied by a measure of precision 
to correctly apply eCAP thresholds in clinical practice. Comparing our eCAP threshold 
results with T profiles indicates that the eCAP thresholds are possibly not precise enough 
to predict T profiles.
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3.1. Introduction
The electrically evoked compound action potential (eCAP) of the auditory nerve can be 
measured using the telemetry function of a cochlear implant (CI). The eCAP is a synchronous 
response from multiple auditory nerve fibers evoked by electrical stimulation. An eCAP is 
typically recorded as a negative peak (N1) followed by a positive peak or plateau (P1). The 
amplitude of the response is measured from peak to peak and reaches values of several 
hundred microvolts (Abbas et al. 1999). Since the eCAP amplitude depends on the applied 
current, plotting the amplitude as function of stimulus level will result in an amplitude 
growth function (AGF) (Figure 3.1A). From this AGF, the eCAP threshold can be derived, 
representing the minimum amount of current needed to evoke a measurable neural 
response (Hughes 2013). These thresholds can be used to assist with sound processor 
programming predicting behavioral threshold levels (T profiles) and maximum comfort 
levels (C/M level). However, no clear correlations between eCAP thresholds and fitting levels 
have been found (Franck & Norton 2001; Franck 2002; Potts et al. 2007; Holstad et al. 2009). 
Possibly the mismatch between eCAP thresholds and T profiles can be explained by an error 
analysis of eCAP thresholds. Two commonly used terms in error analysis are ‘accuracy’ and 
‘precision’. Accuracy describes the difference between the estimated and the true value, 
whereas the precision describes the error around the estimated value.  Since the eCAP 
threshold is a (best) estimate, we do not know the true value, and the accuracy can hardly be 
determined. Therefore, the focus of this study is on the precision of the eCAP thresholds as 
derived using standard (clinical) methodologies and the consequences for clinical practice. 
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Figure 3.1. Example of an AGF shown as commonly used (A), and with additional information about the 
precision of eCAP and eCAP threshold (B). The AGF shows the eCAP amplitude as function of stimulus level, 
whereby corresponding eCAPs are shown at the right side, plotted from high (top) to low (bottom) stimulus 
level. Data points not representing true eCAPs are shown in gray and points reflecting eCAP responses (black) 
were used to estimate the eCAP thresholds for the LE (blue dot) and LV (green dot) methods. In B, error bars are 
added reflecting the variation in eCAP amplitude. The guides were used to estimate the precision of the LE (blue) 
and LV (green) thresholds, whereby the dashed lines represent the threshold confidence interval. AGF indicates 
amplitude growth function; eCAP, electrically evoked compound action potential; LE, linear extrapolation; LV, 
last visible.



46   |   Chapter 3

Two methods are commonly used to estimate eCAP thresholds (Figure 3.1A). The simplest 
method is detection of the last visible (LV) eCAP. This method tracks all recordings of the 
AGF from high to low current while detecting whether the recording still contains an eCAP. 
The current level where the eCAP was last visible is defined as the eCAP threshold. The LV 
threshold (green dot) of the AGF shown in Figure 3.1A is 200 clinical units (CU). Because 
eCAP amplitudes below noise level cannot be detected, the LV threshold reflects the eCAP 
threshold at noise level. The second method is called linear extrapolation (LE). This method 
uses a linear regression line (Figure 3.1A, blue line) through data points representing a 
true neural response (black dots) to estimate the eCAP threshold at zero amplitude. The 
intercept of the line with the x-axis is defined as the eCAP threshold (blue dot at 159 CU). 
In general, eCAP thresholds are determined automatically using smart algorithms 
followed by visual inspection by an expert (clinician and audiologist). Visual inspection 
is necessary to verify whether the algorithm has not been misguided by, for example, 
(stimulus) artifacts or noise. Moreover, one should be aware of bias (e.g., systematically 
over- or underestimation of threshold) because of methodology or observer (Glassman & 
Hughes 2013; Akhoun et al. 2015).

Thus far, AGFs have been measured without any precision analysis; eCAP amplitudes 
have been used as data points without measurement error (Figure 3.1A). However, the 
eCAP amplitude has a measurement error that can easily be included, and it would be 
worthwhile to include also a measure of the precision of eCAP thresholds. For example, the 
measurement error of the eCAP amplitude can be derived from a measurement without 
stimulation or from a section of the recording in which no neural response is expected 
(e.g., the last samples of the recording). In Figure 3.1B, the measurement error is added to 
the eCAP amplitude, as shown by the error bars. The method of threshold estimation itself 
also has uncertainty. Unfortunately, standard clinical AGFs do not contain the required 
information to calculate the measurement error of the eCAP threshold itself. Alternatively, 
we defined the threshold confidence interval (TCI) as a metric of threshold precision. The 
blue and green lines in Figure 3.1B show how the precision of the LE and LV methods can 
be determined, and this is explained below in the methods section.

The aim of this study was to investigate the precision of the eCAP threshold and the 
consequences on clinical practice. The study was retrospective, and we made use of large 
data set of eCAP recordings, which were measured regularly during surgery. Further, 
the LV and LE methods were evaluated as commonly done in the literature and clinic. 
The LV threshold was identified by a human observer rather than using an automated 
computer algorithm. The LE method was based on a linear fit toward the zero-intercept, 



3

The precision of eCAP thresholds derived from amplitude growth functions   |   47

though a nonlinear fit or the intercept just above noise level would be better. To put 
the eCAP threshold precision in clinical context, we additionally compared the eCAP 
threshold analyses to behavioral T profiles, and the association between both measures 
was calculated as well. To the best of our knowledge, this study is the first to perform 
this analysis for such a large population of CI recipients using an Advanced Bionics (AB) 
implant. In contrast to previous studies, the correlation analysis was not only performed 
for all subjects together (group analysis), but also performed within individual subjects. 
This makes present study one of the few studies examining the association between eCAP 
and behavioral thresholds within individual subjects (de Vos et al. 2017).

3.2. Methods
3.2.1. Patients and data
The AGFs used in this study originate from intraoperative eCAP measurements sequentially 
recorded in our hospital from January 2010 to December 2015. AGFs were available from 
191 patients. All patients were implanted with a HiRes90K device (Advanced Bionics, 
Sylmar, CA), either with a 1J or Mid-Scala electrode array, both consisting of 16 electrode 
contacts (1 to 16 in an apical to basal order). The AGFs were collected as part of our 
standard clinical eCAP recordings using forward masking and the Research Studies 
Platform Objective Measures (RSPOM) software from AB. This allowed us to compare the 
AGF data with the other eCAP recordings,  including spread of excitation (Biesheuvel et 
al. 2016) and refractoriness. The AGFs were measured on all odd electrode contacts using 
the following parameters: monopolar cathodic first biphasic pulses; pulse duration, 32 µs/
phase; masker probe interval, 400 µs; sweep rate, 25 Hz; masker offset, 0%; sampling rate, 
56  kHz; gain, 300; 32 averages; recording electrode two electrodes apical to stimulus 
(except electrode 1, where the recording electrode was two electrodes basal to the 
stimulus). 

The eCAP analysis was performed automatically by RSPOM using the default settings. Raw 
eCAP recordings were filtered using a low-pass filter with a cut-off frequency of 8 kHz. Peak 
N1 was detected as the minimum over the time period between 180 and 490 µs and peak P1 
as the maximum between 470 and 980 µs after the end of stimulation. The eCAP amplitude 
was calculated as the peak-to-peak voltage between P1 and N1. After the automatic 
analysis, all peak detections and data points were verified. If necessary, corrections were 
made manually. In addition, the signal-to-noise ratio (SNR) and measurement error of 
each eCAP were calculated using MATLAB (Mathworks, Inc., Natick, MA). The SNR of the 
eCAP was calculated as the eCAP amplitude divided by the noise amplitude, which in turn 
was defined as the maximal amplitude difference in the last 30 samples of the response. 
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We assumed that no possible remaining artifact or neural response would occur over this 
section. The measurement error of the eCAP was set to the noise amplitude. 

The total batch of AGF measurements comprised AGFs measured with six and ten current 
steps. The functions with six current steps were measured when a full AGF with ten current 
steps could not be recorded because of time limitations during surgery. These six-point 
curves were measured in 56 patients and were, unfortunately, not reliable enough for 
the purpose of this study. Therefore, only the 10-point AGFs, measured in 135 patients, 
were analyzed. Each AGF was visually inspected for inclusion; an AGF was included when 
at least one clear eCAP response was available and the AGF was not disrupted, such as 
because of a stimulus artifact. Finally, a total of 826 AGFs originating from a heterogenic 
group of 111 patients were included for further analysis (Table 3.1). 

Table 3.1. Patient demographics.
Number of patients 111
Gender (n)

Male
Female

 
45
66

Implant type (n)
HiRes90K 1J
HiRes90K Mid-Scala

 
16
95

Age (years)
Children (< 12)
Adults
Mean ± SD

 
38
73
39 ± 30

Etiology (n)
Medication
Meniere
Meningitis
Otosclerosis
Trauma
Usher
Rubella
Congenital/Hereditary
Enlarged vestibular aqueduct
Cytomegalovirus
Other/Unknown

 
1
0
5
3
3
3
3
37
1
4
51

To put the eCAP threshold analysis in clinical context, we additionally compared the eCAP 
threshold results with behavioral T profiles. Most recent fitting thresholds were extracted 
from the SoundWave fitting software, assuming that these T profiles were stable and most 
optimal. To ensure the reliability of the T profiles, we only included profiles measured in 
subjects with an age above 4 years, resulting in T profiles from 73 subjects. The threshold 
levels were measured either for each electrode contact separately or by using streamlined 
programming (Plant et al. 2005). For these measurements we used tone bursts of biphasic 
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pulse trains of 200  ms, as provided by the clinical speech program of the CI user. The 
measurement started at a subthreshold stimulus level, and the level was increased until 
the patient heard the sound. After a clearly audible percept was achieved, the stimulus 
level was decreased to reach a subthreshold level again. Subsequently, the stimulus 
level was raised to find the final threshold level. The behavioral T profiles were never set 
automatically using 10% of most comfortable level (optional in SoundWave).

3.2.2. eCAP thresholds and precision
The eCAP thresholds were calculated using a semi-automatic method programmed in 
MATLAB. The method automatically detects which recordings contain an eCAP using two 
conditions: the eCAP amplitude exceeds 20 µV and the SNR of the eCAP exceeds +13 dB 
Subsequently, all eCAPs and AGFs were visually inspected and, if necessary, corrections 
made manually. 

The LE method was based on a linear least square fit through all data points containing 
a neural response. Data points at the top of the AGF which clearly deviate from linear 
amplitude growth were excluded from the fit, as common in clinical practice. At least 
three data points were required because confidence intervals cannot be determined if 
the number or observations is equal to the number of coefficients. The precision of the LE 
threshold was calculated using the 95% confidence interval of the linear fit (Figure 3.1B,  
blue dashed line); there is a 95% probability that the true best-fit line for the AGF lies 
within this confidence interval. The confidence interval was extrapolated toward the 
x-axis to estimate the interval at zero amplitude. For this purpose, the steepest and least 
steep linear fits within the confidence interval were calculated, and the intercepts of 
these lines with the x-axis were used to extrapolate the lower and upper boundaries of 
the confidence interval, respectively. Next, the distance between the two intercepts of 
the confidence interval with the x-axis was defined as the TCI. This TCI will be used as a 
measure of precision of the eCAP threshold estimated by the LE method.

For the LV method, the eCAP threshold was set to the current level where the smallest 
true eCAP could be detected. This threshold can be found by tracking all recordings of 
the AGF from high to low current. The lowest current whereby an eCAP could be detected 
was defined as the eCAP threshold. Estimating the precision of LV thresholds was less 
straightforward than with the LE method because the LV method does not have any 
mathematical clues. In our opinion, a good method was to use several guides as depicted 
in green in Figure 3.1B. The noise level (horizontal solid line) was estimated using data 
points not representing an eCAP (gray dots). Subsequently, a guide was drawn from the 
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data point representing the LV (abscissa: 200 CU, ordinate: 68 µV) through the calculated 
noise level (abscissa: eCAP threshold minus one current step = 150 CU, ordinate: 38 µV). 
This guide (dashed line) represents the precision of the eCAP threshold toward the left 
side. If the noise level is zero, the size of the confidence interval at the left side of the 
threshold will be equal to the step size in current; the true zero-amplitude threshold will 
be between the estimate threshold and lower current. A high noise level, which is close 
to the smallest detectable eCAP amplitude, will result in a large(r) left confidence interval. 
Thus, because of the high noise level, it is uncertain where the zero-amplitude threshold 
exactly is. In addition, there is a high chance that the detected amplitude is not an eCAP, 
but still noise. In principle, the zero-amplitude threshold is at a lower current than the LV 
threshold, and consequently, the confidence interval at the right side could be set to zero. 
However, it is important to also include the eCAP measurement error, especially in cases 
in which the noise level is close to the smallest detectable eCAP amplitude. Therefore, the 
amplitude variation (error bar) in the LV eCAP was translated into CU using a guideline 
between the LV and next eCAP (solid green line). Projecting the top of the error bar on 
this guide led to the precision at the right side of the threshold, expressed in CU (vertical 
dashed line). Finally, the total TCI of LV thresholds was calculated as the distance between 
the two dashed lines at zero-amplitude. Importantly, the TCIs are not the true errors of the 
eCAP thresholds, but a best estimate of their precision. 

3.2.3. Analysis
When investigating the predictive value of eCAP thresholds for fitting behavioral levels, 
thresholds are frequently processed according to the method of Brown et al. (2000), 
matching the eCAP threshold profile with the T profile using the threshold data at one 
electrode contact. This method overcomes the offset difference between the objective 
and subjective profiles induced by the effect that a small stimulus may be audible though 
the eCAP is still too small to measure. This method was applied in our study as well. It 
is important to realize that the study of Brown included Nucleus patients, in which the 
currents are presented along a logarithmic scale, while the HiRes90K as used in the present 
study applies linear current units. From a mathematical point of view, a scaling factor was 
required to replicate the shift as described by Brown. In addition, the scaling was also 
required to take the pulse width into account when comparing behavioral thresholds 
(measured in microampere) to the objective thresholds (measured in CU). The profiles 
were matched on the electrode providing the least square error between the two profiles.

Exploration of the TCI values estimated with the LE and LV methods revealed non-normally 
distributed TCI values and unequal variances for both methods. Therefore, the difference 
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in TCI size between the two methods was investigated using Student’s t-tests for unequal 
variances in combination with a logarithmic transformation of the TCI values. Assuming 
that within the LE and LV methods the TCIs are equally distributed across the electrode 
array, we applied a linear mixed model to test the effect of electrode contact on the TCI 
size for each method separately. The model included electrode as fixed effect and subject 
as random effect. Straightforward correlation analysis was used to compare the eCAP 
thresholds obtained by the LE and LV methods. 

In addition, the association between eCAP thresholds for behavioral T profiles was 
examined using a linear regression model. Pearson’s correlation coefficient was calculated 
within individual subjects and for all thresholds together (group analysis). Fisher’s 
z-transformation was used to summarize the individual correlation coefficients and to 
enable further analyses on the correlation coefficients.

3.3. Results
Figure 3.2 shows four illustrative examples of AGFs to demonstrate the effect of AGF 
morphology on the eCAP threshold and TCI. In Figure 3.2A, the AGF measured at electrode 
7 in patient S124 is shown. The AGF contains clear and large eCAPs, leading to a clear 
distinction of measurements containing an eCAP. Consequently, the TCI is small for both 
LE and LV methods, and the thresholds of both methods are close to each other. In Figure 
3.2B, an AGF with much smaller eCAPs is shown. Because the eCAPs are closer to the noise 
level, it is more difficult to distinguish eCAPs from noise. Because of the lower SNR, the 
precision of eCAP amplitudes is less, resulting in a less reliable fit for the LE method and 
larger TCIs for both LE and LV methods. The examples in Figure 3.2A and C clearly show 
that an AGF is not necessarily linear; a shoulder near the noise level or a rollover at the 
top of the AGF was observed frequently. When data points at the top of the AGF clearly 
deviated from the linear amplitude growth, they were excluded from the linear fit (Figure 
3.2C), considerably improving the precision of the eCAP threshold. The AGF in figure 3.2D 
illustrates the effect of using a weighted linear fit (red) instead of the default normal fit 
(blue). The weighted fit took into account the measurement error of the eCAP amplitude. 
Consequently, the fit best reflects the most precise data points. In this example, weighting 
the measurement errors in the fit did not markedly affect the eCAP threshold itself, but 
the TCI became smaller. Finally, all AGFs were classified on eCAP amplitude to indicate 
how many AGFs will be represented by the examples shown. It turned out that 11% of 
the AGFs have an amplitude larger than 900 µV (Figure 3.2A), 62% between 300 µV and 
900 µV (Figure 3.2C), 23% between 150 µV and 300 µV (Figure 3.2D) and 5% smaller than 
150 µV (Figure 3.2B).
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Figure 3.2. Four examples of AGFs, illustrating different curve morphologies and their consequences for eCAP 
threshold and precision. The AGFs were plotted in the same way as in Figure 3.1. In addition, the LE method 
based on a weighted linear fit was drawn in D (red), while the LV threshold was omitted for the sake of visibility. 
AGF indicates amplitude growth function; eCAP, electrically evoked compound action potential; LE, linear 
extrapolation; LV, last visible.

The boxplots in Figure 3.3 show the absolute TCIs grouped per electrode contact for the LE 
(Figure 3.3A) and LV (Figure 3.3B) methods. For each AGF, the absolute size of the confidence 
interval with respect to the corresponding eCAP threshold was calculated separately for 
the left and right side. The intervals of all subjects were grouped per electrode contact 
and they are shown in boxplots. For visibility, the limits of the current axis were set to –750 
and 250 CU. Consequently, for the LE method 13 outliers fell outside the axes limits of the 
figure: 11 on the left side (< –750 CU) and 2 on the right side (> 250 CU). For the LV method, 
all data points were within the axes limits. Comparing the TCIs of both methods revealed 
that the TCIs of the LE method were significantly larger at the contacts 3-15 (p < 0.005 for 
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contact 5, p < 0.001 for all other contacts), while no difference in TCI size was found for 
the most apical contact 1 (p = 0.28). Further analysis of the effect of electrode contact on 
the TCI size revealed that for both the LE and LV methods, the TCI is significantly larger 
(p < 0.001) at the base than at the apex. Across the electrode array, larger eCAP amplitudes 
were observed at the apex than at the base.

Current (CU)
−600 −400 −200 0 200

E1  

E3  

E5  

E7  

E9  

E11 

E13 

E15 A

−600 −400 −200 0 200

B

Figure 3.3. Illustration of the absolute TCI size (expressed in CU) across all subjects. The TCIs are grouped per 
electrode contact for the LE (A, blue) and LV (B, green) methods separately. Box boundaries represent the 25th 
and 75th percentiles, whiskers represent the most extreme data points not considered outliers, open circles 
represent outliers, and solid line within the box represent median. CU indicates clinical units; TCI, threshold 
confidence interval; LE, linear extrapolation; LV, last visible.

In Figure 3.4A, the absolute difference between the LE and LV thresholds was plotted as a 
function of TCI size for the LE method. The LE thresholds are divided into four groups, each 
containing 25% of the sorted TCIs. The figure shows that the LV thresholds are larger than 
the corresponding LE thresholds and that the difference between the LV and LE threshold 
tends to increase with increasing TCI for the LE method. In addition, for each category, 
the LE thresholds were plotted against the LV thresholds using the same colors (Figure 
3.4B). Significant correlations were found between the LE and LV thresholds for all groups 
(p  < 0.001). The group with the most reliable LE threshold correlated best with the LV 
thresholds (r = 0.91 versus r = 0.71 for the most extreme pairs).
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Figure 3.4. Difference between thresholds estimated using the LE and LV methods. The LE thresholds are sort 
from small to large TCI and divided in four groups, each group containing 25% of the AGFs (blue, red, green, 
purple). Panel A shows the absolute difference between LV and LE thresholds for each group separately. In panel 
B, a scatterplot between LV and LE thresholds is shown for the same groups. TCI indicates threshold confidence 
interval; LE, linear extrapolation; LV, last visible; AGF, amplitude growth function.

The scatterplots in Figure 3.5A and B show the relationship between eCAP thresholds and 
behavioral thresholds for the LE and the LV methods, respectively. Only subjects who had a 
complete eCAP threshold profile were included in the analysis. This resulted in 48 subjects 
for the LE method and 50 for the LV method, whereby only 5 subjects had an 1J array and 
the others a Mid-Scalar. The thresholds are plotted in gray, and the correlations within 
individual subjects are illustrated by the black regression lines. Below the scatterplots, 
accompanying individual correlation coefficients are presented rank-ordered from low  
to high (Figure 3.5C and D). The coefficients vary from –0.96 to 0.82 for the LE thresholds 
and from –0.81 to 0.92 for the LV thresholds. Mean individual Pearson’s correlation 
coefficients (calculated using Fisher’s z-transformation) for the LE and LV methods were 
r = 0.16 and r = 0.34, respectively. When analyzing all threshold values as one data set, 
significant correlations were found between T profiles and LE threshold profiles (p < 0.001, 
r = 0.44) and between T profiles and LV threshold profiles (p < 0.001, r = 0.54). Additionally, 
Figure 3.6 compares the behavioral thresholds with the eCAP thresholds and their TCIs. 
The TCIs are visualized as in Figure 3.3 but rotated 90 degrees clockwise. Remember from 
Figure 3.3 that the (normalized) eCAP thresholds are represented by the line at 0 CU. 
In Figure 3.6A, the data are shown for the LE method (blue) and in Figure 3.6B for the 
LV method (green). The behavioral thresholds (T, red) were plotted relative to the eCAP 
threshold profiles, showing the absolute difference between the eCAP and behavioral 
thresholds per electrode contact. Across all patients, the behavioral thresholds fell within 
the TCIs of the eCAP thresholds.  
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Figure 3.5. Scatterplots showing the correlation between eCAP thresholds (x-axis) and behavioral thresholds 
(y-axis) for the LE method (A) and the LV method (B). The thresholds are plotted in gray and the correlations 
within individual subjects are depicted by the black lines. Below the scatterplots (C and D), accompanying 
Pearson’s correlation coefficients were presented rank-ordered from low to high (black line). eCAP indicates 
electrically evoked compound action potential, LE, linear extrapolation; LV, last visible.

3.4. Discussion
This study focuses on the precision of eCAP thresholds. To estimate precision, TCIs were 
assigned to eCAP thresholds estimated using the LE and LV method. eCAP thresholds 
estimated by the LE method were systematically smaller than the thresholds estimated 
by the LV method. The TCIs of the LE method were larger than those of the LV method, 
whereas the LE thresholds with the smallest TCIs correlated best with the LV threshold. 
Comparing the eCAP threshold profiles to optimally scaled T profiles, we found that the 
T profiles fell within the TCIs of the eCAP threshold profiles. This finding is one of the 
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potential explanations why the literature provides mixed results for correlations between 
behavioral and objective profiles; the eCAP threshold precision is too low.

3.4.1. Correlation between eCAP and behavioral thresholds
The correlation between eCAP thresholds and behavioral T and C/M levels has frequently 
been investigated to determine whether eCAP can be used to assist with sound processor 
programming and verify questionable behavioral responses. However, the outcomes 
have been moderate at best (Brown et al. 2000; Hughes et al. 2000; Franck & Norton 2001; 
Smoorenburg et al. 2002; Franck 2002; Di Nardo et al. 2003; Polak et al. 2006; Potts et 
al. 2007; Holstad et al. 2009; Mittal & Panwar 2009; Botros & Psarros 2010; Muhaimeed 
et al. 2010). There are several possible causes of the mismatch between objective and 
behavioral thresholds. 

First, there is an offset difference between behavioral and objective thresholds; a small 
stimulus may be audible though the eCAP is still too small to measure. This offset is patient 
dependent and can even vary between electrode contacts, for example, because of the 
electrode impedances. The difference between eCAP thresholds and behavioral levels can 
be reduced by matching the two profiles using the threshold data at one electrode contact 
(Brown et al. 2000), which was applied in this study as well. Additionally, there are known 
variations, between clinics and brands, in the way T profiles are set in clinical routine. 
Next to the commonly used 10% of M level for AB recipients, there are various ways to 
determine the threshold levels (e.g., first hearing thresholds, counted thresholds, single-
electrode stimulation, interleaved bursts). Up till now, there has been no consensus which 
of these approaches lead to the best subjective map and should serve as the reference for 
eCAP-based fitting. The actual way of determining thresholds across the various studies 
using eCAP-based fittings is highly underreported (de Vos et al. 2017), making it difficult to 
determine the best methods. Further, it is well known that pulse rate and duration of the 
stimulus affect both eCAP and behavioral thresholds, for example, because of temporal 
integration (McKay et al. 2005; Lai & Dillier 2007; McKay et al. 2013; Hughes et al. 2014). 
Previous research found that the relationship between eCAP and behavioral thresholds 
becomes stronger when associated stimulation rates were equal or close to each other 
(Brown et al. 1998; Franck & Norton 2001). However, equalizing the stimulation rates 
of eCAP and behavioral measurements, routinely measured with single pulses (30  Hz) 
and pulse trains (>500  Hz), respectively, is not ideal. Lowering the stimulation rate for 
behavioral measurements makes the thresholds inadequate with respect to the high-
rate speech strategy, while increasing the rate of eCAP measurements has a degrading 
effect on the quality and amplitude of the eCAP response (Charasse et al. 2004; Hughes 
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et al. 2014). Therefore, the correlation between eCAP and behavioral thresholds is likely 
affected by differences in stimulation rate. This is probably also the case in this study.

Because our study was retrospective, there were some nonideal conditions for 
comparing the eCAP outcomes to behavioral data. First, there was a time lag between 
the intraoperative eCAP measurements and the T profiles obtained from regular fitting 
sessions. We decided to use most recent T profiles because we assumed that these were 
stable and most optimal. However, because of physiologic changes within the cochlea 
in the first months after surgery (Hughes et al. 2001; Spivak et al. 2011), it is likely that 
the association between eCAP thresholds and T profile presented in this paper is affected 
by the time lag between the two measurements. To evaluate this potential effect on our 
results, we reanalyzed the correlation using T profiles from the first regular fitting after 
surgery, which were available in our SoundWave database as well. Using the Fisher r-to-z 
transformation, we tested whether the correlation changes if first fitting data (on average 
2 months after surgery) was used instead of the most recent fitting profiles (on average 
11 months after surgery). However, no significant differences were found, neither for 
all threshold data together (LE thresholds: p = 0.94, LV thresholds: p = 0.56) nor for the 
individual correlations (LE thresholds: p = 0.79, LV thresholds: p = 0.50). 

Further, our eCAPs were measured using RSPOM with the forward masking artifact 
rejection method, because they were a part of our clinical eCAP recording protocol. In 
contrast, eCAPs for fitting AB recipients will likely be measured via the clinical SoundWave 
software which by default uses alternating polarity. This difference in artifact rejection 
method potentially affects the clinical applicability of our results as some studies observed 
an effect of method on the eCAP (Frijns et al. 2002; Baudhuin et al. 2016). However, 
Hughes et al. (2016) thoroughly investigated the effect of artifact rejection on eCAP and 
they found no significant difference between forward masking and alternating  polarity 
for the amplitude and threshold of the eCAPs measured in AB recipients. For Cochlear 
devices, they conclude that the forward masking paradigm was even advantageous over 
alternating polarity. Finally, the majority of the available AGF literature is based on the 
Cochlear system in which the forward masking technique is the default (de Vos et al. 
2017). Considering these aspects, we think that the effect of these measurement settings 
is negligible in light of the TCI size, the main topic of the study. 

Looking at the methods for calculating the correlation between objective and behavioral 
thresholds, only four studies perform correlation analysis on individual eCAP and T 
profiles (Holstad et al. 2009; Franck 2002; Franck & Norton 2001; Potts et al. 2007), while 
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the majority of the studies perform the analyses on grouped data (Brown et al. 2000; 
Cullington 2000; Smoorenburg et al. 2002; Di Nardo et al. 2003; Kiss et al. 2003; Morita et 
al. 2003; Kaplan-Neeman et al. 2004; Cafarelli Dees et al. 2005; King et al. 2006; Polak et al. 
2006; Pedley et al. 2007; Lai et al. 2009; Mittal & Panwar 2009; Alvarez et al. 2010; Botros 
& Psarros 2010; Hughes & Stille 2010; Muhaimeed et al. 2010). However, group analysis 
does not provide any information about the correlation between profiles of individual 
subjects. The group correlation will be driven by the interpatient variation, especially 
when the eCAP thresholds were matched to the T profiles using one behavioral point 
(Brown et al. 2000; Smoorenburg et al. 2002; Willeboer & Smoorenburg 2006). Group 
analyses of our data revealed moderate correlation coefficients of r = 0.44 for T profiles 
versus LE thresholds and r = 0.54 for T profiles versus LV thresholds. Despite the nonideal 
conditions for comparing eCAP and behavioral thresholds, these correlation coefficients 
were in accordance with other (large) studies in which the grouped correlation coefficient 
was calculated for T profiles versus eCAP. Mittal & Panwar (2009) found r  =  0.33 based 
on 90 subjects, Brown et al. (2000) found r = 0.55 with 44 subjects and Muhaimeed et 
al. (2010) found r = 0.57 with 47 subjects. However, to examine the predictive value of 
eCAP thresholds for the fitting of individual subjects, it is preferable to compare the eCAP 
and behavioral thresholds for individual patients (de Vos et al. 2017). Calculating the 
correlation within individuals resulted in correlation coefficients varying from strongly 
negative to strongly positive (Figure 3.5C and D). Compared to the three studies reporting 
within-subject correlation coefficients, our results were comparable with these of Holstad 
et al. (2000). The study of Holstad reported coefficients ranging from –0.67 to 0.99 with a 
mean of 0.24. Note that these results were obtained in children using Cochlear devices. In 
the studies of Franck et al. (2001/2002) and Potts et al. (2007), the individual correlation 
coefficients ranged between 0 and +1. Together with the finding that the behavioral 
threshold levels fell within the (relative large) TCIs of the eCAP thresholds (Figure 3.6), 
these results indicate that the eCAP thresholds are possibly not precise enough to predict 
T profiles at the level of individual subjects.
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Figure 3.6. Comparison of the behavioral threshold profiles (T, red) with the objective eCAP thresholds and TCIs 
obtained with the LE (A, blue) and LV (B, green) methods. The eCAP thresholds and TCIs are presented as in Figure 
3.3, whereby the (normalized) eCAP thresholds are represented by the line at 0 CU. The threshold values are 
grouped per electrode (horizontal) and expressed in CU (vertical). Box boundaries represent the 25th and 75th 
percentiles, whiskers represent the most extreme data points not considered outliers, open circles represent 
outliers, and solid line within the box represent median. CU indicates clinical units; eCAP, electrically evoked 
compound action potential, LE, linear extrapolation; LV, last visible; TCI, threshold confidence interval.

3.4.2. eCAP threshold precision
To the best of our knowledge, no study on eCAP thresholds has included error analysis for 
the eCAP amplitude. The data points of AGFs are commonly processed without error bar, 
and the estimated eCAP threshold is assumed to be good enough for application. However, 
to ensure that measurements are providing data that actually is clinical applicable, its 
precision should be evaluated. For the LE method, eCAP amplitudes have a measurement 
error that can be used to improve the reliability of the linear fit. Data points with a small 
measurement error will have a higher weight, contributing more to the fit than points with 
a larger error. The effect of including the measurement error is shown in Figure 3.2D. Here, 
the TCI becomes smaller when a weighted linear fit is used. To investigate how a weighted 
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fit influences the eCAP threshold and its TCI on group level, a correlation analysis was 
performed on both thresholds and TCIs estimated by LE and weighted LE. This post-hoc 
analysis revealed no significant difference between both LE and weighted LE thresholds 
(p < 0.001, r = 0.99) and between corresponding TCIs (p < 0.001, r = 0.97). Nevertheless, 
including the measurement error increases the reliability of the eCAP threshold and TCI, 
because the weighted linear fit better reflects the measured data points. 

In addition, the goodness of fit (GOF) could be evaluated to estimate the reliability of 
the LE threshold. A worse fit would lead to a less reliable eCAP threshold and vice versa. 
Concerning the GOF, the question arose whether the linear fit is ideal because we 
recurrently observed nonlinear AGFs (e.g., Figure 3.2C). Therefore, we are working on a 
follow-up-study whereby we investigate the shape of the AGF and the GOF of several 
mathematical functions, for example, a sigmoid fit (Ramekers et al. 2014). Because the 
GOF is an indicator for the error of the linear fit (expressed as R2), it does not provide a valid 
measure of precision for the extrapolated threshold value (expressed in CU). Therefore, 
the TCI was developed to estimate the eCAP threshold precision in CU. Note, that the TCI 
is strongly associated with the GOF (p < 0.001, r = –0.79), because TCI of the LE method is 
based on 95% confidence bounds which also is measure of GOF.

It would be worthwhile to (re)consider what is actually measured by the LE and LV methods. 
For example, what kind of information is in an AGF, and how precisely can eCAPs and 
their thresholds be measured? Figure 3.4 shows that there is a systematic difference in the 
eCAP thresholds estimated by the two commonly used methods, thresholds estimated 
by LE being systematically lower than those estimated by the LV method. This difference 
can be explained by the fact that LE thresholds are estimated at zero amplitude, where 
LV thresholds are estimated just above noise level. Consequently, the LV thresholds are 
probably overestimated compared to the real eCAP threshold. Furthermore, the success 
rate of the LV method is higher than that of LE. To estimate the eCAP threshold, one eCAP 
response is sufficient for the LV method, while at least two responses are required for the 
LE method. This explains why 48 subjects were included in Figure 3.5A compared to 50 in 
Figure 3.5B. To estimate threshold precision, one additional data point at a higher current 
is required for the LV method. For the LE method, at least three data points are required 
because the TCI cannot be computed if the number of data points is equal to the number 
of coefficients in the linear fit. The size of the TCI considerably reduces when four, or even 
more, data points are used. The step size or applied current scale affects the TCI as well, 
for example, using a logarithmic current scale (Nucleus) would result in different TCIs 
than using a linear scale (this study). When relatively large current steps are used, the LV 
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threshold can be estimated less precisely, probably resulting in a larger overestimation of 
the threshold. In this study, a default step size of 50 CU was used, which was not ideal for the 
LV method. Generally, the LV method is performed with smaller current steps, especially 
around the threshold level (Botros et al. 2007; Glassman & Hughes 2013; Baudhuin et al. 
2016). The use of smaller current steps in this study would have led to lower LV thresholds 
and, possibly, smaller TCIs. The measure of how well the LV threshold represents the real 
eCAP threshold also depends on the noise level. The higher the noise level, the larger 
the eCAP must be to be visible and, in turn, the larger the deviation from the true eCAP 
threshold. Thus, when a measurement system has a relatively high noise floor, the LE 
method provides a better approximation of the eCAP threshold than the LV method. For 
our data, a mean systemic noise of 31.4 µV with a standard deviation of 14.4 µV was found. 
Compared to other studies, this noise level is relatively high (Glassman & Hughes 2013). 
Therefore, performing the analysis on an AGF measured by a CI with lower systemic noise 
would reduce the eCAP thresholds and TCIs, especially with the LV method. Finally, note 
that presented method of estimating eCAP precision using TCIs is generally applicable, 
but the presented quantities are specific for our data. Interpretation of eCAP thresholds 
and their precision should always be performed in light of the measurement conditions. 
Furthermore, the TCI reflects a best guess of the eCAP threshold precision rather than the 
true threshold error. In the follow-up-study, we want to investigate the error of the eCAP 
threshold induced by methodology or the random noise component as well. This error 
could be estimated using a varying number of averages or repeated measures.

In addition to high Glassman & Hughes (2013), who already comprehensively compared 
the LE and LV methods, we wanted to highlight that the relationship between these 
two methods depends on the threshold precision. Figure 3.4 shows that the correlation 
between LE and LV thresholds is best if the TCI is small, originating from clear, that is, 
relatively large eCAPs with a low measurement error (e.g., Figure 3.2A). Considering the 
points of the most precise thresholds (blue and red points), the correlation is close to 
that found by Glassman & Hughes (2013), suggesting that the eCAPs and AGFs used 
by Glassman et al. in their analysis were very clear. Additionally, we found that the TCIs 
were smaller at the apex than at the base of the cochlea, and that the TCIs of the LE and 
LV methods did not differ for the most apical electrode contact (Figure 3.3). This can be 
explained by the larger eCAPs at the apex than at the base of the cochlea.

3.5. Conclusions
This study showed that eCAP thresholds estimated by LE and LV have an uncertainty that 
can be estimated using TCIs as measure of precision. The size of the TCI depends on several 
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factors, for example, the threshold estimation method and measurement conditions, 
but it is often larger than one would expect when just looking at the threshold values. 
Given the relatively large TCIs, we recommend that future research on eCAP thresholds 
should be accompanied by a measure of precision to correctly apply eCAP thresholds in 
clinical practice. Comparing our eCAP outcomes with behavioral fitting levels, we found 
that the T profiles fell within the TCI of the LE and LV thresholds. Further, although our 
conditions for comparing eCAP and behavioral thresholds were nonideal, our findings 
were in line with the literature: significant correlations between the two parameters at the 
level of grouped data and correlation coefficients almost homogeneously ranging from 
–1 to +1 for individual subjects. Therefore, not only the relative large TCIs, but also the 
poor individual correlations of eCAP and behavioral thresholds indicate that the eCAP 
thresholds are possibly not precise enough to predict T profiles.
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Objective: The width of the spread of excitation (SOE) curve has been widely thought 
to represent an estimate of SOE. Therefore, correlates between psychophysical 
parameters, such as pitch discrimination and speech perception, and the width of SOE 
curves, have long been investigated. However, to date, no relationships between these 
objective and subjective measurements have yet been determined. In a departure 
from the current thinking, the authors now propose that the SOE curve, recorded with 
forward masking, is the equivalent of a convolution operation. As such, deconvolution 
would be expected to retrieve the excitation areas attributable to either masker or 
probe, potentially more closely revealing the actual neural SOE. This study aimed to 
develop a new analytical tool with which to derive SOE using this principle.

Design: Intraoperative SOE curve measurements of 16 subjects, implanted with an 
Advanced Bionics implant were analyzed. Electrically evoked compound action 
potential (eCAP)-based SOE curves were recorded on electrodes 3 to 16, using the 
forward masker paradigm, with variable masker. The measured SOE curves were then 
compared with predicted SOE curves, built by the convolution of basic excitation 
density profiles (EDPs). Predicted SOE curves were fitted to the measured SOE curves 
by iterative adjustment of the EDPs for the masker and the probe.

Results: It was possible to generate a good fit between the predicted and measured 
SOE curves, inclusive of their asymmetry. The rectangular EDP was of least value in 
terms of its ability to generate a good fit; smoother SOE curves were modeled using 
the exponential or Gaussian EDPs. In most subjects, the EDP width (i.e., the size of the 
excitation area) gradually changed from wide at the apex of the electrode array, to 
narrow at the base. A comparison of EDP widths to SOE curve widths, as calculated 
in the literature, revealed that the EDPs now provide a measure of the SOE that is 
qualitatively distinct from that provided using conventional methods. 

Conclusions: This study shows that an eCAP based SOE curve, measured with forward 
masking, can be treated as a convolution of EDPs for masker and probe. The poor fit 
achieved for the measured and modeled data using the rectangular EDP, emphasizes 
the requirement for a sloping excitation area to mimic actual SOE recordings. Our 
deconvolution method provides an explanation for the frequently observed asymmetry 
of SOE curves measured along the electrode array, as this is a consequence of a wider 
excitation area in the apical part of the cochlea, in the absence of any asymmetry in 
the actual EDP. In addition, broader apical EDPs underlie the higher eCAP amplitudes 
found for apical stimulation.
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4.1. Introduction
Modern cochlear implants (CIs) have an in-built telemetry function, which allows them to 
record the physiological response of auditory nerve fibers to electrical stimulation, the so-
called electrically evoked compound action potential (eCAP). Typically, the eCAP response 
is recorded as a waveform with a negative peak (N1), followed by a positive peak or plateau 
(P1). The amplitude of this response is measured from N1 to P1, and can reach a value of 
several hundred microvolts (Abbas et al. 1999). Various aspects of neural function can be 
interrogated using specific eCAP measurement paradigms. A common example is the 
measurement of spread of excitation (SOE) (Cohen et al. 2003; Abbas et al. 1999; Hughes 
& Abbas 2006b; van der Beek et al. 2012). SOE curves have been used to measure the 
longitudinal SOE along the auditory nerve. There has been much interest as to whether 
the width of the SOE curve can be correlated with subjective psychophysical parameters 
such as pitch discrimination, and speech perception. However, to date, no convincing 
correlates for SOE width and these criteria have yet been established (Hughes & Abbas 
2006b; Snel-Bongers et al. 2012; van der Beek et al. 2012; Cohen et al. 2003). In this article, 
we will demonstrate that the width of the SOE curve is, of itself, an insufficient measure of 
the SOE. Instead, the SOE curve must be subject to a post-processing algorithm to retrieve 
the novel measure of SOE. We developed this analytical tool using SOE data collated from 
a cohort of 16 subjects. Our data now provides a new and improved measurement for the 
SOE, and provides insight into the actual SOE.

SOE curves are measured using the forward masking (FM) subtraction paradigm (Abbas 
et al. 2004; Cohen et al. 2003; Hughes & Abbas 2006b). Basically, FM is used to un-mix the 
eCAP from the stimulus artifact taking advantage of neural refractory properties. The basic 
principle of this artifact rejection methodology is depicted in Figure 4.1. Application of the 
masker and probe at different electrode contacts generates a SOE curve. Ordinarily, the 
SOE curve is measured using a fixed probe and roving masker, with a recording contact 
set two electrodes apical to the probe. The resultant SOE curve shows the eCAP, derived 
from the overlap of neural populations recruited by masker and probe, as a function of 
masker position. The SOE curve typically has its maximum amplitude around the location 
of maximum stimulation (where masker and probe coincide). Ordinarily, the amplitude 
then decreases with increasing distance between the masker and probe. However, in 
practice, various SOE curves have been observed: symmetric and asymmetric, wide and 
narrow, large in the apex and small in the base. 
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Figure 4.1. Forward masking paradigm, which takes advantage of neural refractory properties to un-mix the 
eCAP and stimulus artifact. The paradigm comprises a M, P, and combined MP frame. The traces on the left-hand 
side show the recording; the Venn diagrams, shown to the right, designate the response areas of the masker and 
the probe. Light or dark gray areas indicate excitation in the masker or probe frame, respectively. The eCAP is 
calculated by adding frames M and P, and subtracting the MP frame. The result is the response of the region of 
overlap, while eliminating stimulus artifacts. eCAP indicates electrically evoked compound action potential; M, 
masker; P, probe, MP, masker-probe.

The underlying reasons for only some of these SOE curve irregularities have been 
explained. For example, the measurement technique used can influence the shape of 
the SOE curve, whereas the location of the recording electrode can alter eCAP amplitude 
(van der Beek et al. 2012; Hughes & Stille 2010; Frijns et al. 2002; Cohen et al. 2004). To 
date, there has been no convincing explanation for the frequently reported asymmetry of 
the SOE curve along the electrode array (Cohen 2009; Cohen et al. 2003; Hughes & Stille 
2010; Hughes & Abbas 2006b). Our previous data leads us to suggest that asymmetric SOE 
curves may indicate a nonuniform excitation of nerve fibers along the electrode array. A 
wider excitation pattern at the apex versus the base, would, because of FM, result in SOE 
curves that steadily become asymmetric towards the apex (van der Beek et al. 2012). A 
theoretical illustration is provided in Figure  4.2. Initially, with the masker positioned at 
electrode 1, and the probe fixed at electrode 8, there is no overlap in the areas excited 
by either. As the masker tracks towards electrode 16, the first overlap between excitation 
areas occurs at electrode 4, resulting in an eCAP. This overlap, and the accompanying 
eCAP, will peak as the masker and probe coincide at electrode 8. As the masker continues 
on towards electrode 16, the area overlap and, as a consequence, the eCAP shrink. The 
measured SOE (mSOE) curve is therefore a result of excitation areas of masker and probe. 
As a consequence, the real SOE, generated by neural populations recruited by either the 
masker or probe, cannot be estimated directly from the width of the SOE curve.
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From a mathematical point of view, the movement of the masker, with respect to the fixed 
probe, can be seen as a convolution operation. A convolution is defined as a mathematical 
operation that expresses the amount of overlap of one function as it is shifted over another 
function, in formula: 

[4.1]

Applied to the measurement of a SOE curve, f represents the excitation density profile 
(EDP) of the fixed probe and g the EDP of the roving masker, whereby the position of 
probe and masker is denoted by n and m respectively. An EDP reflects the percentage 
of neurons that are excited as a function of their distance along the basilar membrane. 
Conversely, if we assume that the SOE curve is a convolution of masker and probe, then 
its deconvolution would yield the excitation areas for the masker and probe respectively, 
and thus the actual SOE at electrode level.

This study aimed to develop a new analytical tool with which to transform SOE curves into 
a new measure of SOE using deconvolution. To directly deconvolve the SOE curve, the 
overlap function (SOE curve) is required, together with the EDP of the masker or probe. 
However, as neither excitation area is known, direct deconvolution is not feasible. Instead, 
we decided to create a model whereby we convolve basic EDPs for masker and probe to 
generate a predicted SOE curve (pSOE) that, with iterative adjustment of the EDPs, could 
most closely approximate mSOE curves.

4.2. Methods
4.2.1. Subjects and data
The SOE curves used in this study were measured intraoperatively in the period from 
January to December 2006. All subjects were implanted with a HiRes90k device with 
HiFocus1J electrode array (Advanced Bionics, Sylmar, CA). This electrode array consists 
of 16 electrode contacts (1 to 16, numbered from apex to base), each 1.1 mm apart 
(measured from the center of each electrode). Data were collected using the Bionic Ear 
Data Collection System (BEDCS) research software from Advanced Bionics (Sylmar, CA). 
The following measurement parameters were used: monopolar biphasic pulses, anodic 
first; pulse duration: 32 µs/phase; masker-probe interval: 500 µs; sampling rate: 56 kHz; 
gain: 100; 16 averages; measurement paradigm: FM, variable masker, recording two 
electrodes apical to probe stimulus. In total 41 measurements were available, comprising 
14 SOE curves measured at electrodes 3 to 16. 
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Signal-to-noise ratio (SNR) and eCAP amplitude were calculated automatically using 
MATLAB (Mathworks, Inc., Natick, MA). Raw eCAP recordings were filtered using a zero-
phase shift filtering based on a fourth order Butterworth low-pass filter with a cut-off 
frequency of 8.4 kHz. Peak N1 was detected as the minimum over the time period between 
150 and 400 µs and peak P2 between 350 and 900 µs after the end of stimulation. The 
eCAP amplitude was calculated as peak- to-peak voltage between P2 and N1 in millivolt 
(mV). The SNR of the eCAP was calculated as the root mean square of the signal divided by 
the root mean square of the noise. Signal was defined as the part of the response between 
N1 and P1. Noise was defined as the last 30 samples of the response; it was assumed that 
no possible remaining artifact or neural response would still happen over this section. The 
measurement error of the eCAP was defined as the standard deviation of its noise section.

SOE curve measurements were included when, for a minimum of 10 SOE curves, the center 
electrode, and at least 2 electrodes on either side, had an eCAP amplitude larger than 
0.15 mV, with SNR exceeding 6 dB. Based on these criteria, 16 of 41 measurements were 
included in this study. The corresponding subject demographics are shown in Table 4.1.  
For S5, S7, and S9, certain electrodes were excluded given their presumptive inability to 
record or to stimulate, as suggested by their SOE curve data (Table 4.1).

Table 4.1. Subject demographics.

Gender Age (y) Etiology
Excluded

Electrodes SOE
S1 F 6 Unknown - -
S2 F 37 Progressive - -
S3 M 1 Meningitis - -
S4 M 1 Meningitis - -
S5 F 54 Progressive 11,12,131 11,12,13
S6 M 44 Unknown - 163

S7 F 3 Unknown 21 1
S8 M 27 Congenital 1 1
S9 M 26 Congenital 112 11,13
S10 F 60 Congenital - -
S11 F 84 Ménière’s disease - -
S12 F 3 Familiar congenital - 133

S13 M 66 Progressive - -
S14 M 2 Unknown - -
S15 M 1 Meningitis - -
S16 M 1 Meningitis - -
Average 26
1 Not able to stimulate 3 Insufficient data points
2 Not able to stimulate and to measure SOE indicates spread of excitation
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Figure 4.2. The SOE curve measured with forward masking (top panel) reflects the relative overlap (black areas 
in lower panel) of neural populations, as they are recruited by the fixed probe, and variable masker (dark gray), 
along the electrode array. The corresponding eCAPs are depicted in the right panel. eCAP indicates evoked 
compound action potential; SOE, spread of excitation.

4.2.2. Deconvolution
Deconvolution of SOE curves was performed using MATLAB. Initially, we modeled a basic 
EDP for each electrode. In total, three basic EDP shapes were evaluated; these are depicted 
in Figure 4.3. The first EDP we tested was rectangular; this was used to investigate whether 
a straight and simple EDP could predict a physiological SOE curve. The designs of the other 
two EDP shapes were based on literature. One expressed a symmetric and exponential 
decay in excitation density (Cohen et al. 2003; Smit et al. 2009; Vanpoucke et al. 2004) 
and the other was shaped as a Gaussian function (Kalkman et al. 2015; Cohen 2009). The 
design of these latter two EDP shapes was to help us evaluate the expectation that decay 
in excitation density along the basilar membrane would contribute to the SOE curve. 
Henceforth in this article, these EDPs are denoted rectangular (R), exponential (E), and 
Gaussian (G), respectively. Since the excitation area was not restricted to the limits of the 
electrode array, EDPs were modeled across an extended virtual range from electrode –19 
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to electrode 36. It turned out that this broad range was more than adequate to prevent 
truncation errors. Small incremental step sizes of 0.05 enabled us to create smooth EDPs.
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Figure 4.3. The three evaluated EDPs: rectangular (A), exponential (B), and Gaussian (C). Each EDP indicates the 
percentage of neurons that are excited, as a function of distance along the basilar membrane. The black lines 
represent the basic EDPs, with gray lines showing possible excitation patterns after varying width and slope 
parameters. The width parameter represents the width at top of the EDP, also called plateau width. The density 
scale of the EDP is shown on the left. EDP indicates excitation density profile.

The pSOE curves for electrodes 3 to 16 were modeled by convolving the basic EDPs 
according to the following formula:

[4.2]

where p is the position of the (fixed) probe and m is the location of the (moving) masker, 
both expressed in electrode number. The summation is across the sample (i) of the EDPs. 
Subsequently, pSOE curves were fitted to mSOE curves by optimizing the EDP variables, 
and then determining the most optimal EDP shape. The method contained as few 
parameters as possible still providing reliable pSOEs. In total, 19 variables were optimized: 
16 variables for the EDP plateau width (unit: number of electrodes) at each electrode, 1 
variable for longitudinal density decay (for all EDPs, no unit), 1 scaling variable (for all EDPs, 
no unit) to scale pSOE curves to mSOE curves, and 1 variable as offset (unit: mV) for the 
pSOE curve representing the noise floor. Scaling the pSOE curves to the mSOE curves was 
required , because EDPs were dimensionless while pSOEs were expressed in mV. The start 
parameters of the optimization routine were chosen in such a way that the Gaussian EDP 
looked like Kalkmans’ profile for maximum comfortable loudness (Kalkman et al. 2015). 
The domain of variables was set so as not to restrict the optimization routine: width [–1, 
15], slope [0.1, 6], offset [0, 1], and scale [0, 1]. All variables had to be positive, except width, 
which could be negative from –1 to 0. When the width parameter for the exponential and 
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Gaussian EDP were negative, the EDP had a width of zero, and amplitude of 1+width, 
resulting in an amplitude of between 0 and 1 (depicted by the gray lines in Figure 4.3B 
and C). Since the rectangular EDP could not have a width of 0, the minimal width was 
set to 0.5. When the width parameter for the rectangular EDP was between –1 and 0.5, 
the EDP had a minimal width of 0.5 and the amplitude was scaled between 0 and 1. The 
density decay of the exponential and Gaussian EDPs can be calculated by 

 
and 

 respectively, where σ is the slope parameter, x the samples and E 
the electrode contact. Hence, an EDP was modeled using two parameters; one parameter 
for the slope and one parameter for the plateau width, which automatically scales the 
amplitude when the plateau width becomes too small. The optimization procedure was 
performed using a minimization routine, whereby the root mean square error (RMSE) 
between the pSOE curves and the mSOE curves served as our optimization parameter.

The three different EDP shapes were evaluated for three variants of (preprocessed) SOE 
curves: raw SOE curves, normalized SOE curves, and SOE curves based on data points 
exceeding the noise threshold. These SOE curve variants were termed raw, normalized, 
and denoised respectively. For the normalized curves, each SOE curve was normalized to 
its maximum. For the denoised SOE curves, eCAPs with an amplitude of less than 0.15 mV, 
or a SNR lower than +6 dB, were neglected. These analyses were performed to investigate 
the effect of normalizing SOE curves, as reported in previous studies (Hughes et al. 2013; 
Snel-Bongers et al. 2012; van der Beek et al. 2012), and to investigate the influence of noise 
level on the deconvolution method.

4.2.3. Statistical analysis
The effect of EDP shape and SOE preprocessing were evaluated using two-way analysis 
of variance. Linear regression analyses were used to compare our new measures of SOE 
with those generated using conventional methodologies (Abbas et al. 2004; Cohen et al. 
2003; van der Beek et al. 2012). To enable this comparison, SOE curves were fitted with a 
double-sided exponential function, across an extended range from –19 to 36 electrode 
contacts. The EDP width was calculated at the 80% density level, and the SOE curve width 
at the 80% amplitude level. All calculations and statistic operations were performed using 
MATLAB.
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4.3. Results
4.3.1. Typical case of deconvolution
Figure 4.4 shows the deconvolution of a set of raw SOE curves (error bars) measured for 
subject 10. The SOE curve measured at electrode 3 (apex) had the greatest magnitude, 
with the overall amplitude of the SOE curves declining toward electrode 16 (base). This 
deconvolution was performed using Gaussian EDPs. The calculated EDPs (Figure 4.4, gray 
lines) showed that the excitation areas were nonuniform across the electrode array. In 
this subject, the EDPs were broad apically and became narrower toward the base of the 
electrode array. The pSOE curves are presented in the same graph (black lines), and match 
the mSOE curves (RMSE = 0.045 mV), including their apical asymmetry.
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Figure 4.4. Deconvolution of 14 SOE curves, measured at electrodes 3 to 16. The curves for electrode 1 to 16 are 
shown from top left to bottom right. The black dots represent the measured SOE curves including measurement 
error, and the black solid lines represent the modeled SOE curves. The optimized EDP for each electrode is shown 
in gray. To the left-hand side, is the amplitude scale of the SOE. The EDP density scale is shown to the right. EDP 
indicates excitation density profile; SOE, spread of excitation.
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4.3.2. Effect of EDP shape and SOE preprocessing
The boxplots in Figure 4.5 show the RMSEs grouped per combination of EDP and 
SOE variant. Two-way analysis of variance revealed a significant effect of SOE curve 
preprocessing [F  (2,  135) = 99.04, p  <  0.001]. The deconvolution (or prediction) of 
normalized SOE curves generated a significantly higher RMSE than the deconvolution of 
raw (p < 0.001, asterisk), or denoised SOE curves (p < 0.001, triangle). The deconvolution 
model worked equally well for raw and denoised SOE curves (p = 0.74). Of major influence 
in our analyses was the basic EDP used [F (2, 135) = 3.41, p < 0.05]. Figure 4.5 shows that, 
in general, the rectangular EDP provided the highest RMSEs followed by the exponential. 
The Gaussian EDP generated the lowest RMSEs. Statistical analyses revealed a significant 
difference between the rectangular and Gaussian EDP only (p  <  0.05, dot). Figure 4.6 
zooms to one electrode to demonstrate the increased RMSE using the rectangular EDP. To 
place the examples in perspective to Figure 4.5, both the total RMSE across the SOE curves 
of all electrodes (RMSET) and the RMSE of the shown curves (RMSES) are provided. The 
angular pSOE curves based on the rectangular EDP (Figure 4.6A) resulted in a poorer fit 
between the pSOE and mSOE (RMSET = 0.048 mV, RMSES = 0.088 mV), compared to those 
generated using the exponential (Figure 4.6B; RMSET = 0.044 mV, RMSES = 0.054 mV) or 
the Gaussian EDP (Figure 4.6C; RMSET = 0.042 mV, RMSES = 0.076 mV).
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Figure 4.5. RMSEs obtained with the three different EDPs (R, E, G), separated by SOE preprocessing methodology 
(raw, normalized, denoised). Box boundaries represent the 25th and 75th percentiles, whiskers represent the 
most extreme data points not considered outliers, open circles represent outliers, and horizontal solid line 
within the box represent median. The symbols indicate a significance difference between the denoted groups. 
E indicates exponential; EDP, excitation density profile; G, Gaussian; R, rectangular; RMSEs, root mean square 
errors; SOE, SOE, spread of excitation.
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Figure 4.6. The effect of different EDPs (gray) on modeled SOE curves (black solid line). The SOE curve modeled 
using the rectangle EDP (A) is rougher than the SOE curves generated using the exponential (B) and the Gaussian 
EDP (C). The result is a poorer fit between the predicted and measured SOE curves (black dots with error bar, 
identical for A, B and C). The amplitude scale of the SOE curves is shown on the left side, and the density scale for 
the EDPs, to the right. EDP indicates excitation density profile; SOE, spread of excitation.

4.3.3. Size of excitation area
Figure 4.7 shows the widths of the optimized rectangular (square), exponential (dot), and 
Gaussian (triangle) EDPs. The EDPs originate from the deconvolution of raw SOE curves 
and are shown for all individual subjects (S1 to S16). The widths, which represent the size 
of the excitation area, were calculated at the 80% density level of the EDPs, and plotted as 
a function of the electrode number. It was evident that in multiple subjects, the EDP width 
decreased in a direction of travel from apex to base. The corresponding SOE curves (in this 
article, shown only for S10 (Figure 4.4)) show that the larger the difference between EDP 
width, apical to basal, the greater the asymmetry of the SOE curves. Conversely, the SOE 
curves of S7 and S16 are symmetric, with EDP widths largely stable across the electrode 
array. A comparison of the eCAP amplitudes, measured with masker and probe at the same 
electrode, with corresponding EDP widths, revealed the following relationship; higher 
eCAP amplitudes correlated with larger excitation areas, and vice versa. For all 16 subjects, 
a significant correlation (p < 0.05) was found between these eCAP amplitudes and the 
surface under the corresponding Gaussian EDPs. The scatterplots of these correlations are 
shown in Figure 4.8. In this figure, the eCAP amplitude is plotted versus the area under 
the corresponding EDP, represented by the density summation of all samples of that EDP. 
Except for S6, S9 and S12, these correlates remained significant (p < 0.05) after applying a 
Bonferroni correction (for performing the same correlation on multiple data sets). Within 
a single subject, the widths of the three different EDPs follow, to a large extent, the same 
pattern. In general, the rectangular EDPs were widest, followed by the Gaussian, and then 
exponential.
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Figure 4.7. Optimized widths of the rectangular (black square), exponential (gray dot) and Gaussian (light gray 
triangle) EDPs generated by deconvolution of raw SOE curves. The widths, expressed in number of electrode 
contacts (y-axis), are plotted as a function of the electrode number (x-axis), for subject 1 (top left), through to 
subject 16 (bottom right). EDP indicates excitation density profile; SOE, spread of excitation.
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Figure 4.8. Scatterplots showing the correlation between eCAP amplitude (ordinate) and area under the 
Gaussian EDP (abscissa), for subject 1 (top left) to subject 16 (bottom right). The eCAP amplitude is expressed in 
millivolt (mV). The area under the EDP is represented by the density summation of all samples of that EDP. eCAP 
indicates evoked compound action potential; EDP, excitation density profile.

4.3.4. EDP width versus the SOE curve width
The scatterplots in Figure 4.9 show how the width of the EDP correlates with the width 
of the SOE curve. For this correlation analysis, we used the widths of the Gaussian EDP 
estimated by the deconvolution of raw SOE curves. In the first scatterplot (Figure 4.9A), 
the EDP width (y-axis) was plotted against the SOE curve width (x-axis), both expressed as 
electrode number. Data points were not drawn where the sides of the EDP failed to attain 
the 80% density level, or the sides of the exponential fit to the SOE curve failed to drop to 
the 80% amplitude level. For this plot, no significant correlation was found between the 
two measures of SOE. In the second scatterplot (Figure 4.9B), the EDP width was again 
plotted against the SOE curve width for the identical electrode. However, in this case, 
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where a side of the exponential fit to the SOE curve did not drop to the 80% amplitude 
level (within the limit of the array), the width was set to the limit of the array in the apical 
or basal direction (Abbas et al. 2004). In this comparison, a significant correlation between 
the EDP width and SOE curve width (p < 0.001), with a low explained variance (R2 = 0.07), 
was found. 
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Figure 4.9. Scatterplots showing the correlation between the width of the EDP and the width of the SOE curve. 
In the left-hand scatterplot (A), the EDP width (y-axis) was plotted against the SOE curve width (x-axis) of the 
identical electrode contact. The SOE curve width was based on the exponential fit to both sides of the SOE curve. 
For the scatterplot shown in (B), when a side of the exponential fit to the SOE curve did not drop to the 80% 
amplitude level, within the limit of the array, the width was set to the limit of the array in either the apical or basal 
direction. EDP indicates excitation density profile; SOE, spread of excitation.

4.4. Discussion
In a departure from the current thinking about SOE curves, we show that the SOE curve 
represents a convolution of two excitation areas, one originating from the masker and 
the other from the probe. It was suggested that deconvolution of the SOE curve would 
therefore yield the neural excitation areas at the electrode level. Since the SOE curve 
could not provide all the requisite information for direct deconvolution, we opted to use 
a modeling approach to solve this problem. Our deconvolution paradigm for SOE curves 
showed that the EDP at electrode level should, preferably, have a sloped side (Figures 4.5 
and 4.6), and express a nonuniform pattern along the electrode array. In most cases, the 
EDP was broad in the apex and narrower at the base (Figure 4.7), especially if the mSOE 
curves are asymmetrical. The broader apical EDPs now provide an explanation for the 
asymmetry in SOE curve toward the apex, as well as the higher eCAP amplitudes found 
for apical stimulation (Figure 4.4).
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4.4.1. Processing of SOE curves 
Our provision of an explanation for the asymmetry in SOE recordings is a breakthrough 
in the field of objective measurements using CIs. So far, the asymmetry in the SOE curve 
along the electrode array has been frequently noted, but never quantified in detail (Cohen 
2009; Cohen et al. 2003; Hughes & Stille 2010; Hughes & Abbas 2006b). This asymmetry has 
presented a major obstacle in the clinical application of SOE curves, where the width of 
the curve is used to estimate longitudinal neural excitation spread in the cochlea (Hughes 
& Abbas 2006b; Snel-Bongers et al. 2012; van der Beek et al. 2012; Cohen et al. 2003). 
The asymmetry of the SOE curve has led to obvious confusion in estimating its width. To 
counter this, multiple groups have chosen to estimate SOE width at a set percentage of 
peak amplitude, ranging from 50% (Cohen et al. 2003), to 60% (van der Beek et al. 2012) 
and 75% (Abbas et al. 2004; Hughes & Abbas 2006a; Snel-Bongers et al. 2012; Busby et al. 
2008). To confuse matters further, SOE curve widths have been calculated using different 
methods, using linear interpolation between the data points (Abbas et al. 2004; Hughes 
& Abbas 2006b), an exponential fit to the sides of the SOE curve (Cohen et al. 2003) or a 
polynomial fit to the SOE curve (van der Beek et al. 2012). In cases where the minimum 
value of the SOE curve did not drop to the defined percentage of peak amplitude, the 
width could not be calculated. Alternatively the width was set to the limit of the array 
in the apical or basal direction (Abbas et al. 2004; van der Beek et al. 2012), or it was 
calculated using a virtual range outside of the limit of the electrode array (Cohen et al. 
2003; Cohen 2009). Taken together, research in this field over the last decade has adopted 
multiple methodologies with which to estimate the SOE curve width, and therewith 
SOE. In contrast, the deconvolution method that we present, can handle any SOE curve, 
the method does not require preprocessing of the SOE curve, and the EDP can even be 
calculated in the absence of an SOE curve for a particular electrode. 

4.4.2. EDP shape and SOE preprocessing
The results in Figures 4.5 and 4.6 show that when the EDP has sloped sides the pSOE 
is more accurate. This confirms our expectations that proximity to the electrode contact 
maximizes excitation density, which then declines to zero at larger distances. In addition, 
previous research has suggested the importance of sloped sides in deriving SOE curves 
or excitation areas (Cohen et al. 2003; Vanpoucke et al. 2004; Smit et al. 2009; Kalkman 
et al. 2015). Sloped sides are major contributors to the total excitation area and, due to 
convolution, to the SOE curve. We found that a shallower decay could be compensated for 
by a smaller plateau width (Figure 4.7). The absence of sloped sides (as with rectangular 
EDPs) resulted in a poorer fit of pSOE to mSOE recordings (Figure 4.6). 
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Although supplemental parameters will make the fit more accurate, the method will 
become less intuitive, the outcome less valid and the calculations more time consuming. 
Therefore, we explicitly chose for as few parameters as possible but still providing reliable 
pSOEs. To reduce the parameter set, we opted to only use symmetric EDPs, based on the 
model findings of Kalkman et al. (2015) who showed that asymmetry in the EDPs is not 
evident. Using symmetric EDPs, we can now explain that asymmetric SOE curves do not 
necessarily also imply asymmetric EDPs, although it is still possible that the actual EDPs 
will show asymmetry.

Evaluating the effect of the different preprocessing methods for SOE curves, it became 
clear that the deconvolution of normalized SOE curves provided less reliable EDPs (Figure 
4.5). In other words, eCAP amplitude information is required for calculating the EDP. This 
result indicates that there is a link between eCAP amplitude and EDP, which is confirmed 
by our finding of a significant correlation between eCAP amplitude and area under the 
EDP. Assuming that our method is correct, our results show that SOE curves should not be 
normalized, which is frequently done (Hughes & Abbas 2006b; van der Beek et al. 2012; 
Abbas et al. 2004). Deconvolution of denoised SOE curves did not lead to smaller RMSEs 
and therefore more reliable EDPs, which can be explained by the noise-offset parameters 
(see Equation 4.2) that have already corrected for noise level.

4.4.3. Size of EDP
The width of the EDPs provides a novel, potentially more authentic, measure of SOE. 
One of the main results of this study is that the size of the EDP is not uniform along the 
electrode array. In multiple subjects, the EDP width decreased in the apical to basal 
trajectory (Figure 4.7). The described relationship between EDP size and asymmetry, 
indicates that asymmetry along the electrode array (with a shoulder at the apical side) 
can be explained by broader excitation areas in the apical versus basal part of the cochlea. 
This explanation has been suggested earlier (van der Beek et al. 2012; Hughes & Abbas 
2006b), and is now confirmed here. The broader EDPs in the apical part of the cochlea 
could also be explained by the geometry of the cochlea, which tapers from the base to 
apex, reducing the distance to the modiolus, and reducing the volume in the apex (Cohen 
et al. 2003; Hughes & Abbas 2006b; van der Beek et al. 2012; Frijns et al. 2001). Because 
we are not able to distinguish cross-turn stimulation, it is also possible that a larger SOE, 
and broader EDPs apically, could be caused by cross-turn stimulation, which is known to 
be more likely at the apex where the cochlea is more tightly coiled (Frijns et al. 2001). In 
Addition, residual hearing could generate larger eCAPs and broader EDPs in the apex.
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4.4.4. EDP width versus SOE curve width
To evaluate our measure of SOE in the light of more conventional methodologies, we 
compared the width of the EDP with two different SOE curve widths (Figure 4.9). Only the 
scatter plot in Figure 4.9B showed a significant correlation. However, it should be noted 
that the method for estimating the SOE curve widths mixed two measures of SOE (Abbas 
et al. 2004; van der Beek et al. 2012). The setting of the SOE curve width to the limit of 
the array (in either the apical or basal direction) where one side of the exponential fit 
to the SOE curve fails to drop to the 80% amplitude level (within the limit of the array), 
results in an underestimate of SOE curve widths. These underestimates have, hitherto, 
been assumed to represent the real SOE curve widths. So, taking into account the low 
explained variance of this correlation, we conclude that the EDPs we provide constitute a 
qualitatively different measure of SOE compared to those generated previously.

4.4.5. Deconvolution of SOE curves for clinical practice
Current results indicate that the deconvolution of SOE curves into EDPs has potential for 
clinical practice. The EDPs provide a measure of neural excitation at the electrode level 
and thereby provides new insights into eCAP and spatial selectivity. An additional benefit 
is that the deconvolution method can provide a measure of SOE, even when the SOE 
curve of that electrode is unavailable. In principle, it is possible to derive the EDPs for 
all electrodes by the deconvolution of one SOE curve. However, the reliability of derived 
EDPs increases considerably when multiple SOE curves are analyzed. Increasing the 
data set reduces noise and including SOE curves measured across the full range (apical, 
middle, basal) of the electrode array will better reflect the EDPs with respect to location. 
The measurement of a whole SOE curve for each electrode can be time consuming. To 
reduce measuring time, duplicate recordings of identical stimulus conditions can be 
avoided. For instance, when measuring a SOE curve with variable masker, the probe frame 
is independent from the masker location and can be reused for all eCAPs measurements. 
To reduce the amount of noise in the recordings, the reused frames can be measured with 
twice the number of averages. Using this option, we are able to measure 16 SOE curves 
intraoperatively in 10 minutes. 

4.4.6. Future directions
Thus far, our simple deconvolution method has fulfilled its purpose as a proof of principle 
function. In future study, the model can be improved to increase reliability. An obvious 
start point is to correct for the recording contact. This would be a major step forward 
as it was found that apical recordings shift the flank of the SOE curve apically, and basal 
recordings, basally (van der Beek et al. 2012). Alternatively, the EDPs can be optimized 
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to better reflect the authentic SOE; for instance, taking into account asymmetry, neural 
survival and current spread in the scala tympani. Furthermore, we will extend our dataset 
using intra- and postoperative measurements. The addition of data for speech perception 
and postoperative imaging in the same subjects will enable us to evaluate the clinical 
relevance of our deconvolution methodology.

4.5. Conclusions
This study shows that eCAP based SOE curves, measured with FM, can be seen as a 
convolution of the EDPs of masker and probe. The poor fit achieved for the measured 
and modeled data using the rectangular EDP, emphasizes the requirement for a sloping 
excitation area to mimic actual SOE recordings. The deconvolution method explains 
the frequently observed asymmetric SOE curves along the electrode array; these are a 
consequence of a wider excitation area in the apical part of the cochlea. In other words, it 
demonstrates that asymmetric SOE curves do not necessarily also imply asymmetric EDPs, 
although it is still possible that the actual EDPs show asymmetry. In addition, the broader 
EDPs in the apex can explain the higher eCAP amplitudes found for apical stimulation.
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Objective: Spread of excitation (SOE) in cochlear implants (CI) is a measure linked to the 
specificity of the electrode-neuron interface. The SOE can be estimated objectively by 
electrically evoked compound action potential (eCAP) measurements, recorded with 
the forward-masking paradigm in CI recipients. The eCAP amplitude can be plotted as a 
function of the roving masker, resulting in a spatial forward masking (SFM) curve. The eCAP 
amplitudes presented in the SFM curves, however, reflect an interaction between a masker 
and probe stimulus, making the SFM curves less reliable for examining SOE effects at the level 
of individual electrode contacts. To counter this, our previously published deconvolution 
method estimates the SOE at the electrode level by deconvolving the SFM curves (Biesheuvel 
et al., 2016). The aim of this study was to investigate the effect of stimulus level on the SOE of 
individual electrode contacts by using SFM curves analyzed with our deconvolution method.

Design: Following the deconvolution method, theoretical SFM curves were calculated by the 
convolution of parameterized excitation density profiles (EDP) attributable to masker and 
probe stimuli. These SFM curves were subsequently fitted to SFM curves from CI recipients 
by iteratively adjusting the EDPs. We first improved the EDP parameterization to account for 
stimulus-level effects and validated this updated parameterization by comparing the EDPs 
to simulated excitation density profiles (sEDP) from our computational model of the human 
cochlea. Secondly, we analyzed SFM curves recorded with varying probe stimulus level in 
24 patients, all implanted with a HiFocus Mid-Scala electrode array. With the deconvolution 
method extended to account for stimulus level effects, the SFM curves measured with 
varying probe stimulus levels were converted into EDPs to elucidate the effects of stimulus 
level on the SOE.

Results: The updated EDP parameterization was in good agreement with the sEDPs from 
the computational model. Using the extended deconvolution method, we found that 
higher stimulus levels caused significant widening of EDPs (p < 0.001). The stimulus level also 
affected the EDP amplitude (p < 0.001) and the center of excitation (p < 0.05). Concerning the 
raw SFM curves, an increase in current level led to higher SFM curve amplitudes  (p < 0.001), 
while the width of the SFM curves did not change significantly (p = 0.62).

Conclusion: The extended deconvolution method enabled us to study the effect of stimulus 
level on excitation areas in an objective way, as the EDP parameterization was in good 
agreement with sEDPs from our computational model. The analysis of SFM curves provided 
new insights into the effect of the stimulus level on SOE. We found that the EDPs, and therefore 
the SOE, mainly became wider when the stimulus level increased. Lastly, the comparison of 
the EDP parameterization with simulations in our computation model provided new insights 
about the validity of the deconvolution method.
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5.1. Introduction
Modern cochlear implants (CI) are multi-channel devices with multiple electrode contacts 
on the electrode array. Taking advantage of the tonotopic organization of the cochlea, 
these different electrode contacts can provide different pitch percepts to the CI recipient 
(Bonham & Litvak 2008). In practice, however, it can be difficult or even impossible to 
discriminate sounds produced by two adjacent electrode contacts (Biesheuvel et al. 
2019a). A likely explanation for this phenomenon is the relatively large overlap between 
excitation areas of adjacent electrode contacts (Bierer & Litvak 2016). Previous research has 
shown that the overlap in excitation areas can be estimated objectively using electrically 
evoked compound action potentials (eCAP) generated by the auditory neurons (Abbas et 
al. 1999). When measured via the forward-masking paradigm with fixed probe and roving 
masker stimulus contacts, the eCAP amplitude can be plotted as a function of the position 
of the masker contact, leading  to the well-known spatial forward-masking (SFM) curve 
(Abbas et al., 1999; Cohen et al., 2003; Hughes and Abbas, 2006; van der Beek et al., 2012). 
However, the eCAP amplitudes presented in the SFM curve reflect an interaction between 
a masker and probe stimulus, making the SFM curve less reliable for examining excitation 
patterns or spread of excitation (SOE) attributable to individual electrode contacts. To 
overcome this problem, we developed a deconvolution method that translated SFM 
curves into excitation patterns attributable to the individual masker and probe stimuli  
(Biesheuvel et al. 2016). The aim of this study was to investigate the effect of stimulus level 
on the SOE of individual electrode contacts.

Several studies have investigated the effects of current level on SFM curves. Cohen et al. 
(2004) reported that the widths of the SFM curves did not vary significantly with probe 
stimulus current, while the amplitudes of the curves varied systematically with stimulus 
level. Van der Beek et al. (2012) also did not find a statistically significant effect of stimulus 
level on the width of the SFM curves. Although some subjects showed a change in curve 
width with changing stimulus level, the majority of their subjects had SFM curves of 
similar widths at different stimulus levels. Looking at individual subjects, Hughes & Stille 
(2010) concluded that stimulus level has a significant effect on the width of the SFM curve. 
However, across all subjects, significant stimulus level effects were observed in only 34% 
of the cases. Lastly, Abbas et al. (2004) presented SFM curves with, in most subjects, a clear 
growth in eCAP amplitude and a tendency to become wider at higher stimulus levels. 
They suggested that the higher amplitudes were caused by more overlap in neurons 
excited by the masker and probe and that the increased width of the SFM curve could be 
partially attributed to an increased SOE. However, it is still unknown whether this increase 
in SOE is reflected by a higher excitation density (i.e., more excited nerve fibers locally) or 
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by a wider spread along the electrode array, nor it is known whether it comes from the 
masker or the probe.

Most studies estimated SOE by determining the width of the SFM curve at a specific 
amplitude level (Cohen et al. 2003; Abbas et al. 2004; Hughes & Abbas 2006a; Snel-Bongers 
et al. 2012; van der Beek et al. 2012). However, the width of a SFM curve is difficult to 
analyze if the curve is not complete, especially at the apical and basal ends of the electrode 
array (Biesheuvel et al. 2016). Furthermore, a SFM curve reflects the interaction between 
a probe and masker stimulus, but the width of such a curve cannot reveal the individual 
contribution of each of the two stimuli. We developed a method to process SFM curves 
into so-called excitation density profiles (EDP) for individual electrode contacts using 
mathematical convolution (Biesheuvel et al. 2016). An EDP, depicted in Figure 5.1A, reflects 
the proportion of excited neurons as a function of location along the electrode array. The 
deconvolution is performed using an iterative process. In the basis, parameterized EDPs 
(reflecting masker and probe excitation areas) are convolved to generate predicted SFM 
curves. Next, the predicted SFM curves are fitted to measured SFM curves (in CI recipients) 
by iteratively adjusting the EDPs. After many iterations, the method results in EDPs and 
SFM curves that predict the measured SFM curves quite well. A similar method has been 
presented by Cosentino et al. (2016, 2015), who analyzed SFM curves using matrix algebra 
and Gaussian functions, also called the panoramic eCAP method. In our previous study, 
the EDPs were kept as simple as possible to clearly demonstrate the principle of (de)
convolution (Biesheuvel et al. 2016). When using the deconvolution method to study 
stimulus-level effects on SOE, we have to verify whether our EDP parameterization is 
suitable for that purpose. As in most parameterizations, defining the optimal number 
of EDP parameters is a challenging task; too few parameters could lead to a suboptimal 
representation of the excitation area, while too many parameters likely result in a good 
fit between the predicted and measured SFM curves but produce non-physiological 
EDPs. We have considered which EDP parameterizations were relevant for studying 
stimulus-level effects. First of all, we think that the EDPs must be able to get smaller and 
narrower with lower stimulus levels. This property has already been realized in the original 
parameterization, where the EDP width can be adjusted at the top of the Gaussian and 
the EDP amplitude is linked to the width parameter (Biesheuvel et al. 2016). Based on the 
literature, we think there are two other useful parameterizations: (1) allowing variation in 
the center of excitation, and (2) allowing a gradual change in the slopes of the excitation 
pattern. The rationale for allowing some variation in the center of excitation is that studies 
have found an effect of stimulation level on perceived pitch (Shannon 1983; Townshend 
et al. 1987; Arnoldner et al. 2006; Carlyon et al. 2010), and that pitch might be determined 
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by the centroid of the excitation area (McKay et al. 1999; Laneau et al. 2004; McDermott 
& McKay 2005). Kalkman et al. (2014) studied place pitch versus electrode location in a 
computational model of the implanted human cochlea; they found that the elicited pitch 
of electrode contacts after the first turn decreases as stimulus level increases. So, the above-
mentioned studies indicate that an extra parameter that allows a shift in the center of the 
EDP might be useful. In a subsequent study, Kalkman et al. (2015) added spatial variability 
of the auditory nerve fibers’ cell bodies to the model and examined neural excitation 
using excitation density curves. They found that the excitation density was lower at lower 
stimulus levels and spanned a shorter length along the cochlea. Their simulations further 
showed that the sides or edges of the excitation areas changed slightly with changing 
stimulus level: the density decay may be steeper or shallower. To include these effects in 
the EDP parameterization, we wanted to allow a gradual change in the sides of the EDPs.
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Figure 5.1. Overview of the parameters included in the deconvolution method. The panel left shows an EDP and 
the panel right shows an SFM curve including the measurement error of the eCAP amplitudes. EDP indicates 
excitation density profile; SFM, spatial forward masking; eCAP, electrically evoked compound action potential.

The main goal of this study was to examine the effect of stimulus level on SOE by using 
the deconvolution method (Biesheuvel et al. 2016). Our hypothesis was that the SOE is 
narrower at lower stimulus levels. The rationale for this hypothesis was that excitation 
density simulations in our computational model showed narrower SOE at lower current 
level (Kalkman et al. 2015). Furthermore, the cell bodies are approximately positioned in 
a row in Rosenthal’s canal. In that case, we expect using the physics of current spread 
that less stimulation would lead to narrower excitation areas, followed by less excitation 
density. We needed two stages to study our hypothesis. In the first stage, we had to improve 
the EDP parameterization to account for stimulus level effects. In the absence of exact 
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information on real neural excitation patterns, we used the output of our computational 
model to validate the EDP parameterization (Kalkman et al. 2014; Kalkman et al. 2015). In 
this model, we can study the effect of stimulus level with the simulated excitation density, 
which strongly resembles the EDP from the deconvolution method (conceptually both 
describe the proportion of excited neurons along the electrode array). Henceforth the 
simulated excitation densities from the computational model were indicated with sEDP. 
In the second stage of this study, we measured SFM curves in human subjects and applied 
the deconvolution method to these SFM curves. For each subject, two sets of SFM curves 
were collected. The first set consisted of SFM curves measured at electrode contact 3 
through 16 with both masker and probe stimulus levels at 1200 µA, henceforth indicated 
as SFM1200. The second set consists of SFM curves measured at electrode contact 3 (apex), 
9 (middle) and 15 (base), with a masker level of 1200 µA and probe levels ranging from 600 
to 1100 µA, indicated as SFM600-1100. Subsequently, the SFM curves of each subject were all 
together deconvolved into EDPs, revealing the SOE at individual electrode contacts and at 
different current levels of that subject.

5.2. Updating the EDP parameterization
5.2.1. Materials and methods
5.2.1.1. Parameterization of EDPs
Essentially, an EDP is a Gaussian function extended with other parameters to reflect 
excitation density. The original deconvolution method included 19 variables to estimate 
the EDPs across the electrode array of a subject; 16 variables for the EDP plateau width 
and amplitude at each electrode contact, one variable for the EDP slope at all contacts 
(the slope depicts the density decay represented by the σ of the Gaussian function),  
one scaling variable to scale all predicted SFM curves to the measured SFM curves, and 
one variable as offset for the predicted SFM curves representing the noise floor (see also 
Figure 5.1) (Biesheuvel et al. 2016). 

For studying stimulus level effects, the parameterization of the EDP width, the scaling 
factor and the offset parameter remained unchanged. The EDP slope was implemented 
slightly differently and a shift in the center of the EDPs (represented by the µ of the 
Gaussian function) was added. The shift and slope parametrization accounting for 
stimulus level effects was only applied on contact 3, 9 and 15, for which SFM600-1100 curves 
were collected as well. The slope and shift parameters were estimated at probe stimulus 
levels of 600 µA and 1200 µA and the intermediate stimulus levels were estimated using 
linear interpolation. Interpolation between the most extreme values 600 µA and 1200 µA 
is most robust. The interpolation limited the number of additional EDP parameters, and 
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we did not expect large differences in slope and shift of EDPs obtained with succeeding 
stimulus levels at fixed electrode sites. 

In more detail, we defined two EDP slope parameters: (1) slope1200, which estimated the 
slope at 1200 µA for all EDPs across the electrode array, and (2) slope600, which estimated 
the slope of the EDPs at 600 µA. The fitting range of both slope parameters was [0.1 to 6] 
and it had no unit. Subsequently, the EDP slope at the current levels between 600 µA and 
1200 µA was estimated using linear interpolation. Regarding the relative shift in the center 
of excitation caused by the stimulus level, we assumed that the shift occurs at the higher 
stimulus levels because of deeper excitation in the spiral ganglion, while there is no shift 
at the lower current levels. The shift was represented by two parameters: (1) thresholdshift, 
which estimated the current level where the shift was zero, and (2) shift1200, which 
estimated the shift of the EDP at the 1200 µA level. The fitting range of thresholdshift was [0 
to 600] µA and the range of shift1200 was [–1 to +1] electrode contacts. Subsequently, the 
shift as a function of stimulus level was defined as a linear relationship between the points 
(thresholdshift µA; 0 electrode contacts) and (1200 µA; shift1200 electrode contacts). To avoid 
unrealistic shift in the EDPs across the electrode array, for example, a +1 shift at contact 9 
and no shift at contact 10, the shift in the EDPs across the electrode array was estimated 
using a polynomial function. Given that the degree of the polynomial is limited by the 
number of data points, we could fit first- and second-order polynomials using the three 
shift1200 values at contacts 3, 9, and 15. An overview of the final EDP parameterizations is 
shown in Table 5.1. 

Table 5.1. Summary of the EDP-parameters per subject. EDP indicates excitation density profile.
Parameterizations

EDP1200 EDP600-1100

Width 16 * 6 #

Offset 1 -
Scale 1 -
Density decay (σ) 1 1
Shift (μ) 3 1
Total 22 8 ‡

* Equal to the number of involved electrode contacts across the array.
# Equal to the number of involved current levels.
‡ Per electrode contact. For example, if EDP600-1100 estimations were obtained at all contacts of interest  

(3, 9, 15), a total of 22 + 3 × 8 = 46 parameters had to be optimized.

5.2.1.2. Computational model of the human cochlea
The updated EDP parameterization was validated using excitation density simulations 
in our computational model of the implanted human cochlea, developed at the Leiden 
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University Medical Centre (J.J. Briaire and Frijns, 2000; J.J. Briaire and Frijns, 2000; Frijns et 
al., 2000, 1995; Kalkman et al., 2020, 2015, 2014). The model consists of two parts: a volume 
conduction model and a deterministic active nerve fiber model. The volume conduction 
model uses the boundary element method to simulate electrical potential distributions in 
a realistic three-dimensional geometry of a human cochlea implanted with a CI electrode 
array. Next, electrical potentials are determined along nerve fiber trajectories that have 
been defined in the cochlear geometry with the help of histological data. The nerve 
fiber model then simulates neural responses resulting from the electrical potential fields 
generated by the volume conduction model, by modeling each auditory neuron as an 
active double-cable electrical network using the human-based Schwarz-Reid-Bostock 
neural kinetics scheme (Schwarz et al. 1995; Kalkman et al. 2022). 

In humans, there is a high variability in neural responses. The actual eCAP-data to be 
measured depend on both the electric potential distribution and the neural activity. The 
electric potential distribution in the scala tympany is quite broad but uniform across 
subjects, while the neural activity is highly variable across subjects, depending on the neural 
survival and neural interactions (Tang et al. 2011). To create a realistic validation model, we 
simulated excitation density profiles, denoted as sEDPs, at different probe current levels 
using five different cochlear geometries each modeled with three different states of neural 
health. Each cochlear geometry contained a representation of a HiFocus Mid-Scala electrode 
array with sixteen electrode contacts in ideal mid-scalar position. Three sets of 3200 auditory 
neurons were modeled for each geometry, each representing a different state of neural 
health: one set of intact nerve fibers, one set of fibers where the lengths of the unmyelinated 
peripheral terminal nodes were shortened from 10 µm to 1 µm, and one set of fibers from 
which the peripheral processes were completely removed. The peripheral processes of the 
intact neurons were spread out evenly along the basilar membrane (BM) and their cell bodies 
were spatially distributed along Rosenthal’s canal in the manner described by Kalkman et 
al. (2015). The stimuli used in the neural simulations were anodic-first biphasic pulses with 
32 µs phase duration. At electrode contact 3, 9 and 15, the stimulus amplitude ranged from 
600 µA to 1200 µA in steps of 100 µA, and at the other contacts across the electrode array 
the stimulus amplitude was 1200 µA. The excitation density results from the neural model 
were processed into sEDPs, which show the excitation density as a function of cochlear 
position along the BM. Excitation density was defined as the percentage of excited neurons 
along 1  mm segments of the BM, centered at the positions of the tips of the peripheral 
processes of each modeled neuron. For the degenerated nerve fibers, excitation densities 
were determined as if the neurons still retained their peripheral processes. Further details of 
the computational model are discussed by Kalkman et al. (2015, 2014).
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5.2.1.3. Analysis
In order to validate the EDP parameterization, we analyzed how well the EDPs could 
fit the sEDPs using the updated parameterization. To increase the sEDP variability and 
to strengthen the validation, the sEDPs were simulated in five different cochleae, each 
modeled with three neural states. The sEDPs at electrode contact 1, 2 and 16 were 
excluded from the analysis, because these sEDPs at the distal electrode contacts were 
often irregular (contact 1 and 2) or incomplete (contact 16) and fitting the EDPs to these 
sEDPs would lead to large fitting errors. The irregularities in sEDPs at contact 1 and 2 are 
likely caused by cross-turn stimulation in the apex and the sEDPs at contact 16 were often 
incomplete, as their simulation was hindered by the boundaries of the cochlea model, 
which basally ends at the round window. Moreover, the sEDPs at contact 1, 2 and 16 were 
strictly not necessary for validating the EDP parameterization to account for stimulus level 
effects on contact 3, 9 and 15. On the remaining electrode contacts (3 to 15), still 43 sEDPs 
(9%) were incomplete, e.g., at contact 14 or 15, and 43 sEDPs (9%) at lower stimulus levels 
did not show any excitation. These sEDPs did not lead to a unique solution and they were 
also excluded in the validation. We fitted EDPs to the remaining 379 sEDPs and calculated 
the similarity between each EDP and sEDP using the Jaccard index, which was defined as: 

[5.1]

The symbols ∩ and ∪ represent, respectively, the intersection and union of the sEDP and 
EDP. We compared the sEDPs and EDPs with respect to their slope (density decay at the 
sides of the EDP), full width at half maximum (FWHM), and the shift in excitation center 
using Bland-Altman plots and mountain plots (Giavarina 2015). In a Bland-Altman plot, 
the difference between two variables is plotted as function of their average. A mountain 
plot is a complementary representation of the difference plot. It shows the distribution of 
the differences by computing a percentile (p) for each ranked difference. The difference 
is plotted as function of p while p < 50, and otherwise as 100–p. Based on the outcomes 
from the Jaccard index, the Bland-Altman plots, and the mountain plots, we improved 
the EDP parameterization step by step, resulting in the parameterization as described in 
section 5.2.1.1.

5.2.2. Results
Figure 5.2 shows an example of sEDPs from the computational model using different 
current levels (gray lines). The sEDPs originated from electrode contact 9 in cochlea model 4 
with completely degenerated dendrites. When we fitted the EDP as parametrized conform 
our 2016 paper to these sEDPs, it turned out that there was a clear mismatch between 
the sEDPs and EDPs (panel A). This showed that an EDP parameterization update was 
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necessary. After optimizing the EDP parametrization, we calculated the similarity between 
the sEDPs and fitted EDPs using equation 5.1. Across all cochlea models, the similarity 
between the sEDPs and fitted EDPs increased from an 84.0% median (10th percentile: 
69.1%, 90th percentile: 95.0%) using the 2016 parameterization, to a 92.2% median  
(10th percentile: 82.3%, 90th percentile: 96.5%) when using the new parameterization. 
Figure 5.2B shows that with the new parameterization the EDPs fitted much better to the 
sEDPs than in Figure 5.2A.

Ex
ci

ta
tio

n 
de

ns
ity

 (%
)

6 8 10 12
Electrode contact

20 

40 

60 

80 

100 A

6 8 10 12
Electrode contact

B sEDP
EDP

Figure 5.2. Example of sEDPs (gray) and EDPs (black), both showing the excitation density along the basilar 
membrane. Panel A shows that the original EDPs, which were parameterized conform our 2016 paper, did not 
optimally fit to the sEDPs obtained at different current levels. Panel B shows that the updated EDPs, which 
account for stimulus level effects, fitted the sEDPs much better. EDP indicates excitation density profile; sEDP, 
simulated excitation density profile.

In Figure 5.3, we evaluated the updated EDP parametrization by comparing the EDPs with 
the sEDPs. We fitted EDPs to the sEDPs and explored the differences with respect to the 
slope (i.e., density decay at the sides of the EDP), full width at half maximum (FWHM), 
and the shift in excitation center. Each data point represents a single EDP comparison 
modelled in a specific cochlea and neural condition. Note that the differences on the 
y-axes were calculated as sEDP minus EDP and that data presented in this figure are the 
final results after optimizing the EDP parameterization. None of the differences plotted in 
panel A, C and E came from a normal distribution, as revealed by the Anderson-Darling 
test for normal distribution. Therefore, percentiles rather than the regular means and 95% 
confidence bounds are shown in the Bland-Altman plots. To gain more insight, the EDP1200 
data (blue) and EDP600-1100 data (red) were plotted separately. Panel A shows that the 
slope of the EDP600-1100 patterns differed from EDP1200 ones, which argued for allowing the 
slope to change towards lower current levels. Panel C confirms the importance of a width 
parameter, as it shows that the width of both the EDP600-1100 and EDP1200 patterns varies 
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highly across the different cochleae and neural conditions. Panel E shows that the center 
of excitation of the sEDPs varied between –0.47 and 0.23 electrode contacts, indicating 
that the parameterization of the shift was useful as well. The mountain plots at the right 
side of Figure 5.3 show that for most EDPs the difference from the sEDPs was small; the 
peak of the mountain plot is steep around 0. Note that we rotated the mountain plot 90° 
clockwise to align the y-axes of the Bland-Altman and mountain plots.
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Figure 5.3. Quantitative analysis showing how well the updated EDP parameterization could fit sEDPs simulated 
at different current levels in five different cochleae and three different neural states. The panels at the left side 
represents Bland-Altman plots, in which the difference between an sEDPs and EDP parameter (y-axis) was 
plotted as a function of its average (x-axis). Each dot represents the result of fitting an EDP to a sEDP, whereby 
the EDP1200 data (blue) and the EDP600-1100 data (red) were plotted separately. The slope (panel A) is calculated 
using the density decay between 40 and 60% of the maximum EDP amplitude. The black solid line shows the 
median and the dashed lines show the 2.5 and 97.5 percentiles. At the right side, mountain plots are plotted, 
wherein each ranked difference (y-axis) is plotted as function of percentile, or as 100-percentile if percentile > 50 
(x-axis). EDP indicates excitation density profile; sEDP, simulated excitation density profile; e, electrode contact.
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Based on the aforementioned outcomes, we assessed that the new EDP parameterization 
was suitable for the purpose of answering the aim of the study.

5.3. Analyzing human SFM curves
5.3.1. Materials and methods
5.3.1.1. Patients and data collection
The patient data consist of intraoperative SOE recordings from 24 CI recipients, collected 
in the period from April 2015 to March 2017. The demographics of these subjects are 
shown in Table 5.2. All subjects were implanted with a HiRes90K device with a HiFocus 
Mid-Scala electrode array from Advanced Bionics (Valencia, CA, USA). The electrode array 
contained 16 electrode contacts, numbered from apex (1) to base (16). The SFM curves 
were collected using the Bionic Ear Data Collection System (BEDCS) research software from 
Advanced Bionics, controlled by a custom-made MATLAB (Mathworks, Inc., Natick, MA) 
interface. The neural responses were measured using monopolar biphasic pulses (anodic 
first) with a duration of 32 µs per phase. The sampling rate of the eCAP recording system 
was 56 kHz and its gain 100. The SFM curves were recorded using the forward-masking 
paradigm with a fixed probe contact and roving masker (Cohen et al. 2003; Hughes 2013; 
Biesheuvel et al. 2016). The masker-probe stimulus interval was 500 µs and the recording 
contact was two electrodes away from the probe contact in the apical direction. To save 
time, the probe and signature frames were recorded once for each SFM curve, and they 
were reused in all eCAP measurements of that SFM curve. This was possible because the 
probe and signature frames are independent from the masker location. To reduce the 
amount of noise in the recordings, the reused frames were measured with 64 averages 
and the masker and masker-probe frames with 16 averages (Klop et al. 2009). The eCAPs 
were processed as described by Biesheuvel et al. (2016), followed by a visual check to 
avoid erroneous processing of abnormal eCAPs (double peaks, shallow P2, etc.). In case of 
wrong peak detections, the peaks were corrected manually.

For each patient, two sets of SFM curves were collected. The first set consisted of SFM 
curves measured at probe contacts 3 through 16 with both masker and probe stimulus 
levels at 1200 µA. Note that no SFM1200 curves were measured for probe contacts 1 and 2 
due to the requirement for an apically located recording contact. The second set consisted 
of SFM curves measured with a masker level of 1200 µA and different probe current levels. 
For most subjects, the probe current levels ranged from 600 to 1100 µA with a step size of 
100 µA. For subjects S0125, S0126, and S0129, the probe current levels ranged from 600 to 
1000 µA with a step size of 200 µA because of time limitation during surgery. The SFM600-1100 
curves were recorded at three probe contacts along the array: 3 (apex), 9 (middle), and 
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15 (base). In more than half of the patients, we could not measure the SFM600-1100 curves 
on all three probe contacts (see Table 5.2). The reasons were that sometimes there were 
time limitations during surgery, and sometimes the amplitudes of the SFM1200 curves 
were already so small (< 0.2 mV) that reliable measurement of SFM600-1100 curves was not 
possible.

Table 5.2. Subject demographics. SFM indicates spatial forward masking.

Gender Age (y) Etiology
Measured electrode contacts

SFM1200 curves SFM600-1100 curves
S103 F 1 DFNB1 1-16 3 9 15
S106 F 12 Unknown 1-16 15
S107 M 3 Unknown 1-16 3
S108 M 26 Rubella 2-9, 11-16 9 15
S112 M 3 Unknown 1-16 3 9 15
S114 M 55 Congenital 1-16 3 9
S115 M 2 Unknown 1-9, 11-16 3 9 15
S116 M 2 Unknown 1-16 3 9 15
S119 F 20 Congenital 1-16 3 9 15
S121 F 12 Unknown 1-2, 4-16 9 15
S122 M 2 Unknown 1-16 15
S124 F 12 DFNB25 1-16 3
S125 F 58 DFNA9 1-16 3
S126 F 1 DFNB1 1-16 3 9
S129 F 60 Congenital 1-16 3 9
S133 M 60 Unknown 1-16 3
S135 F 4 Congenital 1-16 3 15
S137 F 39 Unknown 1-16 3 9 15
S138 M 57 Unknown 1-16 3 9 15
S141 M 2 Unknown 1-16 3 9 15
S142 M 3 Usher 1-16 3 9
S144 F 49 Unknown 1-16 3 9
S147 M 1 DFNB1 1-16 3 15
S149 F 8 Congenital 1-16 3
#24 #12 F ȳ 21 #20 #15 #14

5.3.1.2. Deconvolution of SFM curves
The SFM curves were analyzed according to the deconvolution method of Biesheuvel et 
al. (2016), using a custom MATLAB application. Note that, if the maximum amplitude from 
the SFM curves decreased below 0.15 mV, these SFM curves were not included for further 
analysis, since the low eCAP amplitudes and bad signal-to-noise ratio of these curves 
caused unreliable EDP estimations. Due to this, 44 SFM curves (15%) were not included for 
further analysis. For each subject, the SFM1200 and SFM600-1100 curves were all deconvolved 
at the same time in one minimization routine. The SFM1200 curves were deconvolved into 
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EDP1200 patterns, reflecting the excitation areas of a 1200 µA stimulus at each electrode 
contact. Next, using the EDP1200 estimations as masker EDPs, the SFM600-1100 curves were 
deconvolved into the probe EDP600-1100 patterns.

5.3.1.3. Analysis
Linear mixed models (LMMs) were used to test the effects of current level and electrode 
contact on the SFM600-1100 curves and EDP600-1100 estimates. The variables of interest were 
the maximum amplitude of the SFM curves, the width of the SFM curves (i.e., FWHM), the 
amplitude of the EDPs, the width of the EDPs (FWHM) and the shift in the center of the 
EDPs. Note that, if a side of the SFM curve did not drop to the FWHM-level, the width of 
the curve was set to the limit of the array in the apical direction (contact 3), or in the basal 
direction (contact 15) (Abbas et al. 2004). The effect of current level and electrode contact 
on each of these variables was tested using separate models, including both current level 
and electrode contact as fixed effects, while subject was included as random effect. In 
addition, we repeated the EDP analyses on sEDPs as well in order to compare the human-
based results with the output of the computational model. The output from the linear 
mixed models is displayed in Table 5.3.

5.3.2. Results
An example of the deconvolution of SFM600-1100 curves is shown in Figure 5.4. The data 
were recorded at electrodes 3, 9, and 15 in subject S0119. The SFM curves in the upper 
half of the figure illustrate that an increase in stimulus level led to an increase in amplitude 
as well. No major change in the width of the SFM curves is visible as a result of changing 
the stimulus level. Deconvolution of the SFM curves resulted in the EDPs plotted directly 
underneath them, in the lower row of the figure. The area under all EDP curves became 
greater when the stimulus level grew, which implies that lower stimulus levels excited 
fewer neurons. However, the EDPs at electrode 3 mainly increased in amplitude, while the 
EDPs at electrode 9 and 15 became wider.
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Figure 5.4. Example of SFM curves recorded at different probe stimulus levels on electrode contacts 3, 9 and 15 
(respectively panel A, B and C) in subject S0119. The error bar represents the eCAP amplitude with measurement 
error and the color shade represents the descending probe current level. The deconvolution of these SFM curves 
resulted in the EDPs directly shown below the curves (panel D-F). SFM indicates spatial forward masking; eCAP, 
electrically evoked compound action potential; EDP, excitation density profile.

Figure 5.5 shows the effect of current level on all EDP600-1100 series in more detail for all 
subjects. We plotted the area under the EDP, the amplitude, the FWHM, and the shift in 
center of excitation of each EDP as a function of stimulus level. In all cases, the area under 
the EDP became bigger with increasing current level (Figure 5.5A-C), which is consistent 
with more neurons being excited at higher current levels. The smaller EDPs at lower 
current levels are mainly caused by narrower EDPs (Figure 5.5G-I, increasing line towards 
higher current level) in combination with a still high EDP amplitude (Figure 5.5D-F, flat 
top line). In a few cases, an increasing current level led to greater EDP amplitudes in 
combination with a quite stable EDP width (Figure 5.5G-I, horizontal lines). Some lines in 
Figure 5.5G-I are v-shaped; the FHWM became smaller from 600 µA upwards, while from 
a certain point it became wider again. Such a result belongs to a case like in Figure 5.4D. 
At electrode contact 15, the current level mainly affected the EDP width and not the EDP 
amplitude (Figure 5.5F, most lines fall on top of each other). Furthermore, the effect of 
current level on the shift in center of excitation was variable across subjects and electrode 
contacts (Figure 5.5J-L).  The LMM analyses revealed that, in general, the current level had 
a significant effect on the EDP amplitude (p < 0.001), on the EDP width (p < 0.001), and on 
the shift in EDP center (p < 0.05). More details from the LMMs can be found in Table 5.3.
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We also compared the EDP600-1100 outcomes with the effect of current level on the SFM 
curves and the sEDPs from the computational model. Figure 5.6 shows how the amplitude, 
FWHM and shift (if applicable) of the EDP600-1100, sEDP600-1100 and SFM600-1100 curves changed 
as function of stimulus level. Observe that the sEDP amplitudes in Figure 5.6 panel A and 
C show an irregular pattern; they increased from 600 to 700 µA, decreased until 800 µA 
and then increased again. This effect is caused by some missing data at 600 and 700 µA, 
as some sEDPs did not show any excitation at the lowest stimulus levels. So, the remaining 
data at 600 and 700 µA came from model simulations with a relatively high excitation 
density at these levels. The LMM analyses showed that current level had a significant effect 
on the amplitude of the SFM curve (p < 0.001), while the FWHM of the SFM curve did not 
change significantly (p = 0.62). Concerning the sEDPs, the analysis shows that current level 
had a significant effect on the amplitude (p < 0.001) and the width (p < 0.001), but not on 
the shift (p = 0.11). See Table 5.3 for more details from the linear mixed-model analyses, 
including the effect of the electrode contact on the SOE.

Table 5.3. Output from the linear mixed model, analyzing the effect of stimulus level on the amplitude, width 
and shift of the excitation patterns. SFM indicates spatial forward masking; EDP, excitation density profile; sEDP, 
simulated excitation density profile.

Electrode Current
Amplitude SFMIO curve p = 6.47 × 10-13 ** p = 3.97 × 10-50 **
Amplitude EDPIO p = 0.20 p = 2.54 × 10-11 **
Amplitude sEDPIO p = 1.98 × 10-7 ** p = 9.37 × 10-26 **
Width SFMIO curve p = 4.17 × 10-20 ** p = 0.62
Width EDPIO p = 5.33 × 10-13 ** p = 2.58 × 10-24 **
Width sEDPIO p = 5.91 × 10-5 ** p = 2.74 × 10-70 **
Shift EDPIO p = 0.14 p = 3.80 × 10-2 *
Shift sEDPIO p = 0.66 p = 0.11
* p < 0.05; ** p < 0.001
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Figure 5.5. Effect of probe stimulus level on the EDPs. Each line represents a series of EDPs measured with 
varying probe current level in one subject. The columns show the results for electrode contacts 3, 9, and 15 
separately. The rows show, respectively from top to bottom, the effect of stimulus level on the EDP area, EDP 
amplitude, EDP width, and EDP shift. EDP indicates excitation density profile; e, electrode contact.
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Figure 5.6. Effect of probe stimulus level on the SFM curves (blue), the EDPs (red) and the sEDPs (green). The 
parameters of interest (y-axis) were plotted as function of probe current level (x-axis). The line shows the average 
and the vertical bars indicate the standard deviation. The columns show the results for electrode contact 3, 9 and 
15 separately. SFM indicates spatial forward masking; EDP, excitation density profile; sEDP, simulated excitation 
density profile; e, electrode contact.

5.4. Discussion
In this study, we investigated how excitation density profiles of cochlear implants change 
as a result of varying the stimulus level. Our hypothesis was that lower stimulus levels 
cause narrower excitation areas or at least excite fewer neurons. We studied this effect 
using our newly extended method for deconvolving SFM curves into so-called EDPs, 
which reflect the neural excitation by individual electrode contacts. The results of the 
present study support our hypothesis: lower stimulus levels excite fewer neurons, mainly 
represented by narrower EDPs.
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In our previous study (Biesheuvel et al. 2016), the parameterization of the EDPs was kept 
simple to clearly demonstrate the principle of (de)convolution. As we have explained in 
the introduction, the EDP parameterization had to be extended to account for stimulus 
level effects. Initially we implemented an EDP parameter for ‘slope’ and ‘shift’ per stimulus 
level. However, it turned out that this parameterization caused the EDPs to become 
physiologically unrealistic. For example, it was possible that the EDP at 1200  µA was 
centered around the stimulating electrode contact, while the EDPs at lower stimulus 
levels (600–1100 µA) were all shifted by a full electrode contact; such a large and sudden 
shift cannot be explained physiologically. Therefore, we implemented a shift parameter 
that was linearly interpolated and must be zero somewhere at a lower stimulus level 
(<600 µA). In that way, we were able to study relative shifts caused by the stimulus level. 
Consequently, we could not account for another physiological phenomena that there 
might be an absolute shift at the lower stimulus levels depending on the position of the 
electrode contact in the cochlea. However, we think that an absolute shift depending on 
the position of the electrode array in the cochlea might be negligible, as all subjects had a 
HiFocus Mid-Scala electrode array which can be seen as a fixed factor. 

Regarding the slope, it could happen that the EDP was shaped like a Gaussian curve 
at 1200  µA, while the EDPs at all other lower stimulus levels were almost rectangular. 
From a mathematical point of view, these rectangular EDPs are a valid solution in the 
deconvolution method. However, rectangular EDPs are physically and physiologically 
implausible (Biesheuvel et al. 2016). Defining the EDP parameterization turned out to be 
a challenging task and, in order to verify whether the EDP parameterization was realistic, 
we compared the EDP parameterization with sEDPs from our computational model of 
the human cochlea (Kalkman et al. 2014; Kalkman et al. 2015; Kalkman et al. 2022). Using 
the Bland-Altman analysis (Figure 5.3) and Jaccard index, we have improved the EDP 
parameterization stepwise and, finally, we came to the parameterization as described in 
section 5.2.1.1. Based on the results shown in Figure 5.3 and the similarity median of more 
than 92%, we think that the final EDP parameterization presented in this study is good for 
the purpose of answering the central question of this study. Note that the EDPs are robust 
enough to predict excitation areas simulated in five anatomically different cochleae, 
including three states of neural health (i.e., intact nerve fibers, neurons with a shortened 
peripheral terminal node, and neurons that suffered a complete loss of their peripheral 
processes). Therefore, we conclude that the extended deconvolution method can now be 
used to study the effect of stimulus level on excitation areas.
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Before we go into detail about the effect of stimulus level on SOE, we want to discuss  
another aspect regarding the validity of the deconvolution method. Thus far, the 
deconvolution method was based on eCAP data collected with anodic-leading stimuli, 
while both the literature and current CI systems often use cathodic-leading stimuli. 
The deconvolution method, however, was developed using anodic-first stimuli and we 
continued on this in the current study (Biesheuvel et al. 2016). We think that the used 
anodic-leading stimuli did not have major consequences for the outcomes in the current 
study; we performed within-subject-analyses with anodic-leading data only. Further, 
research from Hughes et al., (2016) showed no difference in eCAP amplitude measured 
with either anodic-first or cathodic-first forward masking in AB recipients and our method 
is based on these eCAP amplitudes. Nevertheless, the excitation patterns underlying 
the anodic-first and cathodic-first stimuli may differ.   A preliminary analysis comparing 
the sEDPs with sEDPs simulated under equal conditions but with cathodic-first stimuli, 
showed a similarity of 81.6% (according to equation 5.1). Visual inspection revealed that 
the differences between cathodic-first and anodic-first sEDPs were mainly in the form 
of changes in the widths and amplitudes of the excitation patterns. Both the width and 
amplitude are parameterized in our EDPs and the deconvolution method. So, we think 
that our method can deal with the different stimulus polarities correctly. In a follow-up 
study, the stimulus polarity can be an area of interest, especially if we want to compare the 
EDPs with behavioral data collected with cathodic-leading stimuli. 

Regarding the stimulus level effects on SOE, our hypothesis was that a lower stimulus 
level will excite fewer neurons, due especially to a narrowing of the excitation areas. The 
results presented in this study confirm this hypothesis (Figure  5.5). Both the EDPs and 
sEDPs became significantly wider when the stimulus level increased (p  <  0.001). A few 
cases showed that the EDPs did not necessarily become wider with increasing stimulus 
level. Higher stimulus level could initially also lead to higher EDP amplitudes, as shown 
in Figure 5.4D, reflecting deeper excitation in the spiral ganglion. In general, the stimulus 
level was always related to the area under the EDP, which reflects the number of excited 
neurons. This is consistent with previous findings that the area under the EDP is highly 
correlated to the eCAP amplitude, given that eCAP amplitudes depend on current level 
(Biesheuvel et al. 2016).

Figure 5.6D-F shows that the sEDPs are narrower, or more selective, than the EDPs found 
in patients. Unfortunately, we do not yet have a definitive explanation for this outcome. 
It is possible that neural excitation patterns in the computational model are too selective 
compared with SOE data collected in humans. In that case, the results of the present study 
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invite us to critically review the computational model, especially the parameters that are 
involved in simulating SOE. Meanwhile, it is important to realize that, although EDPs and 
sEDPs are conceptually very similar, strictly speaking they are different. The sEDPs are 
derived from simulated excitation patterns; the modeled nerve fibers are characterized 
by their positions along the BM and each excited neuron contributes to the sEDPs equally. 
Additionally, the widths of the sEDPs are affected by the length of the segment along 
the BM over which the excitation density is averaged. This length was set to 1 mm for 
this study, but this is essentially an arbitrary value. In contrast, EDPs are obtained from 
mathematical deconvolution of SFM curves recorded in humans and they are a function of 
electrode contact spacing, rather than distance along the BM. In short, although the EDP 
and the sEDPs are both intended to represent neural excitation densities, their differences 
should be kept in mind when comparing the two to each other directly. Regardless, for 
the purpose of this study, which is validation of the EDP parameterization, the fact that 
the sEDPs appears to be more selective does not matter, since the width of the EDP is a 
variable in the deconvolution method as well.

The updated EDP parameterization allows the center of excitation to shift as a function 
of stimulus level. The bottom row of Figure 5.5 shows how the center of the EDPs shifted 
with the current level in our patient data. Note that for all three electrode contacts a 
number of EDPs shifted to the maximum of the fitting range, plus or minus a full contact at 
1200 µA. Although it is undesirable for the minimization routine to reach the minimum or 
maximum of the fitting range, extending the fitting range would be unrealistic. It turned 
out that when the shift parameter was not constrained, some EDPs tended to shift 4 or 
5 electrode contacts. It is not likely that an EDP would shift so far (even more than one 
electrode contact) when the current level is increased from 600 µA to 1200 µA. We think 
we encountered a limitation of the deconvolution method that is likely caused by the 
incomplete SFM curves at distal electrode contacts. At electrode contacts 3 and 15, the 
SFM curves are asymmetric and most of the masker contacts involved in the deconvolution 
are unilateral from the probe contact. When the probe stimulus level was lowered the 
eCAP amplitudes became smaller and we would expect smaller probe EDPs. However, 
in the deconvolution method, smaller eCAP amplitudes are coded by decreased overlap 
between the masker and probe EDPs. We have seen that this can be achieved by narrowing 
the EDPs, but it can also be represented in a mathematically correct way by shifting the 
probe EDPs away from the masker EDPs, especially for distal electrode contacts (see also 
Figure 5.5J-L). However, the shift parameter did not reach the boundaries of its fitting 
range in all subjects. So, we can also speculate that this problem of reaching the fitting 
range is caused by a within-subject factor, rather than by the edges of the SFM curves. For 
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example, in the case of a dead neural region we would expect a smaller EDP, but a dead 
neural region can also be represented mathematically by shifting the adjacent EDPs away. 
Unfortunately, in the context of this study, we cannot rule out such dead-region effects. 
To estimate dead regions, we would need a different EDP parametrization followed by a 
validation step using an independent measure for neural status.

Dead neural regions, however, are interesting as they are directly related to the clinical 
applicability of the deconvolution method. If the deconvolution method can detect poor 
neural survival, such information can be used to optimize the cochlear implant fitting, 
e.g., by de-activating less effective electrode contacts. Thus far, our studies regarding the 
deconvolution method are quite fundamental. Nevertheless, the present results about 
stimulus level effects on excitation patterns can help audiologist with CI fitting, especially 
making them aware that higher stimulus levels may limit the spatial resolution in most 
subjects. In a next step, it would be valuable to work on the detection of poor neural 
regions. Garcia et al., (2021) recently published a study in which they investigated the 
assessment of neural health using the panoramic eCAP method. They concluded that the 
panoramic eCAP method can detect neural survival patterns with high accuracy (at least 
90%). However, a disadvantage of their method is that they used computer simulations 
with a backward approach, so that both the generated and solved dead regions are based 
on the same model assumptions. Instead, it would be better to validate the detection 
of dead regions by an independent model, in order to increase the clinical feasibility. 
For instance, it would be possible to model poor neural regions with our computational 
model. Subsequently, based on these poor neural regions, eCAP-based SFM curves can 
be simulated, and these curves can be translated back to EDPs using the deconvolution 
method. Next, the obtained EDPs can be compared with the simulated dead regions to 
validate them.

The observed shift in the center of the EDPs might indicate a change in pitch percept, 
assuming that the center of excitation is involved in pitch perception by cochlear implant 
users (McKay et al. 1999; Laneau et al. 2004; McDermott & McKay 2005). Such a pitch shift 
with intensity is a well-known phenomenon in normal hearing (Stevens 1935; Terhardt 
1979), but also in line with several studies reporting an effect of stimulation level on 
perceived pitch in electrical hearing (Shannon 1983; Townshend et al. 1987; Arnoldner 
et al. 2006; Carlyon et al. 2010). Shannon (1983) asked a CI user to judge pitch as function 
of loudness level and this subject perceived an increase in pitch with increased loudness. 
Townshend et al. (1987) studied pitch perception in three implant subjects and they 
found that pitch percepts were primarily affected by the place and rate of stimulation, 
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while the stimulus level appeared to be a secondary effector. Among these three patients, 
one perceived an increased pitch at higher stimulus levels, while the other two perceived 
a decreased pitch at higher levels. About 20 years later, other studies still show varying 
results. Arnoldner et al. (2006) showed an increase in pitch at higher current levels in 
10 patients, whereas only one patient showed the opposite effect. Carlyon et al. (2010) 
studied the effect of stimulus level and place of stimulation on temporal pitch perception 
by cochlear implant users. They found that in 16 of 21 cases the pitch increased with signal 
level, while the opposite effect was observed in the other five cases. If we assume that 
pitch perception is linked to the excitation area, the results of the present study show 
similar outcomes, especially at electrode contacts 3 and 15 where the shift in the excitation 
center varied between –1 and +1 (Figure 5.5G-I).  Carlyon et al. (2010) concluded that 
the stimulus-level effects observed in their study cannot entirely be assigned to changes 
in current spread with increasing level and they also speculated that temporal coding 
might play a role in pitch perception. So, to further elucidate the relationship between 
stimulus level and pitch perception, we suggest combining the eCAP-based EDPs with 
psychophysical measures of pitch perception.

5.5. Conclusions
The deconvolution method enables us to study the effect of stimulus level on excitation 
areas in an objective and physiological way. The validation step showed that the updated 
parameterization of the EDPs describes the excitation areas simulated in our computational 
model well. Using this updated EDP parameterization, eCAP-based SFM curves measured 
with different probe current levels can be deconvolved in EDPs, thereby unraveling the 
effect of stimulus level on the excitation areas. It turned out that excitation areas are 
smaller, mainly narrower, at lower stimulus levels, which could not be derived from the 
SFM curves included in this study. Lastly, the comparison of the EDP parameterization 
with simulations from our computational model provided new insights about the validity 
of the deconvolution method.
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Objective: To test the channel discrimination of cochlear implant (CI) users along all 
contacts of the electrode array and assess whether this is related to speech perception.

Design: CI recipients were tested with a custom-made channel discrimination test. 
They were asked to distinguish a target stimulus from two reference stimuli in a 
three-alternative forced choice task. The target stimulus was evoked using current 
steering, with current steering coefficients (α) of 1, 0.5, and 0.25. The test provided a 
discrimination score (Dα) for each electrode contact along the array. 

Study sample: Thirty adults implanted with a CI from Advanced Bionics.

Results: Large variations in Dα scores were observed, both across the electrode array 
and between subjects. Statistical analysis revealed a significant channel-to-channel 
variability in Dα score (p < 0.01). Further, there was a significant relationship between 
subjects’ Dα scores and their speech perception in quiet (p < 0.001). 

Conclusion: The large variations in Dα score emphasize the importance of testing pitch 
discrimination across the complete electrode array. The relationship between Dα score 
and speech perception indicates that pitch discrimination might be a contributing 
factor to the performance of individual implant users.
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6.1. Introduction 
The electrode array of cochlear implants (CIs) is located along the basilar membrane and 
takes advantage of the tonotopic organization of the cochlea to evoke different pitches. 
Contemporary electrode arrays contain 12-22 contacts, which ideally activate restricted 
and distinct areas of the auditory nerve. In practice, however, the excitation area of adjacent 
electrode contacts do overlap, leading to a reduced number of discriminable pitches and 
limited efficacy of the CI (Shannon, Fu, and Galvin 2004; Zeng 2004; Snel-Bongers et al. 
2012; Jones et al. 2013). Previous research showed that there was no improvement in 
speech recognition as the number of active electrodes increased beyond eight (Friesen et 
al. 2001; Frijns et al. 2003; Shannon et al. 2004). This suggests that CI listeners are not able 
to take full advantage of the spectral information provided.

Several studies investigated whether the speech perception of CI users depends on their 
ability to distinguish pitches evoked by the different channels. Note that pitch perception 
is influenced by place of excitation as well as by stimulus rate. This article focusses on 
place-pitch only, and the term pitch will refer to place-pitch throughout this article. 
Subject’s ability to perceive pitch is commonly assessed by using pitch ranking. In a pitch 
ranking task, the subject is typically asked to judge which of the stimulating electrode 
contacts has a higher pitch. Several studies based on pitch ranking tasks showed a 
positive relationship between the ability to distinguish pitches and speech perception 
(Nelson et al. 1995; Collins et al. 1997). Furthermore, Kenway et al. (2015) found that pitch 
ranking ability is an independent predictor of overall CI outcome. However, pitch ranking 
is difficult to accomplish for some CI users. Judging pitch as higher or lower is a challenge 
for individuals who have a hard time recalling what higher or lower pitch means. 

Alternatively, channel discrimination can be tested using three-alternative forced choice 
(3AFC) tasks. In a 3AFC task, subjects indicate which of three stimuli sound different from 
the rest, which is easier to perform than pitch ranking. Recent 3AFC discrimination tasks use 
virtual channels next to the physical channels to estimate the discrimination ability more 
precisely. These virtual channels are created by simultaneously stimulating two adjacent 
physical contacts with different relative weighting of current, creating an intermediate 
pitch (Firszt et al. 2007; Frijns et al. 2009). While conducting the 3AFC discrimination task 
with virtual channels, Snel-Bongers et al. (2012) found that the mean pitch discrimination 
correlates negatively with speech perception scores; smaller just noticeable differences 
(JND) in pitch correspond with higher monosyllabic phoneme scores. 
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A disadvantage of the pitch discrimination tests encountered in the current literature, 
however, is that they are time-consuming. Consequently, the discrimination tasks were 
performed on only a limited number of electrode contacts; for example, those in three 
cochlear regions. The estimated JNDs on these few electrode contacts were then used to 
estimate the total amount of discriminable pitches along the whole electrode array. Doing 
this, some studies reported that CI users on average could hear 93 (Koch et al. 2007), 64 
(Firszt et al. 2007) or 20 (Snel-Bongers et al. 2012) spectral channels. The interpretation of 
these results, however, is complicated by the fact that channel interaction varies across 
the electrode array (Jones et al. 2013). It is known that across-electrode differences in 
other psychophysical measures, e.g., detection thresholds, have a negative effect on 
speech understanding (Pfingst et al. 2004; Pfingst & Xu 2004; Bierer 2007; Long et al. 2014). 
Therefore, we propose that it is valuable to examine pitch discrimination across the entire 
electrode array rather than at only a few electrode contacts.

From a clinical perspective, there might also be interest in testing channel discrimination at 
individual electrode contacts. Potentially, it can help clinicians to optimize the CI fitting, e.g., 
to deactivate ineffective electrode contacts. Furthermore, it has been shown that subjects’ 
speech perception is related to their pitch discrimination ability (Snel-Bongers et al. 2012; 
Goehring et al. 2014). In these studies, however, the discrimination scores were obtained 
at a few electrode contacts only. To further evaluate pitch discrimination of CI users, we 
developed a tool to test channel discrimination along the whole electrode array, rather than 
at a few contacts. Doing this with an adaptive procedure is time-consuming. Therefore, we 
tested pitch discrimination at predefined inter-channel distances (ICDs) of 1.0, 0.5, and 0.25 
electrode contacts in order to save time. To distinguish our metric of channel discrimination 
from the JND of α (JNDα), as is commonly used in literature (Snel-Bongers et al. 2012; 
Shannon 1983), we called our metric Dα. This article shows the first results of conducting 
our channel discrimination test in 30 CI users. Additionally, we examined whether the found 
discrimination scores are related to subjects’ speech perception.

6.2. Materials and methods
6.2.1. Subjects 
Channel discrimination was tested in 30 adults implanted with a CI from Advanced Bionics 
(Sylmar, CA). All electrode arrays contained 16 electrode contacts, which are numbered from 
1 to 16 (apex to base). Table 6.1 shows the subject demographics. The reported strategy is 
each subject’s everyday life speech processing program, and the next column shows which 
contacts are not active in their program. The center frequencies allocated to the active 
electrode contacts were approximately evenly spaced on a logarithmic frequency scale 
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from 333 to 6665 Hz. All subjects were unilateral CI users, except S0408 who was implanted 
bilaterally. Subjects were randomly recruited from adult CI users who had at least 6 months 
of experience with their implant and an annual appointment at the audiology department 
of the Leiden University Medical Center, the Netherlands, in the period from October 2015 to 
June 2016. One subject (S0419) was excluded from further analysis due to high impedance 
variations across the electrode contacts. Consequently, the loudness could not be optimally 
balanced across the electrode array, as explained in the next section. Two additional subjects 
(S0426 and S0429) were excluded because they were previously diagnosed with cognitive 
impairment and did not understand the test procedure. 

Table 6.1. Subject demographics.
Subject Gender Age Etiology Implant Strategy Non-active 

contacts
Side

S0401 M 65 Congenital/Hereditary, pre-lingual HiRes90K 1J Fidelity 120 - AD

S0402 F 64 Congenital/Hereditary, pre-lingual HiRes90K 1J HiRes-S - AS

S0403 F 63 Other/Unknown, post-lingual CII + positioner HiRes Optima-S - AS

S0404 M 86 Meniere, post-lingual HiRes90K 1J HiRes Optima-S 15,16 AS

S0405 F 63 Rubella, pre-lingual HiRes90K 1J HiRes-S 2,5,9,14 AD

S0406 F 49 Congenital/Hereditary, post-lingual HiRes90K 1J HiRes Optima-S - AS

S0407 M 72 Other/Unknown, post-lingual HiRes90K MS HiRes Optima-S - AS

S0408 F 71 Other/Unknown, post-lingual HiRes90K 1J HiRes-S - AD

S0409 M 79 Other/Unknown, post-lingual HiRes90K MS HiRes Optima-S - AD

S0410 M 82 ECI, post-lingual CII + positioner HiRes-S - AD

S0411 F 66 Congenital/Hereditary, post-lingual HiRes90K 1J HiRes-S - AD

S0412 M 53 Congenital/Hereditary, post-lingual HiRes90K MS HiRes Optima-S - AS

S0413 F 50 Other/Unknown, post-lingual HiRes90K 1J Fidelity 120 - AS

S0414 M 59 Other/Unknown, post-lingual HiRes90K MS HiRes Optima-S - AD

S0415 M 34 Trauma, post-lingual HiRes90K MS HiRes Optima-S - AS

S0416 M 69 Other/Unknown, post-lingual CII + positioner HiRes-S 3,4,11,14 AS

S0417 M 83 Other/Unknown, post-lingual HiRes90K MS HiRes Optima-S - AS

S0418 M 70 Menigitis, post-lingual HiRes90K 1J HiRes-S 2,5,9,14 AD

S0419 M 61 Congenital/Hereditary, post-lingual CII + positioner HiRes-S 3,4,6,9 AS

S0420 F 54 Other/Unknown, post-lingual CII + positioner HiRes-S 1,3,5,9,13,15 AS

S0421 M 59 Congenital/Hereditary, post-lingual CII + positioner HiRes Optima-S - AD

S0422 F 72 Other/Unknown, post-lingual CII + positioner HiRes-S 2,4,8,13,15 AS

S0423 F 66 Congenital/Hereditary, post-lingual HiRes90K 1J HiRes-S - AD

S0424 M 49 Congenital/Hereditary, post-lingual HiRes90K 1J HiRes-S - AS

S0425 M 86 Congenital/Hereditary, post-lingual HiRes90K 1J HiRes-S - AS

S0426 M 47 Other/Unknown, post-lingual HiRes90K MS HiRes Optima-S - AD

S0427 F 52 Other/Unknown, post-lingual HiRes90K MS HiRes Optima-S - AS

S0428 F 77 Other/Unknown, post-lingual HiRes90K MS HiRes Optima-S - AS

S0429 M 84 Congenital/Hereditary, post-lingual HiRes90K MS HiRes Optima-S - AD

S0430 F 66 Congenital/Hereditary, post-lingual HiRes90K MS HiRes Optima-S 16 AS
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6.2.2. Channel-discrimination test
The channel-discrimination experiment was custom-made using MATLAB (Mathworks, 
Inc., Natick, MA) and the Advanced Bionics’ research tool, Bionic Ear Data Collection System 
(BEDCS). The test was based on current steering, which involves simultaneous delivery 
of current to adjacent electrode contacts (Townshend et al. 1987; Donaldson et al. 2005; 
Firszt et al. 2007). The locus of stimulation can be steered to sites between two physical 
contacts by varying the proportion of current delivered to each contact. The proportion 
of the total current directed to the basal contact of the contact pair was denoted as α, and 
the proportion to the apical contact as (1 − α). Consequently, α represents the distance 
between the spectral channels expressed in electrode contacts. Two stimuli were used; 
a probe stimulus based on current steering and a reference stimulus using a physical 
contact. These stimuli consisted of pulse trains of monopolar, symmetric biphasic pulses 
with phase durations of 32 µs. We used a pulse-rate of 1400 pulses per second, which is 
sufficiently high to avoid place-pitch and rate-pitch confusions (Shannon 1983; Townshend 
et al. 1987; McKay, McDermott, and Carlyon 2000; Zeng 2002). The total duration of both 
stimuli was 300 ms and the pause between stimuli was 500 ms.

First, electrode impedances were obtained to assess the devices’ compliance limits. Next, 
for all electrode contacts, the most comfortable level (MCL) was determined in linear 
clinical units (CU) with the use of an eight-point loudness scale (Potts et al. 2007). In this 
ascending loudness experiment, level 1 corresponds to the hearing threshold, level 5 
with MCL and level 8 with the highest acceptable loudness. To determine MCL, we started 
at a low level and increased the stimulus level with a step size of 5  CU until MCL was 
reached. If the stimulus level tended to exceed the compliance level, the phase duration 
was automatically increased by 10.8 µs to increase the charge according to the following 
formula: CU = pulse width (µs) x amplitude (µA) / 78.7. The number 78.7 is a correction 
factor without units, which is provided by the manufacturer. Afterwards, the MCL of each 
contact was subjectively balanced with the apically adjacent electrode contact.

The discrimination test itself was performed using the 3AFC paradigm, whereby the 
stimuli were presented in random order. The stimuli were accompanied by three different 
buttons displayed on a computer screen, which flashed simultaneously with the presented 
stimulus. The subjects were asked to indicate which stimulus was different in pitch, without 
receiving feedback about the correct answer. To avoid confounding effects from potential 
loudness cues, a level roving of ±10% relative to MCL level was applied to each stimulus. 
When applying level roving, one should be aware that even small level differences in the 



6

Channel discrimination along all contacts of the cochlear implant electrode array   |   115

stimulus level could have a substantial effect on pitch judgments (Shannon 1983). The 
level roving of 10% applied in this study was considered to be moderate. 

Prior to the actual discrimination test, a familiarization task was conducted with an ICD of 
two physical electrode contacts. The example was performed on five different electrode 
pairs across the electrode array. After verifying that the experiment was clear to the 
subject, the real experiment was started with α = 1. The test started at electrode 1 (apex) 
and all electrode pairs along the electrode array were tested consecutively. In this way, all 
electrode contacts were tested five times. Because 3AFC tests have a chance probability 
of 33.3%, 66.6% of the answers must be correct to statistically prove a true detection rate 
of more than 50% (Lawless 2010). Thus, based on five repetitions, we assumed that the 
electrode pair could be discriminated when four or five correct answers were given. In 
that case, we continued to a more difficult level by halving the tested α. If the number of 
correct answers was three or less, the electrode pair was not examined further. Following 
this approach, ICDs of 1, 0.5 and 0.25 were tested. The smallest α at which the probe and 
reference stimuli were discriminated correctly was set as the Dα score for the reference 
contact. If the subject could not discriminate α = 1, the Dα score was set to ‘>1’. 

6.2.3. Speech perception
The speech perception scores used in this study originated from the standard Dutch 
monosyllabic word test routinely measured at our center. The test consisted of consonant-
vowel-consonant (CVC) words (Bosman & Smoorenburg 1995) and was conducted in the 
free field using 48 items. For the bilaterally implanted subject (S0408), only speech scores 
obtained with both CIs were available. Consequently, subject S0408 was excluded from 
the analyses that involved CVC scores. All other subjects had no contralateral hearing that 
could have contributed to the speech score. Percent-correct phoneme score was used as 
a measure of speech perception. We used CVC scores obtained at the 1-year follow-up, 
because after that period the CVC scores are stabilized (Snel-Bongers et al. 2018). If these 
scores were not available, the scores at 2-year follow-up (S0423 and S0425) or at 6-months 
follow-up (S0426) were included. The scores were obtained with speech in quiet at 65 and 
75 dB SPL and with speech (65 dB SPL) in speech-shaped noises at signal-to-noise ratios 
(SNR) of +10, +5 dB. The speech in noise tests were performed by only those patients that 
had a score above 50% for the speech in quiet test at 65 dB SPL. The condition speech-in-
noise +5 dB SNR was not tested when the phoneme score in the +10 dB SNR condition 
decreased below 50%.
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Figure 6.1. Overview showing the Dα scores (y-axis) across the electrode contacts (x-axis) for all subjects. On top 
of each plot subject’s name and CVC score at 65 dB speech in quiet are shown. The CVC scores for subject S0408 
and S0416 were unknown. CVC indicates consonant-vowel-consonant.
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6.2.4. Data analysis
Heterogeneity of the Dα score across the electrode array was analyzed using a mixed-
effects ordinal regression model (Agresti 2002). The model contains a random intercept per 
subject and the position within the electrode array, either as ‘electrode contact number’ 
or ‘electrode region’, both being treated as categorical variables. Electrode region was 
defined as apex, contact 1-5; middle, contact 6-10 and base, contact 11-16. p values were 
computed using a likelihood ratio test comparing the full model (including position within 
the array) to a model without position (containing both a fixed and random intercept). The 
variations in Dα across the electrode array were illustrated using a segmented bar graph 
(Figure 6.2).
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Figure 6.2. Figure showing the distribution of Dα scores across three regions of the electrode array. The apical 
region (dark gray) corresponds with electrode contact 1-5, the middle region (gray) with contact 6-10 and the 
basal region (light gray) with contact 11-15. On top of each column, the total number of Dα scores is shown.

The effect of speech perception on channel discrimination in CI users was also tested using 
an ordinal mixed model. The model included the variables electrode region and speech 
perception. To account for clustering due to multiple measurements per individual, the 
model had a random intercept per subject. p values were calculated using a likelihood  
ratio test for comparing a model with and without the speech perception score. All statistical 
analyses were conducted using R version 3.5.0 with the ordinal package for regression 
analyses. The relationship between Dα score and speech perception is visualized in Figure 6.3.  
In this figure, subjects’ Dα scores are plotted as function of their CVC scores using boxplots. 
Additionally, the strength and direction of the relationship was assessed using Spearman’s 
rank correlation coefficient (rs), which is applicable for ordinal data.
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Figure 6.3. Boxplots showing the Dα scores across the electrode array (y-axis) as function of subject’s CVC score 
(x-axis). The gray vertical line shows the range from the Dα scores and the box represents the interquartile range 
(25-75%). The black line indicates the median. Spearman’s rank correlation (rs) was based on the median values. 
CVC scores were obtained in four different test conditions, resulting in one plot per condition (65 dB, 75 dB, +10 
dB SNR, +5 dB SNR). Results from prelingually deafened CI users were marked with an asterisk to distinguish 
them from the postlinguals. CI indicates cochlear implant; CVC, consonant-vowel-consonant; SNR, signal-to-
noise ratio.

6.3. Results
Figure 6.1 shows an overview of the Dα scores determined in the 27 subjects that 
completed the channel discrimination task. Large differences in Dα score were found 
between subjects (e.g. S0402 versus S0403) as well as within subjects (e.g. S0413 and 
S0427). Noteworthy is that, except for subject S0403, none of the patients could distinguish 
all the physical electrode pairs. The channel-to-channel variations in Dα score were further 
analyzed using a heterogeneity test. The variations in Dα score were significant, both across 
electrode contacts (p < 0.01) and across electrode region (p < 0.01). In addition, Figure 6.2 
illustrates how often each Dα score occurs in the apical, middle and basal region of the 
electrode array. The Dα scores were distributed non-uniformly over the three regions, and 
the Dα score 0.25 even does not occur in the basal region of the electrode array.
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We also examined whether the Dα score is related to the speech perception of the CI user. 
The ordinal regression model revealed a significant effect of CVC score on Dα score for 
speech perception in quiet at 65 dB (p < 0.001) and 75 dB (p < 0.001). Concerning speech 
perception in noise, the effect was also significant for the +10 dB SNR condition (p < 0.01), 
but not for the +5 dB SNR condition (p = 0.10). In Figure 6.3, subjects’ Dα scores are plotted 
as function of their CVC scores using boxplots. Note that, if multiple subjects have equal 
CVC scores, these CVC scores have been varied by ±1% to increase visibility. The boxplots 
display the range of Dα scores (gray vertical line), the median (black horizontal line) as 
well as the spread around the median based on the 25% and 75% quartiles (gray box). The 
different panels represent the four listening conditions, as depicted on the right side of 
each plot. Spearman’s correlation coefficients (rs), as calculated using the median values, 
indicate that the relationship between Dα scores and CVC scores is negative; higher CVC 
scores are correlated with lower Dα scores. The correlation is significant for the conditions 
65 dB (p < 0.001), 75 dB (p < 0.001) and +10 dB SNR (p < 0.05), which is in line with the 
results of the ordinal regression model. The results of the four prelingually deafened CI 
users are marked with the asterisk. These subjects generally have lower CVC scores and 
worse Dα scores than postlingually deafened subjects.

6.4. Discussion
This paper shows the first results of testing channel discrimination along all contacts of 
the electrode array. We developed a tool that assessed subject’s ability to discriminate 
spectral channels using predefined ICDs of 1.0, 0.5, and 0.25 electrode contacts. In the 
literature, channel discrimination has been tested only at a limited number of sites along 
the electrode array using an adaptive procedure (Koch et al. 2007; Firszt et al. 2007; 
Goehring et al. 2014). In these studies, different measures for discrimination ability were 
used. Converted to JND of α, JNDα’s of 0.14 (Koch et al. 2007), 0.21 (Firszt et al. 2007), 
0.71 (Goehring et al. 2014) were found on average across the electrode array. Compared 
to these JNDα’s, our median Dα scores were higher (see Figure  6.3). Considering the 
experimental designs, it is difficult to quantify differences in pitch discrimination scores 
across studies. For example, Koch et al. (2007) and Firszt et al. (2007) did not use loudness 
roving in their pitch ranking experiments. This could have led to a loudness cue and, 
therefore, an overestimation of the real ability to distinguish pitches. Furthermore, 
Goehring et al. (2014) found a mean JNDα of 0.69, 0.68, and 0.75 for the basal, middle, 
and apical regions, respectively. However, subjects who were unable to distinguish two 
adjacent physical electrodes (i.e., ICD was > 1.0) were excluded from this analysis, leading 
to an overestimation of overall performance. In contrast, we included the ‘Dα > 1’ scores in 
the results as well, consequently leading to higher Dα scores. 
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A benefit of our test procedure is that it provides insight in channel discrimination ability 
along the whole electrode array. The results show that the Dα scores vary largely from 
channel-to-channel as well as between subjects (Figure 6.1). The variations in Dα score 
were significant, both across electrode contact and electrode region. These results 
indicate the importance of testing all electrode contacts when studying electrode 
discrimination in CI users. Regarding clinical applicability, a detailed picture of subject’s 
discrimination ability could potentially help clinicians to optimize the fitting procedures, 
e.g., to deactivate ineffective electrode contacts.

The frequently observed ‘Dα > 1’ indicates that testing ICDs above 1 should be included 
in future discrimination experiments. Testing ICDs above 1 will result in better estimates 
of the actual channel discrimination, especially for CI users who are poor performers (e.g., 
S0402, S0405 and S0416). Further, it will gain more insight in the channel-to-channel 
variability in Dα scores. Latter aspect would also be worthwhile for studying the effect 
of intra-cochlear position of the electrode array on the Dα scores. DeBruyne et al. (2017) 
found that basally located contacts have worse discrimination than more apically located 
contacts, and de Miguel et al. (2018) found that the Nucleus CI532 has a more perimodiolar 
placement, and that this placement is related to a better electrode discrimination. 
Unfortunately, due to the large number of ‘Dα > 1’ scores, we think that current data do 
not allow further analyses on factors causing the across-site variations in Dα. However, 
in a follow-up study, the effect of intracochlear position of the electrode array on the Dα 
scores will be considered.

We also assessed whether the Dα scores were related to subjects’ speech perception. We 
found a significant relationship between subjects’ median Dα scores and their CVC scores. 
The reported correlation coefficients can be interpreted as being strong for the 65 dB and 
75 dB speech in quiet conditions, and as being moderate and weak for the +10 dB and 
+5 dB speech in noise conditions, respectively. Goehring et al. (2014) also investigated 
the relationship between mean electrode discrimination and speech scores (sentences 
in quiet) and found comparable results as we found. Note that, to achieve this result, 
they had to include ‘α >  1’ (meaning that no exact score was obtained) in the analysis 
as well. Due to the random subject selection, we also included four patients who were 
prelingually deaf. As expected, these subjects generally had worse CVC and Dα scores 
than postlingually deafened patients. These findings suggest that channel discrimination 
ability is a relevant factor in the performance of a CI user. Therefore, in the early phases of 
the rehabilitation program, the Dα score might be a useful predictor for subject’s speech 
perception later on.
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The discrimination test generally required less than 30 minutes; determining the MCLs 
lasted approximately 15 minutes and conducting the 3AFC task lasted another 10 
minutes. This means that our test can be conducted within the time available for a regular 
appointment in our outpatient center. To save time, we decided to test predefined values 
of α only, rather than using an adaptive procedure. From a statistical point of view, the 
reduced number of tested α values can be seen as a measurement error with respect to the 
true JND of α. As the α values are pre-specified, the error is non-differential with respect 
to an outcome such as speech recognition. Any association found between Dα scores and 
speech recognition would, therefore, be weakened. On the other hand, current method 
does not provide precise Dα scores. In a next version, we will make the discrimination test 
semi-adaptive in order to estimate the Dα more precisely. In this test, the ICD was halved 
if the subject could discriminate the stimuli, while the test was aborted if an α was not 
discriminable. Alternatively, the ICD can be doubled if the subject cannot discriminate 
the stimuli, or one can test an α value in between a discriminable and non-discriminable 
α. To illustrate, while still limiting the number of test values to 3, the following sequences 
would be possible: ICD = 1 (fail), ICD = 2 (pass), ICD = 1.5 (pass); or ICD = 1 (pass), ICD = 0.5 
(fail), ICD = 0.75 (pass). Lastly, the number of repetitions has to be weighed against the 
testing time. In this study, five repetitions were used. More repetitions will increase the 
precision and reliability of the Dα score and it will decrease the effect of chance guesses. 
It is our intention to evaluate these and other improvements in future versions of the 
discrimination test, whereby a test time below 30 min remains important for the clinical 
applicability of the test.

6.5. Conclusions
To conclude, this paper describes a novel custom-made pitch discrimination experiment 
that enables testing along the whole electrode array within 30 min. The large variations in 
Dα emphasize the importance of testing the complete electrode array, rather than at only 
a few contacts. The correlation between channel discrimination and speech perception 
indicates that testing channel discrimination along the whole electrode array might be 
a useful tool for getting insight into the performance of CI recipients. Moreover, testing 
this could potentially help clinicians optimize the fitting procedures, e.g., to deactivate 
ineffective electrode contacts.
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The research presented in this thesis focused on the clinical applicability and relevance 
of electrically evoked compound action potential (eCAP) measurements. The studies 
covered both eCAP-based stimulation thresholds and spread of excitation (SOE). Several 
new insights were presented, which help researchers and clinicians to better rate eCAPs 
for clinical use and to understand cochlear implant (CI) stimulation. The main findings of 
this thesis are:

1. There is low evidence that eCAP thresholds can be used to predict fitting levels of 
individual CI recipients (Chapter 2: de Vos et al. 2017). Our follow-up study showed 
that eCAP thresholds are likely not precise enough to predict fitting levels of an 
individual CI user. We recommend that future research on eCAP thresholds should be 
accompanied by a measure of precision to correctly apply eCAP thresholds in clinical 
practice (Chapter 3: Biesheuvel et al. 2017).

2. eCAP-based spatial forward masking (SFM) curves show the interaction between probe 
and masker stimuli, but the curves need a post-processing step (i.e., mathematical 
deconvolution) to derive SOE from the individual stimuli, either the probe or masker 
(Chapter 4: Biesheuvel et al. 2016). Our newly developed deconvolution method is 
a valid and useful tool to study SOE, and it revealed that excitation areas become 
narrower when the stimulus level was lowered, which could not be derived from the 
SFM curves themselves (Chapter 5: Biesheuvel et al. 2021).

3. Our custom-made channel discrimination test turned out to be a useful tool for getting 
insight into the CI users’ ability to discriminate different (virtual) channels across the 
electrode array. The channel discrimination score correlated with the CI users’ speech 
performance, suggesting that the test can be used to find less effective electrode 
contacts, with the purpose to turn them off in the speech processing strategy in order 
to potentially increase the speech performance (Chapter 6: Biesheuvel et al. 2019a).

These findings contributed positively to our knowledge about CIs, and they also lead 
to new research ideas. However, we still encountered some difficulties with linking the 
eCAP outcomes to clinically relevant parameters. For example, we could not yet link 
the excitation profiles to speech intelligibility, while it is expected that more selective 
stimulation would increase speech performance. We also do not have a working solution 
for estimating the eCAP thresholds more precisely to further study the potential of eCAP 
thresholds in fitting cochlear implants. To guide future research on the topic presented in 
this thesis, we will discuss which complexities we encountered in recording the eCAPs and 
how to deal with them. Next, we will elaborate on the future perspectives of the (eCAP) 
measurements presented in this thesis and how to continue on these items.
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7.1. Complexities encountered in recording eCAPs
When recording eCAPs for research or clinical use, it is important to realize that the eCAP is 
affected by physiological properties from the environment in which the eCAP is generated 
and by properties from the recording interface with which the eCAP is measured. This 
makes it challenging to record a good and usable eCAP, that really reflects the activity of the 
nerve fiber. In this section, we will discuss factors that affect the eCAP signals encountered 
in our studies. A comprehensive overview of all the aspects involved in recording eCAPs is 
outside the scope of this work, and we refer readers who are interested in a more general 
review of eCAPs to other literature (Mens 2007; Miller et al. 2008; Hughes 2013; He et al. 
2017).

7.1.1. Stimulus level
In three of our studies, intra-operative eCAP measurements were used (Chapter 3-5). The 
main advantage of these measurements is that under anesthesia relatively high stimulus 
levels can be applied, often above the tolerability limit in awake subjects. In the intra-
operative setting, stimulus levels with a maximum of around 1200 µA are typically used, 
while stimulus levels in the regular speech processing strategy are often a factor of two 
lower (depending on the pulse width as well). High stimulus levels are advantageous 
for measuring clear eCAP signals with a good signal-to-noise ratio, which make it is 
easier to recognize eCAP morphology, thereby simplifying eCAP analyses. However, it 
is hard to compare the intra-operative data with behavioral data. Behavioral data can, 
at the earliest, be collected a few months later, when the CI recipient is rehabilitated. It 
is known that, during the first months after implantation, physiological changes in the 
cochlea can occur that lead to certain electrophysiological changes, for example different 
impedances or eCAP thresholds (Hughes et al. 2001; Spivak et al. 2011). In this thesis, intra-
operative data was compared with behavioral data, collected up to years later, whereby 
the effect of timing potentially affected the outcomes. Although it is difficult to avoid this 
in retrospective studies and using intra-operative eCAP data, it is recommended to collect 
all data within a limited time frame. 

Later on, we collected a complete data set with both objective and subjective data 
measured in one session on the same day. We collected eCAP-based spatial forward 
masking (SFM) curves, electrical field imaging data, steered quadrupole thresholds (Bierer 
et al. 2015; O’Brien et al. 2016) and pitch discrimination data (Biesheuvel et al. 2019a). 
One of the ideas was to study electrode interaction, whereby the objective excitation 
density profiles (EDPs) obtained with the deconvolution method (Biesheuvel et al. 2016) 
would be compared with the subjective channel discrimination (data from Chapter 6). 
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Unfortunately, we could not measure reliable eCAPs (amplitude > 0.2 mV) in 13 of the 
30 awake patients. These patients did not tolerate the high current levels required to 
elicit a clear eCAP response. In 17 of the 30 patients, we could measure reliable eCAPs, 
but not always on the required number of electrode contacts, as we defined that the 
deconvolution method needs reliable eCAPs on at least ten different electrode contacts in 
order to reliably estimate the EDPs (Biesheuvel et al. 2016). This made our post-operative 
eCAP data collected in awake subjects less usable for SOE analyses.

7.1.2. Voltage compliance limit
In Chapter 3, amplitude growth functions (AGFs) were analyzed, whereby we frequently 
observed a rollover at the top of the AGF (Figure 3.2C). However, the eCAP amplitude 
typically tends to increase with stimulus level, in line with most physiologically evoked 
responses (Hughes 2013). The roll over may be caused by the voltage compliance limit, 
which hindered the higher stimulus levels to be more effective. The voltage compliance 
limit determines the maximum amount of current that physically can be delivered 
through an electrode contact (Wolfe & Schafer 2014). All electrical stimulation follows 
Ohm’s law: voltage (V)  = current (A) × impedance (Ω), whereby the maximum current 
that can be delivered to the electrodes is determined by the voltage compliance and 
impedance seen between the electrode contacts. In CIs, the compliance voltage, that 
is, the maximum voltage that the current source in the CI can deliver, is determined by 
the device electronics and is approximately 7.2 V in the Advanced Bionics system. The 
impedance seen between the electrode contacts is determined by both the tissue (to 
the first order acting as a resistance) and the two electrode-tissue interfaces (to the first 
order acting as a capacitance). The total impedance of an electrode contact is typically 
3–10 kΩ. The AGFs in Chapter 3 were measured using stimuli ranging from 0 to 500 CU, 
which corresponds with 0 to 1200 µA according to the equation1: clinical unit (CU) = pulse 
width (μs) × amplitude (μA) × 0.013. Suppose the impedance is 7.2 kΩ, the AGF starts to 
flatten at a stimulus level of 1000 μA, which is 411 CU.

The voltage compliance limit played a role in Chapter 5 as well. The SFM curves were 
collected at 1200 µA, but at some electrode contacts the impedance was so high that 1200 
µA effectively could not be reached. We disabled these ineffective electrode contacts to be 
sure that our measurements were not limited by the compliance limit (e.g., in S008, S015, 
S021, see Table 5.2). Alternatively, the effectiveness of the stimulus can be guaranteed 
by widening the pulse width, because the total stimulus charge (in coulomb) is equal 
to the amplitude (in ampere) times the width (in seconds) of the pulse. Note that the  
 
1  Personal communication with P. Boyle, senior director of external cooperation at Advanced Bionics.
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stimulus pulse should not be too wide either, as the eCAP than further disappears into the 
stimulus artifact, making it more difficult to analyze the eCAP. In our custom-made eCAP 
measurement software, introduced in 2015 and used in Chapter 5, the option to increase 
the pulse width was not available. In a next version, this option should be incorporated in 
order to increase the number of successful eCAP recordings and usable SFM curves.

7.1.3. Noise level
One of the key messages of this thesis is that eCAP recordings have a measurement error. 
The measurement affects both the precision and accuracy of the eCAP metrics and should 
be considered when studying the clinical value of eCAPs. Note that ‘accuracy’ is defined 
as the approximation of a measurement to the actual value, ‘precision’ is defined as the 
closeness of a measurement to the same value as obtained with repeated measures 
(Stronks et al. 2019). In Chapter  3, we have seen that noise has a high impact on the 
precision of the eCAP thresholds, especially if the eCAP threshold is determined based 
on the last visible eCAP. Three different types of noise can be distinguished: (1) noise from 
electrophysiological processes inside the human body, (2) system noise from the electronic 
measurement circuit, and (3) interference from outside the body. In eCAP recordings, it 
is generally assumed that the eCAP signal is not disrupted by neural or muscle activity 
in the body (Miller et al. 2008; Undurraga et al. 2012). System noise is a stationary noise 
that originates from the electronic components inside the implant, for example, resistors 
and switched capacitors (Bes et al. 2010). It turned out that the Advanced Bionics (AB) 
measurement system has a higher system noise (20-50  µV) than the Cochlear system  
(2-5 µV) (Glassman & Hughes 2013). The lower the noise level, the more accurate the eCAP 
waveform is and the more precise the eCAP threshold can be determined (Glassman & 
Hughes 2013; Biesheuvel et al. 2017). A straightforward method to reduce random noise 
is ensemble averaging, i.e., averaging multiple eCAP waveforms obtained under identical 
stimulus conditions. The noise level decreases by a factor of 1/√n, where n is the number of 
signal averages (Undurraga et al. 2012; Stronks et al. 2019). The third potential noise source 
in eCAP recordings is related to disturbances coming from outside the body. Because the 
intra-cochlear recording contact is close to the source and the recording circuit is fully 
implanted, disturbances from outside the body have little effect on the eCAP. However, 
one situation should be addressed in more detail in light of this thesis. 

In the data from Chapter 3, which was recorded intra-operatively by a colleague from 
January 2010 to December 2015 and analyzed retrospectively, we observed that many 
of the eCAP recordings were contaminated with large stimulus artifacts, rendering them 
useless. Later on, when I did the measurements by myself, I found that these disrupted 
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eCAPs were likely recorded while the surgeon was closing the wound behind the ear. 
During that process, the skin or muscle flap that covers the ground electrode (implant 
casing) may be moving, causing brief disruptions in the recording circuit. During such 
disruptions, the stimulus builds up charge in the tissue, which cannot be returned to the 
reference electrode until the circuit is closed again. Consequently, stimulus artifacts are 
no longer synchronous, resulting in a failing of the artifact rejection paradigm and hence 
large stimulus artifacts. These artifacts are the reason that we had to exclude many eCAP 
recordings from our analysis (chapter 3). We, therefore, recommend recording eCAPs only 
when the surgeon is not performing surgery on the patient. For the data collection in 
Chapter 5, we interrupted the eCAP recordings when the surgeon was performing surgery. 
As a result, however, we were not able to complete the measurement on all contacts of 
interest (3, 9, 15) due to time constraints in the operating theatre.

7.1.4. Neural status
We noticed that, when measuring eCAPs postoperatively in awake CI users, stimuli may 
be audible while the eCAP is still not recordable, indicating an offset difference between 
eCAP threshold and behavioral thresholds. This offset is in line with what we found in 
Chapters 2 and 3, namely, that a shift is required to fit the eCAP threshold to the behavioral 
fitting levels. The offset can likely be explained by the neural health and the position of 
the recording contact relative to the active nerve fibers. The results of Snel-Bongers et al. 
(2013) indicated that the absence of unmyelinated terminals at the end of the dendrite 
(this represents a slight degeneration of the auditory nerve) causes a faster excitation of the 
dendrite and a lower subjective threshold compared to an intact auditory nerve. Further, 
research by Briaire & Frijns (2005) showed that degeneration of the nerve fibers causes 
deviant single fiber action potentials (SFAP) compared to a healthy, intact nerve. Their 
model simulations showed that, in degenerated dendrites and cell bodies, the antidromic 
SFAPs are delayed or even absent. Since the eCAP is the sum of SFAPs, deviating SFAPs 
will certainly affect the shape and recordability of the eCAP, and thus the precision and 
accuracy of the eCAP threshold level.

7.1.5. Recording contact
The observed offset difference between eCAP thresholds and behavioral thresholds can 
also be explained by the position of the recording contact relative to the active nerve 
fibers. A smaller distance between the recording contact and the excited nerve fibers 
would lead to a lower eCAP threshold, thereby minimizing the offset difference. However, 
as explained in the introduction of this thesis, due to the stimulus artifact, the recording 
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contact is generally situated one or two contacts away from the locus of excitation. 
Furthermore, it is known that the SFAPs closest to the recording contact contribute more 
to the eCAP than the SFAPS further away. This is demonstrated by the so-called scanning 
curve, which shows the eCAP amplitude evoked with a fixed probe position plotted as a 
function of a roved recording contact. Close to the probe, the eCAP amplitude is larger 
than when it is recorded at a larger distance. So, the proximity of the recording contact 
definitely affects the accuracy of the eCAP threshold.

The role of the recording contact is also relevant when studying spatial eCAP properties 
like SOE (Chapters 4 and 5). In Chapter 4, we found that in the apex of the cochlea the EDPs 
are generally broader than in the base. We discussed in Chapter 4 that this could be caused 
by the geometry of the cochlea and cross-turn stimulation. However, the scanning curves 
indicate that we also should consider the position of the recording contact. Scanning 
curves often show larger eCAP amplitudes apical from the stimulus than basal from the 
stimulus (van der Beek et al. 2012).  Briaire & Frijns (2005) suggest that the asymmetry in the 
scanning curves can be explained by the different contributions of the orthodromic SFAPs 
and antidromic SFAPs to the eCAP. The orthodromic SFAPs propagate via the axons to the 
central nervous system, while the antidromic SFAPs move via the peripheral processes 
to the hair cells. The apical contacts of the intra-cochlear electrode array mainly record 
the antidromic SFAPs in the peripheral processes and the basal contacts mainly record 
the orthodromic SFAPs in the axons. Because the peripheral processes are closer to the 
recording contacts, due to the anatomy of the cochlea and the position of the electrode 
array, apical contacts likely record larger eCAPs than basal contacts. Thus far, the position 
of the recording contact is not included as a correction factor in our method, because 
we first worked on the validity of the deconvolution method with a limited number of 
parameters. Consequently, we only included spatial forward masking (SFM) curves from 
electrode contacts 3–16 and we excluded the two most apical SFM curves in our analyses. 
These curves were measured with a recording electrode located two contacts basal from 
the stimulus, which potentially deviates from the apically recorded curves. In future 
research, we would like to address the effect of the position of the recording contact on 
the eCAP data, in order to include all available data in our analyses.

7.2. Future perspectives
Thus far, we have discussed some complexities and complications that we encountered in 
eCAP recordings. In the next section, we will discuss our future perspectives on the (eCAP) 
measurements presented in this thesis.
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7.2.1. eCAP thresholds
Our literature review showed that there is no evidence that eCAP thresholds are good 
predictors for the minimum (T) or maximum (C/M) stimulation levels (Chapter 2). Our 
follow-up study about the precision of eCAP thresholds showed that the precision is 
too low to expect a strong correlation between eCAP threshold and behavioral fitting 
levels (Chapter 3). However, in clinical practice, there is still demand for a method for 
the objectively fitting of cochlear implants to people who provide little feedback about 
the adjustments made by the audiologist, for example, young children or people with 
intellectual disabilities.

In our opinion, the search for a clinical application of eCAP thresholds as an objective 
fitting method for CI users will be unsuccessful as long as the research does not meet 
some basic conditions as described in the systematic review. We stated that the subjects 
must be selected randomly, the exclusion of poor eCAP responders should be reported, 
the behavioral threshold levels must be measured blinded from the eCAP recordings, 
the recordings should be described in detail, and the correlation between eCAP and 
behavioral levels must be investigated within individual subjects instead of across the 
study population, in order to draw valid conclusions for eCAP-based fitting of individuals 
(de Vos et al. 2017). In addition, it would be helpful if there is a consensus between clinics, 
and even between audiologists within a clinic, about the way that subjective and objective 
data are collected. As long as each clinic collects its own data, using its own methods and 
in a relatively small population, there will not arise a clear picture of the usefulness of eCAP 
thresholds for general clinical practice. Otherwise, at best, eCAP thresholds can function 
as a helpful guide within the fitting practice of a single audiologist (Potts et al. 2007).

Next to a clear study design, we also need some improvements in the recording system 
to be able to better study the relationship between eCAP thresholds and behavioral 
thresholds. In the context of the ReaSONS project, we want to highlight a potential role 
of the newly developed neural response amplifier (NRA) for studying eCAPs and eCAP 
thresholds. From the technical side, there might be potential for better estimating eCAP 
thresholds with the NRA. The NRA has a very low systemic noise of 1.1  pV and a wide 
dynamic range (Bes et al. 2010). These properties are advantageous for accurate and 
precise eCAP measurements, especially around the threshold level. The low systemic 
noise is also beneficial for measuring clear amplitude growth functions (AGF), leading 
to small measurement errors when estimating eCAP thresholds (Biesheuvel et al. 2017; 
Stronks et al. 2019).



132   |   Chapter 7

7.2.2. Spatial forward masking curves
In Chapter 4, we postulated that the width of the SFM curve measured with forward 
masking is not an adequate measure of SOE. We proposed a new approach to determine 
SOE using the mathematical principle of (de)convolution. With the deconvolution method, 
we translated SFM curves into excitation areas attributable to either the masker or probe 
stimuli, the so-called EDPs (Chapter 4). The method explained inter-subject variations, 
e.g., differences in eCAP amplitudes, as well as across-the-array variations, e.g., asymmetry 
in the SFM curve. In addition, the excitation profiles from the deconvolution method 
matched well with the excitation profiles simulated in our computational model of the 
human cochlea (Chapter 5). We also showed that the deconvolution method, which was 
developed with HiRes90K implants from Advanced Bionics, is suitable for analyzing SFM 
curves recorded with Nucleus 422/532 implants from Cochlear (Biesheuvel et al. 2019b). 
Unfortunately, we could not yet link the EDPs to clinical measures like speech performance 
or channel discrimination. So, in future research, we will further elucidate the EDP as an 
outcome measure of SOE, to answer the many unknowns and to bring this technique to 
the clinic. Among the questions we have are: What does the EDP actually reflect; is it a 
relative or an absolute measure of nerve excitation? How well reflect two-dimensional 
EDPs the three-dimensional nerve fiber distributions in the cochlea? Which EDP property 
is relevant for pitch coding: the locus of the center of excitation, or the position of the EDP 
edges? Is the width of the EDP related to speech performance, or is the EDP not precise 
enough?

Parallel to our work, which was at first presented at the Objective Measures congress in 
Toronto (Briaire et al. 2014), a similar method for analyzing SFM curves was developed by 
Cosentino et al. (2015): the so-called ‘panoramic eCAP’ method. The underlying principles 
of the deconvolution method and the ‘panoramic eCAP’ method were quite similar; both 
methods were based on an optimization routine to estimate the excitation patterns 
underlying the SFM curves. However, there were also some fundamental methodological 
differences. The following section discusses the main differences between the two 
methods to find out which (methodological) aspects should be considered in future 
research.

Firstly, our deconvolution method is developed using intra-operative SFM curves recorded 
with high stimulation levels. The stimulus levels were set equally across all electrode 
contacts of the array. In awake subjects, the SFM curves were collected using maximum 
acceptable loudness (MAL), whereby the lowest MAL level across the electrode array was 
set to all other contacts as well. A limitation of this procedure is that, in case of substantial 
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MAL level variation across the array, the lowest MAL level is not so effective for the other 
contacts. Due to the equal stimulus level across the array, smaller eCAP amplitudes must 
lead to less excitation or smaller EDPs and vice versa. Cosentino et al. (2015) used the 
most comfortable loudness (MCL) level per electrode contract along the array. The use of 
MCL levels implicates that each active contact must lead to an excitation profile, because 
the stimulus is clearly heard at the MCL level. Further, these excitation profiles must have 
approximately equal areas, as they encode for equal loudness. The MCL levels are more 
practical in awake subjects, as they are less exhaustive for the subject and allow recording 
both the eCAPs and behavioral data in one session. However, the use of either MCL or MAL 
stimulus levels has consequences for the EDP parameterization. To illustrate, Cosentino et 
al. (2016) assumed that poor neural regions were reflected by shifted excitation patterns, 
because the stimulus is heard at MCL level and thus the excitation pattern must exist. In 
our deconvolution method, all stimulus levels were equal and poor neural regions were 
reflected by smaller eCAPs, consequently leading to locally smaller or absent EDPs.  Whether 
a poor neural region is best reflected by a shifted or an absent excitation pattern must 
be further validated. Ideally, this validation is performed with an independent method 
or model. Garcia et al. (2021) recently published a follow-up regarding ‘panoramic eCAP’, 
whereby they used computer simulations to create SFM curves with poor neural regions 
and, subsequently, tried to detect them with the ‘panoramic eCAP’ method. However, such 
a backward approach has the limitation that both the generated and solved dead regions 
are based on the same model assumptions. We suggest to validate the dead-region-
detection of both methods using simulations in an independent model, for instance, our 
computational model of the human cochlea (Frijns et al. 1995; Frijns et al. 2000; Briaire 
& Frijns 2000b; Briaire & Frijns 2000a; Kalkman et al. 2014; Kalkman et al. 2015; Kalkman 
et al. 2022). With our computational model, it would be possible to model poor neural 
regions. Subsequently, based on these poor neural regions, eCAP-based SFM curves can 
be simulated, and these curves can be translated back to EDPs using the deconvolution 
method. Next, the obtained EDPs can be compared with the simulated dead regions to 
validate them. Garcia et al. (2021) proposed another nice idea to validate the detection of 
poor neural regions. They introduced ‘tired regions’ in the SFM curves by presenting pre-
pulses on a specific electrode contact before every eCAP recording. Next, the underlying 
excitation patterns were estimated, whereby the contribution of the excitation patterns 
to the SFM curves with tired regions was weighted using a neural health factor. However, 
excitation patterns that are reduced by a neural health factor do no longer match the 
initial stimulation at MCL level, coded by unity area under the Gaussian curve. So, it is 
more likely that, when using stimuli at MCL level, a poor neural region is reflected by a 
shifted excitation pattern (neighboring nerve fibers contribute to the loudness) than by 
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a smaller excitation pattern. We think that our deconvolution method, based on equal 
MAL levels across the electrode array, deals better with tired regions simulated with pre-
pulses. Our EDPs have more free parameters and are not bound to loudness. Further, the 
EDP sizes are directly related to the eCAP amplitudes (see Figure 4.8). So, tired regions 
reflected by smaller eCAPs can be translated into smaller EDPs. It would be nice to study 
the tired regions concept in more detail with our deconvolution in future research.

Secondly, both our deconvolution method and the ‘panoramic eCAP’ method do not 
consider the effect of the recording contact. However, as described earlier, the recording 
contact might play a role in the shape of the SFM curve and thus in the EDPs derived from 
the SFM curve. Yet, we do not know how the recording effect best can be implemented in 
the deconvolution method. We might develop a correction factor like the offset parameter 
(representing the noise floor) and the scaling parameter (required for an arithmetic 
correction). Alternatively, the NRA in combination with a new and efficient electrode 
design (Lawand 2015) can play a role here. Due to the companding technique, the NRA 
can record eCAPs while they were not distorted by the stimulus artifact (Bes et al. 2010). 
In that case, it is no longer necessary to place the recording contact several electrode 
contacts away from the stimulating contact. In combination with a new horse-shoe-
shaped electrode design, with a recording contact surrounding the stimulus contact the 
effect of the recording position can be minimized and be studied in more detail (Lawand 
2015, Page 129).

7.2.3.  Channel discrimination
Finally, we will discuss the future perspectives of our custom-made channel discrimination 
test. We developed a test that assessed the channel discrimination ability of CI users along 
the whole electrode array within 30 minutes. The test provided insight into the variation 
of discrimination scores (Dα) across the electrode array. Further, we found that channel 
discrimination is positively correlated with speech perception (Chapter 6). We also 
explored whether the Dα scores correlate with the eCAP-based EDPs. However, at first 
glance, no relationship was found between the Dα scores and the EDP sizes, or between 
the Dα scores and the overlap ration of adjacent EDPs. It is likely that the precision of the 
channel discrimination test played a role here. The current test provided a rough estimate 
of channel discrimination which was accepted as a consequence of limiting the test time. 
The EDPs were also a rough estimate, as we tried to estimate the excitation density of 
many nerve fibers by parameterized Gaussian functions. We think that both the Dα scores 
and EDPs need some refinement before we can study CI performance using eCAP-based 
EDPs. 
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Further, the accuracy of the Dα scores, which has not yet been studied in detail, may play 
a role as well. To study the accuracy, the ICDs could be compared with the more accurate 
and even more time-consuming just noticeable difference (Snel-Bongers et al. 2012), 
which can be seen as the golden standard. Alternatively, the Dα scores could be validated 
using psychometric functions. A psychometric function depicts the discrimination ability 
(y-axis) as function of a range of ICDs (x-axis), assuming a high Dα score for large ICDs (>2) 
and a low Dα score for ICDs close to zero. The point where 50% of the ICDs were properly 
distinguished is typically chosen as the ‘threshold’ or the discrimination score. Collecting 
psychometric curves may also be time-consuming, but the curves could provide accurate 
ICDs, including estimates of the threshold reliability (Wichmann & Hill 2001a; Wichmann 
& Hill 2001b). Further, the ICDs at which the discrimination test was performed should 
be reconsidered, because our current test led to too many ‘> 1’ outcomes. In the current 
test, we started at ICD = 1 and the ICD was halved if the subject could discriminate the 
stimuli, while the test was aborted if an α was not discriminable. Alternatively, the ICD can 
be doubled if the subject cannot discriminate the stimuli, or one can test an α value in 
between a discriminable and non-discriminable α. Next, the number of repetitions has to 
be weighed against the testing time. In the current test, five repetitions were used to save 
time. However, with six of seven repetitions, we could better approach the turning point 
of the 3AFC test (66%). Further, more repetitions will also decrease the effect of chance 
guesses.

We think that, after further improving the accuracy and precision, the channel 
discrimination test has potential for both research and clinical practice. We will work on 
linking the Dα scores to the eCAP-based EDPs in order to further investigate SOE and its 
relation to CI performance. Moreover, accurate and precise Dα scores could potentially 
help clinicians optimize the fitting procedures, e.g., to deactivate ineffective electrode 
contacts.

7.3. Concluding remark
This thesis showed that eCAP research in cochlear implants is challenging and remains 
challenging. The studies provided a closer look at stimulation thresholds and spread of 
excitation in cochlear implants, which for sure helps CI researchers in their work. We are 
curious how the items addressed in this thesis evolve, and where the CI research stands 
within 10 years. Will new recording techniques, more precise eCAP measurements and 
intelligent analyses lead to totally objective CI fittings, attuned to the characteristics of the 
auditory nerve and the needs of the CI user?
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8.1. Algemene introductie
Hoofdstuk 1: Goed kunnen horen is heel belangrijk voor het welzijn van de mens. Het 
is daarom essentieel dat een gehoorverlies goed wordt gerevalideerd. Bij een ernstig, 
perceptief gehoorverlies kan de geluidsverwerking in de cochlea (ook wel het slakkenhuis 
genoemd) zodanig verstoord zijn dat een hoortoestel onvoldoende ondersteuning biedt. 
Een cochleair implantaat (CI) kan dan een oplossing zijn. Een CI is een apparaat dat geluid 
direct doorgeeft aan de gehoorzenuw, door de zenuw elektrisch te prikkelen via een 
elektrode array in het slakkenhuis. Deze elektrische prikkels worden waargenomen als 
geluid. 

Het CI heeft ook een telemetrie functie waarmee de ‘electrically evoked compound action 
potential’ (eCAP) kan worden gemeten. De eCAP is de optelsom van alle actiepotentialen 
die na elektrische stimulatie ontstaan in de zenuwvezels in het slakkenhuis. In het verleden 
is er veel onderzoek gedaan naar de eCAP. Men was vooral benieuwd of de eCAP informatie 
kon geven over de werking van het CI en de gehoorzenuw. In de praktijk bleek het lastig 
om de eCAP-signalen goed te kunnen analyseren en om een relatie te vinden tussen de 
eCAP en klinische uitkomstmaten zoals spraakverstaan. Het lijkt erop dat de technische 
beperkingen van de telemetrie functie grote invloed hebben op de nauwkeurigheid van 
de eCAP en daarmee ook op de klinische toepasbaarheid van de eCAP. Met het project 
Real-time Sensing Of Neural Signals (ReaSONS) is geprobeerd een stap verder te komen 
met het eCAP onderzoek. Het ReaSONS-project is een samenwerking tussen het Leids 
Universitair Medisch Centrum en de Technische Universiteit Delft en het is gefinancierd 
door Stichting Technologische Wetenschappen (projectnummer 11693). Het project had 
twee doelen: (1) het ontwikkelen van een neurale responsieversterker om betrouwbaar en 
nauwkeurig eCAPs te kunnen meten; (2) het onderzoeken van de klinische toepasbaarheid 
en relevantie van eCAP metingen. Het eerste doel is uitgewerkt door een promovendus 
bij de Technische Universiteit van Delft. Het tweede doel is uitgewerkt in dit proefschrift.

8.2. Systematisch literatuuronderzoek naar het objectief instellen van CI’s
Hoofdstuk 2: Als eerste hebben we gekeken naar de toepasbaarheid van eCAPs als 
objectieve maat voor het instellen van het CI. Bij een bepaalde groep CI-gebruikers, 
bijvoorbeeld jonge kinderen, is het lastig om het CI goed in te stellen. Dit komt onder 
andere doordat zij geen goede feedback kunnen geven over het functioneren van het 
CI. In het verleden is er onderzoek gedaan naar de vraag of eCAP metingen bruikbaar 
zijn als hulpmiddel voor het instellen van het CI. Sommige onderzoeken concluderen dat 
de objectieve eCAP-drempel, dat is de minimale hoeveelheden stroom die nodig is om 
een eCAP op te wekken, een goede voorspeller is van de subjectieve gehoordrempel op 
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hetzelfde elektrode contact. Bij veel van deze onderzoeken leken de onderzoeksmethoden 
en conclusies echter niet valide. Door middel van een systematische review van de 
literatuur hebben we gekeken hoeveel bewijs er nu eigenlijk is dat eCAPs bruikbaar 
zijn voor het aanpassen van CI’s. Uiteindelijk bleken slechts enkele studies een goede 
onderzoeksmethode te gebruiken en deze studies kwamen tot de conclusie dat de eCAP 
drempel geen goede uitkomstmaat is voor het instellen van het CI.

8.3. De nauwkeurigheid van eCAP drempels
Hoofdstuk 3: De volgende vraag over eCAP drempels die ons bezig hield was: waarom 
is er geen verband tussen de eCAP drempels en de subjectieve gehoordrempels van de 
CI-gebruiker, terwijl de meeste onderzoekers deze relatie wel verwachten? Om dit te 
onderzoeken hebben we gekeken hoe nauwkeurig eCAP drempels zijn en of deze in de 
huidige vorm bruikbaar zijn voor het voorspellen van subjectieve gehoordrempels. Het 
onderzoek liet zien dat de eCAP-drempels, zoals bepaald met de veelgebruikte ‘linear 
regression’ methode en ‘last visible’ methode, te onnauwkeurig zijn voor het voorspellen 
van subjectieve gehoordrempels van CI-gebruikers. 

Kort samengevat: hoofdstuk 2 en 3 laten zien dat, wil men eCAPs gebruiken voor het 
instellen van CI’s, er betere meetsystemen en nauwkeurigere onderzoeksmethoden 
ontwikkeld moeten worden.

8.4. Nieuwe methode voor het bepalen van excitatiegebieden
Hoofdstuk 4: Naast het analyseren van de eCAP-drempels, hebben we ook gekeken hoe 
de eCAP gebruikt kan worden om de grootte van het excitatiegebieden te bepalen. Er 
is veel belangstelling voor de vraag of de grootte van de excitatiegebieden, oftewel de 
‘spread of excitation’ (SOE), correleert met het spraakverstaan van de CI-gebruiker. De 
verwachting is dat kleinere excitatiegebieden zorgen voor een betere spatiële resolutie 
(onderscheiding van verschillende electrode contacten) en daarmee ook voor een beter 
spraakverstaan. We hebben kritisch gekeken naar de huidige methoden voor het bepalen 
van de SOE met behulp van eCAPs. We zagen dat deze methoden te simplistisch waren 
en geen recht doen aan de eCAP metingen. Daarom hebben we een nieuwe methode 
ontwikkeld om de neurale excitatie per electrode contact te kunnen voorspellen. Onze 
methode maakt gebruik van het wiskundige principe van (de)convolutie om eCAP 
metingen te vertalen naar zogenaamde ‘excitation density profiles’ (EDPs). We hebben 
de deconvolutiemethode toegepast op eCAP metingen bij patiënten en op basis van 
de eerste resultaten konden we concluderen dat de methode werkt. Het was mogelijk 
om eCAP metingen bij patiënten te vertalen naar excitatiegebieden per electrode 
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contact. Vervolgonderzoek moet uitwijzen of de EDPs vertaald kunnen worden naar een 
toepassing in de klinische praktijk.

8.5. Het effect van stimulusniveau op excitatiegebieden
Hoofdstuk 5: In het vervolgonderzoek naar excitatieprofielen hebben we gekeken wat 
er met de EDP’s gebeurde als we het stimulatieniveau veranderden. De verwachting 
was dat lagere stimulatieniveaus zouden leiden tot kleinere excitatiegebieden, maar dat 
was nog niet eerder aangetoond met objectieve eCAP metingen. De methode die we 
ontwikkeld hebben in hoofdstuk 4 bood nieuwe kansen om dit verder te onderzoeken. We 
bestudeerden het effect van stimulatieniveau op het excitatiegebied bij 24 proefpersonen 
en we ontdekten dat lagere stimulusniveaus inderdaad kleinere EDP’s veroorzaakten. 
Een kleinere EDP betekende in de meeste gevallen een smallere EDP (dus selectievere 
excitatie) en in sommige gevallen een lagere EDP (dus kleinere excitatiedichtheid). Ook 
zagen we dat bij het wijzigen van het stimulatieniveau het excitatiegebied een beetje 
opschoof langs de electrode array, met als gevolg dat de toonhoogte waarneming een 
klein beetje verandert. Deze resultaten bieden meer inzicht in de werking van het CI en 
kunnen gebruikt worden bij het optimaliseren van CI’s in de klinische praktijk.

Ter validatie hebben we in deze studie de EDP’s ook vergeleken met excitatieprofielen die 
we simuleerden in het Leidse computermodel van de humane cochlea. Het bleek dat de 
EDP’s die we vonden bij CI-gebruikers sterk lijken op voorspellingen van neurale excitatie 
in het computermodel. Dit bevestigde de juistheid van onze deconvolutiemethode.

8.6. Het onderscheiden van verschillende geluidskanalen
Hoofdstuk 6: Het laatste onderzoek betrof het ontwikkelen van een nieuwe test voor 
het subjectief meten van spatiële resolutie langs de electrode array. De resultaten van 
deze test zijn ook interessant als vergelijkingsmateriaal voor de EDPs, die een objectieve 
maat van spatiële resolutie geven. We hebben gekeken hoe goed een CI-gebruiker 
onderscheid kan maken tussen tonen die geproduceerd worden via de verschillende 
geluidskanalen van het CI. Dit wordt ook wel ‘channel discrimination’ genoemd, in dit 
proefschrift aangeduid met de ‘Dα-score’. Bij andere studies was het gebruikelijk om de 
Dα-score heel nauwkeurig te meten. Maar omdat dit veel tijd kostte, kon de Dα-score 
dan slechts op een beperkt aantal elektrode contacten worden gemeten. We hebben 
een nieuwe methode ontwikkeld voor het testen van ‘channel discrimination’ langs alle 
elektrode contacten van de elektrode-array in een relatief korte tijd, maar dan wel met 
een beperktere nauwkeurigheid. In deze studie hebben we ook gekeken of er een relatie 
is tussen de gemeten Dα-scores en het spraakverstaan van dezelfde CI-gebruiker. Het 
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onderzoek liet zien dat er een relatie is tussen spraakverstaan en de Dα-score. Als een 
CI-gebruiker geluidskanalen die dicht bij elkaar liggen goed kon onderscheiden dan 
was het spraakverstaan ook beter. Daarnaast vonden we dat de Dα-score sterk varieerde 
tussen de verschillende geluidskanalen. Dit pleit ervoor om, bij toekomstig onderzoek 
naar ‘channel discrimination’, de Dα-score langs de hele electrode-array te meten en niet 
slechts op een paar elektrode contacten, zoals tot nu toe vaak werd gedaan. Tijdens het 
onderzoek kwamen er nog een paar verbeterpunten naar boven met betrekking tot de 
nauwkeurigheid van de test. Na implementatie van deze punten kunnen de Dα-scores 
verder toegepast worden. Te denken valt aan het vergelijken van de Dα-scores met de 
EDP uitkomsten, met als doel de EDP’s en de deconvolutiemethode verder te valideren. 
Daarnaast zouden de test en de Dα-scores ook een rol kunnen gaan spelen in de klinische 
praktijk. Bijvoorbeeld, om tijdens de CI controles de effectiviteit van de verschillende 
contacten te beoordelen en zo de CI aanpassing te optimaliseren.

8.7. Algemene discussie
Hoofdstuk 7: Het proefschrift sluit af met een uitgebreide discussie over het meten van 
eCAPs en het toekomstperspectief voor het eCAP onderzoek. Het proefschrift laat zien 
dat het eCAP onderzoek uitdagend is en blijft. We zijn benieuwd hoe de onderwerpen die 
in dit proefschrift aan bod kwamen zich ontwikkelen en waar het eCAP onderzoek over 
10 jaar staat. Zullen nieuwe meettechnieken, nauwkeurigere eCAP metingen en ‘artificial 
intelligence’ leiden tot objectieve CI aanpassingen, volledig afgestemd op de individuele 
gehoorzenuw en situatie?
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A.1. Abbreviations

3AFC three alternative forced choice
AB Advanced Bionics
AGF amplitude growth function
AP alternating polarity
ART auditory response telemetry
BEDCS bionic ear data collection system
BM basilar membrane 
CI cochlear implant
CU clinical unit
CVC consonant vowel consonant
eCAP electrically evoked compound action potential
EDP excitation density profile
FM forward masking
ICD inter channel distance
JND just noticeable difference
LE linear extrapolation
LV last visible
M masker
MAL maximum acceptable loudness
MCL most comfortable loudness
MP masker-probe
mSOE measured spread of excitation
NRA neural response amplifier
NRI neural response imaging
NRT neural response telemetry
P probe
PRISMA preferred reporting items for systematic reviews and meta-analyses
pSOE predicted spread of excitation
RMSE root mean square error
RSPOM research studies platform objective meausures
sEDP simulated excitation density profile
SFAP single fiber action potential
SFM spatial forward masking
SNR signal to noise ratio
SOE spread of excitation
TCI threshold confidence interval
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