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Chapter 1

Head and neck cancer is diagnosed in more than 900,000 patients in 2020 worldwide, 
representing a serious problem. Head and neck cancer occurs in various subsites 
of this anatomic region, each with particular characteristics with regard to tumor 
type, growth and likelihood of metastasizing. Because of this, and the resulting 
differences in treatment options and planning, these subsites can be considered 
as different entities. Oropharyngeal cancer is the primary topic of this thesis, and 
is responsible for approximately 98,412 new cases and 48,143 deaths worldwide 
in 20201. Squamous cell carcinoma’s (SCC) is the most common histopathological 
subtype, occurring in approximately 90% of all oropharyngeal cancer cases. 
Alcohol consumption, tobacco smoking and human papillomavirus (HPV) infection 
are the risk factors of oropharyngeal squamous cell carcinoma’s (OPSCC)1–3, which 
may present with pain in the throat radiating to the ear, bad breath, a neck mass  
and/or difficulties with chewing and/or swallowing3–5. As these signs and symptoms 
present when the tumor has metastasized or has a considerable size, OPSCC is 
mostly discovered in a late stage of the disease4.

The diagnostic work-up for OPSCC consists of tumor localization, tumor size, tumor 
invasion and the presence of cancer cells outside the primary tumor determined by 
clinical and imaging evaluation. Clinical examination is performed as initial diagnosis 
of OPSCC patients, including fiberoptic endoscopy to determine the superficial 
extent of the tumor and to take biopsies. Medical imaging is acquired to assess the 
extent of the disease. Computed Tomography (CT) and Magnetic Resonance Imaging 
(MRI) evaluate the extent and invasiveness of the primary tumor and metastases 
to regional lymph nodes. Ultrasound (US) is used to assess the lymph nodes in 
more detail and can provide pathological confirmation of suspected lymph node 
metastases by fine-needle aspiration. Positron Emission Tomography (PET) imaging 
is used to determine the presence of distant metastasis4,6. All this information is 
used to classify the tumor using the Tumor Node Metastases (TNM) classification 
system from the American Joint Committee for Cancer (AJCC)7. This international 
guideline provides a standardized classification to come to a uniform assessment 
for prognosis and treatment planning.

The large variety in tumor location and genetic behavior ask for a personalized 
treatment path for each patient. Radiation therapy (RT), chemotherapy (CT), 
surgery or a combination of these treatments are currently the most commonly used 
treatment strategies. With regard to chemotherapy, cisplatin based chemoradiation 
therapy (CRT) is recommended for advanced stage OPSCC6. Alternatives for cisplatin 
are carboplatin, cetuximab or sometimes 5-Fluorouracil. In recent years, the first 
trials evaluating neoadjuvant immunotherapy with curative intent as alternative 
treatment are described, with promising results8–10. Still, despite continuous 
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improved treatment options, curation is not achieved in 25-45% of the patients11. 
To improve on this, accurate prognostic tools are needed that can further improve 
the identification of patients who will benefit from intensification of treatment 
and those for whom the treatment would do more harm than good. 

Evidence of HPV infection of OPSSC, using immunohistochemistry or DNA polymerase 
chain reaction (PCR) techniques on biopsy material, is one of the promising 
prognostic tools. In the last decennia, the incidence of HPV related OPSCC is 2.5 
times higher than the incidence rate of HPV-negative OPSCC12,13 due to a decline in 
smoking patterns combined with changes in sexual behavior. Evidence emerged that 
HPV-positive and HPV-negative OPSCCs can be considered as distinct entities, each 
with unique clinical, histological and biological profiles12,14–16. Compared to non-HPV 
related OPSCC, HPV related OPSCC occur more frequently in younger patients17,18, is 
likely to present with a relative small tumor size and a relatively high rate of nodal 
metastasis. The lower rate of genetic alterations, tumor dedifferentiation and non-
keratinizing pathology explain the better prognosis compared to patients with HPV 
negative tumors. Detection of HPV infection needs invasive tissue diagnosis, that is 
time consuming and expensive, using p16/p53 immunohistochemistry and/or HPV 
DNA polymerase chain reaction (PCR). Additionally, although prognostication based 
on HPV status has the potential to guide treatment, it is still a single characteristic, 
with limited influence on personalized treatment so far.

Another prognostic tool used in clinical practice is TNM classification. This 
anatomic-based classification is based on tumor size (T), involvement and extent 
of regional lymph nodes (N), and the presence of distant metastases (M)7. While 
HPV status is adopted in the latest TNM edition (8th)7, other factors evaluating the 
biological behavior of the disease remain excluded (e.g. immune features)19. All 
biologic information contains relevant parameters to take into consideration since 
they affect prognosis. Therefore, a multiparameter assessment evaluating clinical, 
pathological and biomolecular information is needed to improve therapeutic 
decisions19.

Since the identification of radiological tumor volume as prognostic parameter in 
the 1990s20, various radiological features and parameters have been considered 
and proven as a means to predict treatment outcome and prognosis. These 
include structural radiological features like tumor invasion in surrounding tissues, 
the detection and quantification of metastasis, and presence of extracapsular 
extension of lymph nodes21–24, and functional imaging parameters that reflect tumor 
cellularity, perfusion and metabolic activity25–28. In general, these radiological 
features are interpreted based on quantification and interpretation of a single 
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parameter in isolation without regard for detailed textural information.

Over the last decade new computer aided techniques have made it possible to 
quantify visually occult textural characteristics from medical images, commonly 
referred to as radiomics29–31. Radiomics is implemented by delineating a region 
of interest (ROI) on the radiological image by an observer. Various features that 
describe image intensity, shape and texture are then extracted from within this ROI. 
These radiomic features are then statistically analyzed to determine which features 
are important in prediction of an outcome variable (like treatment outcome) using 
classical statistics or artificial intelligence methods. The resulting statistical model 
can then be used in clinical practice to predict the outcome variable of interest for 
an individual patient. 

Radiomics proved to be promising in the reflection of tumor biology32–36 and the 
prediction of treatment outcomes29–31,37–40. With regard to the head and neck region, 
radiomic features have been associated with gene expression33, histological tissue 
properties32,34, and treatment outcome29–31,37,38. As such, texture-based analysis 
showed to be a useful tool in the discrimination of benign and malignant tumors32. 
Another study proved the prognostic value in the prediction of survival by a four-
feature radiomic signature, indicating that radiomic features capture intra-tumour 
heterogeneity29.

Current radiomics research on head and neck cancer used mostly radiomic features 
extracted from CT. Compared to CT, MRI has a better soft-tissue contrast and superior 
sensitivity in detecting small lesions or invasion of tissues surrounding the tumor. 
Additionally, it may provide other insights in tissue properties due to fundamental 
differences in image acquisition41,42. Only few studies have investigated prognostic 
radiomic features from MR images of head and neck cancer. These studies mainly 
focused on outcome prediction for nasopharyngeal carcinoma using radiomics or 
deep learning30,41,43,44. Studies on MR-based radiomics for OPSCC are lacking thus 
far, probably due to the challenging anatomy and the acquired MR signal intensities 
which are influenced by acquisition-related factors43.

Therefore, the overall goal of this thesis is to investigate the potential of radiomics 
in oropharyngeal cancer using features extracted from diagnostic MRI. This was 
formulated in three main research questions.

Part I: What is the current knowledge on MR-based functional parameters in head and  
neck squamous cell carcinoma?   
Radiological biomarkers are often used to assist the radiologist in the tumor 
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diagnosis and treatment-decision for the patient. Volumetric biomarkers, such as 
tumor volume, shape and diameter, are simple tumor characteristics extracted 
by the radiologist. The introduction of functional imaging (dynamic contrast-
enhancement MRI, diffusion weighted MRI) initiates the ability to extract 
parameters describing the microenvironment of the tissue. Chapter 2  gives an 
extensive overview of the current level of evidence for pre-treatment MR-based 
perfusion and diffusion imaging parameters that are prognostic for treatment 
outcome in head and neck squamous cell carcinoma.

Part II: Can MR-based radiomic prediction models be used for tumor characterization and  
prognosis in OPSCC patients?    
Prediction models in OPSCC are limited to features extracted from CT imaging, 
where MRI can represent other tissue properties. Therefore, in chapter 3  a 
radiomics model is constructed based on pre-treatment post-contrast MRI to predict 
treatment outcome. Generalizability of this single-center model is evaluated using 
an independent external validation dataset, described in chapter 4. Treatment 
outcomes are significantly better for patients with HPV positive tumors compared 
to patients without HPV infected tumors. Determination of tumoral HPV status 
is nowadays done using invasive tissue based immunohistochemistry. Chapter 
5  addresses a non-invasive technique using MR-based radiomics to predict HPV 
status of the tumor in OPSCC patients.

Part III: Can MR-based radiomics for OPSCC patients be simplified using alternative  
or automated delineation techniques to improve clinical adoption?  
3D tumor delineations by an experienced radiologist are currently needed for 
adequate radiomics analysis of OPSCC. These delineations take up a costly amount 
of time and may therefore hamper the adoption of radiomics in clinical practice. 
In an attempt to reduce the time needed for OPSCC delineation, chapter  6 and 
chapter 7  investigates if six different manual delineation strategies can affect 
performance in models predictive of LRC and HPV status, respectively. Besides time 
consumption, manual delineations are known to vary across observers. Chapter 
8  proposed a semi-automatic approach for tumor segmentation based on deep 
learning that may ameliorate time consuming manual delineations and the related 
interobserver variability.
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ABSTRACT

Objective: Functional MR imaging has demonstrated potential for predicting 
treatment response. This systematic review gives an extensive overview of the 
current level of evidence for pre-treatment MR-based perfusion and diffusion 
imaging parameters that are prognostic for treatment outcome in head and neck 
squamous cell carcinoma (HNSCC) (PROSPERO registration: CRD42020210689). 

Materials and methods: According to the PRISMA statements, Medline, Embase 
and Scopus were queried for articles with a maximum date of October 19th, 2020. 
Studies investigating the predictive performance of pre-treatment MR-based 
perfusion and/or diffusion imaging parameters in HNSCC treatment response were 
included. All prognosticators were extracted from the primary tumor. Risk of bias 
was assessed using the QUIPS tool. Results were summarized in tables and forest 
plots. 

Results: 31 unique studies met the inclusion criteria; among them, 11 articles 
described perfusion (n=529 patients) and 28 described diffusion (n=1626 patients) 
MR-imaging, eight studies were included in both categories. Higher Ktrans and Kep 

were associated with better treatment response for OS and DFS, respectively. Study 
findings for Vp and Ve were inconsistent or not significant. High-level controversy 
was observed between studies examining the MR diffusion parameters mean and 
median ADC. 

Conclusion: For HNSCC patients, the accurate and consistent results of pre-
treatment MR-based perfusion parameters Ktrans and Kep are potential for clinical 
applicability predictive of OS and DFS and treatment decision guidance. Significant 
heterogeneity in study designs might affect high discrepancy in study results for 
parameters extracted from diffusion imaging. Furthermore, recommendations for 
future research were summarized. 
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2
INTRODUCTION

Head and neck cancer is the sixth most common cancer, with an incidence of 
5.3% of all new cancer cases worldwide1. Out of all head and neck cancers, most 
malignancies (>90%) are head and neck squamous cell carcinomas (HNSCC)2. 
Currently, radiation in combination with chemotherapy (chemoradiation (CRT)) is 
the standard of care for most patients with locally advanced tumors, with surgical 
resection and immunotherapy as alternative and/or upcoming strategies. Despite 
continuous improvement of the treatment options, treatment is not successful in 
25–30% of the patients3. Thus, there is an urgent need for reliable biomarkers to 
predict treatment outcome, and fine-tune treatment strategies when desirable. 

Over the last decades, several prognostic markers of treatment response 
have been studied, with the importance of HPV status gaining prominence. 
Furthermore, imaging markers, such as functional imaging parameters, appear to 
show prognostic value in determining pre-treatment treatment response. Dynamic 
contrast-enhanced (DCE) MRI and diffusion-weighted (DW) MRI are two common 
studied functional imaging modalities of which parameters are derived in HNSCC. 

DCE-MRI is a contrast-based MRI technique to visualize tissue perfusion, expressed 
as the change in the concentration of contrast agent in the field of view. The 
most used pharmacokinetic model is the Tofts model4. Here, contrast agents are 
delivered by blood vessels and exchanged with the extravascular extracellular 
space (EES). The influx of this contrast agent between the blood vessel and the 
EES is defined by the Ktrans parameter of the Tofts model, whereas Kep is this reverse 
process, the reflux rate. Since contrast agents, like Gadolinium, are not absorbed 
by cells, their concentration depends on the plasma volume (Vp) and EES volume 
(Ve). Tissue perfusion depends on blood volume and blood flow. 

DWI quantifies the diffusion of tissue water molecules in tissue volume, expressed 
as the apparent diffusion coefficient (ADC). Repetitions of the DWI sequence 
with different diffusion strengths (b-values) visualize this water displacement. 
The choice of b-value depends on the velocity of water diffusion, where high 
b-values (≥250 s/mm2) are recommended to measure slow diffusion and low values 
(≤250 s/mm2) for fast diffusion of water molecules as in flow within vessels5,6. 
Besides diffusion, ADC also includes signals caused by micro-vascularization. The 
intravoxel incoherent motion (IVIM)7 model accounts for this in its bi-exponential 
model, resulting in the main parameters molecular diffusion, D, pseudo-diffusion 
coefficient, D*, and vascular volume fraction (f). 
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Various studies described these functional MRI parameters for the prediction of 
treatment response, with encouraging results. Previous systematic reviews8-11 
already summarized the prognostic value of DCE or DW imaging separately. 
However, the number of studies is rapidly increasing and hence, there is a need 
to revise the existing reviews on the current value of both MRI parameters. 
Additionally, we will primarily focus on pre-treatment imaging biomarkers to 
stratify personalized treatment to obtain the best treatment outcome while 
minimizing harmful side effects. This review will give an update on current 
literature describing the prognostic value of pre-treatment DCE or DWI parameters 
extracted from the primary tumor of HNSCC to predict treatment response. This 
review also summarizes issues for future research. 

MATERIALS AND METHODS 

This systematic review (PROSPERO registration: CRD42020210689) was performed 
following the Preferred Reporting Items for Systematic reviews and Meta-Analysis 
(PRISMA) criteria12. 

Search strategy   
A systematic search was conducted using Medline, Embase, and Scopus for original 
articles published until October 19th 2020. The search consists of a combination of 
the search terms “Head and neck cancer”, “MRI”, and “treatment outcome”, with 
their synonyms. The full literature search is described in Appendix A1. Due to the 
expeditious improvement of MRI techniques and quality over the last decades, 
only studies published in the last ten years (after 2009) were included. 

Study selection   
Only studies in the English language investigating the prognostic performance of 
pre-treatment MR-based imaging parameters on treatment response were included. 
Additionally, these studies had to 1) extract imaging parameters from the primary 
tumor; 2) examine HNSCCs patients at any age, gender, and stage; and 3) treatment 
response prognostication ≥ 12 months after diagnosis. Studies were excluded when 
1) the study design involved reviews, guidelines, conference abstracts, posters, 
case reports, or technical notes; 2) the study population consisting of tumors 
originating from other subsites than the oral cavity, oropharynx, hypopharynx, or 
larynx, to prevent bias from nasopharyngeal tumors which is seen as a different 
entity; 3) animal studies; and 4) the examined imaging parameters were extracted 
from the lymph nodes, adenocarcinomas or patients with recurrence. 

Relevant articles were independently selected by the first two authors (PB and 
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HH) using Rayyan13. The above-described inclusion criteria were used as criteria 
during the title and abstract selection. The applicability of each study was assessed 
during full-text screening using a standardized form (see Appendix A2, page 1. 
Here, a cutoff value of 20% or 80% was used for some inclusion criteria to aim 
for an as much as possible homogeneous population). Discrepancies between 
reviewers were discussed in consensus. Consensus meetings have been done after 
500, 2500, and all examined titles and abstracts. Articles with a serious concern of 
applicability were excluded. When needed, authors of potentially relevant articles 
were contacted to get full-text access. 

Quality assessment   
The quality of the eligible articles was assessed independently by the two reviewers, 
using criteria of an optimized version of the QUIPS tool14 (see Appendix A2). Initial 
disagreement between reviewers was resolved by discussion. If a consensus was 
not reached, a third reviewer (JC) participated in the discussion and had the 
decisive vote. 

Data extraction and analysis   
Data was independently extracted using a standardized extraction form by two 
reviewers (PB and HH). Uncertainties were resolved by discussion. Data extraction 
included the categories: 

•	 Study characteristics: Study design, author, year of publication
•	 Patient characteristics: Number of included and analyzed patients,  

 gender, cancer subsite, tumoral HPV status, tumor stage (TNM), AJCC  
 stage, obtained treatment 

•	 Imaging characteristics: Time between pre-treatment scan and start  
 of treatment, MR pulse sequences, field strength, b-values, echo time  
 (TE), repetition time (TR), field of view (FOV), slice thickness, acquisition 
 matrix, acquisition time, production of ADC values and DCE parameters  
 (i.e. pharmacokinetic model, arterial input function parameters, T1  
 mapping) 

•	 Delineation characteristics: Delineation methodology (i.e. whole tumor  
 volume, single slice delineation), used reference sequence, the number  
 of delineation observers, (no/yes) avoidance of necrotic and cystic areas  
 during delineation 

•	 Outcome: Definition of outcome value, follow-up times for the total  
 cohort and each research group separately 

•	 Results: The statistical test used, the number of events per outcome  
 category, the mean values of each study group, if available the value of 
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 thresholds, p-values, odds ratio (OR), and hazard ratio (HR).  

Study results are presented in summarizing tables. The standardized mean 
difference (SMD, Cohen’s d15, with its 95% confidence intervals (95% CI) were 
calculated for each study (see formulas in Appendix A3), as it was possible to 
calculate from most of the available data, and visualized in a forest plot. 

If data was unavailable and could not be recalculated from given data, corresponding 
authors were contacted and requested to provide additional data. In case of no 
response, study results were still presented in tables with all available information. 

Due to high heterogeneity in outcome measures, data was clustered by outcome 
variables according to four categories: 1) Overall survival (OS), 2) Locoregional 
control (LRC), 3) Disease-free survival (DFS), and 4) Alternative outcomes (AO). All 
outcome variables which did not fit in the first three categories were categorized 
as AO (e.g. distant metastases).

RESULTS 

Literature search    
Our search was conducted to give a broad overview of all available MR-based 
parameters, resulting in 5497 original articles. After careful title and abstract 
selection, an extensive amount of 112 heterogeneous records still remained. 
Therefore, records were limited to only functional MRI studies (i.e. MR diffusion 
and MR perfusion). Articles describing anatomical characteristics (i.e. tumor 
volume, tissue invasion, depth of invasion) or machine learning approaches (i.e. 
radiomics) were excluded (n=54). During a full-text evaluation, the applicability 
of each study was assessed using the QUIPS tool. Studies marked as serious 
concern of applicability (i.e. due to short follow-up (<12 months)) were excluded 
to increase homogeneity between studies, resulting in a total of 31 records for 
quantitative analysis. Among them, 11 and 28 studies assessed DCE16-26 and DWI17-

20,22-24,26-36,38,39,41-46 parameters respectively. Eight publications were included in both 
categories. The complete in- and exclusion process is shown in Figure 1. Although 
limiting the scope’s focus, included studies still showed high heterogeneity in 
patient, imaging, and treatment characteristics, restricting reproducibility. As a 
result, a comprehensive meta-analysis could not be performed.

Quality assessment   
The quality assessment results according to the QUIPS tool are shown in Figure 2 
and Appendix A4. Overall, 14 out of 31 (45%) studies were marked with an overall 
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DWI
n=28*

*Eight studies were 
also included in DCE

Literature search
from 2010 to October 19th 2020

Scopus
n=3586

PubMed
n=1237

Embase
n=2815

n=7638 Records

n=5497 
Records after duplicates removed 
and screened for title and abstract

n=2141 Records duplicated

n=173
Full-text assessed for eligibility

n=5324 Records excluded
n =2693 Wrong study design
n=1747 Wrong study population
n=811 Wrong publication type
n=298 Wrong outcome
n=5 Wrong study duration

*Some exclusions have multiple reasons

n=58
Full-text assessment after removal 

of two categories

n=61 Records excluded
n=42 Conference abstract
n=16 Based on histology
n=3 Wrong language

n=54 Records excluded due to removal 
of ‘anatomical MR-images’ and 
‘machine learning’ categories

n=31
Studies included for qualitative 

analysis

n=27 Records excluded due to a ‘high 
concern of applicability’

n=11 No primary tumor
n=9 FU <12 months
n=8 >20% of patient cancers 
outside oral cavity, oropharynx, 
hypopharynx or larynx
n=3 No separate MRI analysis

*Some exclusions have multiple reasons

DCE
n=11*

*Eight studies were 
also included in DWI

n=112
Full-text assessment

 
Fig. 1. Flowchart of the inclusion process.
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low risk of Bias (RoB), 5 (16%) studies as moderate, and 12 (39%) as high RoB. 
Notable areas of quality concerns included studies with patient inclusion with 
varying treatment approaches (Study attrition)17,19,27,34,38,42, lacking a clear outcome 
definition (Outcome management)21,22,24 a poor data presentation to assess the 
adequacy of the analysis (Statistical analysis and reporting)16,28,33 or no mention 
and/or account for possible confounders (Study confounding)21,25,28,39. However, 
few studies applied subgroup analysis to outline the prognostic value of possible 
confounders, such as treatment19, gender34, HPV36,41,43 or T-stage30,34,41. The majority 
of the studies show a low RoB in the domains of ‘study participation’ and ‘prognostic 
factor measurement’.

Outcome prediction   
DCE  
Eleven DCE studies were assessed, comprising a total of 529 patients [range: 
10–124], with an average age of 56.7 years, all treated with (chemo)radiation 
therapy. Of these, six studies were performed prospectively, and five studies had 
a retrospective design. Variations of the Tofts (n=5) or Kety (n=4) models were the 
most common models used for DCE imaging biomarkers. Imaging biomarkers were 
extracted from the total tumor volume in eight studies, including three studies 
that used the clinical available gross tumor volume (GTV) delineations. A detailed 
overview of the included studies is summarized in Table 1 (patient characteristics) 
and Appendix A5 (imaging characteristics).

 

Fig. 2. Results of the QUIPS evaluation, visualizing the risk of bias for the six domains 
and the overall risk of bias 

Ktrans, Vp, Ve, and Kep were the most reported DCE parameters (Ktrans, Vp, and Ve in seven 
unique studies, Kep in four unique studies). Mainly DFS17-21,24 (n=6) was assessed, 

0% 20% 40% 60% 80% 100%

1. Study participation
2. Study attrition

3. Prognostic factor measurement
4.Outcome management

5. Study confounding
6. Statistical analysis and reporting

Overall risk of bias

Low Moderate High
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followed by OS16,18,20,22,24 and LRC17,21-23,25. Wong et al.26 compared DCE parameters 
between responders and non-responders. Table 2 gives a detailed overview of the 
different study results stratified per prognosticator and outcome. The following 
subsections explore this table in more detail. Detailed study results are summarized 
in Appendix A6. Forest plots for the parameters are visualized in Figure 3. 

Ktrans  

For Ktrans as a prognosticator, three studies18,20,24 found a significantly higher 
Ktrans (0.57 vs 0.22) in surviving patients compared to non-surviving patients 
(all p<0.026). Chan et al.18 and Garbajs et al.20 reported Ktrans as an independent 
prognostic parameter in multivariate analysis (p<0.001, p=0.026 respectively). 
Furthermore, Baer et al.16 found a statistical difference, but the linked value of 
Ktrans was not available. The study of Martens et al.22 could not substantiate a 
relationship between Ktrans and longer OS. 

For the prediction of LRC, the results of the two applicable included studies22,23 
were contradictory. Ng et al.23 found a significantly higher Ktrans in patients with 
local control (0.7±0.3 vs 0.5±0.3, p=0.01), whereas the study of Martens et al.22 
report lower Ktrans values in patients with LRC (0.6±0.3 vs 0.74±0.3, p=0.027).

Higher Ktrans was observed in patients with longer DFS18-20,24; however, this trend was 
only statistically significant in the studies of Chan et al.18 (p=0.003) and Ng et al.24 
(p=0.0096). No significant difference of Ktrans was found between responders and 
non-responders (domain: AO) by Wong et al.26. 

Vp  

Only one study18 described lower Vp as a significant, but not independent, 
predictor for longer OS and DFS, with p=0.004 and p=0.001, respectively (See 
Figure 3 and Table A6.2). The majority of the studies showed a possible trend 
where higher Vp was predictive for better DFS18,19,24. However, these studies 
were unable to substantiate this trend statistically. Wong et al.26 reported 
a trend that responders had a higher Vp compared to non-responders (8.5±7.4 
vs 2.7±5.6, p=0.072), where a lower trend was visible in the prediction of LRC 
by Ng. et al.23. Baer et al.16 also found a near-significant difference (p=0.068) 
between Vp and OS, but results were uninterpretable due to limited information.  
 
Ve  

Study results of Martens et al.22 described that a lower value of Ve was associated 
with better OS (p=0.019) and LRC (p=0.015). This is in contrast with the findings of 
Chan et al.18 where higher Ve was prognostic for better survival. This higher trend,



32

Chapter 2

FU
* 

[m
on

th
s]

26
.2

24
.0

‡

28
.7

23
.7

27
.2

36
.0

‡

22
.1

19
.2

28
.0

19
.6

‡

14
.0

Tr
ea

tm
en

t

cC
RT

cC
RT

cC
RT

 
(IM

RT
)

cC
RT

 o
r 

ic
CR

T

cC
RT

cC
RT

 
(IM

RT
)

c(
C)

RT

cC
RT

 
(IM

RT
)

cC
RT

 
(IM

RT
)

cC
RT

cC
RT

Di
se

as
e 

 
st

ag
e 

(A
JC

C)

III
 - 

IV
B

N
A

III
 - 

IV

N
A

III
 - 

IV
B

IV N
A

III
 - 

IV
B

III
 - 

IV
B

III
 - 

IV
B

III
 - 

IV
B

Tu
m

or
 st

ag
e 

(T
N

M
)

T1
, T

2,
 T

3,
 

T4 T1
, T

2,
 T

3,
 

T4 T1
, T

2,
 T

3,
 

T4 T1
, T

2,
 T

3,
 

T4 T2
, T

3,
 T

4

T2
, T

3,
 T

4

T2
, T

3,
 T

4

T1
, T

2,
 T

3,
 

T4 T1
, T

2,
 T

3,
 

T4 T1
, T

2,
 T

3,
 

T4 T1
, T

2,
 T

3,
 

T4

Tu
m

or
 

su
bs

ite

O
P,

 H
P,

 O
T

O
C,

 O
P,

 
HP

, L
A,

 O
T

O
P,

 H
P

O
C,

 O
P,

 L
A

O
P,

 H
P

O
C,

 O
P,

 
HP

, O
T

O
P,

 H
P

O
P,

 H
P

O
P,

 H
P

O
P,

 H
P,

 L
A,

 
O

T

O
P,

 H
P,

 L
A

M
al

e 
[%

]

80 87 94 81 95 90 69 93 93 86 10
0

Ag
e 

[m
ea

n]

58
.7

61
.0

52
.0

57
.8

58
.3

56
.0

†

64
.0

†

48
.5

†

50
.0

56
.9

61
.0

†

In
c.

 
[N

]

10 54 12
4

24 20 42 70 58 86 14 27

N
o.

 
[N

]

24 54 14
9

32 20 50 81 78 10
8

14 35

St
ud

y 
de

si
gn

R R R R P P P P P P P

Lo
ca

tio
n 

 
in

cl
us

io
n 

ce
nt

er

M
ic

hi
ga

n,
 U

SA

M
ic

hi
ga

n,
 U

SA

Ta
oy

ua
n 

Ci
ty

, T
W

Pe
nn

sy
lv

an
ia

, U
SA

Lj
ub

lja
na

, S
I

M
an

ch
es

te
r, 

U
K

Am
st

er
da

m
, N

L

Ta
oy

ua
n 

Ci
ty

, T
W

Ta
oy

ua
n 

Ci
ty

, T
W

M
ic

hi
ga

n,
 U

SA

Lo
nd

on
, U

K

St
ud

y,
 y

ea
r

Ba
er

 2
01

516

Ca
o 

20
19

17

Ch
an

 2
01

518

Ch
aw

la
 2

01
319

Ga
rb

aj
s 2

01
920

Lo
w

e 
20

18
21

M
ar

te
ns

 2
02

122

N
g 

20
13

23

N
g 

20
16

24

W
an

g 
20

12
25

W
on

g 
20

18
26

Ta
bl

e 
1.

 B
as

el
in

e 
ch

ar
ac

te
ri

st
ic

s 
of

 p
er

fu
si

on
 s

tu
di

es
.

*F
or

 t
he

 e
nt

ir
e 

co
ho

rt
; †

M
ed

ia
n 

va
lu

e;
 ‡

M
ed

ia
n 

fo
r 

th
e 

no
n-

ev
en

t 
gr

ou
p.

 
 

A
bb

re
vi

at
io

ns
: 

FU
 =

 F
ol

lo
w

-u
p;

 P
 =

 P
ro

sp
ec

ti
ve

; 
R 

= 
Re

tr
os

pe
ct

iv
e;

 N
o.

 =
 N

um
be

r 
of

 s
el

ec
te

d 
pa

ti
en

ts
; 

In
c.

 =
 N

um
be

r 
of

 a
na

ly
ze

d 
pa

ti
en

ts
; 

O
C 

= 
O

ra
l 

ca
vi

ty
; 

O
P 

= 
O

ro
ph

ar
yn

x;
 H

P 
= 

H
yp

op
ha

ry
nx

; 
LA

 =
 L

ar
yn

x;
 O

T 
= 

O
th

er
; 

cC
RT

 =
 C

on
cu

rr
en

t 
ch

em
or

ad
ia

ti
on

 t
he

ra
py

; 
ic

CR
T 

= 
In

du
ct

io
n 

ch
em

or
ad

ia
ti

on
 

th
er

ap
y 

fo
llo

w
ed

 b
y 

co
nc

ur
re

nt
 c

he
m

or
ad

ia
ti

on
 t

he
ra

py
; I

M
RT

 =
 In

te
ns

it
y-

m
od

ul
at

ed
 r

ad
io

th
er

ap
y;

 R
T 

= 
Ra

di
at

io
n 

th
er

ap
y;

 N
A

 =
 N

ot
 A

va
ila

bl
e.



33

Prognostic functional MR imaging parameters in head and neck squamous cell carcinoma: A systematic review

2
U

ni
va

ria
te

 a
na

ly
ai

s

Su
m

m
ar

y

N
S*

N
S*

L* -

M
ul

tiv
ar

ia
te

 a
na

ly
si

s

Su
m

m
ar

y

N
T*

N
T*

N
S*

-

U
ni

va
ria

te
 a

na
ly

si
s

Su
m

m
ar

y

- Δ*

M
ul

tiv
ar

ia
te

 a
na

ly
si

s

Su
m

m
ar

y

- N
T

N
A 0 0 0 - N
A 0 0 0 - N
A - 1 N
A - 1

N
S 1 1 0 - N
S 1 1 1 - N
S - 0 N
S - 1

L 0 0 1 - L 0 0 0 - L - 1 L - 0

H 0 0 0 - H 0 0 0 - H - 0 H - 0

AO AO AO AO

Su
m

m
ar

y

Δ N
S

N
S

H* Su
m

m
ar

y

Δ N
T

N
T

S* Su
m

m
ar

y

Δ Δ Su
m

m
ar

y

N
T

N
T

N
A 0 0 0 0 N
A 0 0 0 0 N
A 2 1 N
A 1 1

N
S 2 3 3 0 N
S 2 3 3 0 N
S 4 2 N
S 6 2

L 0 0 0 0 L 1 1 1 0 L 3 1 L 3 0

H 2 1 1 2 H 1 0 0 2 H 1 0 H 0 0
DFS DFS DFS DFS

Su
m

m
ar

y

Δ N
S*

Δ N
S*

Su
m

m
ar

y

S* N
T*

Δ N
T*

Su
m

m
ar

y

N
S

Δ Su
m

m
ar

y

N
T

N
T

N
A 0 0 0 0 N
A 0 0 0 0 N
A 0 1 N
A 0 1

N
S 0 1 1 2 N
S 0 1 1 2 N
S 7 2 N
S 7 2

L 1 0 1 0 L 0 0 0 0 L 1 0 L 0 0

H 1 0 0 0 H 2 0 1 0 H 0 0 H 1 0

LRC LRC LRC LRC

Su
m

m
ar

y

H N
S

Δ Δ Su
m

m
ar

y

Δ N
T

Δ Δ Su
m

m
ar

y

Δ L Su
m

m
ar

y

N
T

N
T

N
A 1 0 0 0 N
A 0 0 0 0 N
A 0 1 N
A 0 1

N
S 1 3 2 2 N
S 1 3 2 1 N
S 4 2 N
S 6 6

L 0 1 1 0 L 2 1 1 0 L 4 3 L 3 0

H 3 0 1 1 H 2 0 1 2 H 1 0 H 0 0

OS OS OS OS
DC

E

Ktr
an

s

V p V e K ep Ktr
an

s

V p V e K ep AD
C

M
ea

n

M
ed

ia
n

M
ea

n

M
ed

ia
n

A
bb

re
vi

at
io

ns
: O

S 
= 

O
ve

ra
ll 

su
rv

iv
al

; L
RC

 =
 L

oc
or

eg
io

na
l c

on
tr

ol
; D

FS
 =

 D
is

ea
se

-f
re

e 
su

rv
iv

al
; A

O
 =

 A
lt

er
na

ti
ve

 o
ut

co
m

e;
 H

 =
 A

 s
ig

ni
fi

ca
nt

ly
 h

ig
he

r 
va

lu
e 

w
as

 r
ep

or
te

d 
in

 t
he

 n
on

ev
en

t 
pa

ti
en

t 
gr

ou
p 

co
m

pa
re

d 
to

 t
he

 e
ve

nt
 p

at
ie

nt
 g

ro
up

, L
 =

 A
 s

ig
ni

fi
ca

nt
ly

 lo
w

er
 v

al
ue

 w
as

 r
ep

or
te

d 
in

 t
he

 n
on

ev
en

t 
pa

ti
en

t 
gr

ou
p 

co
m

pa
re

d 
to

 t
he

 e
ve

nt
 g

ro
up

; 
N

S 
= 

N
o 

si
gn

if
ic

an
t 

va
lu

e 
w

as
 f

ou
nd

 b
et

w
ee

n 
th

e 
no

ne
ve

nt
 a

nd
 e

ve
nt

 p
at

ie
nt

 g
ro

up
; 

N
A

 =
 T

he
 s

tu
dy

 r
es

ul
t 

w
er

e 
no

t 
av

ai
la

bl
e,

 d
es

pi
te

 a
tt

em
pt

s 
to

 c
on

ta
ct

 t
he

 s
tu

dy
 a

ut
ho

rs
; S

 =
 T

he
 s

ig
ni

fi
ca

nt
 p

ro
gn

os
ti

c 
pa

ra
m

et
er

 w
as

 a
ls

o 
si

gn
if

ic
an

t 
in

 m
ul

ti
va

ri
at

e 
an

al
ys

is
; N

S 
= 

Th
e 

si
gn

if
ic

an
t 

pr
og

no
st

ic
 p

ar
am

et
er

 w
as

 n
ot

 s
ig

ni
fi

ca
nt

 in
 m

ul
ti

va
ri

at
e 

an
al

ys
is

; N
T 

= 
M

ul
ti

va
ri

at
e 

an
al

ys
is

 w
as

 n
ot

 a
pp

lie
d;

 Δ
 =

 D
if

fe
re

nt
 s

tu
dy

 r
es

ul
ts

 
w

er
e 

re
po

rt
ed

Ta
bl

e 
2.

 O
ve

rv
ie

w
 o

f 
th

e 
st

ud
y 

re
su

lt
s 

so
rt

ed
 p

er
 p

ro
gn

os
ti

ca
to

r 
(p

er
fu

si
on

 a
nd

 d
if

fu
si

on
 p

ar
am

et
er

s)
 a

nd
 o

ut
co

m
e 

fo
r 

th
e 

un
iv

ar
ia

te
 

an
d 

m
ul

ti
va

ri
at

e 
an

al
ys

is
. 

Ea
ch

 c
ol

um
n 

re
ca

pi
tu

la
te

s 
th

e 
nu

m
be

r 
of

 s
tu

di
es

 d
es

cr
ib

in
g 

a 
sp

ec
if

ic
 s

tu
dy

 r
es

ul
t.

 T
he

 S
um

m
ar

y 
co

lu
m

n 
re

pr
es

en
ts

 t
he

 o
ve

ra
ll 

su
m

m
ar

y 
of

 t
he

 s
tu

di
es

. O
ve

ra
ll 

su
m

m
ar

ie
s 

ba
se

d 
on

 u
ni

fo
rm

 r
es

ul
ts

 a
re

 m
ar

ke
d 

w
it

h 
an

 a
st

er
is

k 
(*

). 



34

Chapter 2

Fi
g.

 3
. 

Fo
re

st
 p

lo
t 

of
 p

er
fu

si
on

 p
ro

gn
os

ti
ca

to
rs

 f
or

 t
he

 d
if

fe
re

nt
 o

ut
co

m
e 

do
m

ai
ns

. 
O

S 
= 

O
ve

ra
ll 

su
rv

iv
al

; 
LR

C 
= 

Lo
co

re
gi

on
al

 c
on

tr
ol

; 
D

FS
 =

 D
is

ea
se

-F
re

e 
Su

rv
iv

al
; A

O
 =

 A
lt

er
na

ti
ve

 o
ut

co
m

es
; P

F 
= 

Pr
og

no
st

ic
 F

ac
to

r;
 N

A
 =

 N
ot

 a
va

ila
bl

e.

PF
St

ud
y

[n
]

no
n-

ev
en

t [
%

]
ev

en
t [

%
]

p-
va

lu
e 

un
iv

ar
ia

te
P-

va
lu

e 
m

ul
[9

5%
 C

I]

Ktrans

OS

Ba
er

 2
01

5 
[1

6]
10

50
.0

50
.0

0.
00

2
NA

NA

Ch
an

 2
01

5 
[1

8]
12

4
62

.1
37

.9
0.

02
5

NA
0.

19
 [0

.0
9,

 0
.4

2]

Ga
rb

aj
s 2

01
9 

[2
0]

20
75

.0
25

.0
0.

02
6

0.
02

6
-1

.6
0 

[-2
.7

3,
 -0

.4
8]

M
ar

te
ns

 2
02

1 
[2

2]
70

71
.4

28
.6

NS
NA

0.
30

 [-
0.

22
, 0

.8
2]

Ng
 2

01
6 

[2
4]

86
61

.6
38

.4
0.

00
26

NS
0.

17
 [0

.0
7,

 0
.4

4]

LRC
M

ar
te

ns
 2

02
1 

[2
2]

70
57

.7
24

.3
0.

02
7

NA
0.

47
 [-

0.
08

, 1
.0

2]

Ng
 2

01
3 

[2
3]

58
70

.7
29

.3
0.

03
0.

04
-0

.6
7 

[-1
.2

4,
 -0

.0
9]

DFS

Ch
an

 2
01

5 
[1

8]
12

4
75

.8
24

.2
0.

00
3

NA
0.

25
 [0

.1
2,

 0
.5

4]

Ch
aw

la
 2

01
3 

[1
9]

24
66

.7
33

.3
NS

NA
-0

.6
5 

[-1
.5

1,
 0

.2
2]

Ga
rb

aj
s 2

01
9 

[2
0]

20
75

.0
25

.0
0.

11
6

NA
-1

.6
0 

[-2
.7

3,
 -0

.4
8]

Ng
 2

01
6 

[2
4]

86
43

.0
57

.0
0.

00
96

NS
0.

19
 [0

.0
8,

 0
.4

7]

W
on

g 
20

18
 [2

6]
35

77
.1

22
.9

NS
NA

-0
.1

9 
[-0

.9
8,

 0
.6

0]

Vp

OS

Ba
er

 2
01

5 
[1

6]
10

50
.0

50
.0

NS
NA

NA

Ch
an

 2
01

5 
[1

8]
12

4
62

.1
37

.9
0.

00
4

NA
0.

89
 [0

.3
4,

 2
.3

5]

Ga
rb

aj
s 2

01
9 

[2
0]

20
75

.0
25

.0
NS

NA
0.

92
 [-

0.
13

, 1
.9

7]

Ng
 2

01
6 

[2
4]

86
61

.6
38

.4
NS

NA
0.

39
 [0

.1
6,

 0
.9

6]

Ng
 2

01
3 

[2
3]

58
70

.7
29

.3
NS

NA
0.

50
 [-

0.
07

, 1
.0

7]

DFS

Ch
an

 2
01

5 
[1

8]
12

4
75

.8
24

.2
0.

00
1

NA
0.

51
 [0

.2
1,

 1
.2

7]

Ch
aw

la
 2

01
3 

[1
9]

24
66

.7
33

.3
NS

NA
-1

.7
2 

[-2
.6

9,
 -0

.7
4]

Ga
rb

aj
s 2

01
9 

[2
0]

20
75

.0
25

.0
NS

NA
0.

92
 [-

0.
13

, 1
.9

7]

Ng
 2

01
6 

[2
4]

86
43

.0
57

.0
NS

NA
0.

33
 [0

.1
3,

 0
.8

0]

W
on

g 
20

18
 [2

6]
35

77
.1

22
.9

NS
NA

-0
.8

2 
[-1

.6
3,

 -0
.0

1]

Ve

OS

Ch
an

 2
01

5 
[1

8]
12

4
62

.1
37

.9
0.

03
8

NA
0.

18
 [0

.0
6,

 0
.5

0]

Ga
rb

aj
s 2

01
9 

[2
0]

20
75

.0
25

.0
NS

NA
-0

.4
6 

[-1
.4

8,
 0

.5
6]

M
ar

te
ns

 2
02

1 
[2

2]
70

71
.4

28
.6

0.
00

4
NA

0.
74

 [0
.2

1,
 1

.2
8]

Ng
 2

01
6 

[2
4]

86
61

.6
38

.4
NS

NA
0.

44
 [0

.1
8,

 1
.0

9]

LRC

M
ar

te
ns

 2
02

1 
[2

2]
70

75
.7

24
.3

0.
00

8
NA

0.
77

 [0
.2

1,
 1

.3
3]

Ng
 2

01
3 

[2
3]

58
70

.7
29

.3
NS

NA
-0

.5
6 

[-1
.1

4,
 0

.0
1]

DFS

Ch
an

 2
01

5 
[1

8]
12

4
75

.8
24

.2
0.

02
7

NS
0.

20
 [0

.0
8,

 0
.5

5]

Ch
aw

la
 2

01
3 

[1
9]

24
66

.7
33

.3
NS

NA
1.

34
 [0

.4
2,

 2
.2

7]

Ga
rb

aj
s 2

01
9 

[2
0]

20
75

.0
25

.0
NS

NA
-0

.4
6 

[-1
.4

8,
 0

.5
6]

Ng
 2

01
6 

[2
4]

86
43

.0
57

.0
NS

NA
0.

32
 [0

.1
3,

 0
.7

9]

W
on

g 
20

18
 [2

6]
35

77
.1

22
.9

0.
00

3
NA

1.
13

 [0
.3

0,
 1

.9
6]

Kep

OS

Ch
an

 2
01

5 
[1

8]
12

4
62

.1
37

.9
0.

02
NA

3.
78

 [0
.8

3,
 1

7.
16

]

M
ar

te
ns

 2
02

1 
[2

2]
70

71
.4

28
.6

NS
NA

0.
23

 [-
0.

28
, 0

.7
5]

Ng
 2

01
6 

[2
4]

86
61

.6
38

.4
NS

NA
0.

32
 [0

.1
2,

 0
.8

1]

LRC

M
ar

te
ns

 2
02

1 
[2

2]
70

75
.7

24
.3

NS
NA

0.
22

 [-
0.

32
, 0

.7
7]

Ng
 2

01
3 

[2
3]

58
70

.7
29

.3
NS

NA
-0

.3
2 

[-0
.8

9,
 0

.2
5]

DFS

Ch
an

 2
01

5 
[1

8]
12

4
75

.8
24

.2
0.

03
5

NA
0.

24
 [0

.0
8,

 0
.7

1]

Ng
 2

01
6 

[2
4]

86
43

.0
57

.0
0.

04
74

NA
0.

24
 [0

.0
9,

 0
.6

1]

LRC AOAO AO

Ou
tc

om
e

*1
7.

16

0
-2

-1
1

2
3

4
-3



35

Prognostic functional MR imaging parameters in head and neck squamous cell carcinoma: A systematic review

2
however not significantly, was also visible in three other studies describing the 
relation between Ve and OS20,24 and LRC23 (Table A6.3). Three18,20,24 out of four 
studies18-20,24 found a relation of higher Ve and longer DFS, where only Chan et al.18 
found a significant distinction. Wong et al.26 could substantiate that a lower Ve was 
prognostic for good treatment response (0.26±0.06 vs 0.32±0.06, p=0.003). 

Kep  

Three studies18,22,24 described the prognostic value of Kep related to OS prediction. 
Of these, two studies18,24 showed a correlation between a higher Kep and better 
OS, but only Chan et al.18 was significant (p=0.02). Concerning LRC, none of the 
studies22,23 found statistical differences between the control and failure groups. 
Based on the results of Chan et al.18 and Ng et al.24 higher Kep is an independent 
predictor for longer DFS (p=0.005 and p=0.001, respectively). 

Other DCE parameters  
Besides the above-mentioned DCE parameters, other parameters such as blood 
volume (BV), blood flow (BF), plasma perfusion (Fp), and the normalized area under 
the contrast-enhancement time curve at 60s (NAUC60) were separately analyzed. 
The results of these parameters are described in Appendix A7.

DWI   
Detailed information of baseline characteristics with regard to DWI studies is 
summarized in Table 3, imaging characteristics are summarized in Appendix A8. 
A total of 1626 patients, with an average age of 60.0 years, encompassed the 
participants in the 28 included DWI studies. The majority of the patients received 
CRT (55%), followed by a treatment existing of only radiotherapy (25%) and 
surgery combined with CRT (6%). Sixteen studies enrolled patients retrospectively. 
DWI was acquired using an echo-planar imaging (EPI) in 89% of the studies. 
Other studies used periodically rotated overlapping parallel lines with enhanced 
reconstruction (PROPELLOR) (7%). In the study of Ravanelli et al.43 the type of 
MR imaging sequence was unknown. In seven studies (25%), fat suppression was 
added during image acquisition. All studies used multiple b-values, with a median 
of two b-values (range 2–17). B-values were applied in a range of 0 to 1000 s/mm2 

(n=16)19,20,22,27,29-31,33,34,36,39-41,43,44,46, a range of 0–800 s/mm2 (n=7)18,23,24,37,38,41,45 or an 
alternative lowest and/or highest b-value (n=7)17,26,28,32,35,39,42.

ADCmean and ADCmedian were mostly reported in, respectively 20 and 9 unique studies. 
Out of all studies, DFS was reported in 15 unique studies18-20,24,27,28,31,33,35,38-40,42,43,45, OS 
in 1318,20,22,24,28,31,33-36,43,44,46, LRC in 1217,22,23,28-33,36,37,41 and 2 studies were categorized as 
AO with distant metastases33 and responders versus non-responders26 as outcome 
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parameter. 

The following subsections summarize study findings per prognostic factor for each 
separate outcome domain. An overview of these study findings is described in 
Table 2, Figure 4, and Appendix A9.

ADCmean  

In four18,22,34,44 out of the nine18,22,24,28,34,36,43,44,46 studies that reported the prognostic 
value of the ADCmean for OS, a significantly lower ADCmean was described in survivors 
(all p<0.045). None of these studies could substantiate a significant difference 
in their multivariate analysis. In contrast to these results, the study of Zhang et 
al.46 reported an average higher ADCmean in survivors compared to non-survivors 
(p=0.02). Four studies24,28,36,43 did not report a statistically significant difference 
between the groups; among them, three24,36,43 showed a minor trend where lower 
ADCmean was associated with better OS (Table A9.1). Results of Gupta et al.28 were 
uninterpretable due to limited available information. 

For the prediction of LRC, only one study30 found that patients with local control 
had a significant lower ADCmean in the entire cohort as well as in a sub-analysis 
for patients with stage T3 and T4 disease compared to patients with local failure 
(entire cohort: 0.74±0.03 vs 1.02±0.08, p<0.001, stage T3 and T4: 0.83±0.14 
vs 0.95±0.04, p=0.02). Lower ADCmean in patients with better LRC is also noted, 
without statistical significance (Table A9.1), in five other studies17,23,32,36,37, where 
the study of Martens et al.36 reported a nearly significant difference (12.08±2.33 
vs 13.17±3.26, p=0.055).

Two studies22,28 did not find a difference between patients with LRC and locoregional 
failure. 

Studies investigating ADCmean in relationship to DFS show high diversity in their 
results. Five studies24,38,42,43,45 described a statistical relationship, among them 
three24,42,45 described a lower and one higher38 ADCmean predictive of better DFS 
(Figure 4). Lastly, one study43 showed a significant difference (p=0.03) with a non- 
identified value of ADCmean. None of the studies show significance in multivariate 
analysis. The remaining studies18,39,40 who did not report a statistical difference 
show a trend of lower ADCmean predictive of good DFS (0.85±0.27 vs 1.59±0.39). 
Interpretation of study results from two studies27,28 was limited due to missing 
values. 
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ADCmedian  

Three studies20,34,44 described a significant value of a lower ADCmedian in surviving 
patients. Among them, Ren et al.34 reported this result when the ADC was measured 
over the whole tumor volume and only a single slice was delineated, with p=0.016 
and p=0.033, respectively. The study of Martens et al.36 and Lu et al.35 reported 
also a lower ADCmedian in survivors; however, the difference was not statistically 
significant (p=0.217, p=0.223). Findings concerning ADCmedian and its relationship 
with OS in one other studie33 was unclear. 

A trend was visible of lower ADCmedian related to longer LRC36,41 and DFS19,20,35, where 
the study of Martens et al.36 reached nearly significance (p=0.06) in the prediction 
of LRC. Patients with DFS had a significant lower ADCmedian compared to patients with 
failure described by Lu et al.35. Wong et al.26 reported a significantly lower ADCmedian 

in patients with good treatment response than patients who did not respond to 
treatment (1.02±0.19 versus 1.22±0.14, p=0.009). The study of Lambrecht et al.33 
report results inadequately to draw reliable conclusions in the prediction of LRC, 
DFS, and distant metastases. 

Other DWI parameters  
Besides the ADCmean and ADCmedian, the parameters ADCkurtosis, ADCskewness, ADCentropy, 
ADCStandard Deviation (SD), ADCmin, ADCmax, ADC0-200 (ADC calculated using b-values ranging 
from 0 to 200 s/mm2), ADC300-1000 (ADC calculated using b-values ranging from 300 
to 1000 s/mm2), and a broad range of ADCdeciles and ADCpercentiles were reported in the 
included studies. The results of these parameters are described in Appendix A10. 

IVIM  
The prognostic value of IVIM parameters was reported by the studies of Martens et 
al.22 and Lu et al.34, totally including 86 patients. Most patients received CRT (n=78), 
followed by radiotherapy alone (n=6) and surgery (n=2). In both studies, ADC was 
measured over the whole tumor volume. Baseline and imaging characteristics of 
these studies can be found in Table 3 and Appendix A11. 

Associations between the IVIM parameters D, D*, and f were reported for OS22,35, 
LRC22, and DFS35. Significant findings were only reported in the prediction of OS22, 
where a lower D and higher D* were noted in surviving patients compared to non-
survivors (D: 0.9±0.2 versus 1.0±0.2, p=0.009, D*: 0.19±0.07 versus 0.16±0.05, 
p=0.032). A trend of lower and higher f was reported for, respectively, OS and LRC. 
All other study findings did not reach statistical significance. 
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DISCUSSION 

This study attempts to systematically review the literature focusing on the 
prognostic value of pre-treatment functional MR imaging parameters extracted 
from the primary tumor volume in HNSCC patients of perfusion and diffusion MR 
scans. Overall, studies describing diffusion prognosticators were conducted more 
frequently compared to perfusion studies. Nevertheless, our study shows that the 
perfusion parameters Ktrans and Kep are promising independent prognostic factors 
for, respectively, OS and DFS, whereas only a trend of lower mean and median ADC 
was reported in survivors.

An increased blood vessel permeability optimizes tumor perfusion and contributes 
to the delivery of contrast agents as to the penetration of therapeutically used 
drugs. Additionally, better vessel permeability facilitates cell oxygenation, thus 
conceivably pertaining radio-chemo sensitivity. This association explains the 
favorability of higher influx to the extracellular extravascular space (Ktrans) and 
reflux to the blood vessel (Kep) in responding patients. In contrast, restricted 
perfusion is a consequence of the biological behavior of cancer characterized by 
its increasing neoangiogenesis and proliferation. Tumor cells become hypoxic and 
necrotic resulting in a disability of drug absorption, with a low permeability as a 
consequence. In line with that, Cao et al.17 showed an association between poorly 
perfused and hypoxic tumors and treatment failure. 

Besides tumor perfusion, tumor diffusion has shown its potential as prognostic 
parameter18,20,22,24,30,34,35,38,42-46. Tissue cellularity, the basic parameter determining 
diffusion, is high when diffusion is restricted, represented by a low ADC. In contrast, 
heterogeneous tumors (including necrotic and cystic areas) are characterized by 
high ADC. While not convincing, most studies18,20,22,24,30,34,35,42,44,45 report a significant 
correlation between low pre-treatment ADC and good treatment response, whereas 
fewer studies show a significantly higher ADC26,38 in responding patients or a lack 
of correlation. 

The discrepancy between the results of diffusion studies was considerable. As 
mentioned above, tumor diffusion depends mainly on cellular density, but is also 
influenced by tissue heterogeneity as well as MR methodology. Substantial amount 
of heterogeneity was present in treatment type of included patients in studies 
describing diffusion parameters, where perfusion studies included only patients 
treated with radiotherapy. 

Intratumor heterogeneity caused by cystic and necrotic tumor areas can likewise 
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play a role in the inconsistency of study results. Due to the rapid proliferation, 
tumors can develop necrotic and cystic tissue areas which are highly correlated 
with a high ADC7. Inclusion of those areas in the region of interest during the 
delineation process will influence study results. Furthermore, as lower Ktrans and 
Kep values can be linked to limited tissue permeability, they could feasibly also be 
associated with the extent of necrotic areas within a tumor and, consequently, 
portraying similar biological tumor characteristics. Therefore, ADC may be more 
independent and accurate if necrotic and cystic areas are avoided in tumor 
delineation, focusing only on tumor tissue cellularity. 

Fifteen17-20,23,26,29-31,35,37-39,44,46 out of the 28 included DWI articles mentioned a 
conscious effort to avoid these areas in delineation. Three36,41,45 articles, however, 
did explicitly choose to include those areas. The remaining ten22,24,27,28,32-34,40,42,43 
articles did not specify their delineation limitations. However, a significant 
difference in mean ADC for any outcome was observed in five18,30,38,44,46 of the nine 
(56%) articles that did avoid cystic and necrotic tumor areas in delineation and, 
similarly, in one45 of the two36,45 (50%) that did not avoid these areas. However, a 
more striking difference in significance is observed for the median ADC, where all 
four20,26,35,44 articles that avoided the cystic and necrotic tumor areas did produce a 
significant difference in treatment outcome prognostication, in contrast to none of 
the two36,41 articles that did not avoid these areas. Consequently, the avoidance of 
cystic and necrotic areas appears to influence the significance of the median ADC 
for the prediction of treatment outcome after more than one year. Furthermore, a 
slight trend to more significant results can be observed for mean ADC when cystic 
and necrotic tumor areas are not delineated. 

In line with previous remarks, tumor perfusion and diffusion are two linked 
biological processes. While random motion can be observed for individual water 
molecules (pure diffusion), water molecules collectively flow within the blood 
circulation (perfusion). Therefore, measured diffusion also depends on micro-
vascularization, resulting in an overestimated ADC (this pseudo diffusion process 
is marked as the “apparent” in ADC)5,6,47. Higher minimum b-values (>100–150  
s/mm2) are recommended to eliminate this perfusion bias. Pure diffusion can 
also be measured using IVIM, a MR-diffusion-technique based on bi-exponential 
formulas, which discriminates perfusion from diffusion5. However, investigation of 
this technique for treatment prognosis is only performed in a very limited amount 
of studies11. 

Besides perfusion bias, ADC values are also overestimated as a result of noise. ADC 
values are built up from signal intensities that cannot be negative due to signal 
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noise. Additionally, negative ADC values might occur caused by misregistration 
between the signal intensities of the different diffusion gradients, but these values 
are neglected and interpolated as zero. To limit these effects, ADC calculation 
based on the mean signal intensities of the region of interest is recommended, 
instead of a voxel-wise approach48. None of the included studies in this review 
reported on this recommended methodology. 

In consonance with previous paragraphs, for a reliable ADC measurement, multiple 
diffusion gradients (b-values) are required. Measured ADC values depend on the 
used diffusion gradient due to the non-linear relation between b-values and signal 
intensity. This effect is supported by the findings of Noij et al.39, where higher ADC 
values were found when measured using b-value 750 compared to b-value of 1000 
s/mm2. To date, a consensus of the optimal amount and combination of diffusion 
gradients is still pending, resulting in the high diversity of applied b-values in this 
study field which might be an explanation for the heterogeneity in study findings. 

Finally, a lack of standardization in study methodology might cause a discrepancy 
between study findings. This can be confirmed by the findings of the study quality 
assessment, where relevant methodological steps were dismissed to obtain 
good reproducibility of study results. Additionally, variety in MRI vendor and 
acquisition protocols might affect diffusion and perfusion values. While recent 
studies recommend echo-planar-imaging DWI with six diffusion gradients49,50 and 
spoiled gradient-echo acquisition DCE imaging50, this is still the first step towards 
standardization. The impact on study results affected by each individual acquisition, 
methodology parameter, and statistical analysis has yet to be investigated49-51. 

Contradictory to the diffusion study results, findings in perfusion studies were 
more consistent. However, a discrepancy was found for Ktrans as a prognosticator 
for LRC. Ng et al.23 found a significantly higher Ktrans in patients with LRC, whereas 
the study of Martens et al.22 report lower Ktrans prognostic for LRC. The statistical 
threshold, based on median values for their own data, used in the study of Ng et 
al.23 might be an explanation of this inconsistency. 

An extensive search was applied over the last decade. However, for some 
prognosticators, a limited amount of studies was available. Conclusions based on 
those individual studies were not yet representative but might be of potential 
value. For example, our findings show that NAUC6016 and the ADC deciles (10th, 
70th, and 80th) and percentiles (25th) are proven to be prognostic for OS44 and 
LRC36, showing the urgency for more research to better investigate their usefulness. 
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Unfortunately, the heterogeneity of studies led to an inability to draw firm 
conclusions in this review. To minimalize heterogeneity, clusters were created 
for several outcome groups. While these clusters categorize relevant treatment 
outcomes, each outcome might affect the prognosticator differently. Evaluating 
each outcome parameter individually is recommended for future research. 

Moreover, non-uniformity was also visible in other categories, such as the inclusion of 
participants, image acquisition, delineation approach, or methodology to calculate 
perfusion or diffusion values. This review was limited to oral cavity, oropharyngeal, 
hypopharyngeal and laryngeal SCC cancer concerning patient inclusion. However, 
no constraints with regard to treatment approach or tumoral HPV status were 
applied. Regarding HPV tumor status, our study showed comparable study results 
between the study of Cao et al.25, only including HPV negative tumors and other 
research findings23,32,36,37 investigating the association between mean ADC and LRC 
(no statistical difference, but a trend was found). Concerning treatment approach, 
some studies27,34,35,38,42,44,46 included patients who were (primarily) treated by 
surgery, among them two studies38,42 describing significant relationships between 
mean ADC and DFS. These significant relationships were also reported in three 
other studies24,43,45, only including patients treated with CRT. Two24,45 of these three 
studies reported an association between lower mean ADC and longer DFS, similar to 
the study findings of Preda et al.42. Contradictive results were reported by Nakajo 
et al.38 (higher mean ADC prognostic for better DFS), while this study includes a 
lower percentage of patients receiving surgery (81% vs 54%). 

Non-uniformity was also present in the definition of the delineated primary tumor. 
Whole tumor volume delineation will be more reliable compared to delineating a 
single slice of the tumor area, since a larger tumor volume is included. Additionally, 
the inclusion of healthy tissue regions (i.e. during GTV delineation) will attenuate 
ADC values of the tumor tissue and restrict reflection of true tumor diffusion. 
Nevertheless, this review has not studied these effect on research results. 

Another disadvantage is the remark which must be made to the results related 
to OS. Although OS is a very reliable outcome measure, it does not solely depend 
on cancer death, but take all causes of death into account. Moreover, even after 
requesting study authors, not all results were available, resulting in the lack of a 
complete overview of all included studies. Conclusions are based on the available 
information. Another drawback of this review is the initial scope of the review 
was limited to only functional imaging parameters as a result of the extensive 
amount of records. Studies describing other approaches to predict treatment 
outcome (i.e. anatomical imaging parameters, radiomics or artificial intelligence) 
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were excluded, while especially radiomics and artificial intelligence are currently 
highly relevant and promising52. Therefore it is recommended to summarize those 
studies in a future systematic review. A final limitation is based on the inclusion of 
only pre-treatment parameters in this review. Recently, upcoming studies describe 
prognosticators (early) during treatment16,17,20,21,26,32,37. These intra-treatment 
prognosticators can be promising for outcome prediction but were not analyzed 
in this review. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

This study gives an overview of the current state of literature describing the 
prognostic value of MR-based pre-treatment perfusion and diffusion parameters 
in predicting treatment response in HNSCC. The accurate and consistent results of 
pre-treatment MR-based perfusion parameters Ktrans and Kep are promising for the 
clinical applicability of these parameters to predict survival and guide treatment 
decision. The variable study results for parameters extracted from diffusion 
imaging was mainly caused by heterogeneity in study design, image acquisition, 
MR field strength, segmentation approach, or statistical approach. 

To reduce discrepancy between studies, a consensus on imaging acquisition and 
study methodology is required. Based on this review, several recommendations for 
future research can be formulated. 

1. DWI image acquisition has to be performed with multiple gradient weights. 
Those gradient weights contain at least a low b-value (100–250 s/mm2) and 
a high b-value (>250 s/mm2). ADC depends on a non-linear relationship 
between gradient weights and signal intensities. Therefore, the inclusion of 
multiple gradient weights covering the whole spectra of the ADC curve is most 
representative of diffusion. Selecting a minimum b-value of 100 s/mm2 excludes 
perfusion bias caused by micro-vascularization. 

2. Diffusion and perfusion values have to be calculated from the mean signal 
intensities of the region of interest instead of a voxel-wise approach. In a voxel-
wise approach, negative ADC values are not present as a result of noise or 
misregistration. Therefore, pure perfusion or diffusion values are overestimated, 
where this is not the case in a mean signal intensity approach. 

3. Delineate the whole tumor volume instead of a single slice delineation. Tumors 
are characterized by their heterogeneous texture. Single slice delineations might 
include homogeneous tumor characteristics (i.e. necrotic area (recommended 
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to exclude)), which do not reflect all tumor characteristics aspects. Therefore, 
the more representative whole tumor delineation is recommended. 

4. Necrotic and cystic tumor regions have to be avoided in tumor delineation. 
Perfusion or diffusion is restricted in those areas, resulting in extreme vales 
in measured perfusion or diffusion values. Additionally, our analysis showed a 
slight trend of more significant study results in studies when cystic or necrotic 
tissues were removed. Therefore, preventing those areas will give a more 
precise representation of the diffusion and perfusion value. 

5. Statistically thresholds have to be independent of the data. Nowadays, a large 
amount of research findings depends on thresholds calculated from their own 
data (i.e. median). To generate comparable and generalizable findings, absolute 
statistically cut-off values are suggested. 

SUPPLEMENTARY INFORMATION

Password: PhD_PaulaBos
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ABSTRACT

Objectives: New markers are required to predict chemoradiation response in 
oropharyngeal squamous cell carcinoma (OPSCC) patients. This study evaluated the 
ability of magnetic resonance (MR) radiomics to predict locoregional control (LRC) 
and overall survival (OS) after chemoradiation and aimed to determine whether 
this has added value to traditional clinical outcome predictors. 

Methods: 177 OPSCC patients were eligible for this study. Radiomic features 
were extracted from the primary tumor region in T1-weighted postcontrast MRI 
acquired before chemoradiation. Logistic regression models were created using 
either clinical variables (clinical model), radiomic features (radiomic model) or 
clinical and radiomic features combined (combined model) to predict LRC and 
OS 2-years posttreatment. Model performance was evaluated using area under 
the curve (AUC), 95% confidence intervals were calculated using 500 iterations of 
bootstrap. All analyses were performed for the total population and the human 
papillomavirus (HPV) negative tumor subgroup. 

Results: A combined model predicted treatment outcome with a higher AUC (LRC: 
0.745 [0.734–0.757], OS: 0.744 [0.735–0.753]) than the clinical model (LRC: 0.607 
[0.594-0.620], OS: 0.708 [0.697–0.719]). Performance of the radiomic model 
was comparable to the combined model for LRC (AUC: 0.740 [0.729–0.750]), but 
not for OS prediction (AUC: 0.654 [0.646–0.662]). In HPV negative patients, the 
performance of all models was not sufficient with AUCs ranging from 0.587 to 
0.660 for LRC and 0.559 to 0.600 for OS prediction. 

Conclusion: Predictive models that include clinical variables and radiomic tumor 
features derived from MR images of OPSCC better predict LRC after chemoradiation 
than models based on only clinical variables. Predictive models that include 
clinical variables perform better than models based on only radiomic features for 
the prediction of OS.
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INTRODUCTION

Oropharyngeal squamous cell carcinoma (OPSCC) is a frequent tumor of the upper 
aero-digestive tract, with an increasing incidence in the last decades1. Although 
definitive chemo- and radiation therapy (chemoradiation (CRT)) is currently 
considered the standard of care for patients with locally advanced OPSCC, surgery, 
especially minimal invasive transoral robotic surgery (TORS), followed by CRT can 
be a good alternative and might enable de-intensification of the postoperative 
CRT, depending on the disease stage and patients’ or clinicians’ preference2,3. 
Although CRT has a high rate of treatment response, a considerable number of 
OPSCC patients have recurrent or residual disease after CRT leading to significant 
morbidity, mortality, and deterioration of quality of life. HPV tumor status is the 
most important predictor of treatment success, generally showing better treatment 
outcomes for HPV positive and less favorable treatment outcomes for HPV negative 
tumors4. Additional markers to predict CRT response are needed especially for HPV 
negative patients, allowing these patients to undergo an alternative treatment 
strategy (e.g. neoadjuvant chemotherapy combined with TORS or induction 
immunotherapy) at an early stage of the treatment trajectory. 

Over the past years, image analysis techniques have been developed to extract 
and quantify visually occult tumor properties from computer tomography (CT) and 
MR images, collectively called radiomics features. These radiomic features have 
been associated with gene expression, histological tissue properties, survival, and 
treatment outcome. Previous studies on this topic have found prognostic radiomic 
features from CT images. For instance, intratumor heterogeneity quantified on CT 
images proved to be predictive of survival5. Compared to CT, MRI may provide 
other insights in tissue properties due to fundamental differences in image 
acquisition6. Few studies have investigated prognostic radiomic features from 
MRI images of head and neck cancer. These studies mainly focused on outcome 
prediction in nasopharyngeal carcinoma using radiomics or deep learning6-10. MRI 
is the preferred modality for OPSCC patients in most centers, providing a unique 
chance to study the ability of MRI radiomics to predict treatment outcome. 

This study aimed to predict CRT treatment outcome for OPSCC using radiomic 
features derived from pretreatment MR images, and to determine whether these 
MR-based radiomic features have added value to clinical predictors of treatment 
outcome. 
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MATERIALS AND METHODS

The institutional ethics review board approved the study. Informed consent was 
waived for this retrospective analysis of anonymous data. 

Patients   
A total of 240 consecutive OPSCC patients, treated with CRT between January 
2010 and December 2015 at our institute, were considered for this study. Inclusion 
criteria were: 1) histologically proven primary OPSCC treated with CRT, 2) minimum 
of 2 years of follow-up after treatment and, 3) availability of relevant clinical 
parameters. Exclusion criteria were unavailable pretreatment MRI examination of 
the primary tumor (n=38), poor image quality (n=7), and small undetectable (n=17) 
or double tumors (n=1). A total of 177 patients were eligible for this study. 

Age, gender, smoking status (non-smoker vs. smoker), date of tumor recurrence, 
occurrence of lymph node metastasis, and survival within 2-years after treatment 
were collected for all patients. TNM-stage (7th edition), subsite and HPV status 
based on immunohistochemistry p16 and DNA HPV polymerase chain reaction were 
collected for each tumor. Clinical variables age and TNM stage were dichotomized 
to create groups of patients younger or older than 60 years, low and high T-stage 
(T1+T2, T3+T4) and positive or negative nodal disease. 

Treatment   
Patients were treated by chemoradiotherapy using Image-guided Intensity-
modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT). 
Prescribed dose was 70 Gy to the primary tumor and the involved nodes and 46 Gy 
electively to the low-risk regions. The radiation was given in a daily fraction of 2 Gy, 
5 times a week for 7 weeks. Set-up verification and correction of the patients was 
done using daily cone-beam CT. Patients received three cycles of cisplatin-based 
chemotherapy (100 gr/m2), administered on day 1, 22 and 43 of their radiation 
treatment. 

Outcome variables   
The primary outcome was locoregional control (LRC), defined as the absence of a 
histopathological proven local recurrence and/or lymph node metastases within 
2 years after initial complete response. Secondary outcome was overall survival 
(OS), defined as the proportion of patients surviving 2 years after treatment. 

Imaging data   
Pretreatment MRI was routinely performed as part of primary staging for patients 
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with OPSCC. All MRI examinations were acquired at 1.5 Tesla (n=82 patients) or 
3.0 Tesla (n=95 patients) on a Philips Medical System, see supplementary Table 1 
for detailed acquisition information. The full imaging protocol included T1w, T2w, 
postcontrast 3D T1w and dynamic scans. 

Tumor delineation   
Primary tumors were manually delineated by one observer in training (PB, 1 year of 
head and neck experience, non-expert delineations), and, subsequently controlled 
and corrected by an experienced head and neck radiologist (BJ, >7 years of head 
and neck experience) on the postcontrast 3D T1w MRI using the freely available 
segmentation software 3D Slicer (version 4.8.0, www.slicer.org) (see Figure 1). 
Average spatial agreement was good with a mean dice similarity coefficient (DSC) 
of 0.83. Dice similarity coefficient was between 0.9–1.0 in 53% of the cases, 
between 0.8–0.9 in 22%, between 0.7-0.8 in 9%, and, below 0.7 in 16% of the 
cases. Larger tumor volumes showed significantly better overlap compared to small 
tumor volumes (p=0.001, independent t-test). Tumor volumes were delineated on 
every axial slice on the postcontrast 3D T1w MRI. Both observers were blinded to 
outcome data but were allowed to interpret other available pretreatment imaging 
data to optimize their delineations.

Feature extraction   
Imaging features were extracted from tumor volumes using the open-source python 
package, Pyradiomics (version 2.2.0)11. All MRI examinations were normalized 
(centering at zero mean and one standard deviation) to obtain a homogeneous 
histogram of MR signal and resampled by B-spline interpolation to a pixel spacing 
of 1.0×1.0×1.0 mm3. Gray values were discretized using a fixed bin width of five. 
Features were extracted from the image data three times: original image, with a 
wavelet image filter, including eight decompositions, and finally with a Laplacian 
of Gaussian (LoG) filter (four levels (0.5–2.0 mm). 

Features with zero variance (i.e. constant features), and therefore of no 
discriminatory value, were removed. Features were considered stable, if they 
had no significant difference between non-expert and expert tumor delineations 
(intraclass correlation coefficient >0.75) and between magnetic field strengths 
(Mann-Whitney U test p ≥0.05). The remaining stable features were then tested for 
collinearity. Features that correlated with other features with a Pearson coefficient 
higher than 0.9 were removed. In this removal process, the feature that showed 
high correlation with the greatest number of other features was removed. This was 
repeated until only the diagonal elements of the correlation matrix exceeded the  
threshold of 0.9.
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Fig. 1. Examples of tumor delineations on postcontrast 3D T1w MRIs. From top to 
bottom the MRI without manual delineation (A), MRI with manual delineation (B) and 
the reconstructed 3D tumor volumes (C) for three patients (left, middle, right). 

Machine learning analysis   
Analysis was performed in all eligible patients (n=177) and in a subset of patients 
with HPV negative tumors (n=77). Sub-analysis of patients with HPV positive 
tumors (n=76) was considered of limited added value, as the majority had favorable 
outcomes for both LRC and OS (LRC: 68/76, OS: 67/76). In 24 patients, HPV status 
was unavailable. Patients were randomly split into a training (70%) and test-set 
(30%), see Table 1, stratifying for treatment outcome and MRI field strength. HPV 
status was included as stratification factor for the total patient cohort. 

Three models were created for each of the outcome variables (LRC and OS) using 

A

C

B
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only clinical variables (clinical model), only radiomic features (radiomics model) 
and a combination of clinical variables and radiomic features (combined model). 
Features were prepared for logistic regression analysis using the following steps: 
1) Standardization of features to zero mean and unit variance, and 2) Reduction of 
the number of features by wrapper feature selection using a sequential backward 
feature selection method, which removed irrelevant features by iteratively 
removing the feature with the weakest feature importance score12. 

In the training phase, optimal model settings of the machine learning pipeline 
were found utilizing 1000 iterations of Bayesian hyperparameter optimization 
(Python library Hyperopt version 0.213), applying fourfold cross validation within 
the training set (see Table 1 for patient numbers). The regularization parameter 
and the number of selected features in wrapper feature selection were tuned 
during Bayesian hyperparameter optimization (supplementary Table 2). Training 
performance of the predictive models was evaluated using median AUC and its 95% 
confidence interval (95% CI) from the performance of the optimal hyperparameters 
in fourfold cross validation. 

In the testing phase, the optimal hyperparameter combination obtained in the 
training step was applied to the unseen test dataset. Model test performance was 
evaluated by the median and 95% CI of AUC, sensitivity, specificity and accuracy 
obtained using 500 iterations of bootstrap (with replacement).

Table 1. Detailed information of patient numbers in training and test set for the 
development of a prediction model. 

Total patient  
cohort

HPV negative  
subset

Total number of patients 177 77

Training set (70%) 124 53

Cross validation: training (75%) 93 40

Cross validation: validation (25%) 31 13

Test set (30%) 53 24

Statistical analysis   
Univariate Fishers’ exact test was used to test differences in clinical features 
between groups with regard to outcome parameters (OS and LRC). P-values <0.05 
were considered statistically significant (p=0.004 after Bonferroni correction). 
Statistical differences between the predictive radiomic features of the models 
were tested using the Wald test (p-values <0.05 were considered statistically
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Fig. 2. Flowchart of the radiomics workflow. First clinical variables and/or radiomic 
features were extracted from the patient and MR image respectively. Feature space 
including only clinical variables, only radiomic features or the combination were 
created to build a clinical, radiomic or combined prediction model respectively. 
After dimensionality reduction, using wrapper feature selection, a logistic regression 
prediction model is trained and model performance is evaluated.

significant). All analyses were implemented in python 3.5 and SPSS version 25.0 
(SPSS Inc.). The radiomic workflow is visualized in Figure 2.  

RESULTS

Detailed patient characteristics and oncologic outcomes are summarized in Table 
2. Of the total patient group, approximately half had a high T-stage (T3-T4) and 
80% had node-positive disease. Considering only patients with known HPV status 
revealed an equal distribution between positive (n=76) and negative (n=77) HPV 
status. Patients with favorable outcomes for LRC and OS were more likely to have 
HPV positive tumors (LRC: p=0.004, OS: p=0.001). 

Predictive performance of models for all patients   
Out of 1184 radiomic features, 75 features were stable. Performance of the clinical, 
radiomics and combined model based on logistic regression for prediction of LRC 
and OS are summarized in Table 3. 

Locoregional control   
The predictive properties of the clinical model (Test AUC: 0.607, Sens: 0.57, Spec: 
0.60, Acc: 0.57) are less favorable compared to the radiomic model (Test AUC: 
0.740, Sens: 0.75, Spec: 0.60, Acc: 0.71) with regard to LRC. The combined model 
(Test AUC: 0.745, Sens: 0.73, Spec: 0.71, Acc: 0.71) shows a similar performance as 
the radiomic model. 

Lower T-stage (r: 0.330), HPV positivity (r: 0.305), tumor not located at the 
posterior oropharyngeal wall (r: −0.174) and lower age (r: −0.166) were predictive 

Feature space Model evaluationTraining a model

+
Clinical variables

Radiomic features

And
/Or

Feature extraction Dimensionality reduction
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Table 2. Patient demographics. Baseline characteristics and outcome after CRT for all 
patients, and HPV negative tumors. Summaries are given as number of patients and % of 
the total group between parentheses. Median and interquartile range (IQR) are used to 
summarize continuous variables. Fisher exact test after Bonferroni correction *p=0.004 
and p=0.001 for LRC and OS respectively. Clinical values were only significant for total 
patient cohort. 

Patients, n Total patient 
cohort 

(n=177)

HPV negative 
tumors 
(n=77)

HPV positive 
tumors 
(n=76)

Age (>60years) 101 (57) 52 (67) 36 (47) 

Sex, n male (%) 111 (63) 54 (70) 42 (55) 

Smoking, n (%) 134 (76) 72 (94) 42 (55) 

HPV*
Negative, n (%) 77 (44) 77 (100) – 

Positive, n (%) 76 (43) – 76 (100) 

Unknown, n (%) 24 (13) – – 

T-stage, n (%)
T1+T2 94 (53) 25 (33) 53 (70) 

T3+T4 83 (47) 52 (67) 23 (30) 

N-stage, n (%)
N0 36 (20) 18 (23) 8 (11) 

N1 26 (15) 11 (15) 12 (16) 

N2 110 (62) 47 (61) 52 (68) 

N3 5 (3) 1 (1) 4 (5) 

Subsite of cancer
Tonsillar tissue 99 (56) 42 (55) 46 (60) 

Soft palate 18 (10) 11 (14) 2 (3) 

Base of tongue 56 (32) 20 (26) 28 (37) 

Posterior wall 4 (2) 4 (5) 0 (0) 

Clinical endpoints LRC <2 
year, n (%) 144 (81) 55 (71) 66 (87) 

Time to LRF in months, 
median (IQR) 6 (4–17) 6 (4–13) 9 (4–18) 

OS after 2 years, n (%) 137 (77) 50 (65) 72 (95) 

OS in months for non-
survivors, median 
(IQR) 

12 (8–17) 14 (9–18) 12 (10–15) 

HPV: Human papillomavirus; LRC: Locoregional control; OS: Overall survival; LRF: Locoregional 

failure
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determinants of LRC in the clinical model (supplementary Table 3). Four and five 
radiomic features were selected in the radiomic and combined model, respectively. 
Rounder and more homogeneous tumors were associated with disease control 
(supplementary Table 4). No clinical variables were selected in the combined 
model.

Overall survival   
For the prediction of OS, the predictive performance of the clinical model (Test 
AUC: 0.708, Sens: 0.68, Spec: 0.67, Acc: 0.69) is better than the radiomic model 
(Test AUC: 0.654, Sens: 0.62, Spec: 0.57, Acc: 0.60). The combined model (Test 
AUC: 0.744, Sens: 0.71, Spec: 0.78, Acc: 0.71) had the highest performance and 
outperformed the two other models. 

Eight, ten and twenty-two features were prognostic for overall survival, regarding 
respectively the clinical, radiomic and combined model (supplementary Table 3). 
In the clinical model, lower T-stage (r: 0.409), younger patients (r: −0.395), HPV 
positivity (r: 0.348), node-negative disease (r: 0.232), tumors not located in the 
posterior oropharyngeal wall (r: −0.147), tumors located at the base of tongue (r: 
0.095) and female gender (r: −0.041) were associated with OS. Radiomic features 
show less complex, coarse and more homogeneous tumors in patients who are 
more likely to survive (supplementary Table 4). 

Predictive performance of HPV negative tumors   
After feature reduction, 123 features remained for the HPV negative subgroup. 
Table 4 summarizes predictive properties of prediction models in HPV negative 
tumors. 

Performance of all models was generally low for LRC (Test AUCs 0.587 to 0.660) 
and OS (Test AUCs 0.559 to 0.600). Performance of the clinical model was lower 
than the model based on radiomic features for both LRC (Test AUC: 0.587 and 0.652 
respectively) and OS (Test AUC: 0.559 and 0.593 respectively). Performance of the 
radiomic model was comparable to the combined model for both LRC (Test AUC: 
0.660, Sens: 0.83, Spec: 0.43, Acc: 0.71) and OS (Test AUC: 0.600, Sens: 0.40, Spec: 
0.67, Acc: 0.51). 

DISCUSSION

The main finding of this study was that predictive models based on a combination 
of clinical variables and MR-based radiomic features have a reasonable ability to 
predict LRC and OS within 2 years after CRT in OPSCC. Sub analysis of HPV negative
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Accuracy 
[CI bootstrap]

0.57 [0.56-0.58]

0.71 [0.71-0.72]

0.71 [0.71-0.72]

0.69 [0.68-0.69]

0.60 [0.59-0.61]

0.71 [0.71-0.72]

Specificity 
[CI bootstrap]

0.60 [0.58-0.62]

0.60 [0.58-0.62]

0.71 [0.70-0.73]

0.67 [0.65-0.68]

0.57 [0.56-0.59]

0.78 [0.76-0.79]

Sensitivity 
[CI bootstrap]

0.57 [0.56-0.58]

0.75 [0.74-0.76]

0.73 [0.72-0.73]

0.68 [0.67-0.69]

0.62 [0.61-0.62]

0.71 [0.70-0.72]

Test AUC  
[CI bootstrap]

0.607 [0.594-0.620]

0.740 [0.729-0.750]

0.745 [0.734-0.757]

0.708 [0.697-0.719]

0.654 [0.646-0.662]

0.744 [0.735-0.753]

Training AUC  
[CV]

0.637 [0.572-0.702]

0.783 [0.690-0.875]

0.747 [0.640-0.855]

0.659 [0.558-0.760]

0.601 [0.501-0.702]

0.548 [0.519-0.577]

Model

LRC

Clinical

Radiomic

Combined

OS

Clinical

Radiomic

Combined

Table 3. Performance expressed as AUC [95% CI] for the models predicting LRC and OS within 2 years 
after chemoradiation for all patients. Confidence intervals were calculated from 500 iterations of 
bootstrapping. 

 

 

CV: Cross validation

Table 4. Performance expressed as AUC [95% CI] for the models predicting LRC and OS within 2 years 
after chemoradiation for all patients with HPV negative tumors. Confidence intervals were calculated 
from 500 iterations of bootstrapping.

CV: Cross validation

Accuracy 
[CI bootstrap]

0.57 [0.56-0.58]

0.71 [0.71-0.72]

0.71 [0.71-0.72]

0.54 [0.54-0.55]

0.51 [0.51-0.52]

0.51 [0.51-0.52]

Specificity 
[CI bootstrap]

0.27 [0.26-0.29]

0.43 [0.41-0.44]

0.43 [0.41-0.44]

0.67 [0.65-0.68]

0.32 [0.31-0.34]

0.67 [0.65-0.68]

Sensitivity 
[CI bootstrap]

0.71 [0.70-0.72]

0.83 [0.83-0.84]

0.83 [0.83-0.84]

0.47 [0.46-0.48]

0.60 [0.59-0.61]

0.40 [0.39-0.41]

Test AUC  
[CI bootstrap]

0.587 [0.578-0.595]

0.652 [0.642-0.661]

0.660 [0.650-0.670]

0.559 [0.543-0.563]

0.593 [0.583-0.602]

0.600 [0.591-0.609]

Training AUC  
[CV]

0.510 [0.442-0.579]

0.706 [0.510-0.901]

0.706 [0.510-0.901]

0.606 [0.390-0.821]

0.501 [0.409-0.593]

0.478 [0.360-0.596]

Model

LRC

Clinical

Radiomic

Combined

OS

Clinical

Radiomic

Combined
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patients showed moderate performance in the prediction of LRC and poor 
performance in the prediction of OS. 

Interestingly, predictive performance of models based on only clinical variables 
was not as good as the combined models. This implies that clinical variables 
and radiomics features hold independent information for outcome prediction. 
Radiomic features are likely to add information embedded in tumor structure for 
the prediction of treatment outcome not captured by clinical variables. Clinical 
variables may add to the radiomic features in different ways for LRC and OS. For 
LRC, information is added to the risk of recurrence by clinical factors that influence 
tumor biology, such as HPV status and age. For OS, non-tumor related information 
is added to risk of death, like age and comorbidities. These findings, indicates that 
clinical and imaging features should preferably be combined when constructing 
models to predict treatment outcome. This is in line with findings of Mes et al.14 
for oral cancer patients and HPV negative OPSCC. 

For the prediction of LRC, the combined model consisted of only radiomic features 
while both clinical variables and radiomic features were included in the construction 
of the model. The performance of this combined model was slightly better than 
the radiomic model due to the addition of the radiomics variable skewness. 
Additional analysis (not shown) revealed that the correlation of clinical variables 
with selected radiomic features was low. Apparently, the combination of clinical 
variables and radiomics variables in the model construction sequence makes slight 
improvements in the eventual combined model compared to the radiomics model, 
in this case with the addition of skewness. This slight improvement occurred even 
though clinical variables do not obviously correlate with the radiomics variables. 
This is an important consideration to take into account in construction of predictive 
radiomics models. 

For prediction of OS, the combined model consisted of a relatively large number 
of radiomic features and clinical variables. As mentioned previously, risk of death 
includes a broad range of factors that are not directly tumor related. The large 
number of clinical and radiomic features with generally low regression coefficients 
in the combined model for prediction of OS reflects this. 

The radiomic features revealed that rounder and more homogenous tumors are 
associated with a more favorable outcome. This relationship is probably a reflection 
of genetic tumor diversity/dedifferentiation resulting in more heterogeneous and 
irregular tumors with worse treatment response and higher rate of locoregional 
failure. These findings are in line with another MRI-based radiomics study of head 
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and neck cancer showing higher homogeneity and rounder shapes for overall 
survival7. 

HPV is an important determinant of the biology and behavior of OPSCC, and is 
known to be a strong predictor of treatment outcome in OPSCC, prompting us to 
create separate models for HPV positive and negative tumors. As expected, most 
patients with HPV positive tumors had a favorable outcome, which did not permit 
us to create a meaningful model for this tumor type. Distribution of outcome 
variables for HPV negative tumors permitted the construction of a predictive model, 
but did not reach consistent meaningful predictive properties. This was probably 
due to the low number of patients (n=77) in this subgroup. The role of clinical 
and radiomics models in outcome prediction for HPV positive and, particularly, 
negative tumors therefore remains unclear. 

This study has a relatively large sample size (n=177) compared to other published 
studies on MR radiomics in head and neck cancer (maximum 118 patients)10. 
However, these results are not generalizable to other hospitals with different 
scanners and scanner protocols. The next step is to replicate these findings in an 
external validation cohort from multiple centers15-17. 

MRI based radiomics is still difficult to implement in the clinical workup due to 
a lack of standardization in acquisition parameters and harmonization between 
MRI machines, as was shown in previous studies14,16,17. Until standardization of 
acquisition is available, standardization between centers can be reached by 
harmonizing pre-processing steps and correlation analysis to obtain stable 
features between centers. Even though stable feature reduces bias introduced by 
human interaction by manual delineation, some human influence cannot be ruled 
out completely. In the future, automated delineation techniques may be able to 
eliminate this unwanted bias.

This study extracted radiomic features from primary tumors based on postcontrast 
T1w MRI. Extracting features from other MR sequences might give a better 
representation of tumor biology, and may harbor information relevant to treatment 
outcome. For instance, the dynamic contrast-enhanced MRI parameters have 
shown its prognostic ability to predict OS and progression-free survival18. Sample 
size considerations and preliminary results prompted us to use only T1w 3D 
sequences to ensure meaningful results. Evidently, this needs to be considered in 
future studies. 

This study shows that predictive models that include radiomic tumor features 



68

Chapter 3

derived from MR images of OPSCC better predict LRC after chemoradiation than 
models based on only clinical variables. Predictive models that include clinical 
variables perform better than models based on only radiomic features for the 
prediction of OS. 

Future studies on MRI based radiomics should confirm these findings in a larger 
patient cohort and elucidate the potential role of radiomics in outcome prediction 
in HPV positive and, especially, HPV negative tumors.

SUPPLEMENTARY INFORMATION

Password: PhD_PaulaBos
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ABSTRACT

Objectives: To externally validate a pre-treatment MR-based radiomics model 
predictive of locoregional control in oropharyngeal squamous cell carcinoma 
(OPSCC) and to assess the impact of differences between datasets on the predictive 
performance.

Methods: Radiomic features, as defined in our previously published radiomic 
model, were extracted from the primary tumor volumes of 157 OPSCC patients in a 
different institute. The developed radiomic model was validated using this cohort. 
Additionally, parameters influencing performance, such as patient subgroups, 
MRI acquisition and post-processing steps on prediction performance will be 
investigated. For this analysis, matched subgroups (based on human papillomavirus 
(HPV) status of the tumor, T-stage and tumor subsite) and a subgroup with only 
patients with 4mm slice thickness was studied. Also the influence of harmonization 
techniques (ComBat harmonization, quantile normalization) and the impact of 
feature stability across observers and centers was studied. Model performances 
were assessed by area under the curve (AUC), sensitivity and specificity.

Results: Performance of the published model (AUC/Sensitivity/Specificity: 
0.74/0.75/0.60) drops when applied on the validation cohort (AUC/Sensitivity/
Specificity: 0.64/0.68/0.60). The performance of the fully validation cohort 
improves slightly when the model is validated using a patient group with 
comparable HPV status of the tumor (AUC/Sensitivity/Specificity: 0.68/0.74/0.60), 
using patients acquired with a slice thickness of 4mm (AUC/Sensitivity/Specificity: 
0.67/0.73/0.57) or when quantile harmonization was performed (AUC/Sensitivity/
Specificity: 0.66/0.69/0.60).

Conclusion: The previously published model shows its generalizability and can be 
applied on data acquired from different vendors and protocols. Harmonization 
techniques as well as subgroup definition influence performance of predictive 
radiomics models.
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INTRODUCTION

The use of imaging biomarkers to enhance diagnostic accuracy and treatment 
decision-making is fully in development. Radiomics is a noninvasive quantitative 
image analysis technique to extract large numbers of imaging biomarkers. Several 
studies showed the potential of radiomics in supporting the radiologist by tumor 
type determination1, tumor classification2,3 or treatment outcome and prognosis 
prediction4–6. However, while these more objective quantitative approaches are 
very promising and allow another layer of information extraction, traditional visual 
analysis is still daily routine.

One of the concerns for clinical implementation of radiomics is the generalizability 
and robustness7–11. Prediction models can only be applied in a clinical setting when 
they are generalizable and show reproducible performance against variations in 
the radiomic workflow. Such evaluations lack in monocenter studies. Several lines 
of evidence indicate that prediction models are mainly suitable for the trained 
patient population10,11, that radiomic features are influenced by image acquisition 
parameters12–14 and post-processing steps, such as tumor segmentation and data 
harmonization15,16. These factors will affect general performance in external 
validation studies. 

To date, multi-center validation of radiomics models in head and neck cancer 
patients is limited to only five studies4,5,17–19. Among these, in only one study5 a 
magnetic resonance imaging (MRI)-based radiomic signature was described, 
which is often the modality of choice for imaging of head and neck tumors due 
to the superior soft tissue contrast. Mes et al.5 reported comparable performance 
during external validation for overall survival (AUC: both 0.69) and relapse-free 
survival (AUC: 0.63 vs 0.70). In contrast to this multicenter validation study, mostly 
monocenter MR-based studies were performed3,20,21.

Recently, an MR-based radiomic model predictive of locoregional control (LRC) 
in oropharyngeal squamous cell carcinoma (OPSCC) patients was published 
(Train AUC: 0.0.783, Test AUC: 0.740)6. The current research aims to investigate 
the generalizability of this published model by validating the results using an 
independent external dataset. Additionally, the influence of differences in the 
factors 1) patient population, 2) MRI acquisition and 3) post-processing steps on 
prediction performance will be investigated. 
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MATERIALS AND METHODS

Study population  
The validation cohort consist of a subset of patients collected for earlier published 
research22,23. In more detail, patients with primary histological proven OPSCC 
were consecutively collected at the Amsterdam UMC. Written informed-consent 
was obtained from all patients. Patients were treated with (chemo)-radiotherapy 
((C)RT) between 2012 and 2018 and had an available pretreatment MRI. 
Subjects with insufficient image quality were excluded from analysis. Treatment 
consisted of pre-determined radiotherapy (7 weeks, 70 Gy in 35 fractions)  
with/without concomitant-chemotherapy (3-weekly 100mg/m2 cisplatin), or 
weekly cetuximab (400mg/m2 loading-dose followed by seven weekly infusions of 
250mg/m2). HPV-status was determined by p16-immunostaining followed by DNA-
PCR on p16-immuno-positive cases. The clinical variables age, gender and smoking 
status were collected from patient records. Additionally, tumor variables, such as 
tumor subsite, TNM-stage and HPV status, were collected. Locoregional control 
(LRC) was defined as the absence of a histopathological proven local recurrence 
and/or lymph node metastases within 2 years after the end of treatment.

Image acquisition  
Pretreatment contrast-enhanced T1-weighted magnetic resonance images (MRI) 
were acquired on a 1.5 Tesla Signa HDxt MR scanner (GE Medical Systems) (n=54) or 
3.0 Tesla Ingenuity MR scanner (Philips Medical Systems) (n=72). MR examinations 
were performed using a slice thickness ranging from 4 to 7mm and a pixel spacing 
of 0.40-0.56mm. A flip angle of 90°, echo time of 8.6-16.0mm and a repetition time 
of 400-820ms were used during MR acquisition. Table 1 summarizes the acquisition 
parameters used at both centers.

Tumor delineation  
The VELOCITY-software was used to manually delineate primary tumors on T1-
weighted images by two independent head and neck radiologists with more than 10 
(RB) and 30 (JC) years’ experience. The 3D whole tumor volumes included necrotic 
and cystic areas; image artefacts were excluded. Observers were able to use other 
available MR imaging sequences and clinical information, with the exception of 
treatment outcome. Discrepancies in tumor segmentations between the observers 
were solved in a consensus meeting. 

Feature extraction  
Radiomic features were extracted from the primary tumor volumes using 
PyRadiomics (version 2.2.0)24, with the same methodology as reported by Bos et 
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al.6. In summary, MR images were normalized, resampled to 1mm3 isotropic voxels 
and discretized into bins with a fixed width of five. Features extracted from the 
Amsterdam UMC were used to 1) validate the published radiomic model6 and 2) to 
evaluate factors influencing prediction performance.

Table 1. An overview of the parameters used during the acquisition of MR images for 
the original dataset, used for building the model, and the validation dataset. 

Training & test dataset

The Netherlands Cancer 
Institute (n=177)

Validation dataset

Amsterdam UMC 
(n=157)

Manufacturer

Signa HDxt (GE Medical Systems) - 54 (34%)

Ingenuity (Philips Medical Systems) - 72 (46%)

Achieva (Philips Medical Systems) 177 (100%) -

Unknown - 31 (20%)

Magnetic field strength [Tesla]

1.5 82 (46%) 80 (51%)

3.0 95 (54%) 77 (49%)

Acquisition 3D 2D

Slice thickness [mm] 0.8 - 1.0 4.0 - 7.0

Pixel spacing [mm] 0.2 – 1.0 0.4 – 0.6

Repetition time [ms] 4.3 – 10.0 4.0 – 8.2

Echo time [ms] 1.7 – 4.6 8.6 – 16.0

Flip Angle [°] 10 90

Fat suppression Yes None

1. Validating the prediction model  
A previously developed logistic regression model predictive of LRC6, based on 
monocenter data (n=177 OPSCC patients) of the Netherlands Cancer Institute, 
was validated using external data from the Amsterdam UMC. In summary, the 
previously developed model6 is based on radiomic features extracted from pre-
treatment T1-weighted postcontrast MR examinations (normalized (centering at 
zero mean and one standard deviation), discretized and interpolated to isotropic 
voxels of 1.0 mm3). After dimensionality reduction, only 77 ‘stable’ features remain 
for model training using 1000 iterations of Bayesian hyperparameter optimization 
and fourfold cross validation. The optimal hyperparameters were validated using 
the unseen test set. The final model included four features (ClusterShade, Mean, 
Kurtosis and Sphericity). Performance was measured using area under the curve
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(AUC). AUCs for the predictive performance were 0.78 for the training subset and 
0.74 for the test subset. 

2. Evaluation of factors influencing prediction performance  
Performance obtained by external validation might differ from performance 
received after internal testing. As mentioned, diversity in performance might be 
the result of differences in 1) patient demographics, 2) MRI acquisition, and, 3) 
post-processing. The impact of each of these categories will be evaluated.

2.1 Patient demographics  
Matched subgroups (based on clinical variables that differed significantly between 
the datasets) were randomly created from the validation cohort, which meets the 
patient demographics of the Netherlands Cancer Institute. Performance of each 
subgroup was evaluated. Analysis was repeated ten times to correct for selection 
bias.

2.2 Image acquisition  
To compare for differences in image acquisition, model validation was performed 
on a subset of patients which were acquired using a slice thickness of 4mm. This 
thickness corresponds best to the slice thickness used at the Netherlands Cancer 
Institute.

2.3 Post-processing steps  
A final factor that might impact prediction performance is post-processing steps. 
While the radiomic pipeline is becoming more and more standardized16, there are 
subtle differences within each step of the pipeline. This experiment evaluates the 
influence of delineation differences, feature stability and data harmonization on 
prediction performance.

2.3.1 Agreement on tumor delineation  
To examine differences in tumor delineation, ten randomly selected patients 
of the Amsterdam UMC were delineated by an observer from the Netherlands 
Cancer Institute. Spatial overlap between the delineations of an observer from 
the Netherlands Cancer Institute and an observer from the Amsterdam UMC was 
calculated using the Dice similarity coefficient (DSC)25 and Hausdorff distance 
(HD)26. A DSC above 0.6 is considered appropriate, where an HD value close to 0mm 
represents good spatial overlap. Additionally, intraobserver correlation coefficients 
(ICC) between features extracted from both observers were calculated, considering 
an ICC above 70% as appropriate.
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2.3.2 Data harmonization  
An important step during external validation is the correction of data variations 
across centers by removing batch effects. For this study, the two approaches 
Combining Batches (ComBat) harmonization and quantile normalization, were 
evaluated. Both approaches harmonize in the feature domain, where features 
derived from the validation dataset were harmonized towards the feature domain 
of the Netherlands Cancer Institute. ComBat harmonization27 performs location-
scaling using Bayes estimations to transform each radiomic feature to a comparable 
data distribution, resulting in a similar mean and variance in both datasets. ComBat 
harmonization was performed using the Python package neuroCombat28. Quantile 
normalization29 discretized each radiomic feature into bins with equal frequencies 
as the reference data (the Netherlands Cancer Institute), where quantiles of the 
data distribution were used to determine the points for the bins. Code for quantile 
normalization was written in R.

2.3.3 Feature stability  
Since radiomic features are calculated from the image itself, variations in acquisition 
parameters affect feature values. Therefore, disparity in feature values extracted 
from both centers were tested using the Mann-Whitney U test. Radiomic features 
were considered to be stable, when the p-value was above 0.05.

Statistics  
Differences between patient demographics of both cohorts were assessed using 
Fishers’ exact test (binary variables) and independent Student t-test (continuous 
variables). Performance of the prediction models was depicted using median 
AUC, sensitivity, specificity and accuracy using 500 iterations of bootstrap (with 
replacement). Histograms were plotted to visualize data distributions of both 
centers to examine harmonization performances. Significant differences between 
AUC performance was calculated using McNeil test30.

RESULTS

Study population  
A total of 157 OPSCC patients were selected for the validation population with a 
median age of 61 years [IQR: 56-67 years]. In general, most of the patients were 
male (71%), smokers (80%), had HPV negative tumors (69%), a high T-stage (T3+T4, 
67%) with positive nodal disease (82%). 

Patient characteristics of the Netherlands Cancer Institute and the Amsterdam 
UMC are summarized in Table 2. The Amsterdam UMC included more patients 
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with HPV negative tumors (44% vs 69%, p=0.001) and higher T-stages (47% vs 67%, 
p<0.001). Additionally, significant differences were observed with regard to cancer 
subsite (p<0.033), as cohort tumors at the posterior wall were more common at the 
Amsterdam UMC (p<0.001). For both centers, LRC was achieved in a comparable 
relative number of patients (80% vs 81%).

Table 2. Patient demographics of the dataset used for building the prediction model 
(the Netherlands Cancer Institute) and the dataset used for validating this model 
(the Amsterdam UMC) are summarized. Numbers in brackets represents percentages. 
Differences between clinical variables were assessed using the Fishers’ exact test (a) or 
independent Student t-test (b).

Cohort Training & test dataset

The Netherlands Cancer  
Institute (n=177)

Validation dataset

Amsterdam UMC (n=157)

p-value

Age (>60 years) 101 (57) 95 (61) 0.578a

Age, y [IQR] 61 [56-66] 61 [56-67] 0.713b

Sex, n male (%) 111 (63) 112 (71) 0.104a

Smoking, n (%) 134 (76) 125 (80) 0.432a

HPV, n (%) 0.001a

Negative 74 (44) 108 (69)

Positive 76 (43) 49 (31)

Unknown 24 (31) 0 (0)

T-stage, n (%) <0.001a

T1 + T2 94 (53) 52 (33)

T3 + T4 83 (47) 105 (67)

N-stage 0, n (%) 141 (80) 128 (82) 0.681a

Subsite of cancer, n (%)

Tonsillar tissue 99 (56) 66 (42) 0.012a

Soft palate 18 (10) 6 (3) 0.033a

Base of tongue 56 (32) 66 (42) 0.053a

Posterior wall 4 (2) 19 (12) <0.001a

Clinical endpoints

LRC < 2 year, n (%) 144 (81) 149 (80)

Time to LRF in months, 
median (IQR)

6 (4-17) 6 (4-11)

1. Validating the prediction model  
The performance of the monocentric trained and tested model predictive of LRC6 
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had an AUC of 0.74, sensitivity/specificity of 0.75/0.60 and accuracy of 0.71. 
This performance drops when externally validated to an AUC of 0.64, sensitivity/
specificity of 0.68/0.60 and accuracy of 0.66. 

2. Evaluation of the impact on performance obtained from the validation 
dataset 

2.1 Patient demographics  
Patient subgroups were created based on T-stage, tumor subsite and HPV status and 
their combinations. Validation performances are summarized in Table 3. Performance 
of a single clinical variable correction was highest when a subset was matched on 
HPV status (AUC/Sensitivity/Specificity/Accuracy: 0.68/0.73/0.67/0.71), followed 
by tumor subsite (AUC/Sensitivity/Specificity/Accuracy: 0.65/0.69/0.63/0.69) and 
T-stage (AUC/Sensitivity/Specificity/Accuracy: 0.62/0.70/0.50/0.66). Correcting 
for two clinical variables show the highest performance when patient groups were 
corrected on both HPV status and cancer subsite (AUC/Sensitivity/Specificity/
Accuracy: 0.66/0.71/0.60/0.69). Matching on all three clinical variables drops AUC 
to 0.61, increases sensitivity of 0.79, decreases specificity of 0.50 and increases 
accuracy to 0.74. The different performances are illustrated in Figure 1A.

2.2 Image acquisition  
As described in Table 2, slice thickness ranges from 0.8 to 1.0mm and 4 to 7mm 
for patients from the Netherlands Cancer Institute and the Amsterdam UMC, 
respectively. Validation of the model using only patients acquired with a slice 
thickness of 4mm (n=111) results in a slight improvement of performance (AUC/
Sensitivity/Specificity/Accuracy: 0.67/0.73/0.57/0.71) (see Figure 1B).

2.3 Post-processing steps 

2.3.1 Agreement on tumor delineation  
Substantial agreement between the observers (each from another center) was 
shown when primary tumors were delineated independent, with an average DSC of 
0.69 ± 0.11 and HD of 10.6 ± 3.0mm (see Figure 2). Most radiomic features (73.2%) 
were considered as stable. Out of the four predictive features of the published 
model6, two features (Cluster shade  (Wavelet, LLL), Sphericity) were considered 
as stable, whereas the other features (Mean  (Wavelet LLH), Kurtosis  (Laplacian of 
Gaussian, 2.0mm)) were affected by the observer.

2.3.2 Data harmonization   
The predictive features of the published model6, without and after harmonization
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are shown in Figure 3. Data 
distribution after quantile 
normalization meets the 
original data better compared 
to ComBat harmonization. 
Prediction performance (see 
Table 3) without harmonization 
( A U C / S e n s i t i v i t y /
S p e c i f i c i t y / A c c u r a c y : 
0 . 6 4 / 0 . 6 8 / 0 . 6 0 / 0 . 6 6 ) 
decreased compared to 
prediction performance 
with ComBat harmonization 
( A U C / S e n s i t i v i t y /
S p e c i f i c i t y / A c c u r a c y : 
0.62/0.09/1.00/0.26). An 
improvement was shown 
when data was harmonized 
using quantile normalization 
( A U C / S e n s i t i v i t y /
S p e c i f i c i t y / A c c u r a c y : 
0.66/0.69/0.60/0.67).

2.3.3 Feature stability   
Out of 1,184 features, 83 
(7.0%) features were stable 
against the selected center 
when no harmonization 
was applied. Looking at the 
original radiomic signature6, 
‘Sphericity ’  is considered as 
the only stable feature across 
centers.

Training performance of a 
monocenter radiomic model, 
taking only stable features 
into account decreased 
significantly (Train AUC: 
0.77 vs. 0.58, p=0.02). A 
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Table 3. Prediction performance for LRC obtained for the different experiments based 
on 1) patient demographics, 2) scan acquisition or 3) post-processing steps. During 
experiments considering patient demographics, patient groups were matched for the 
next clinical parameters HPV status of the tumor (p<0.001), T-stage (p<0.001) and 
cancer subsite (p<0.053), which were significant different between the two centers. 
Performance is calculated using area under the curve (AUC), sensitivity, specificity 
and accuracy. The 95% confidence intervals were measured for experiments based on 
matching patient groups, where ten randomly selected samples were used for analysis.

Performance Patients 
[n]

Validation 
AUC

Sensitivity Specificity Accuracy

Patient  
intrinsic  
para- 
meters

All patients 157 0.64 0.68 0.60 0.66

Patient subsets

HPV 98 0.68
[0.64-0.74] 0.73 0.67 0.71

T-stage 98 0.62
[0.59-0.65] 0.70 0.50 0.66

Subsite 112 0.65
[0.61-0.69] 0.69 0.63 0.69

HPV + T-stage 70 0.64
[0.58-0.74] 0.81 0.50 0.77

HPV + Subsite 66 0.66
[0.53-0.73] 0.71 0.60 0.69

T-stage +  
Subsite 75 0.55

[0.44-0.64] 0.72 0.40 0.66

HPV + T-stage 
+ Subsite 33 0.61

[0.51-0.66] 0.79 0.50 0.74

Scan  
acquisi-
tion

4mm slices
132 0.67 0.73 0.57 0.71

Post- 
proces-
sing

Harmonization

ComBat  
harmonization 157 0.62 0.09 1.00 0.26

Quantile  
normalization 157 0.66 0.69 0.60 0.67

similar trend, but without significance, was shown for test (Test AUC: 
0.74 vs 0.53, p=0.10) and validation (Validation AUC: 0.64 vs. 0.51, 
p=0.11) performance. Figure 4 represents the train, test and validation 
performances of a model based on all features and based on stable features.
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Fig. 2. Spatial overlap between two observers from both institutes visualized, calculated 
with the dice similarity coefficient (DSC). The patient at the left has a DSC of 0.42, the 
middle patient a DSC of 0.61, and the patient at the right a DSC of 0.82. 

 
Fig. 3. Histograms of the original radiomic signature, including four features predictive 
of LRC. The data distribution of the original center (the Netherlands Cancer Institute 
(grey histogram)) is visualized combined with the data distributions of data from the 
Amsterdam UMC before (blue line) and after harmonization (Combat harmonization) 
(dashed black line) or Quantile harmonization (black line).

DISCUSSION

In this study an external validation of a published monocenter pre-treatment 
MR-based radiomic model predictive of LRC in OPSCC6 was performed. The main 
finding is that this model is generalizable and can be applied on data acquired with 

ClusterShade (GLCM, wavelet (LLL)) Mean (�rstorder, wavelet (LLH))

Sphericity (shape)Kurtosis (�rstorder, LoG (2mm))
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different vendors and protocols. 

Only a slight drop in model performance was observed when the model was 
validated on an external dataset. A slight drop of prediction performance during 
external validation was also reported in previous literature18,19, validating a CT-
based radiomic model predictive of HPV (AUC test/validation: 0.83/0.76)18 or nodal 
failure (AUC: 0.79/0.71)19. Apparently, prediction models developed on internal 
patient data learned the relation between predictors and the outcome parameter. 
The systematic differences between patient cohorts and centers makes it harder, 
but not impossible, to maintain this relation and to classify patients within the 
correct outcome group, resulting in a slight drop of performance10.

Se
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y
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0.8

0.6

0.4

0.2

0.0

1-Speci�city
0.0 0.2 0.4 0.6 0.8 1.0

All vs Stable features

Fig. 4.  ROC-curves of a model predictive of locoregional control based on all radiomic 
features (blue lines) and a model based on stable features (yellow line). The performance 
of the training and testing cohort (solid line) and validation cohort (dashed line) are 
visualized. A line closer to the upper left corner represents a better performance of 
the model.

Another explanation for the drop in performance can be the variation of tumor 
delineation. Necrotic and cystic areas were excluded during tumor delineation of 
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the center used for model training, whereas the tumor delineations of the validation 
cohort included these tumor regions. Considering the good spatial overlap in tumor 
volumes between both observers, the drop has to be caused by the hypointense 
appearance of necrotic and cystic regions on contrast-enhanced T1-weighted MR 
images. Since radiomic feature values depend on the voxel intensities, inclusion 
of these regions affect mainly feature values relying on histogram features10,12,31,32 
such as mean and kurtosis. It is though not surprising that especially these 
predictors selected in the trained model6 were unstable in relation to the observer, 
and therefore, likely relate to the small decrease of prediction performance.

Poorly reproducible features across centers were discarded12,31, and only 7% (n=83) 
of all features were considered as being stable. Correcting these features for 
collinearity, redundancies and removing irrelevant features, resulted in the limited 
number of only seven features to feed into the model. A low number of features as 
input reduces model complexity and thereby improves the ability to find optimal 
model settings, resulting in a better reproducibility33. This study shows that a 
single center model with only seven ‘stable’ features performed significantly worse 
compared to the original trained model6, which was trained on 77 ‘stable’ features. 
Presumably, the elimination of poorly reproducible features might also remove 
features associated with LRC, causing a decrease of discriminative power.

Interestingly, validation of performance increases when the model is applied on 
a patient subset that matches the demographics of the trained patient cohort. 
Improvement was especially apparent when HPV status of the tumor was matched. 
Model training was based on an equal distribution of patients with HPV positive 
and negative tumors6, whereas in the validation cohort the majority of patients had 
HPV negative tumors (69%) resulting in less discriminative power. HPV positivity 
is proven to be associated with better outcome2,34,35, while this parameter was not 
included in the radiomic signature due to its clinical behavior. It can be assumed 
that when HPV is marked as predictor in a model, the prediction of the model is 
more robust.

Prediction performance also improved when the model was validated on patients 
acquired on 4mm MR slices. Before extracting feature values, MR images were 
interpolated to 1mm3 voxels. Larger transformations were needed when the distance 
between two acquired slices was larger, introducing a higher uncertainty and more 
interpolation bias. This bias decreases when a tumor volume is distributed over 
a larger amount of slices36. Sub analysis showed that tumor volumes were larger 
when acquired on 4mm slices. Large tumor volumes acquired on slices with small 
distances is the ideal combination to obtain realistic feature values representing 
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biological behavior. 

Radiomic features relate on hardware and acquisition protocol are called “center-
effects”. Equalization of data distributions can be applied to correct for these 
“center-effects”37–40. This study shows that quantile normalization is more robust 
than ComBat harmonization. This can be explained by the transformation after 
ComBat which does not completely match the reference distribution of the training 
cohort, particularly for the features ‘Cluster Shade’ and ‘Kurtosis’ (see Figure 3). 
The higher data kurtosis in the Amsterdam UMC result in dissimilar distributions, 
a requirement to apply ComBat harmonization. Considering this, discrimination 
power is reduced and consequently the model is not capable to predict LRC. Due 
to this lack of sensitivity, unreliable classifications were made by the model, a 
big concern for clinical application. Our findings are not in line with the report of 
another study showing that ComBat outperforms other harmonization methods, 
such as voxel size or singular value decomposition41, histogram normalization, 
pixel resampling or Butterworth filtering39. However, a, good comparison of these 
methods is difficult given the used CT-acquired parameters and the lack of quantile 
harmonization in these studies. This study is novel in the evaluation of quantile 
normalization in the radiomic field. While ComBat harmonization has recently been 
adopted in the radiomic research field, consensus concerning harmonization is still 
in its infancy, requiring further investigation in the large scala of harmonization 
techniques. 

After the study of Mes et al.5, this is the second study externally validating a MR-
based single-center radiomic model in OPSCC. However, this study evaluates a 
contrast-enhanced T1-weighted MR prediction model, where Mes et al.5 focused on 
T1-weighted MRI. Another strength of the study is that all tumors were delineated 
independently by two observers at the same institute. Additionally, ten patients 
were delineated by two observers at both institutes. This made evaluation of 
variability across observers possible.

This study has several limitations. Firstly, it is important to realize that improvement 
of prediction performance using quantile normalization is only marginal. This 
study does not allow optimization of quantile normalization by correcting for 
clinical covariates. Matching the training and validation datasets before applying 
harmonization provide a (non-linear) transformation representative for differences 
across centers, excluding any clinical varieties. This methodology removes also 
the concern of the creation of subsets with comparable patient demographics, 
something which is not feasible in a real world situation. Thereby, it is important 
to keep in mind that the calculated transformation is only valid for centers with 
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comparable scanners. Outcome prediction of a prospective patient from a new 
center with different scanners requires a new transformation, where a minimum 
of 50 patients have to be involved to calculate this new quantile transformation. 
The second limitation of the study is that this study is limited by the individual 
evaluation of factors influencing prediction performance. Combinations of these 
factors might improve the model performance (i.e., when a model is build based 
on stable features across centers determined after data harmonization). A third 
limitation of the study is the lack of a broader evaluation of the acquisition 
parameters which might influence prediction performance, like flip angle, echo 
train length or other functional MRI parameters. Fourthly, radiomic features were 
extracted from post contrast T1-weighted MRI in both cohorts; however, the 
acquisition parameters differed across the centers. Besides, a fifth limitation is 
the variety within the delineated tumor contours with regard to the inclusion/
exclusion of necrotic and cystic areas was shown. To date, no consensus is reached 
yet in the literature. Necrotic tissues have been suggested to be indicative for poor 
treatment response, but also result in extreme radiomic feature values due to its 
hypo- and hyperintense aspect. Recently, a study42 investigated the influence of 
excluding necrotic tissue in tumor delineation on radiomic analysis based on PET 
images. At least 65% of the radiomic features show significant differences between 
both groups, but no statistically significant difference was shown in prediction 
performance (measured by AUC). However, consistency within the methodology 
of tumor delineation is recommended to optimize analysis. A final remark has to 
be made on the comparable number of patients included in both cohorts (n=177 
vs n=157). Ideally, the external patient cohort should be 25-40% of the training 
sample43. A model trained and tested on larger datasets becomes more robust 
against heterogeneity across patient selection, image acquisition and post-
processing steps, which might fade out some of the described factors influencing 
model performance.

CONCLUSION

This study shows that our previously published radiomic model predictive of LRC in 
OPSCC patients is generalizable across centers and can be applied on data acquired 
from different vendors and protocols. Prediction performance increased when 
adequate (quantile) harmonization was applied, patient groups were matched for 
comparable demographics and the acquisition protocol was adapted towards the 
protocol used during model training.
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ABSTRACT

Background: Human papillomavirus (HPV)-positive oropharyngeal squamous cell 
carcinoma (OPSCC) have better prognosis and treatment response compared to 
HPV-negative OPSCC. This study aims to noninvasively predict HPV status of OPSCC 
using clinical and/or radiological variables.

Methods: Seventy-seven magnetic resonance radiomic features were extracted 
from T1-weighted postcontrast images of the primary tumor of 153 patients. 
Logistic regression models were created to predict HPV status, determined with 
immunohistochemistry, based on clinical variables, radiomic features, and its 
combination. Model performance was evaluated using area under the curve (AUC).

Results: Model performance showed AUCs of 0.794, 0.764, and 0.871 for the clinical, 
radiomic, and combined models, respectively. Smoking, higher T-classification (T3 
and T4), larger, less round, and heterogeneous tumors were associated with HPV-
negative tumors.

Conclusion: Models based on clinical variables and/or radiomic tumor features can 
predict HPV status in OPSCC patients with good performance and can be considered 
when HPV testing is not available.
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INTRODUCTION

Human papillomavirus (HPV) infection is an important factor in the development 
and disease course of oropharyngeal squamous cell carcinoma (OPSCC)1,2.  HPV-
related OPSCC has a better progression-free survival and overall survival after 
(chemo)radiation treatment than HPV-negative OPSCC3-5.  Despite these differences 
in prognosis and treatment response, HPV-positive and HPV-negative OPSCC are 
currently not treated differently. Only recently, it was shown that cetuximab 
cannot replace cisplatin in HPV-positive OPSCC6. Ongoing de-escalation trials will 
further elucidate whether HPV-positive tumors can be treated with less aggressive 
treatment regimens in the future to reduce treatment-related toxicity (trial number 
NCT03952585). This is especially relevant as HPV-positive OPSCC patients tend to 
be younger with an associated higher life expectancy than HPV-negative OPSCC 
patients5,7,8.  Adding to the importance of HPV status of OPSCC is the increasing 
relative incidence of HPV-positive OPSCC compared to HPV-negative OPSCC over the 
past years despite declining overall age adjusted incidence of head and neck cancer 
in developed countries. These changes are probably due to a decline in alcohol and 
especially nicotine abuse combined with an increase in sexual promiscuity with a 
high risk of HPV transmission9.  For these reasons, HPV tumor status is increasingly 
important and has therefore been included in the most recent eighth edition of the 
TMN classification10.

HPV infection is detected using p16/p53 immunohistochemistry and/or HPV DNA 
polymerase chain reaction (PCR) on biopsy material11,12.  Determination of tumor 
HPV status from just clinical and/or tumor features extracted from imaging would 
be ideal, and could possibly reduce the need for time consuming and expensive 
immunochemistry and PCR techniques. Recent literature showed that tumor biology 
can be assessed noninvasively in other tumor types using advanced imaging analysis 
or radiomics13,14.  The same approach may be used to determine predictive features 
for the HPV status in OPSCC. Multiple studies reported that the CT-based radiomic 
features, such as shape and homogeneity, are associated with HPV positivity in 
OPSCC tumors15-17.  To our knowledge, MRI-based radiomics to predict HPV status 
has not been performed previously. Clinical variables associated with HPV-positive 
tumors are well known and include male gender, younger age, and less exposure to 
tobacco and alcohol9.  These variables have been used to predict HPV status of head 
and neck cancer, including OPSCC18-21.

This study aims to assess and compare the ability of clinical variables, MR-based 
radiomic features, or a combination of these variables to predict HPV status of 
OPSCC.
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MATERIALS AND METHODS

This study is approved by the local institutional review board (IRBd18047). Due to 
the retrospective design, informed consent was waived.

Clinical data  
A total of 240 consecutive patients with histologically proven primary OPSCC, 
treated with CRT (70 Gy radiation with three planned cycles cisplatin-based 
chemotherapy [100 g/m2]) at our Institute between January 2010 and December 
2015, were considered for this study. Patients were excluded when pretreatment 
MRI of the primary tumor was not available (n=38), image quality was poor (n=7), 
tumors were undetectable on MRI (n=17), a second head and neck tumor was 
present (n=1), or when HPV status of the tumor was missing (n=24). This resulted 
in a total of 153 patients eligible for this study.

Age, gender, smoking status, tumor subsite, and TNM classification (TNM seventh 
edition), were collected for each patient. T-classification and N-classification 
was determined in multidisciplinary consensus based on clinical and radiological 
information, including MRI, ultrasound staging with fine needle aspiration 
cytology, and, when available, PET images. Smoking status was classified into the 
categories nonsmoker, current smoker, and former smoker (quit more than 2 years 
prior to diagnosis) at the initial visit to the outpatient clinic. T-classification was 
dichotomized in low (T1+T2) or high T-classification (T3+T4). N-classification was 
dichotomized in node-positive (N >0) or node-negative disease (N=0). Differences 
in clinical variables between HPV-positive and HPV-negative tumors were assessed 
by applying the Fisher exact test and independent t-test for age. P values of <.05 
were considered statistically significant.

Determination of HPV tumor status  
A combination of p16 and p53 immunohistochemistry on tumor biopsy material 
was performed to determine HPV positivity or negativity of the tumor for each 
patient. p53 positivity was concluded when at least 80% of the tissue sample 
showed strong nuclear staining or completely negative. No p53 staining of tumor 
tissue with positive staining of surrounding normal tissue was regarded as tumor 
mutation for which p53 positivity was concluded. p16 positivity was concluded 
when at least 70% of tumor tissue stained positive for p16. A known HPV-positive 
tonsil sample, surrounding tissue of the tested biopsy sample and appendix, was 
used as positive internal and external control. HPV positivity was concluded when 
tumor biopsy material tested positive for p16 and negative for p53 staining. HPV 
negativity was concluded when tumor biopsy material tested negative for p16, 



99

Clinical variables and magnetic resonance imaging-based radiomics predict human papillomavirus status of  
oropharyngeal cancer

5

regardless of p53; see Henneman et al.22 for further details on the HPV testing 
scheme.

MRI data  
All patients underwent an MRI examination of the primary tumor for pretreatment 
staging purposes as part of the routine clinical workup. Imaging was performed 
at 1.5 T or 3.0 T (Achieva, Philips Medical System, Best, The Netherlands) using 
a standard head and neck coil (SENSE-NV-16). The imaging protocol included 
T1-weighted (T1W), T2-weighted (T2W), postcontrast 3D T1W, perfusion, and 
diffusion-weighted sequences. Imaging details are summarized in Table 1 and 
Supplementary Table S1.1. The axial slices of 3D T1W high-resolution isotropic 
volume excitation (THRIVE) after gadolinium injection (postcontrast 3DT1W) were 
used to manually delineate primary tumor volumes. One nonexpert observer (PB, 
1 year experience in head and neck diagnosis) manually delineated the tumor 
volumes (i.e. nonexpert delineations), which were verified and corrected by an 
experienced head and neck radiologist (BJ, 7 years of experience in head and 
neck diagnosis) (i.e. expert-corrected delineations). The observers were allowed 
to review other available pretreatment MR imaging sequences and available PET 
scans as reference to improve delineations.

Table 1. Postcontrast 3DT1W MRI image acquisition parameters stratified by MRI 
magnet strength, 1.5 Tesla and 3.0 Tesla. 

MRI field strength 1.5 Tesla 
n=74

3.0 Tesla 
n=79

HPV+ 41 35

Slice thickness [mm] 0.8-1.0 0.8

Pixel spacing [mm] 0.4-1.0 0.2-0.8

Repetition time [ms] 9.4-10 4.3 – 5.3

Echo time [ms] 4.6 1.7-2.4

Echo train length 60 90

Flip angle [ᵅ] 10 10
Note: MRI indicates Magnetic Resonance Imaging; HPV, Human papillomavirus; 3DT1W, 3D T1-

weighted

Radiomic feature extraction  
Signal intensities for each individual MRI scan were normalized (with zero mean 
and unit SD) prior to further analysis to reduce intensity variations between MRI 
scans obtained from different patients. Image resampling to isotropic voxels of 
1.0 mm was performed using B-spline interpolation. Image discretization was 
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applied to allow quantification of texture images in fixed bin width of five. In 
total, 1184 radiomic features per patient were calculated from the postcontrast 
3DT1W MRI within the primary tumor volumes using the open-source package 
PyRadiomics 2.2.023,  which were categorized into the five groups: shape, intensity, 
texture, wavelet transform, and Laplacian of Gaussian filter. Wavelet features were 
calculated in seven decompositions and texture coarseness is determined by four 
levels modifying the Gaussian radius parameter from 0.5 to 2.0 mm, in steps of 0.5 
mm. Detailed definitions of the radiomic features can be found elsewhere28.

After quality control, features with zero variance were excluded. Stable features 
were selected using the interclass correlation coefficient with regard to the 
nonexpert and expert-corrected tumor delineations and the MannWhitney U 
test in features with regard to the different MRI field strengths. Features with 
an interclass correlation coefficient greater than 0.75 and a significance level 
equal to or above .05 in the Mann-Whitney U test were considered stable. From 
the selected stable features, collinear features (Pearson correlation coefficient > 
0.9) were removed, where for each pair the feature that has the largest mean 
absolute correlation is deleted. The remaining 77 features (see consort diagram 
in Supplementary Figure S1.1) eligible for radiomic analysis were normalized with 
zero mean and unit variance for analysis.

Machine learning analysis  
From the total of 153 patients, 60% (n=91) were randomly allocated to a training/
validation subset and 40% (n=62) to a test subset, stratifying for HPV status and 
MRI magnet strength (1.5 or 3.0 T).

Then, separate logistic regression models24 were build based on solely clinical 
variables (i.e., age, gender, smoking status, T-classification, N-classification, and 
subsite of cancer) (clinical model), only radiomic features (radiomic model) and 
a model where both clinical and radiomic features were combined (combined 
model). As data from other cancer registries may be missing smoking status and/
or TN-classification, we constructed a combined model without smoking status  
and/or TN-classification (see Supplementary Material II).

Feature dimensionality is reduced by applying a sequential backward wrapper 
feature selection approach (recursive feature elimination). This method obtains 
the optimal feature set for the given classifier (in this case logistic regression) by 
iteratively removing the weakest feature assessed by its feature importance score. 
The optimal set of features is used to train the model25,26.
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In the training phase, Bayesian optimization was used to obtain optimal 
hyperparameters employing 1000 iterations of 4-fold cross-validation on a 
75% (n=68) training and 25% (n=23) validation set. During this process, the 
regularization parameter (λ, 0.005-200), a parameter for the complexity of the 
model, and the number of features (k, 1-77 [radiomic model] or 1-86 [combined 
model]) were tuned based on the four training performances obtained during 
cross-validation. Area under the curve (AUC) was calculated as measure of model 
performance, where the loss function is minimized. The loss function was defined 
as 1−mean(AUC)+SD(AUC), where mean(AUC) aims to maximize model performance 
and SD(AUC) aims to minimize model generalization27-29.

 

 
  

 
Fig. 1. Analysis pipeline. Three models were created to predict human papillomavirus 
(HPV) status of oropharyngeal squamous cell carcinoma (OPSCC). A clinical model (based 
on the clinical variables, age, gender, smoking status, T-classification, N-classification, 
and tumor subsite), a radiomic model based on radiomic features, and a combined 
model based on both clinical variables and radiomic features. Morphological, texture, 
intensity, and filter-based radiomic features were computed from within the tumor 
delineations on the postcontrast 3DT1 MRI images. Feature reduction was performed 
using the wrapper feature selection approach by recursive feature elimination, 
resulting in an optimal subset of features as input for the logistic regression models. 
The three separate models were created using logistic regression analysis on the 
training subset. Resulting models were tested using bootstrapping with 500 iterations. 
Model performance on the test set was evaluated using median area under the curve, 
sensitivity, accuracy, and its 95% confidence intervals.
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The optimized hyperparameters obtained in the training phase were then used 
to verify the predictive model in the test phase, applying bootstrapping on the 
test subset. Bootstrapping calculated model performance (AUC) of 500 randomly 
selected samples (with replacement) of the test subset. Median AUC and the 95% 
confidence interval (95% CI) of these 500 iterations were then calculated to reflect 
the model performance that can be attained of HPV prediction. All analyses were 
implemented in python 3.5 and SPSS version 25.0 (SPSS Inc. Chicago). The complete 
machine learning pipeline is shown in Figure 1.

A clinically applicable nomogram was constructed from the clinical logistic regression 
model using R software package RMS (version 3.6.3)30.  Points were assigned to 
each prognostic variable from the clinical model based on the distribution of the 
regression coefficients, maximizing sensitivity and specificity for discrimination 
between HPV-positive and HPV-negative tumors. The probability of HPV positivity 
can be deducted from the sum of these points.

RESULTS

Table 2 summarizes patient characteristics for the total patient cohort and 
subgroups stratified by HPV status. The clinical characteristics of the whole patient 
group have an equal distribution of HPV (n=77 HPV negative and n=76 HPV-positive 
tumors) and T status (51% patients have T1+T2 tumors, 49% T3+T4 tumors). Tumors 
were mostly located in the tonsils. Patients were categorized as either smoking or 
nonsmoking, no patients were categorized as former smokers.

OPSCC patients with HPV-positive tumors were younger (median age: 63 vs 59 year, 
P=.007), less likely to smoke (P<.001), and had a lower T-classification (T1-T2 vs 
T3-T4; P<.001) compared to patients with HPV-negative tumors. For node-positive 
disease (P=.051) and male gender (P=.067), these differences were borderline 
significant at the 5% level. Tumors of the soft palate (P=.017) were significantly 
more frequent in HPV-negative tumors.

Performance of logistic regression models  
Performance of the three logistic regression models is summarized in Table 3. All 
models showed good performance in the prediction of tumor HPV status for the 
training set (AUC: 0.872-0.923) and test set (AUC 0.764-0.871). Figure 2 shows the 
receiver-operating characteristic (ROC) curves of the three models. The clinical 
model (Test AUC: 0.794, Sens: 0.71, Spec: 0.81, PPV: 0.79, NPV: 0.74, Acc: 0.76) 
performed slightly better than the radiomic model (Test AUC: 0.764, Sens: 0.76, 
Spec: 0.71, PPV: 0.72, NPV: 0.75, Acc: 0.73). The combined model had the most 
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favorable performance, outperforming the other models (Test AUC: 0.871, Sens: 
0.88, Spec: 0.68, PPV: 0.73, NPV: 0.85, Acc: 0.78). Model performance was similar 
when only smoking status (Test AUC: 0.837) or TNM classification (T0.873) was 
omitted from model construction, but drops when both clinical variables were 
omitted (Test AUC: 0.756); see Supplementary Material II for detailed results of 
the subanalysis.

Table 2. Patient characteristics, for all patients and subgroups stratified by human 
papillomavirus (HPV)-status of the tumor. The number of patients and its percentage 
in parentheses is given. Differences between HPV-negative and HPV-positive patient 
groups, calculated with independent t-test (a) or Fishers exact test (b), are shown in the 
last column. Significant values are summarized with an asterisk. Patients were categorized 
as either smoking or non-smoking, no patients were categorized as former smokers.  

Patients Total 
n=153

HPV negative 
n=77

HPV positive 
n=76

p-value

Age, median y [IQR] 61 [56-66] 63 [57-67] 59 [55-65] 0.007a*

Male, n  (%) 96 (63) 54 (70) 42 (55) 0.067b

Smoking, n  (%) 114 (75) 72 (94) 42 (55) < 0.001b*

T-classification, n  (%) < 0.001b*

T1+T2 78 (51) 25 (32) 53 (70)

T3+T4 75 (49) 52 (68) 23 (30)

N-classification (N>0), n(%) 127 (83) 59 (77) 68 (89) 0.051b

Subsite of cancer, n  (%)

Tonsil 88 (58) 42 (55) 46 (60) 0.514b

Soft palate 13 (8) 11 (14) 2 (3) 0.017b*

Base of tongue 48 (31) 20 (26) 28 (37) 0.166b

Posterior wall 4 (3) 4 (5) 0 (0) 0.120b

Note: HPV indicates Human Papillomavirus 

Selected features of logistic regression models  
Table 4 summarizes all prognostic variables selected for the three models with their 
regression coefficients, SE and odds ratios (OR) (95% CI). Selected features were 
obtained in the training phase, during the last cross-validation fold, and then used 
to train the predictive model with the full training dataset. In the clinical model, 
smoking (OR: 0.47 [0.24-0.91]), node-negative disease (OR: 0.69 [0.33-1.42]), male 
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gender (OR: 0.76 [0.44-1.34]), tumor located on the soft palate (OR: 0.69 [0.04-
13.15]), and tumor located on the posterior wall of the oropharynx (OR: 0.80 [0.02-
29.97]) were associated with HPV-negative tumors. A low T-classification (OR: 1.70 
[0.96-3.03]) and tumor located in the tonsil (OR: 1.24 [0.07-20.73]) was associated 
with HPV-positive tumors. The clinical model is presented in a nomogram in Figure 
3, where a cutoff value of 134 points has the maximum sensitivity (76%) and 
specificity (73%). A sum of points below 134 is indicative of HPV negativity.

 
 

 

 
Fig. 2. Receiver-operating characteristic (ROC) curve for prediction of human 
papillomavirus (HPV) status of the tumor. The combined model had a higher area under 
the curve (AUC) than the clinical and radiomic model.

Out of the 77 initial radiomic features, three prognostic features were selected 
in the radiomic model after model construction. Fourteen radiomic features were
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selected in the combined model, along 
with six clinical variables that were 
included in the clinical model. Radiomic 
features indicated smaller, rounder, 
more homogeneous, and more regular 
texture in HPV-positive tumors. Figure 4 
illustrates textural differences between 
a patient with HPV-negative and HPV-
positive tumor. The interpretation of all 
selected radiomic features is summarized 
in Supplementary Table S1.2.

DISCUSSION

This retrospective study shows that 
logistic prediction models based on 
clinical and/or MR-based radiomic 
features are able to predict HPV status 
in OPSCC with good performance. The 
model combining radiomic features and 
clinical variables performed better than 
separate models based on clinical and 
radiological features.

The variables included in the clinical 
model were variables that can be 
expected to differentiate HPV-negative 
and HPV-positive tumors (ie, smoking 
status, age, gender, T-classification, 
N-classification, and tumor location). 
This underscores that the clinical model, 
besides the good overall performance, is 
biologically plausible.

The discriminatory MRI features in  
the radiomicbased models probably reflect 
differences in tumor biology between 
HPV-positive and HPV-negative tumors. 
HPV-positive tumors are characterized  
by less-invasive exophytic growth,
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Table 4. Selected features in the radiomic and combined model with regression 
coefficients ranked from high to low, standard errors and odds ratio (OR) (with 95% 
confidence interval (CI)). Positive regression coefficients or an OR above 1 indicates a 
higher likelihood of Human Papillomavirus (HPV) positive tumor. Negative coefficients 
indicate a higher likelihood of HPV negative tumors. * features in the combined model 
that are also included in the clinical or radiomic model.

Selected feature Regression 
coefficient

Standard 
Error

Odds ratio 
[95% CI]

Clinical model (n=7)

Smoking -0.76 0.17 0.47 [0.24-0.91]

Low T-classification 0.53 0.15 1.70 [0.96-3.03]

Node-negative disease -0.38 0.19 0.69 [0.33-1.42]

Subsite of cancer: Soft palate -0.37 0.75 0.69 [0.04-13.15]

Male gender -0.27 0.14 0.76 [0.44-1.34]

Subsite of cancer: Posterior wall 
of oropharynx

-0.22 0.92 0.80 [0.02-29.97]

Subsite of cancer: Tonsil 0.21 0.72 1.24 [0.07-20.73]

Radiomic model (n=3)

Shape Sphericity 0.16 0.90 1.18 [0.03-40.59]

Gray Level Co-occurrence Matrix 
Inverse Difference Moment 
(Laplacian of Gaussian (2mm))

0.13 0.11 1.13 [0.73-1.76]

Kurtosis (wavelet) 0.12 0.22 1.13 [0.48-2.67]

Combined model (n=20)

* Smoking -0.74 0.44 0.44 [0.09-2.64]

Neighbouring Gray Tone 
Difference Matrix Busyness 
(Wavelet) (2x)

-0.39
-0.21

0.88
0.38

0.68 [0.02-21.01]
0.81 [0.18-3.61]

* Node-negative disease -0.33 0.60 0.72 [0.07-7.53]

Skewness (Wavelet) -0.33 0.32 0.72 [0.21-2.51]

* Shape Sphericity 0.33 0.46 1.39 [0.23-8.35]

* Gray Level Co-occurrence Matrix 
Inverse Difference Moment  
(Laplacian of Gaussian (2mm))

0.30 0.12 1.35 [0.86-2.12]

* Subsite of cancer: Soft palate -0.30 0.44 0.74 [0.13-4.25]

* Low T-classification 0.29 0.55 1.33 [0.15-11.61]

* Kurtosis (Wavelet) (3x) 0.29
-0.19
-0.18

0.19
0.26
0.38

1.33 [0.64-2.77]
0.83 [0.30-2.26]
0.83 [.019-3.68]
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Neighbouring Gray Tone Differ-
ence Matrix Complexity (Wave-
let)

-0.26 0.00 0.77 [0.77-0.77]

Maximum (Wavelet) -0.23 0.01 0.79 [0.77-0.82]

Gray Level Co-occurrence Matrix 
Cluster Prominence (Wavelet)

-0.23 0.00 0.80 [0.80-0.80]

* Subsite of cancer: Tonsil 0.22 0.34 1.25 [0.33-4.74]

* Male gender -0.22 0.50 0.80 [0.11-5.71]

Neighbouring Gray Tone Differ-
ence Matrix Contrast (2x) (Lapla-
cian of Gaussian (0.5mm), Wave-
let)

-0.21
-0.18

0.10
0.10

0.81 [0.55-1.20]
0.83 [0.56-1.24]

Maximum2DDiameter -0.19 0.04 0.82 [0.71-0.96]

Note: CI indicates Confidence Interval

nonkeratinizing histopathology, genetic stability, and well-defined surroundings31. 

These histopathological differences are likely to be reflected in the selected 
radiomic features indicating rounder tumors, lower maximum intensity values, 
and texture homogeneity. Conversely, HPV-negative tumors are genetically more 
unstable32,  which can lead to focal hypoxia or varying grades of dedifferentiation 
within a tumor, likely to be reflected in the selected MR features of heterogeneity 
in the radiomic models.

Although no direct comparison was made, our MR-based predictive radiomic model 
suggests similar performance (AUC=0.76) compared to CT16,17.  This suggests that 
postcontrast 3DT1W MRI and CT reveal, at least partly, similar textural properties 
relevant for the discrimination of HPV-positive and HPV-negative tumors in 
radiomic analysis. Intuitively, features from MRI and CT should at least be able 
to characterize tumor size and morphology in a similar way, explaining similar 
performance. Whether structural MRI or CT is better for determination of HPV status 
of OPSCC by radiomic analysis is not entirely clear at this point. In our opinion, MRI 
is preferable over CT for staging and radiomic analysis for OPSCC due to the better 
soft tissue contrast of MRI in this anatomically challenging area. But in the end, 
the choice for CT or MRI will largely depend on the preference and experience of 
the radiologists within the center. The radiomic model presented in this article 
seems to have better predictive performance compared to fluorodeoxyglucose-
positron emission tomography (FDG-PET) (AUC:0.64)33.  This can be expected as 
FDG-PET images are less able to provide textural detail of tumor tissue.

The models in this article are less sensitive (88%) and specific (71%) compared to 
pathological methods (p16 immunohistochemistry: sensitivity 56-100%, specificity 
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79-93%; DNA PCR: sensitivity: 100% specificity 89% or the combination of latter 
techniques: Sensitivity and specificity 100%34) to determine HPV status of the 
tumor. However, these pathological methods are expensive and time consuming 
and are not always available (for instance, in retrospective studies when no biopsy 
is performed or biopsy/tissue samples are not available), making predictive models 
based on clinical and/or radiomic features a useful alternative. 

 
 
Fig. 3. Nomogram for the clinical model to predict human papillomavirus (HPV) 
positivity. A: Points are given to each clinical variable by drawing a line between the 
clinical variable with the “Points” line (top row) ranging from 0 to 100. The sum of all 
points for the individual clinical variables result in a total score (total points). A total 
score of ≥134 points is indicative of HPV positivity of the tumor. B: Worked example. 
A nonsmoking female with a T1 tumor of the tonsil region, including node-positive 
disease had a total score of 284 points, corresponding to HPV positivity of the tumor.
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\

Fig. 4.  Magnetic resonance image of a patient with human papillomavirus (HPV)-
positive (A) and HPV-negative (B) tumor status (blue marked area) showing differences 
in textural appearances. The patient with a HPV-positive tumor status has a smaller 
and rounder tumor. Intensity values were less variated and less change of intensitites 
were visible. 

This study is, to our knowledge, the largest radiomic study on MRI in head and neck 
squamous cell carcinomas35.  However, our sample size is still quite limited compared 
to previous studies evaluating CT-based radiomics15-17.  Clearly, larger populations, 
preferably in a multicenter setting, are needed to confirm our findings and create 
radiomic models that are more generalizable across scanners and populations.

The present study included patients from a single center, without an external cohort 
to validate our results, which is obviously a recommendation for further work. 
Another, minor, limitation might be the accuracy of the self-reporting variables, 
especially smoking status. This is partly overcome by categorizing smoking status 
into three robust categories (current-, former-, and nonsmoker), where former 
smokers stopped for at least 2 years prior to diagnosis. Only postcontrast 3DT1W 
MRIs were used in this study to limit the number of features with our available 
cases. Other MR sequences might give additional radiomic features for prediction 
of HPV status and is a topic for further study. In a preliminary study, we included all 
available MRI sequences, revealing mainly radiomic features from the postcontrast 

B HPV-HPV+A
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3DT1W sequence, suggesting that other sequences would not contribute to the 
eventual predictive models. Finally, time-consuming manual tumor delineations 
were used for feature extraction, which introduces interobserver variability. 
Stable features with regard to delineations were selected to minimize the effect 
of interobserver variability in the eventual models. Ideally, this interobserver 
variability should be eliminated. Automated tumor delineation algorithms by, for 
instance, convolutional neural networks may overcome interobserver delineation 
variability36.  In addition, automated tumor delineation would greatly reduce the 
workload of manual tumor delineation, making clinical implementation of radiomic 
analysis more feasible. Another approach would be to use deep-learning models 
or other unsupervised machine learning techniques to predict HPV status of head 
and neck tumors. However, adequate training of these models is challenging due 
to the relatively small tumors in a large and challenging anatomical area. Radiomic 
analysis therefore seems to be the most straight forward approach at this point in 
time.

CONCLUSION

This study shows that logistic regression models based on clinical variables, MR-
based radiomic features, or a combination of clinical and radiomic features can 
accurately predict HPV status in OPSCC patients. Although a model based on 
clinical and radiomic features performs best, the clinical model would be the 
method of choice due to its ease of implementation. These models have a place 
in determination of HPV tumor status in settings where tumor biopsy material, 
tumor samples, immunohistochemistry, and/or DNA polymerase chain reaction 
techniques are not available. HPV testing is becoming more a routine in hospitals, 
but not everywhere, especially not in the past when the importance of HPV status 
of the tumor was not known. Medical images, on the other hand, are widely 
available due to the advantage of storage capability of medical images for a long 
time, making it a good alternative to assess HPV tumor status.

SUPPLEMENTARY INFORMATION
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ABSTRACT

Purpose: Laborious and time-consuming tumor segmentations are one of the 
factors that impede adoption of radiomics in the clinical routine. This study 
investigates model performance using alternative tumor delineation strategies in 
models predictive of human papillomavirus (HPV) in oropharyngeal squamous cell 
carcinoma (OPSCC).

Methods: Of 153 OPSCC patients, HPV status was determined using p16/p53 
immunohistochemistry. MR-based radiomic features were extracted within 3D 
delineations by an inexperienced observer, experienced radiologist or radiation 
oncologist, and within a 2D delineation of the largest axial tumor diameter and 
3D spheres within the tumor. First, logistic regression prediction models were 
constructed and tested separately for each of these six delineation strategies. 
Secondly, the model trained on experienced delineations was tested using these 
delineation strategies. The latter methodology was repeated with the omission 
of shape features. Model performance was evaluated using area under the curve 
(AUC), sensitivity and specificity.

Results: Models constructed and tested using single-slice delineations (AUC/
Sensitivity/Specificity: 0.84/0.75/0.84) perform better compared to 3D experienced 
observer delineations (AUC/Sensitivity/Specificity: 0.76/0.76/0.71), where models 
based on 4mm sphere delineations (AUC/Sensitivity/Specificity: 0.77/0.59/0.71) 
show similar performance. Similar performance was found when experienced and 
largest diameter delineations (AUC/Sens/Spec: 0.76/0.75/0.65 vs 0.76/0.69/0.69) 
was used to test the model constructed using experienced delineations without 
shape features.

Conclusion: Alternative delineations can substitute labor and time intensive full 
tumor delineations in a model that predicts HPV status in OPSCC. These faster 
delineations may improve adoption of radiomics in the clinical setting. Future 
research should evaluate whether these alternative delineations are valid in other 
radiomics models.
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INTRODUCTION

Radiomics is a promising tool for the non-invasive detection of clinically relevant 
tumor characteristics. These characteristics can be used to predict treatment 
response1,2, classify tumor types3,4 or discriminate tumor properties5,6. Radiomics 
analysis requires various steps that include image acquisition, image pre-processing, 
tumor delineation, feature extraction, feature selection and model construction. 
These steps can be controlled easily within research settings, but poses challenges 
with regard to reproducibility and repeatability in daily clinical practice7-9. Even 
if these challenges and other requirements for clinical implementation10,11 are 
overcome, time consuming expert tumor delineations, taking valuable hours to 
complete, hampers further adoption of radiomics in daily clinical practice12. 

Time reduction with regard to tumor delineation can be achieved by either 
automated delineation strategies or manual delineation strategies which are easier 
to implement. Previous studies have shown that variability of tumor delineations 
can impact model performance. However, these studies9,13 mainly focused on 
the consequences of (semi-)automatic alteration of available manual full tumor 
delineations on model performance. The methods used in these studies cannot be 
translated to adequate delineation strategies that would reduce time and labor 
consumption of manual tumor delineations needed for the implementation of 
radiomics in a clinical setting. A study comparing models based on rough and precise 
tumor delineations found that radiomic features extracted from precise delineations 
were more informative for prediction of overall survival in non-small cell lung 
cancer patients14. These interesting findings show that the choice of delineation 
strategy can lead to substantial variations in radiomic results14. Consensus of the 
most suitable delineation strategy is therefore highly recommended to standardize 
the radiomic workflow and increase clinical implementation.

In this study we investigate whether the performance of a previously published5 
radiomics model predictive of human papillomavirus (HPV) status of oropharyngeal 
squamous cell carcinomas (OPSCC) is similar when fast (“simple”, “rough”) or 
readily available tumor delineations are used compared to the time consuming 
standard expert tumor delineations. The following fast or readily available tumor 
delineations will be considered: tumor volumes delineated by a non-experienced 
observer, the readily available gross tumor volumes (GTV) delineated by radiation 
oncologists, tumor delineations extracted on the axial slice with the largest 
diameter and a simple strategy where a sphere was drawn within the tumor 
volume. Radiomic features (i.e. radiomics signature) are selected during model 
construction and may depend on the delineation strategy used. To ensure that the 
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same radiomic features are detected when the model is applied to a new case, one 
can assume that the same delineation strategy should be used when implementing 
the model. Under this assumption, separate models will be constructed for each 
delineation strategy. On the other hand, alternative delineations may be able to 
adequately quantify relevant features that were selected in a model trained using 
the optimal expert 3D tumor delineations. Under this assumption, the performance 
of the model constructed using optimal delineations will be applied using the 
alternative delineations. The latter approach will be repeated while omitting shape 
and size features, as some of the alternative delineations are not able to quantify 
these features. 

MATERIALS AND METHODS

The study was approved by the local institutional review board (IRBd18047). Due 
to the retrospective nature of the study, informed consent was waived.

Study population  
A cohort of 240 patients with histologically proven primary OPSCC, treated with 
chemoradiation (CRT) between January 2010 and December 2015 at our Institute 
was considered. All patients had no history of previous head and neck malignancies. 
The main exclusion criteria were (a) no determined HPV status of the tumor, (b) no 
available pretreatment MRI, (c) poor image quality, (d) undetectable tumors, and, 
(e) a second head and neck primary tumor. In total, 153 patients were eligible for 
this study. HPV status of the tumor was determined on biopsy material using p16 
and p53 immunohistochemistry using the methodology described in Henneman et 
al.15.

Image acquisition  
Pretreatment MR and CT images were acquired as part of the clinical routine. T1-
weighted postcontrast (postcontrast T1W) MRI was used for analysis, with a slice 
thickness ranging between 0.8 and 1.0 mm, TR/TE: 4300-10000/1.7-4.6 ms, echo 
train length of 60-90 and 10° flip angle.

CT images for GTV delineation were acquired during treatment planning from two 
scanners. All CT images had a slice thickness of 3mm, a tube current of 120 kV, and 
an exposure ranging from 19 to 509 mAs.

Tumor delineations  
Primary tumors were delineated using six delineation strategies (see below and 
Figure 1), including three delineations covering the whole tumor volume and 
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three delineations including only a part of the tumor (“simple delineations”, e.g. 
spherical volumes). Whole tumor volumes represent the full 3D tumor volume, 
where “simple delineations” evaluates tumor delineation strategies which might 
easily implementable in the clinic. Tumors were delineated on postcontrast T1W 
MRI, except for the GTV delineation. Observers were allowed to review other 
available imaging modalities to improve tumor delineation and were blinded to HPV 
status. Delineations were performed using the 3D slicer software (version 4.8.0,  
www.slicer.org). The annotation time for each delineation time was recorded. 

1. 3D Non-experienced observer: One observer in training (PB, 1 year of  
 experience in head and neck diagnosis) delineated the 3D tumor volume.

2. 3D Experienced observer: An experienced radiologist (BJ, >7 years of  
 expertise in head and neck diagnosis) reviewed and corrected the Non- 
 experienced tumor delineation.

3. 3D GTV: GTV was delineated on contrast-enhanced planning CT-scan for 
  radiotherapy treatment purposes by a radiotherapist, with the allowance 
  to review planning MRI when available. Planning CT and its GTV contouring 
 were registered to post contrast T1W using B-spline registration  
 (SimpleElastix16, see Appendix A).

4. 2D Largest Diameter: The slice with the largest axial tumor diameter was  
 automatically selected from the 3D Experienced  manual tumor delineation  
 using Python scripting (version 3.4, www.python.org).

5. 3D Spherical ᴓ4mm: A sphere of 4mm was placed in the most solid part of  
 the tumor by the Non-experienced observer. A size of 4 mm was selected  
 since this was the minimum maximal tumor diameter included in the  
 cohort. 

6. 3D Spherical ᴓBestFit: A sphere with the largest possible diameter (best 
 fit) was placed in the most solid tumor area by the Non-experienced  
 observer.

The spherical tumor delineations were delineated one year after initial delineation 
of the Non-experienced  observer, blinded to the initial delineation to prevent 
memory bias. 

Image pre-processing  
Prior to analysis, MR images were normalized, resampled and discretized. Image 
normalization was applied with zero mean and unit standard deviation to avoid 
inhomogeneity between MRI scans. Comparable quantification of radiomic features 
in all directions was obtained by resampling MR images to isotropic voxels of 1.0 
mm using B-spline interpolation. Finally, MR intensity values were discretized into 
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Fig. 1. An illustration of the six manual delineations. The six individual delineations are 
visualized in the left box. The right box illustrates these delineations on postcontrast 
T1w MRI on the slide with the largest axial diameter.

a fixed bin width of five intensity values to allow quantification of texture. All 
image pre-processing steps were performed using the open-source package 
PyRadiomics17.

Radiomic features  
Radiomic features were extracted using PyRadiomics17 for each separate delineation 
strategy. Features were divided into the categories shape, intensity and texture. 
These features were extracted from the original image, the image with a wavelet 
filter and the image with a Laplacian of Gaussian (LoG) filter. A wavelet filter was 
used to examine different spatial frequencies of the image in 8 decompositions, 
where a LoG filter determines different texture coarseness (4 levels, sigma of 0.5, 
1.0, 1.5 and 2.0mm). A total of 1184 radiomic features were extracted for each 
delineation.

Experienced

Non-experienced

GTV

Largest Diameter

Spherical ø4mm 

Spherical øBestFit
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Stable features were assessed by intraclass correlation coefficient (ICC) and 
Mann-Whitney U test for each separate delineation strategy used for model 
construction. First, radiomic features were considered to be stable when ICC 
between the radiomic features extracted from the experienced radiologist and the 
appropriate tumor delineation (Non-experienced, GTV, Largest Diameter, Spherical 
ᴓ4mm and  Spherical ᴓBestFit) was higher than 0.75. For the Experienced  model, 
ICC was calculated between features extracted from the Experienced  reader and 
Non-experienced reader. ICC calculated stable features were assessed by Mann-
Whitney U test to exclude differences of magnetic field strength. Features without 
significant differences (p-value ≥ 0.05) were considered stable. Finally, collinearity 
between the remaining stable features was assessed by Pearson correlation (>0.9), 
removing the features with the largest collinearity. The stable features for each 
separate delineation strategy were used as input for the prediction model.

Features were standardized per delineation strategy, using zero mean and unit 
variance, to obtain scalar homogeneity in each approach. Then, recursive feature 
elimination18 was used to select a feature subset by iteratively removing the 
feature with the weakest importance score. The remaining feature subset was used 
for analysis by the logistic regression classifier to predict HPV tumor status and 
subsequent model testing.

For the prediction model, the cohort was divided into a training (60%, n = 91) and 
test (40%, n=62) subset, stratified by magnetic field strength and HPV status of the 
tumor. Hyperparameters for classification were optimized using 1000 iterations 
of Bayesian hyperparameter optimization on the training subset. During this step, 
four-fold cross-validation was applied to calculate the minimal loss function. Then, 
the optimal hyperparameters were applied on the unseen test set to evaluate 
prediction performance. A detailed description of the workflow can be found in 
our previous publication5. The radiomic pipeline is summarized in Figure 2.

The impact of tumor delineation variability on the prediction performance of HPV 
was investigated using three methods.

Method 1: Separate model construction and testing for each delineation strategy 
Prediction models were built (trained and validated) and tested on each tumor 
delineation separately (Experienced, Non-experienced, GTV, Largest diameter, 
Spherical ᴓ4mm and Spherical ᴓBestFit), resulting in six separate models. To 
prevent artificial inflation of model performance, all models were forced to select 
the same number of features as selected in the experienced model. 
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Method 2: Testing the Experienced model using the alternative delineations 
Performance of the prediction model that was trained and validated using 
Experienced  delineations was tested on the test subset using each of the six tumor 
delineation strategies.

Method 3: Testing the Experienced model without shape and size features  
using the alternative delineations  
As spherical or 2D delineations do not reliably represent shape and size features, 
the Experienced  model was trained and validated without shape and size features 
and tested using the six alternative delineations. 
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Statistical analysis  
An independent t-test was applied to calculate differences in age for both HPV 
status groups. Fisher´s exact test was applied to the other clinical variables. A 
p-value below 0.05 was considered as significant. Spatial agreement between the 
six delineation strategies was calculated by using the Dice Similarity Coefficient 
(DSC)19 and Hausdorff Distance (HD)20. 

Performance of the prediction models was evaluated by area under the curve 
(AUC), sensitivity and specificity. Median values, with its 95% confidence interval 
(95% CI) were calculated using 500 iterations of bootstrap (with replacement) 
using the test set.

RESULTS

Patient demographics  
Patient demographics are summarized in Table 1. The patients show an equal 
distribution for HPV tumor classification (n=77 HPV negative tumors, n=76 HPV 
positive tumors). Younger (p=0.007), non-smoking patients (p<0.001) with a high 
T-classification (p=<0.0001) or tumor not located in the soft palate (p=0.017) were 
more likely to have HPV positive tumors. Other cancer subsites and gender were not 
significantly different between HPV negative and positive tumors. N-classification 
was slightly higher in HPV positive compared to HPV negative tumors with near 
significance (p=0.051).

Time recordings  
The Non-experienced observer delineated a tumor with a median of 34 minutes 
[range: 25-65], and was checked and corrected in a median of 9 minutes [range: 
6-14] by the Experienced  observer. The time required to place a ROI with a diameter 
of 4 mm or user-determined diameter was 1.5 and 3 minutes, respectively. Largest 
Diameter  delineations were automatically extracted, and therefore, obtained 
within seconds. Time recordings of GTV  delineations were not available, since 
those were previously delineated for radiotherapy purposes. 

Tumor delineation agreement  
Agreement between tumor volumes was calculated with DSC and HD, see Table A.1 
and Table A.2. The Experienced  and Non-experienced observer show reasonable 
similarity with a mean DSC of 0.84 and mean HD of 18.7mm. GTV  tumor delineation 
shows a lower similarity with Experienced  observer (DSC: 0.43, HD: 183.3mm). 
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Table 1. Patient characteristics for the total cohort and subgroups stratified by HPV 
status. Summaries are given as number of patients and % of the total group between 
parentheses. Median and interquartile range (IQR) are used to summarize continuous 
variables. aIndependent t-test, bFisher ’s exact test and cChi-square test. Values were 
statistic significant (marked with an asterisk) if p-value was below 0.05 (p<0.007 after 
Bonferroni correction).

Total cohort HPV negative HPV positive P-value

Patients, n 153 77 76 -

Age, median y  (IQR) 61 (56-66) 63 [57-67] 59 [55-65] 0.007a*

Sex, n male  (%) 96 (63) 54 (70) 42 (55) 0.067b

Smoking, n  (%) 114 (75) 72 (94) 42 (55) <0.001b*

T-stage, n  (%) <0.001b*

T1 + T2 78 (51) 25 (32) 53 (70) -

T3 + T4 75 (49) 52 (68) 23 (30) -

N-stage (N>0), n  (%) 127 (83) 59 (77) 68 (89) 0.051b

Subsite of cancer 0.406c

Tonsillar tissue 88 (58) 42 (55) 46 (60) 0.514b

Soft palate 13 (8) 11 (14) 2 (3) 0.017b*

Base of tongue 48 (31) 20 (26) 28 (37) 0.166b

Posterior wall 4 (3) 4 (5) 0 (0) 0.120b

*Note: HPV indicates Human Papillomavirus 

Logistic regression prediction model  
Prediction performances of all models for the three methods are summarized in 
Table 2, ROC curves are visualized in Figure 3. 

Method 1: Separate model construction and testing for each delineation strategy 
0.3 to 6.5% of the total features were defined as stable (see Table 3), resulting in 77, 
10, 20, 4 and 13 radiomic features as input for the Experienced/Non-experienced, 
GTV, Largest Diameter, Spherical ᴓ4mm and  Spherical ᴓBestFit  model, respectively.

The model built and tested based on Largest Diameter  delineation shows 
higher performance, higher specificity and similar sensitivity (AUC/Sens/Spec: 
0.84/0.75/0.84) compared to the standard Experienced model (AUC/Sens/Spec: 
0.76/0.76/0.71). Prediction performance of the Spherical ᴓ4mm delineations model 
was comparable to standard Experienced  delineation model with slightly lower 
sensitivity and similar specificity (AUC/Sens/Spec: 0.77/0.59/0.71). Performance 
of models based on Non-experienced (AUC/Sens/Spec: 0.68/0.69/0.55), GTV  (AUC/



127

Largest diameter delineations can substitute 3D tumor volume delineations for radiomics prediction of human 
papillomavirus status on MRIs of oropharyngeal cancer

6

Sens/Spec: 0.71/0.69/0.58) and Spherical ᴓBestFit  (AUC/Sens/Spec: 0.64/0.59/0.62) 
delineations were considerably lower than the standard Experienced  model. 

Table A.3 summarizes the selected features for each model. The models based 
on Experienced  and Largest Diameter  delineation include shape/size features 
(sphericity and maximum 2D diameter respectively), as well as textural features. 
Models based on the other delineations included only textural features.

Method 2: Testing the Experienced model using alternative delineations  
The standard Experienced  model shows the highest performance when tested on 
expert radiologist tumor delineations (AUC/Sens/Spec: 0.76/0.76/0.71). Overall 
performance and specificity were considerably lower when the Experienced 
model was tested using the Non-experienced (AUC/Sens/Spec: 0.63/0.76/0.50) 
delineations. Test performance approached randomness when tested with the 
remaining delineations. Sensitivity and specificity for testing with the 2D or 
spherical delineations were 0 and 1 or vice versa.

Method 3: Testing the Experienced model without shape and size features using  
the alternative delineations  
Of the extracted 1184 radiomic features, 14 features belong to the shape and 
size group. Those 14 features were excluded when shape and size features were 
omitted. Of the remaining 1170 features, 71 (6.1%) features were considered as 
stable (see Table 3).

Performance of the Experienced  model without shape and size features was 
comparable to the standard Experienced model with shape and size features (AUC/
Sens/Spec: 0.76/0.75/0.65 vs 0.76/0.76/0.71). This performance is similar to the 
Largest Diameter  model (AUC/Sens/Spec: 0.76/0.69/0.69). Prediction performances 
increased when the Experienced model without shape and size features was tested 
using Non-experienced delineations (AUC/Sens/Spec: 0.82/0.76/0.80). Performance 
of this model using GTV, Spherical ᴓBestFit  or Spherical ᴓ4mm  delineations was 
considerably lower, as summarized in Table 2.

DISCUSSION

This study shows that less labor-intensive, easily applicable, delineations might 
substitute labor-intensive experienced delineations in the application of radiomics 
models to predict HPV status. Moreover, some of these alternative delineation 
strategies seem to increase model performance compared to standard expert 
delineations.
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In contrast to our expectations, all delineations (except Spherical ᴓBestFit) show 
good prediction performance, regardless of delineation precision. This suggest 
that each separate delineation capture information with regard to tumor biology 
in a different matter.

The model based and tested on largest tumor diameter delineations appeared 
to outperform the standard experienced delineation based model. This may be 
explained by the effect of interpolation on the radiomic features. Interpolation 
is recommended as necessary preprocessing step to correct for pixel size and 
slice thickness variance for 3D volumes. This interpolation to isotropic voxels 
induces smoothing effects that might remove relevant feature information from 
3D delineations that will be present in (unsmoothed) 2D tumor delineations21. 
Additional experiments (see appendix B) supports this hypothesis, as performance 
of a model based on 3D tumor volumes delineated by an experienced observer 
(AUC: 0.74) increases when interpolation was omitted (AUC: 0.81). 

Poor model performance was observed when the standard experienced model 
was applied to the test subset using the alternative delineations. This poor test 
performance might be explained by the reduced ability of the “faster” delineations 
to adequately quantify the sphericity feature (see appendix Table A.3) that is part 
of the experienced model. This does not rule out that applying the experienced 
model using alternative delineations may be useful in other predictive models that 
only rely on textural features.

Removal of shape and size features (method 3) did not change the performance 
when the model was constructed and tested using the expert radiologist 
delineations. As expected, prediction performances were considerably better 
when this experienced model (constructed without  shape and size features) was 
tested with the alternative delineations compared to the standard experienced 
model (constructed with shape and size features (method 2)). Taken together, this 
implies that the loss of shape and size features might be adequately compensated 
with textural features without losing predictive properties. 

To make radiomics clinically applicable, substitution of the labor-intensive time-
consuming delineations is desirable. This study shows that easy delineation 
strategies needed a shorter time to perform the delineation (Non-experienced 
delineation  vs Spherical delineation: 34 min vs 3 min). While no direct comparison 
can be made for the 2D delineation, it can be safely assumed that delineating only 
a single slice requires less time compared to the full 3D tumor delineation. Taking 
prediction performance and ease of implementation into account, the largest 
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diameter seems to be the most preferable alternative delineation strategy.

Evidently, the findings of this study are only applicable to models predicting HPV in 
OPSCC. Other delineation strategies may be more applicable for radiomics models 
trained to predict other outcome variables or applied to other tumor types. Besides 
tumor delineation and the studied outcome parameter, each step of the radiomic 
pipeline shows large variations, limiting reproducible and repeatable results7-9,22. 
Preselected choices in image acquisition, tumor delineation, feature selection  
and/or machine learning model construction parameters directly affect the 
radiomic pipeline and therefore the set of predictive features. Though all these 
variances, direct and reliable comparison between studies is limited.

A good example of this are the contrary results between findings of this study and 
Lang et al.23 regarding the superiority of 2D delineations over 3D tumor volumes in 
the prediction of HPV status. Significant differences within the methodology (e.g. 
MR images vs CT images, machine learning model vs deep learning model, feeding 
one vs multiple 2D slices in the model) impede critical evaluation.

As our study aimed to find suitable delineation alternatives to full tumor delineations 
by an experienced observer, observer variability of model performance was not 
assessed. Observer variability of delineations should be addressed in future studies, 
or studies aiming to adopt this alternative delineation approach. It is obvious that 
observer variability is less of an issue in the proposed faster delineations compared 
to full tumor volume delineations as tumor margins are not delineated. Another 
important limitation of this study is the bias introduced by interdependency of 
delineations. The single slice delineations are calculated from the expert 3D 
delineations, which may inflate the performance of single slice delineations 
compared to the 3D delineations. Furthermore, the results presented for the 
single slice delineations do not represent the real-world scenario of an observer 
manually selecting and delineating the largest tumor diameter from the image. 
Additionally, expert and non-expert delineations are not totally independent, as 
the expert delineations are basically the corrected non-expert delineations. Future 
research should take these limitations into account by evaluating independently 
acquired manual delineations.

Besides the easy implementation of radiomics in the clinical workflow, the 
alternative delineations would also benefit standardization of radiomics analysis. 
Reliable automatic segmentation of tumors would be the best solution to time 
and labor-intensive delineations while eliminating interobserver bias10,11. Multiple 
studies investigated the potential of deep learning in auto segmentation in head 
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and neck cancer patients, where substantial overlap (DSC>0.74) between the 
manual and automatic delineations was shown24,25. Other studies proposed multi-
task deep learning to combine automatic segmentations with models predictive 
of treatment outcome26 or HPV status23. However, to our knowledge, no reliable 
automatic tools for the delineations of complex oropharyngeal tumors based on 
MR images are available at this point in time, and therefore automatic delineations 
are not included in this study. 

As mentioned earlier, various factors can influence robustness and stability of 
individual features and should be used to select the most suitable feature for every 
radiomics model. Feature stability across delineations was used as a selection 
criterion in this study, where features were defined as stable when agreement 
between the experienced radiologist and the appropriate delineation was high. By 
selecting features with only high agreement, features prognostic for HPV status 
might be eliminated since they were different across full tumor and single slice 
delineation. Additionally, feature robustness can be influenced by the MRI scanner 
used and circumstances under which the MRI scan was performed22. Evidently, this 
could not be addressed in this single center study, and should be addressed in 
future projects. 

Recently, advances have been made to increase performance of radiomics models 
by improving image quality using AI techniques. For instance, Chen et al. have 
improved the predictive performance of a radiomics model by denoising CT images 
using Generative Adversarial Networks27. These techniques could also be employed 
to improve the quality of MRI images and/or the similarity of MRI image acquired 
from different scanners. By improving predictive performance of radiomics models, 
these technique might also increase performance of the alternative delineation 
strategies proposed in this study.

CONCLUSIONS

In conclusion, this study shows that alternative delineations with low labor/time 
consumption can substitute labor and time intensive full tumor delineations in the 
application of a model that predicts HPV status in OPSCC. These faster delineations 
may improve adoption of radiomics in the clinical setting. Evidently, the findings in 
this paper are only relevant to the radiomics model predicting HPV status used in 
this paper, future research should evaluate whether these alternative delineations 
are valid in other radiomics models.
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ABSTRACT

Background: Manual delineation of head and neck tumor contours for radiomics 
analyses is tedious and time consuming. This study investigates if fast or readily 
available tumor contours can substitute full tumor contours by an experienced 
observer for an MR-based radiomics model to predict locoregional control (LRC) in 
oropharyngeal squamous cell carcinoma (OPSCC) tumors. 

Materials and methods: Radiomic features were extracted from postcontrast T1-
weighted MRIs of 177 OPSCC primary tumors using six different manual delineation 
strategies. LRC prediction models based on recursive feature elimination combined 
with logistic regression were built. Models were trained and tested on data from 
each separate delineation. Additionally, the model derived from segmentations 
from the experienced reader was tested by each of the alternative delineations. 
Complementary, this was repeated with removal of size and shape features. Model 
performance was evaluated using area under the curve (AUC). 

Results: Prediction performance of the experienced radiologist tumor delineation 
(AUC: 0.74) was superior compared to all other delineations when trained and 
tested (AUCs: 0.41–0.56) or trained on experienced delineations and tested (AUCs: 
0.56–0.67) on alternative segmentations. Removal of size and shape features 
considerably decreases prediction performance (AUC: 0.54). Applying the model 
based on expert delineations to spherical or single slice delineations makes 
prediction worthless since these models predict one class. 

Conclusion: Fast or readily available contours cannot substitute full expert tumor 
delineations in radiomics models predictive of LRC in OPSCC. 
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INTRODUCTION

In the last decade radiomics has been showing promising value to characterize 
biological tumor properties1-3 or predict treatment response4-6. Due to its complex 
methodology, reproducibility and repeatability of radiomics are a major concern. 
Several factors might play a role, among which is tumor delineation. Studies show 
that inter- observer variability7 or alterations of delineations8 can impact model 
performance. However, these studies only consider (semi)automatic alterations of 
manual tumor delineations. 

An previous study9 has shown that delineations of the largest tumor diameter on 
a single slice can substitute the standard time consuming manual delineations 
of the full 3D tumor volume for an MR-based radiomics model predicting human 
papillomavirus (HPV) in oropharyngeal squamous cell carcinoma (OPSCC). This 
finding would greatly reduce the time needed to create tumor delineations, 
thereby facilitating the adoption of radiomics in clinical practice. 

However, alternative delineations that are able to substitute full tumor delineations 
in a model predictive of HPV, might not be able to substitute full tumor delineations 
for a model predictive of another variable. In the construction of radiomics models, 
tumor features are selected based on their relationship with the variable that needs 
to be predicted. Thereby, the number and types of features in the eventual model 
will vary based on the variable to be predicted and the imaging characteristics of 
the tumor of interest. The extent to which the alternative simple delineations can 
substitute full tumor delineations depends on their ability to adequately quantify 
the features considered for construction or testing of the radiomics model. 

The aim of this study was to investigate whether the substitution of full tumor 
delineations by fast or readily available tumor delineations used for the radiomics 
model to predict HPV is feasible in a model predictive of locoregional tumor control 
(LRC) for OPSCC using the same methodology. 

More specifically, simple spherical tumor volumes, tumor delineations on the slice 
with the largest diameter, delineations by a non-experienced observer, and the 
already available gross tumor volume (GTV) delineations for radiation therapy 
were considered as alternative delineation strategies. The performance of models 
constructed and/or tested using these alternative delineations are compared to 
the standard model constructed and tested using tumor delineations from an 
experienced radiologist. 
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MATERIALS AND METHODS 

This retrospective study was approved by the local institutional review board 
(IRBd18047). Informed consent was waived due to the retrospective design of the 
study. 

Patient population   
Patients treated with chemoradiation (CRT) for histologically proven primary OPSCC 
between January 2010 and December 2015 were retrospectively collected resulting 
in 240 consecutive patients. Exclusion criteria were (1) no available pretreatment 
MRI examination, (2) poor image quality, (3) small undetectable tumors, (4) 
synchronous tumors and (5) history of previous head and neck cancer. Clinical 
variables (in particular age, gender, smoking status, tumor subsite, HPV status, 
TNM-classification (7th edition), follow-up data on date of tumor recurrence, site 
of recurrence and lymph node metastasis were collected for all patients. LRC was 
defined as the absence of local recurrence and/or lymph node metastases within 
2 years after treatment initiation, determined by clinical, radiological, and, if 
needed, histological assessment. 

Image acquisition   
MR images were acquired as part of standard staging of OPSCC in our institute 
at 1.5T (n=82 patients) or 3T (n=95 patients) (Achieva, Philips Medical System, 
Best, The Netherlands)10. The imaging protocol included T1-weighted (T1W), T2-
weighted (T2W), T1-weighted postcontrast (postcontrast T1W), and dynamic 
MRI scans (diffusion and perfusion). 3D isotropic postcontrast T1W was used for 
analysis (postcontrast 3D-T1W), acquired with a slice thickness ranging from 0.8 to 
1.0 mm (TR/TE: 4300–10000/1.7–4.6 ms, echo train length: 60–90, flip angle: 10 ◦). 

Computer Tomography (CT) scans for radiotherapy planning were made on two 
CT scanners (Siemens Sensation Open, Siemens Healthcare, Erlangen, Germany; 
Philips Gemini TF Big Bore, Philips, Eindhoven, The Netherlands). All CT scans were 
reconstructed with a slice thickness of 3 mm and acquired with a tube current of 
120 kV and an exposure ranging from 19 to 509 mAs. 

Radiomics methods   
Tumor delineations, image pre-processing, radiomic feature extraction, 
construction of radiomics models and statistical analysis was essentially the same 
in the previous study10 on alternative delineations for the prediction of LRC in 
OPSCC. 
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In summary: Six different primary tumor contours were manually delineated on 
postcontrast 3D T1W MRI using 3D slicer software (version 4.8.0, www.slicer.org) 
(except GTV). GTV was delineated on the pretreatment radiotherapy planning 
CT, using the corresponding MRI as reference. Figure A.1 demonstrates the six 
delineation strategies: 

1. 3D Non-experienced observer: The 3D volume of the tumor was contoured  
 by an observer in training (PB) with 1 year of experience in head and neck  
 diagnosis. 
2. 3D Experienced observer: The tumor volume of the 3D Non-experienced  
 observer was controlled and corrected by an experienced observer (BJ),  
 with >7 years of experience in head and neck diagnosis. 
3. 3D GTV delineation: The already available tumor contouring used for  
 radiotherapy treatment was collected. The planning CT-based GTV  
 delineation, interpreted by a radiotherapist, was registered to postcontrast  
 3D T1W MRI using B-spline registration by the open-source software  
 SimpleElastix11 (See Appendix B). 
4. 2D largest diameter delineation: The slice with the largest axial tumor  
 diameter was automatically extracted from the 3D Experienced tumor  
 delineation using Python (version 3.4, www.python.org). 
5. 3D Spherical ᴓ4mm delineation: A predefined sphere with a diameter  
 of 4 mm was placed in the most solid part of the tumor by the non- 
 experienced observer. The size of 4 mm was chosen, as result of the  
 maximum fitting diameter in the smallest tumor of the patient cohort. 
6. 3D Spherical ᴓBestFit delineation: A sphere with an adjustable diameter  
 was placed in the most solid part of the tumor by the non-experienced  
 observer. The selected diameter was the largest possible diameter (best  
 fit) fitting in each tumor volume. 

MRI images were normalized using zero mean, resampled to 1.0 mm isotropic voxels 
and discretized with a fixed bin width of five. 1184 radiomics features, including 
shape, intensity, texture, wavelet transform (8 decompositions) and Laplacian 
of Gaussian (LoG) filter (sigma 0.5, 1.0, 1.5 and 2.0 mm), were extracted using 
PyRadiomics (version 2.2.0)12 for all six tumor delineations separately. 

Stable features were selected as input for the machine learning pipeline. Features 
were considered stable when the intraclass correlation coefficient (ICC) was above 
0.75, calculated between features extracted from the listed delineations and the 
experienced delineation. Stable features for the experienced model were assessed 
by evaluating the agreement between features extracted from the experienced and 
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non-experienced delineation. Additionally, the remaining features were examined 
against magnetic field strength (calculated using the Mann- Whitney U test) and 
collinearity (calculated using Pearson correlation). 

The cohort was divided into a training (70%, n=124) and test (30%, n=53) subset, 
stratified by magnetic field strength, HPV status and LRC. For model creation, four-
fold cross validation was used to determine optimal model hyperparameters13 
using recursive feature elimination14 with logistic regression on the training 
subset. The resulting model was applied to the test subset. Area under the curve 
(AUC), sensitivity and specificity were used as evaluation parameters, with a 95% 
confidence interval (95% CI), calculated using 500 iterations of bootstrap (with 
replacement). 

Model construction and testing was performed using three different methods: 
Separate model construction and testing for each delineation method (method 1), 
testing the model constructed on experienced delineations (Experienced model) 
using the alternative delineations (method 2) and testing the Experienced model 
without shape and size features using the alternative delineations (method 3). The 
radiomic workflow is visualized in Appendix Figure A.2. 

Statistical analysis   
Fishers’ exact test, independent t-test, and, Chi-square test were applied to 
calculate differences between clinical variables and LRC. P-values below 0.05 
were considered statistically significant (p<0.007 after Bonferroni correction). 
Agreement between the respective six tumor volumes was calculated using Dice 
Similarity Coefficient (DSC)15 and Hausdorff distance (HD)16. DSC values ranged 
between 0 (no overlap) and 1 (complete overlap). A higher value represents more 
spatial overlap between the two volumes. A DSC above 0.6 is considered to be 
appropriate. A smaller HD indicates that the surfaces of both volumes are closer to 
each other, with thereby a better agreement between both tumor volumes.

RESULTS 

Patient demographics   
In total, 177 patients were included in this study, for which patient demographics 
are summarized in Table 1. In total 145 (82%) patients had LRC after 2 years. Patients 
with LRC were more likely to have HPV positive tumor status (47% vs 25%, p=0.012) 
and low T-stage (58% vs 32%, p=0.013). Age, gender, smoking status, N-stage and 
tumor subsite were comparable for both groups. No significant differences were 
seen in patient characteristics with regard to LRC. 
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Table 1. Patient demographics. Baseline characteristics and outcome after CRT for all 
patients and subsets stratified by LRC. Summaries are given as number of patients and 
% of the total group between parentheses. Median and interquartile range (IQR) are 
used to summarize continuous variables. aIndependent t-test, bFisher exact test and 
cChi-square test. Values were statistic significant (marked with an asterisk) if p-value 
was below 0.05 (p<0.007 after Bonferroni correction). 

Total cohort Patients with 
LRC 

Patients with 
LRF 

P-value 

Patients, n 

Age, median y (IQR) 

Sex, n male (%) 

Smoking, n (%) 

HPV

177 

61 (56–66) 

111 (63) 

134 (76) 

145 

62 (56–66) 

89 (61) 

108 (74) 

32 

60 (57–66) 

22 (69) 

26 (81) 

– 

0.548a 

0.427b 

0.500b 

0.012c 

Negative, n (%) 77 (44) 56 (39) 21 (66) – 

Positive, n (%) 76 (43) 68 (47) 8 (25) – 

Unknown, n (%)

T-stage, n (%)

24 (13) 21 (14) 3 (9) – 

0.013b 

T1 + T2 94 (53) 84 (58) 10 (32) – 

T3 + T4

N-stage (N > 0), n (%) 

Subsite of cancer

83 (47) 

141 (80) 

61 (42) 

115 (79) 

22 (68) 

26 (81) 

– 

0.815b 

0.406c 

Tonsillar tissue 99 (56) 83 (57) 16 (50) – 

Soft palate 18 (10) 14 (10) 4 (13) – 

Base of tongue 56 (32) 46 (32) 10 (31) – 

Posterior wall 4 (2) 2 (1) 2 (6) – 

Clinical endpoint – 

LRC < 2 year, n (%) 145 (82) 0 (0) 32 (100) – 

Time to LRF in 
months, median  (IQR)

6 (4–13) – 6 (4–13) – 

*Note: HPV indicates Human Papillomavirus; LRC Locoregional control; LRF Locoregional failure

Agreement between tumor delineations   
The interobserver agreement of delineations, calculated with DSC and HD, between 
radiomic features of each individual tumor delineation method is summarized in 
Appendix Table A.1, Figure A.3 and Figure A.4. Experienced tumor delineation shows 
reasonable overlap with Non-experienced tumor delineation (DSC: 0.83, HD: 18.2 
mm), and decreasing overlap with GTV and Spherical ᴓBestFit (DSC: 0.44/0.39, HD: 
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184.9/30.2 mm respectively). Overlap with the other delineations was extremely 
low. 

Model performance for each method   
In total, 1184 radiomic features were extracted from each delineation method, 
including 14 shape features. As expected, the number of stable features decreased 
to a varying degree with the alternative delineation methods as compared to stable 
feature determination using the delineations of the entire tumor (4.0% to 0.3%) 
This was the case for both the experienced and non-experienced observer (see 
Table 2). All prediction performances are summarized in Table 3. Selected features 
of the individual models are summarized in Table A.2. 

Method 1: Separate model construction and testing using each delineation  
method   
AUC of models trained on each separate tumor segmentation ranged 0.40 to 
0.74 (See Figure 1). The model based on and tested using the Experienced 
tumor delineations outperformed all other models (AUC/Sensitivity/Specificity: 
0.74/0.75/0.60). Performance of the other models was near random: GTV 
delineation (AUC/Sensitivity/Specificity: 0.56/0.67/0.50), Spherical ᴓ4mm(AUC/
Sensitivity/Specificity:0.54/0.43/0.71), Non-experienced delineations (AUC/
Sensitivity/Specificity: 0.52/0.66/0.50), Largest Diameter (AUC/Sensitivity/
Specificity: 0.46/0.67/0.50), and Spherical ᴓBestFit (AUC/Sensitivity/Specificity: 
0.40/0.62/0.29)). 

Method 2: Testing the Experienced model using the alternative delineations  
As illustrated in Figure 2, predictive performance was highest for the Experienced 
model (AUC/Sensitivity/Specificity: 0.74/0.75/0.60). Prediction performance 
decreased when applying the model using Spherical ᴓBestFit (AUC/Sensitivity/
Specificity: 0.67/1.00/0.00), Non-experienced (AUC/Sensitivity/Specificity: 
0.66/0.69/0.50) and Spherical ᴓ4mm (AUC/Sensitivity/Specificity: 0.65/1.00/0.00) 
delineations. The performance was considerably lower for Largest diameter (AUC/
Sensitivity/Specificity: 0.61/0.00/1.00) and GTV (AUC/Sensitivity/Specificity: 
0.56/0.34/0.71) delineations. Models based on spherical or single slice delineations 
had a sensitivity or specificity of 0.00 or 1.00. 

Method 3: Testing the Experienced model without size and shape features  
using the alternative delineations   
Removal of size and shape features dramatically decreased performance of the 
prediction model using Experienced tumor delineations (AUC/Sensitivity/
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Fig. 1. ROC curves of performances of the test set, assessed by AUC, for method 1.

 
Fig. 2. ROC curves of performances of the test set, assessed by AUC, for method 2. 

Fig. 3. ROC curves of performances of the test set, assessed by AUC, for method 3.
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Specificity: 0.54/0.82/0.30), with a slightly better performance when GTV 
delineations (AUC/Sensitivity/Specificity: 0.58/0.55/0.50) were applied. 
Interestingly, Spherical ᴓBestFit (AUC/Sensitivity/Specificity: 0.60/0.83/0.20) 
tumor delineations outperformed Experienced delineation when used to apply the 
model to the test set. Spherical ᴓ4mm (AUC/Sensitivity/Specificity: 0.72/1.00/0.00) 
and Largest Diameter (AUC/Sensitivity/Specificity: 0.63/1.00/0.00) tumor 
delineations outperformed the Experienced model, but showed a sensitivity 
of 1.00 and specificity of 0.00. Prediction performance was near random when  
Non-experienced delineations (AUC/Sensitivity/ Specificity: 0.46/0.77/0.20) were 
used. The ROC curves are visualized in Figure 3. 

DISCUSSION 

The main finding of this study is that faster or readily available tumor delineations 
do not provide a reliable alternative to tumor delineations from an experienced 
radiologist for the creation or application of an MR-based radiomics model 
predictive of LRC in patients with OPSCC. 

This finding is contrary to the findings of Bos et al.9, where performance using the 
largest tumor diameter on a single slice was higher compared to the time consuming 
manual delineations of the full 3D tumor volume in models predictive of HPV. The 
features that are included in the final constructed models are for the greater part 
different for the prediction of LRC and HPV9 (see Table A.3). Apparently, at least 
part of the features included in the HPV model can be reasonably quantified by 
faster delineations, allowing substitution of expert full tumor delineations by some 
of these alternative delineations. This was not the case for features included in the 
models constructed to predict LRC. Therefore, faster alternative delineations may 
be used in some but not all radiomics models. Whether alternative delineations can 
be used, and which delineations and model construction approach is appropriate 
needs to be determined for each radiomics model separately, as confirmed by 
other studies7,17. 

Another explanation for the contrary findings between the two studies, might be 
the effect of interpolation of voxel values on the values and dispersion of features. 
Changes in voxel values due to interpolation can be expected to affect features 
that are directly derived from these voxel values, like histogram-based features 
such as mean, kurtosis, etc. In contrast, shape based features, like sphericity or 
maximum diameter, are not directly based on voxel values and should therefore 
not be greatly affected by interpolation effects. This might explain the observed 
differences between the two studies, as relatively more shape features were 
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selected in the HPV model and relatively more histogram-based features in the LRC 
model. A sub-analysis seems to confirm this hypothesis, (see Appendix Table A.4), 
showing that the difference in model AUC between the largest diameter and full 3D 
tumor volume delineations decreased for the LRC, and to a lesser extent, the HPV 
models. Still, the LRC model based 3D full tumor delineations outperformed the 
model based on largest diameter delineations when correcting for interpolation. 

Besides the shape and histogram-based features, peripheral surface information 
can also be the consequence of contrary performances using single slice or whole 
tumor delineation in the prediction of HPV status9 and LRC. Invasive tumors 
generally have worse treatment outcomes, where HPV status does not depend on 
surface characteristics. This implies that surface information is of more relevance 
in the distinguishing between patients with a good or poor treatment response 
when compared to HPV status determination. 

To our knowledge, only two studies compared the performance of 2D and 3D 
delineations. Shen et al.18 developed prediction models for survival in non-small 
cell lung cancer (NSCLC) patients based on a single slice (2D) and whole tumor 
(3D) delineations. Findings showed that prediction performance was slightly better 
using 2D compared to 3D features (C-index: 0.68 vs 0.63). This is in contrast to 
the findings of Yang et al.19 who reported that 3D features were favourable in a 
nomogram for predicting survival (C-index: 0.62 vs 0.70). Additionally, a nomogram 
combining 2D and 3D features was superior to models based on only a single slice 
or whole tumor delineations. This assumes that features extracted from a single 
slice and whole tumor delineations are complementary to each other and may both 
have particular predictive power. Therefore different types of cancer may require 
different approaches to delineation18. 

Another interesting finding concerns the performance of the models based on 
expert tumor delineation with (method 1) and without (method 3) shape/size 
features. Removal of shape and size features did not change performance in a model 
predictive of HPV (AUC: 0.76 vs 0.76)9, when performance decreased considerably 
for the prediction of LRC (AUC: 0.74 vs 0.54). This implies that HPV prediction is 
mainly driven by texture features, where LRC prediction is more associated with 
tumor contour characteristics.

It is important to note that a reasonable AUC was found for testing the experienced 
model using some fast alternative delineations in this study (i.e . Largest diameter, 
Spherical ᴓ4mm, and Spherical ᴓBestFit model). However, the results found for 
these delineations had a sensitivity of 1 and specificity of 0 or vice versa. Evidently, 
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the combination of the experienced model with these fast delineations classified 
either all cases as positive or negative for LRC, rendering them useless for clinical 
application. 

The need to explore the impact of every single factor of the radiomic pipeline 
on feature variability is already described in previous literature20,21. Of these 
factors several are already explored22,23, such as acquisition and reconstruction 
parameters. The evaluation of the influence of tumor delineation variability 
is limited7,17, especially in MR-based images, and, lacking in the use of manual 
delineation approaches. The evaluation of six different manual delineation 
approaches, representative for clinical purposes, using MR images, on radiomic 
feature variability makes this study unique. 

A limitation of our study is the selection of stable features. Stable features are 
selected by calculating ICC of features extracted by tumor delineations from the 
expert radiologist and extracted from the appropriate delineation. This methodology 
requires time-consuming expert contours and might eliminate features yielding a 
better prognostic value than the remaining features, resulting in better prediction 
performance. Moreover, the automatic selection of the single slice with the largest 
axial diameter requires also the expert tumor delineations. Theoretically, this 
methodology selects the slice reflecting the broad tumor heterogeneity, while a 
slice representative for the predictive outcome variable (HPV status9 and LRC) is 
desirable. Therefore, analysis with multiple single slices (i.e. two slices above/
below the largest axial tumor diameter) is recommended for future research. 

CONCLUSION 

In conclusion, this study shows that MR-based radiomic models constructed and 
applied using alternative delineations cannot substitute delineations from an 
experienced radiologist for the prediction of LRC in OPSCC. This is in contrast to 
previous findings on alternative delineations for radiomics models predictive of 
HPV in OPSCC. The applicability of alternative delineations needs to be determined 
separately for each radiomics model. 

SUPPLEMENTARY INFORMATION
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ABSTRACT

Background: Segmentation of oropharyngeal squamous cell carcinoma (OPSCC) 
is needed for radiotherapy planning. We aimed to segment the primary tumor 
for OPSCC on MRI using convolutional neural networks (CNNs). We investigated 
the effect of multiple MRI sequences as input and we proposed a semi-automatic 
approach for tumor segmentation that is expected to save time in the clinic. 

Materials and methods: We included 171 OPSCC patients retrospectively from 
2010 until 2015. For all patients the following MRI sequences were available: T1-
weighted, T2-weighted and 3D T1-weighted after gadolinium injection. We trained 
a 3D UNet using the entire images and images with reduced context, considering 
only information within clipboxes around the tumor. We compared the performance 
using different combinations of MRI sequences as input. Finally, a semi-automatic 
approach by two human observers defining clipboxes around the tumor was tested. 
Segmentation performance was measured with Sørensen–Dice coefficient (Dice), 
95th Hausdorff distance (HD) and Mean Surface Distance (MSD). 

Results: The 3D UNet trained with full context and all sequences as input yielded 
a median Dice of 0.55, HD of 8.7 mm and MSD of 2.7 mm. Combining all MRI 
sequences was better than using single sequences. The semi-automatic approach 
with all sequences as input yielded significantly better performance (p<0.001): a 
median Dice of 0.74, HD of 4.6 mm and MSD of 1.2 mm. 

Conclusion: Reducing the amount of context around the tumor and combining 
multiple MRI sequences improved the segmentation performance. A  
semi-automatic approach was accurate and clinically feasible.
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INTRODUCTION

Worldwide, there are more than 679,000 new cases of head and neck cancer (HNC) 
per year and 380,000 of those cases result in death1. Radiotherapy (RT) is indicated 
for 74% of head and neck cancer patients, and up to 100% in some subsites2. Tumor 
delineation is needed for RT planning. In clinical practice, tumor contouring is 
done manually, which is time consuming and suffers from interobserver variability. 
Thus, accurate automatic segmentation is desirable. 

Convolutional neural networks (CNNs) are considered the current state of the art 
for computer vision techniques, such as automatic segmentation. Specifically for 
tumor segmentation, promising results have been obtained for various tumor sites 
such as brain3, lung4, liver5 and rectum6. 

For HNC, previous literature7,8 focused on the segmentation of other RT-related 
target volumes rather than the primary tumor and without special focus on any 
particular HNC subsite, such as nasopharyngeal or oropharyngeal cancer. However, 
anatomy and imaging characteristics of tumors and their surrounding tissue vary 
greatly across subsites. Nasopharyngeal tumors are bounded by the surrounding 
anatomy and thus they present with lower spatial variability. Men et al.9 proposed 
an automatic segmentation method for nasopharyngeal primary tumors. To the 
best of our knowledge, no studies have been published on automatic segmentation 
of primary tumors in oropharyngeal squamous cell cancer (OPSCC). Tumors in this 
category are quite variable in shape, size and location compared to other subsites 
in head and neck cancer and their delineation suffers from high interobserver 
variability10. 

The modalities of choice in other works for HNC automatic segmentation are PET 
and/or CT7,8. PET presents low spatial resolution and only shows the metabolically 
active part of the tumor while CT has low soft tissue contrast. MRI is now becoming 
a modality of interest in RT and provides improved soft tissue contrast compared 
to other modalities, being better suitable for oropharyngeal tumor segmentation. 
In line with this, previous works have suggested that the use of MRI for head and 
neck cancer delineation provides unique information compared to PET/CT or CT11. 

We investigated the effect on segmentation performance of different MRI 
sequences and its combination as inputs to the model. We hypothesized that by 
decreasing the amount of context around the tumor, thereby simplifying the task, 
the performance of the segmentation model would improve. Hence, we proposed 
a semi-automatic approach in which a clipbox around the tumor is used to crop 
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the input image. We demonstrated its clinical applicability by having two observers 
(including one radiation oncologist) manually selecting the clipbox. The aim of this 
study was to develop a CNN model for segmenting OPSCC on MRI images. 

MATERIALS AND METHODS 

Data   
A cohort of 171 patients treated at our institute between January 2010 and 
December 2015 was used for this project. Mean patient age was 60 (Standard 
deviation ± 7 years) and 62% of the patients were male. Further details on tumor 
stage and HPV status can be found in the Supplemental Material Table S.1. All 
patients had histologically proven primary OPSCC and pre-treatment MRI, 
acquired for primary staging. The institutional review board approved the study 
(IRBd18047). Informed consent was waived considering the retrospective design. 
Any identifiable information was removed. 

All MRI scans were acquired on 1.5T (n=79) or 3.0T (n=92) MRI scanners (Achieva, 
Philips Medical System, Best, The Netherlands). The imaging protocol included: 
2D T1-weighted fast spin-echo (T1w), 2D T2-weighted fast spin-echo with fat 
suppression (T2w) and 3D T1-weighted high-resolution isotropic volume excitation 
after gadolinium injection with fat suppression (T1gd). Further details on the 
MRI protocols are given in the Supplemental Material Table S.2. The primary 
tumors were manually contoured in 3D Slicer (version 4.8.0, www.slicer.org) by 
one observer with 1 year of experience (PB). Afterwards, they were reviewed and 
adjusted, if needed, by a radiologist with 7 years of experience (BJ). All tumor 
volumes were delineated on the T1gd but observers were allowed to consult the 
other sequences. 

For the experimental set-up, we split the data set in three subsets: training set 
(n=131), validation set (n=20) and test set (n=20). The test set was not used for 
training or hyper-parameter tuning. We stratified the three subsets for tumor 
volume, subsite, and aspect ratio since these features are likely relevant for 
segmentation. Subsites were defined as tonsillar tissue, soft palate, base of tongue 
and posterior wall. Aspect ratio was defined as the ratio between the shortest and 
the longest axis of the tumor. All images were resampled to a voxel size of 0.8 mm 
× 0.8 mm × 0.8 mm. 

Model architecture   
The UNet architecture was chosen as the basis for our experiments because of 
the promising results on segmentation of medical structures5,12-15. Given the 3D 
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nature of the images, we chose a 3D UNet as the architecture in this work12,16. We 
used Dice as loss function17, the Adam optimizer18 and early stopping. Dropout and 
data augmentation were used for regularization. Further details on the training 
procedure can be found in the Supplemental Material Tables S.3 and S.4. 

Fully automatic approach   
We trained the 3D UNet using the full 3D scans. We studied the effect of 
incorporating multiple MRI sequences into the training by introducing the available 
MRI sequences as input channels. Five networks were trained for the following 
MRI sequences and combinations thereof: T1w, where the tumor is hypo-intense 
but homogeneous; T2w, where the tumor is hyper-intense; T1gd, since the tumor 
presents with clearer boundaries; combining T1gd and T2w, and combining all 
sequences together (T1gd, T2w and T1w), to explore all the available information. 

Semi-automatic approach   
We proposed a semi-automatic approach in which we trained the networks with 
only the information within a clipbox around the tumor instead of with the full 
image as input. 

During training, the clipbox was computed from the tumor delineations. First, the 
bounding box was calculated (i.e. the minimal box around the tumor). Then, random 
shifts of up to 25 mm were applied to all of the six directions to make clipboxes 
of different sizes and allow off-centered positioning of the tumors. We considered 
that shifts of more than 25 mm would represent unrealistic errors during clipbox 
selection. Examples of inputs possibly seen by the network are shown in Figure 1. 

To study the clinical feasibility of this semi-automatic approach, two human 
observers were asked to manually select a clipbox around the tumor for each test 
set patient. The clipboxes were selected using 3D Slicer on the T1gd with access to 
the other sequences. The first observer (PB) had delineated the tumors two years 
earlier. The second observer was a radiation oncologist with 16 years of experience 
(AA) and had no information about the tumor delineations. To mitigate the risk 
of the observers defining too small clipboxes, cropping the tumor, the clipboxes 
were dilated 5 mm so as to ensure that they encompass the tumors. We consider it 
unlikely that a human observer would crop the tumor by more than 5 mm. 

Experiments   
For the fully automatic approach, the performance of the networks trained with 
different sequences (T1w, T2w, T1gd, T1gd/T2w, and all sequences combined) was 
compared for the patients on the separate test set. 
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Fig. 1. Original MRI image with the manual segmentation (green) of the oropharyngeal 
tumor. The blue boxes are the bounding boxes of the tumor. The rest of the boxes are 
used as inputs to the network during training.

Because of memory constraints, scans were resized to a lower resolution by a 
factor of ~2.5 to 1.9 mm × 1.9 mm × 1.9 mm. Thus, even the smallest tumors were 
seen by the network. As a control experiment, to assess the impact of the resulting 
loss of resolution, we additionally trained a 2D UNet with full resolution axial 
slices. We checked for significant differences in performance of both approaches. 

For the semi-automatic approach, one network was trained with all the sequences 
as input. The results with the clipboxes of the two observers were compared to 
the fully automatic approach experiment when combining all sequences as input 
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(baseline). 

To evaluate the robustness of the semi-automatic approach to off-centered tumors 
inside the clipboxes, we presented the trained model with increasingly shifted 
versions of the clipboxes, starting from the bounding box. The artificially induced 
shifts were applied in the 6 possible directions of the clipbox and expressed as two 
metrics: the centroid displacement and the relative difference in clipbox diagonal 
length before and after the shifts. 

Statistics   
To confirm that the three subsets were balanced in subsite, volume and aspect 
ratio, we used a Kruskal-Wallis test for continuous variables (volume and aspect 
ratio) and a chi-square test for independence for the categorical data (subsite). 

Automatic contours were compared against the delineations from the human 
experts using common segmentation metrics: Sørensen–Dice coefficient (Dice), 
95th Hausdorff Distance (HD) and Mean Surface Distance (MSD), implemented 
using the Python package from DeepMind (https://github.com/deepmind/surface-
distance). Differences among experiments were assessed by the Wilcoxon signed-
ranked test. P-values below 0.05 were considered statistically significant. Statistical 
analyses were performed with the SciPy package (version 1.1.0) and Python 3.6. 
Other relevant libraries can be found in the Supplemental Material Table S.5. The 
code is publicly available and can be found in: https://github.com/RoqueRouteiral/
oroph_segmentation.git.

RESULTS

Summary of tumor characteristics   
Tumor characteristics (location, volume and aspect ratio) of our cohort are 
described in Table S.6. No significant differences were found in the distributions 
of subsite, volume and aspect ratio between the training, validation and test sets. 

Fully automatic approach   
As shown in Figure 2, combining all MR sequences resulted in the best performance, 
with a median Dice of 0.55 (range 0–0.78), median 95th HD of 8.7 mm (range 
2.8–84.8 mm) and median MSD of 2.7 mm (range 1.0–26.8 mm), and the least 
variability among patients. The control experiment showed that by training a 2D 
UNet with full resolution scans the results were not significantly better than when 
using its 3D counterpart (Table S.7). 
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Fig. 2. Segmentation performance in terms of Dice, 95th HD and MSD for the 3D. The 
different boxes show different MRI sequences as input: T1w (T1 weighted), T2w (T2 
weighted), T1gd (T1 3D after gadolinium injection), T1gd and T2w combined (T1gd/
T2w) and all sequences combined (All). The box includes points within the interquartile 
range (IQR) while the whiskers show points within 1.5 times the IQR.

Semi-automatic approach   
In Figure 3, it is observed that the semi-automatic approach using the boxes of 
the first observer achieved a median Dice score of 0.74 (range 0.32–0.80), HD of 
4.6 mm (range 2.2 mm–10.5 mm) and MSD of 1.2 mm (range 0.6 mm- 2.9 mm). 
For the second observer, the network achieved a median Dice score of 0.67 (range 
0.28–0.87), HD of 7.2 mm (range of 3.0 mm–19.9 mm) and MSD of 1.7 mm (range 
of 0.9 mm–4.9 mm). 

The semi-automatic approach significantly outperformed the fully automatic 
approach in all of the metrics for the first observer (p <0.001) and in Dice and MSD 
for the second observer (p < 0.01). These results were expressed for 19 out of the 
20 patients in the test set (also for the fully automatic approach - equivalent to 
“All’ in Figure 2), as one of the observers did not detect one of the tumors when 
asked to draw the clipbox. 

The average time to draw the boxes was of 7.5 min per patient for the first observer 
and 2.8 min for the second observer. 

Robustness to shifts   
Figure 4 shows the segmentation performance of the network trained for the semi-
automatic approach as a function of the artificially induced shifts applied to the
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Fig. 3. Segmentation performance of the semi-automatic approach with boxes drawn 
by two human observers. We compare the semi-automatic results (Ob1 and Ob2) to 
the fully automatic approach (Full). The box includes points within the interquartile 
range (IQR) while the whiskers show points within 1.5 times the IQR. Significance is 
represented as one asterisk (*) for p<0.01 and two asterisks (**) for p<0.001.

Fig. 4. Robustness analysis. Segmentation performance in terms of median Dice, 95th 
HD and MSD for the semi-automatic approach as a function of the tumor centroid 
displacement and the clipbox diagonal length difference. The grey areas correspond 
to undetermined values due to the geometric constraints (i.e. no combination of shifts 
can achieve those values of centroid displacement and diagonal length difference).

tumor within the clipbox. For centroid displacements below 20 mm and diagonal 
length differences of between 25 mm and 60 mm the Dice was consistently greater 
than 0.70, the HD was lower than 6.5 mm and the MSD was lower than 1.7 mm. 

Qualitative results   
Figure 5a and 5b show examples in which the shape of the semi-automatic 
approach output and ground truth segmentation agreed while the fully automatic 
approach oversegmented (a) or undersegmented (b) the tumor. Figure 5c shows 
a case where the segmentation by the network trained with the fully automatic 
approach showed a similar shape to the ground truth segmentation but there were 
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Fig. 5. Comparison of the oropharyngeal segmentations in three different patients (a, 
b, c) trained with the fully automatic approach (red contour), with the semi-automatic 
approach (blue contour) and the manual delineation (green contour). The yellow boxes 
are the boxes drawn by the observer. 

additional false positive volumes on the image. 

DISCUSSION 

It was shown that using multiple MRI sequences yielded better results compared 
to using a single sequence as input. Also, decreasing the amount of context given 
to the CNN improved the segmentation performance. Finally, a functional semi-
automatic approach that outperformed the fully automatic baseline was proposed 
and it was shown to be robust to clipbox selection errors, suggesting its potential 
clinical applicability. 

Our network resulted in worse performance in terms of Dice compared to other 
tumor sites as reported by Sahiner et al.19, where the authors provide a comparison 
of CNN segmentations for different tumor/lesions (Dices: 0.51–0.92). However, 
lower performance for oropharyngeal tumor segmentation is consistent with what 
is known about the inter-observer variability for this subsite: Blinde et al.10 have 
shown differences in volume of up to 10 times among observers when segmenting 
OPSCC on MR, indicating the complexity of this task even for human observers. In 
this study, the mean Dice between our observers was 0.8. However, this number 
is an overestimation of the interobserver variability, considering that one of the 
observers corrected the other ’s delineation. 

No significant differences were found between training the network with full context 
in 3D compared to its 2D counterpart. This shows that reducing the resolution 
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due to memory constrains in the 3D case is not critical for the segmentation 
performance when the full image is used as input. 

When restricting the context, the network outperformed significantly the full 
context approach for all metrics. This means that local textural differences between 
tumor and immediate surrounding tissues are sufficient for delineation. 

Using clipboxes drawn by human observers demonstrates the feasibility of a semi-
automatic approach for OPSCC primary tumor segmentation. Additionally, these 
boxes were drawn by two independent observers with different backgrounds 
and levels of expertise, suggesting that the method is not highly sensitive to 
the observer. This is supported by the results of our robustness analysis, which 
showed that when training with shifted versions of the clipbox, the networks were 
fairly robust to these shifts. More concretely, the network was robust centroid 
displacements below 20 mm and diagonal length differences of between 25 mm 
and 60 mm, which we consider a fair estimate of the maximum error an observer 
can make when selecting the clipbox. 

A fully manual segmentation can take from 30 min to almost 2 h (depending on 
the shape and size of the tumor), the average time between our two observers for 
the semi-automatic approach can take an average of 5 min (average of our two 
observers). Although after the proposed semi-automatic approach, some manual 
adaptations may be needed by a radiation oncologists to make the contours 
clinically acceptable, the overall process is expected to be less labor-intensive. 
Additionally, in the clinic it would be possible to use software designed to draw 
the clipboxes faster. Consequently, a functional semi-automatic system is not only 
feasible in terms of segmentation performance but also relevant for speeding up 
the radiotherapy workflow. 

There are limitations in this study. First, given the high interobserver variability 
of OPSCC delineation, we are likely training the network with imperfect ground 
truths. However, we palliated the possible errors on the delineations by having 
the second observer correcting the first observer ’s delineation. Secondly, we 
used a standard 3D UNet in our studies. Despite the extensive literature on deep 
learning architecture modifications, investigating the best architecture for this 
task is outside of our scope. Thirdly, our results would need validation with an 
independent cohort in a multi-center study. Furthermore, the scan protocols were 
not standardized in our dataset. Arguably, that makes the network robust to such 
differences (e.g. TR/TE), given that the network has learned from a diverse dataset. 
Finally, our work can still be improved by adding other MRI sequences into the 
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training (such as DWI) or by fully automatizing our semi-automatic approach, but 
we leave that as future work. 

There is an increasing interest in the literature about differences on the tumors 
depending on their HPV status. According to Bos et al.20, HPV positive tumors 
present on MRI post contrast with rounder shapes, lower maximum intensity 
values, and texture homogeneity. One strength of our work is that we include both 
HPV positive and HPV negative tumors in the training set, making the networks 
able to segment both subtypes of OPSCC. To check that the network is not biased 
to the HPV status, we compared the performance of the network stratified per 
HPV status and found non-significant results. We also did not find any relationship 
between performance and size. 

In conclusion, this is the first study of primary tumor segmentation in the OPSCC 
site on MRI images with CNNs to the best of our knowledge. We trained a standard 
3D UNet architecture using full MRI images as input. We showed that combining 
MRI sequences is beneficial for OPSCC segmentation with CNNs. Additionally, 
the CNN trained with reduced context around the tumor outperformed the fully 
automatic baseline and approaches that of other tumor sites reported in the 
literature. Hence, our proposed semi-automatic approach can save time in the 
clinic while achieving competitive performance and being robust to the choice of 
observer and manual clipbox selection errors.

SUPPLEMENTARY INFORMATION

 
Password: PhD_PaulaBos
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Prognostic factors are necessary to categorise oropharyngeal cancer patients into 
well-defined groups, to optimally inform patients, select the most appropriate 
treatment and to be able to compare treatment results. Radiomics is a prognostic 
tool which can analyse and quantify image texture and relate it to tumor 
phenotype. This thesis describes the potential, pitfalls and opportunities of MR-
based radiomics in primary OPSCC treated with chemoradiation therapy.

Potential: A representation of tumor biology  
We found that radiomics markers can predict which OPSCC patients will respond to 
(chemo)radiotherapy treatment (chapter 3) and which OPSCC patient has tumoral 
human papillomavirus (HPV) (chapter 5). The potential of radiomics is not limited 
to these particular goals, but also extends to the classification of tumor biology1–4 
and profiling of tumor genetics5–8, as described in various published studies. 
Radiological characteristics in current clinical practice are limited to semantic 
features, such as tumor shape, infiltration into surrounding tissues, the presence 
of cystic, necrotic or hypoxic areas, and lymph node status. Aforementioned studies 
show that radiomic quantitative features can provide complementary information 
to these semantic features, which might assist the clinician in treatment decisions 
in the future.

In line with this, we have also shown that performance of models based on the 
combination of clinical variables and radiomic features was superior to models 
based on only clinical variables or radiomic features (chapter 3, chapter 5)9. It 
is likely that clinical variables and radiomic features hold independent and 
complementary information. Most of these clinical variables are related to patient 
and treatment factors as well as tumor staging, whereas tumor structure and shape 
are more represented in radiomic features. This does not mean that all radiomics 
models should include radiomic features as well as clinical variables. As shown in 
chapter 5, a model based on clinical variables alone can be quite reliable (AUC: 
0.79) in comparison to a model based on radiomics and clinical variables (AUC: 
0.87), with the advantage of easy implementation without the requirement of time 
consuming tumor delineations on imaging. A critical and practical eye is necessary 
to determine if a model needs to be based on radiomic features, clinical variables 
or both. 

Pitfall: Heterogeneity in radiomic workflow settings  
Clearly, radiomics in prognosis and treatment stratification seems promising. 
The next big challenge is its implementation in the daily clinical routine. Before 
implementation in daily clinical practice, radiomics has to overcome some crucial 
pitfalls.
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Firstly, representative patient cohort with adequate sample size is required 
to train a radiomic model that is appropriate in general clinical practice. This 
was demonstrated in models developed on a subgroup of HPV positive or HPV 
negative patients, both of which performed worse compared to if these groups 
were combined (chapter 3). The limited number of events probably resulted in 
the inability of the model to predict the endpoint robustly10. Additionally, model 
performance increases when the model was validated on patient groups matched 
for comparable demographics as the training cohort (chapter 4), inducing that 
inclusion and exclusion criteria of patients affect model reproducibility11.

Another point of concern is that variability in image acquisition decreases radiomic 
feature reproducibility12,13. Standardization of acquisition protocols improves 
applicability of radiomic protocols, however, it limits development of (new) 
acquisition protocols. Harmonization in the image domain can reduce the influence 
of image acquisition settings between multiple vendors. This harmonization uses 
the transition of voxel intensities from a reference MR image towards the new 
acquired MR image. It is important that this has to be calculated on a sufficient 
sample size14,15 before applying the trained model on a prospective patient (with 
different acquisition parameters).

Manual tumor delineations are still required to obtain radiomic features from the 
region of interest. Current radiology practice is demanding and radiologists do 
not have time to perform detailed tumor delineations. Speeding up this process 
would be an important step for wide adoption of a radiomic pipeline in clinical 
practice. Automatic tumor delineations have the advantage that these are less time 
consuming, repeatable, reproducible, and potentially improving the accuracy of 
the radiomic workflow by decreasing inter-observer variability16. Although we have 
proven that automatic segmentation is possible in this challenging anatomic area, 
the automatic delineations still requires a rough and simple manual indication of 
the tumor region by the radiologist to make the delineation more precise (chapter 
8). Another method to speed-up the radiomic workflow is simplification of manual 
tumor delineations by drawing a sphere inside the tumor area or by delineating the 
tumor boundaries on only the slice with the largest axial tumor diameter. However, 
the ability to use these simplified methods as an alternative highly depends on 
the radiomic signature and their interaction on image interpolation (chapter 6, 
chapter 7)17. Besides speeding up the manual tumor delineations, a note has to 
be made that not all tumors are reliable in radiomic analysis. Small tumors (e.g. 
sub-centimeter nodules)18 may not provide sufficient voxel information and should 
be either excluded in radiomic analysis or analysed voxel by voxel18. Moreover, 
necrotic and hypoxic areas may not representative for tumor tissue and should be 
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excluded during tumor delineations for reliable radiomics analysis (chapter 2)19.

Variation in radiomic performance is not only driven by image acquition and tumor 
delineation, but also by choices made in the machine learning pipeline12,13,20,21. 
In more detail, the selected classifier and feature selection methodology are 
responsible for 29% and 14% of the total variance, respectively22. Due to the high 
dimensionality of radiomic features, feature reduction is performed before feature 
selection (e.g. “stable features” in this thesis). The drawback of this step is the 
dependency on significance levels derived from the trained patient data, lacking 
reproducibility when applied on external datasets (chapter 4). Performing radiomic 
research using multicentre data might therefore be a possible solution.

A final remark regarding decreasing heterogeneity and improving clinical adoption 
of radiomics has to be made on quality control. Fair evaluation and comparison of 
published models is only possible when choices of the radiomic pipeline are well 
reported23 and quality of the research can be assessed with an objective (quality) 
score (e.g. radiomics quality score24). 

Opportunity: Creating the future for radiomics in OPSCC patients   
Radiomics in its current format is not ready to support the radiologists to 
make precision diagnoses, or to provide oncologists a reliable clinical decision 
support tool11. Adaptations on each step of the radiomic workflow combined with 
innovations are crucial to improve reproducibility, repeatability and applicability of 
radiomics in clinical practice and create a future for radiomics for OPSCC patients.

The first step imperative for radiomics as clinically wide adoption are multicenter 
studies and large-scale validation studies. The most important reason for the lack 
of large multicentre populations (only 19.53% of all radiomic studies25) are legal 
and ethical privacy concerns associated with medical data sharing. Distributed 
learning facilitates data sharing without personal data leaving the institute26,27. In 
this approach, each institute trains a model based on their local data and sends the 
resulting model parameters to the central server. This central server compares the 
model parameters from each institute and returns the updated parameters to the 
individual institutes for further optimization. This iteratively privacy-preserving 
process only shares mathematical parameters (e.g. metadata), which cannot be 
traced to individual patients. There are already a number of studies that has shown 
the feasibility of distributed learning in real-world multi-institutional setting26,28. 

Omission of the time-consuming, observer-dependent tumor delineations is the 
second step towards clinical practice of radiomics. Simpler, faster or automatic 
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tumor delineations might be more reproducible and repeatable and therefore, 
improving homogeneity of the radiomics workflow. Another alternative is deep 
learning, which can train radiomic models directly from MR images, without the 
need of tumor delineations. The output of their layers, the “deep features”, are 
used to predict an endpoint29. Besides this, deep learning algorithms could also be 
helpful in other stages of the radiomic process, such as image quality assessment 
or harmonizing between images29,30.

Another step to implement radiomics in a clinical setting is proven adequate 
performance in a prospective trial. In such trials, the outcome of the radiomic 
tool has to be compared next to the outcome decided by clinicians. When the 
radiomics tools seems to be accurate enough for personalized medicine, it can be 
implemented in a clinical workflow. Additionally, further optimizing of the radiomic 
tool can be investigated.

The current format of radiomics can be elaborated with information of medical 
images acquired at multiple time moments to evaluate progression of the disease 
during the treatment period. This “delta-radiomics” enables the possibility to adapt 
the ongoing treatment strategy31,32 or anticipate on undesirable side effects (e.g. 
xerostomia33,34). This requires MR images that are acquired with identical protocol 
settings, to ensure that radiomic features can be assumed to solely represent 
changes in tissue characteristics.

A final innovation is to include other available multi-disciplinary variables (“multi-
omics”) in the prediction model to obtain a complete presentation of tumor 
behaviour. Recent studies conducted already the interrelations of radiomic and 
genomic features35,36 and histopathology37,38. In patients with lung cancer, genetic 
information and radiomic features were combined to predict treatment outcome39. 
Combining information hidden in each multi-disciplinary evaluation might be 
complementary to each other, thereby improving prediction performance through 
a comprehensive representation of the underlying tumor biology40,41.

In conclusion, this thesis shows the potential of radiomics to reliably predict if 
a patient will respond to chemoradiation treatment and determine HPV tumor 
characteristics in OPSCC patients. Despite this potential, the current state of 
radiomics needs improvement and standardization before clinical implementation, 
which include improvements in reproducibility, repeatability and generalizability. 
To do so, the essential first step is to perform multicenter large-scale validation 
studies. In line with this, the current thesis has already shown that a monocentric 
prediction model was generalizable in an external validation cohort. The second 
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step is focused on the omission of the time-consuming, observer-dependent 
manual tumor delineation to improve radiomic workflow. This thesis proved that 
alternative delineations (faster, simpler tumor delineations) can substitute these 
manual delineations for at least some but not all radiomic models. Automatic tumor 
delineations can also be considered in this regard, although these techniques still 
need improvement in this challenging anatomical area. For the future, innovations 
such as multi-omics prediction models, delta-radiomics and deep learning 
approaches may greatly extend the possibilities of radiomics.
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SUMMARY
Oropharyngeal Squamous Cell Carcinoma (OPSCC) patients are currently mostly 
treated with chemoradiation therapy, which is successful in 55-75% of cases. 
Treatment success is partially explained by the extent of the local tumor and 
seeding of tumor to lymph nodes and other parts of the body. These disease 
characteristics cannot fully explain treatment success, calling for other reliable 
biomarkers to predict treatment response.

Recent advances in machine learning technique have made it possible to quantify tumor 
characteristics on medical images that cannot be appreciated by visual inspection 
and is commonly referred to as radiomics. These quantitative image characteristics 
may reveal information on tumor biology relevant for pathological classification and 
treatment outcome. Statistical methods applied to large groups of patients, of which 
the treatment outcome or pathological classification is known, can be used to find 
out which of these image characteristics are indeed relevant. The resulting model 
can then be used to predict treatment outcome or pathology for new OPSCC patients.  
This thesis aims to explore the potential of radiomics to predict treatment outcome 
and pathological classification (human papillomavirus (HPV)) for OPSCC patients 
using pre-treatment diagnostic magnetic resonance imaging (MRI). 

Part I: Current knowledge of MR-based functional parameters in head and neck 
squamous cell carcinoma  
Functional MRI parameters, such as perfusion and diffusion parameters, can be 
extracted and related to tumor characteristics. Chapter 2 provides a literature 
review describing prognostic pre-treatment perfusion and diffusion parameters 
extracted from the primary tumor of HNSCC patients . A total of 31 studies were 
included for quantitative analysis. Among them, 11 and 28 studies assessed 
perfusion and diffusion parameters, respectively. While diffusion prognosticators 
were studied more frequently compared to perfusion parameters, study results 
show high discrepancy, asking for standardization within image acquisition, tumor 
segmentation methodology and statistical analysis.

Part II: MR-based radiomic prediction models for tumor characterization 
and prognosis in OPSCC patients  
To assess the feasibility of MR-based radiomics in OPSCC patients, predictive 
models were build and validated in chapter 3 to 5. First, predictive models for 
treatment outcome after chemoradiation therapy were developed and tested 
using a single-centre cohort of 177 OPSCC patients (chapter 3). Models were build 



187

Summary

A

based on solely clinical variables, solely radiomic features and its combination. 
Radiomics models were able to predict treatment outcome; however, a model 
combining clinical variables and radiomic features outperforms models based 
on solely clinical variables/radiomic features. This implies that clinical variables 
and radiomic features hold independent information for outcome prediction. 
Sub-analysis with patients having HPV-negative tumors did not reach consistent 
meaningful predictive tumor properties due to the low number of patients.

Application of developed prediction models in patients originating from other 
hospitals is of high relevance for clinical utility. Chapter 4 shows that prediction 
performance drops slightly when our model predictive of treatment outcome was 
validated on data originating from an independent external center. Several factors 
affecting the performance were studied, where tumor delineation strategies and 
poorly reproducible features negatively influence generalizability. Generalizability 
increased when the model was validated on a patient subset matching the patient 
demographics or acquisition parameters of the trained dataset. Transforming the 
data from the external center towards the data used for training the model (data 
harmonization) also improves prediction performance.

In chapter 5, models based on clinical variables and/or radiomic features were 
built to non-invasively predict tumoral HPV status. Radiomic features show 
that patients with HPV positivity had rounder tumors with a higher texture 
homogeneity, reflecting the tumor biology with its less-invasive exophytic growth 
and non-keratinizing histopathology. Although a model based on clinical variables 
and radiomic features performs best, a model based on solely clinical variables 
would be the method of choice due to its ease of implementation. Findings needs 
to be externally validated due to the single-centre approach of this study.

Part III: Simplification or automatization of delineation techniques to improve  
clinical adoption of MR-based radiomics for OPSCC patients  
A crucial factor hampering clinical adoption of radiomics are the required manually 
performed whole tumor delineations, which are laborious, time-consuming and user-
dependent. Therefore, already available or simpler alternative tumor delineations 
are necessary. Chapter 6 investigates six manual delineation strategies in radiomic 
models predictive of HPV, including delineations performed by a non-experienced 
observer, an experienced radiologist and a radiation therapist. Besides, “simple” 
tumor delineations were evaluated where the tumor was delineated on the slice 
with the largest axial diameter or delineated by simple spherical tumor volumes 
(with a diameter of 4mm and largest possible diameter of the tumor). Findings 
show that less labour-intensive, easily applicable delineations can substitute 
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the experienced tumor volume delineations, particularly the 2D single-slice 
delineations. Since the radiomic signature is unique for each outcome parameter, 
prediction performance might differ when alternative delineations are used.

Simpler delineations were not able to substitute whole-tumor tumor delineations 
performed by an experience radiologist when the same alternative delineation 
strategies were applied in a radiomic model predictive of treatment outcome 
(chapter 7). A first explanation for this contradictory can be the effect of image 
interpolation on radiomic features. Image interpolation on shape-based features 
will result towards coarser tumor shapes, which are still representative for tumor 
contour. Non-shape-based features, in contrast, undergo changes in voxel intensity 
values as result of image interpolation, resulting in alternated radiomic feature. 
A model predictive of treatment outcome consist mostly of shape-based radiomic 
features, where HPV status is mainly predicted by non-shape radiomic features, 
explaining the different results when alternative delineations are applied. 
Additionally, peripheral surface information, like tumor invasion, is more relevant 
in the distinguishing of treatment outcome compared to determination of HPV 
status implying that not enough information can be obtained in a single slice 
delineation to predict treatment outcome. The different conclusions for models 
predictive of HPV and treatment outcome mirror the need to explore the impact of 
every single factor of the radiomic pipeline on feature variability before radiomics 
can be implemented in a clinical setting.

Another solution for the user-dependent, time-consuming manual tumor 
delineations can be automatic tumor delineation. Chapter 8 describes a deep 
learning (3D UNet) architecture to obtain (semi-)automatically primary OPSCC 
tumor delineations. An architecture designed on multiple MRI sequences shows the 
highest spatial overlap compared to a tumor delineation obtained from a human 
observer (fully automatic approach), indicating that each MR sequence holds 
exclusive characteristics with regard to voxel intensity to identify tumor tissue. 
Manual placement of a clipbox covering the tumor (semi-automatic approach) 
improves this agreement and significantly reduces the workload of the clinician 
(30 min-2 hours vs 5 minutes), enlarging the feasibility of meaningful clinical 
quantitative analysis, such as radiomics.
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SAMENVATTING 
Stel je voor dat je werkt als KNO-arts. Vorig jaar heb je twee patiënten behandeld 
die op de polikliniek kwamen met vergelijkbare patiëntgeschiedenis en symptomen, 
namelijk keelpijn, heesheid, moeite met slikken en een zwelling in de hals. Na 
klinische en diagnostische evaluatie werden beide patiënten gediagnosticeerd met 
lokaal gevorderd keelkanker. Een zeven-week durend trajact van radiotherapie 
in combinatie met chemotherapie werd ingezet als behandelplan voor beide 
patiënten. Nu, een jaar later, is de ene patiënt volledig genezen, terwijl de andere 
patiënt vijf maanden na het voltooien van de behandeling stierf aan een lokaal 
recidief. Twee vergelijkbare patiënten, twee identieke casussen, maar toch twee 
verschillende behandelingsuitkomsten. Als de kennis van het behandelingsresultaat 
van tevoren bekend geweest was, hadden we van tevoren kunnen identificieren 
voor welke patiënt de behandeling voldoende was, welke patiënten baat hadden 
bij intensivering van de behandeling en voor welke patiënten de behandeling meer 
kwaad dan goed had gedaan (door bijwerkingen). Met andere woorden: we zouden 
een behandeling op maat voor de patiënt kunnen geven, ofwel gepersonaliseerde 
behandeling.

De meeste patienten met (plaveiselcel) keelkanker worden behandeld met 
radiotherapie in combinatie met chemotherapie (chemoradiatie therapie). Helaas 
is deze behandeling maar in 55-75% van de gevallen succesvol. De geselecteerde 
behandeling (en het succes ervan) wordt bepaald aan de hand van patiëntfactoren 
en klinische en diagnostische evaluatie. De klinische evaluatie omvat anamnese en 
lichamelijk onderzoek. Tevens kan er kijkonderzoek plaatsvinden, waar mogelijk 
een stukje weefsel weggenomen kan worden (biopsie) om te analyseren. Bij de 
diagnostische evaluatie wordt er gekeken met behulp van medische beeldvorming 
(bijv. MRI of CT). Hierbij wordt de grootte van de lokale tumor (T), de aanwezigheid 
van tumorcellen in regionale lymfeklieren (N) of in andere lichaamsdelen (M) (TNM-
stadiëring) geanalyseerd. Daarnaast kunnen ook functionele tumoreigenschappen 
(tumordiffusie/perfusie) uit deze medische beeldvorming verkregen worden. Echter 
kan het succes van de behandeling niet volledig worden verklaard door al deze 
ziektekenmerken (biomarkers), waardoor andere betrouwbare biomarkers vereist 
zijn die voorspelling van het resultaat van de behandeling kunnen optimaliseren.

Zowel anatomische als functionele informatie van de tumor kunnen worden 
verkregen door beoordeling van medische beeldvorming. Echter is er veel meer 
informatie verborgen in deze medische beelden, die niet met het blote oog zichtbaar 
zijn. Radiomics is een kwantitatieve methode die een groot aantal zichtbare en 
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“verborgen” beeldeigenschappen kan verkrijgen uit medische beeldvorming. 
Deze kwantitatieve beeldeigenschappen (“radiomics beeldeigenschappen”) 
kunnen informatie over de biologie van de tumor onthullen die relevant zijn voor 
pathologische classificatie en/of behandelresultaten. Innovatie in technieken van 
machinaal leren hebben het mogelijk gemaakt om te achterhalen welke radiomics 
beeldeigenschappen relevant zijn voor deze voorspelling. Dit wordt gedaan door 
statistische methoden toe te passen op grote groepen patiënten, waarvan de 
behandeluitkomst of pathologische classificatie bekend is. Het resulterende model 
kan vervolgens worden gebruikt om het behandelresultaat of pathologie voor 
nieuwe keelkanker patiënten te voorspellen.

Het doel van deze thesis was om het potentieel van radiomics te onderzoeken 
om het behandelresultaat en pathologische classificatie (humaan papillomavirus 
(HPV)) voor keelkanker patiënten te voorspellen met behulp van diagnostische 
magnetische resonantie beeldvorming (MRI) die voor de behandeling van de 
patiënt is gemaakt.

Deel I: Huidige kennis van op het gebied van MR-gebaseerde functionele parameters  
bij plaveiselcelcarcinoom van hoofd-hals patiënten  
Functionele MRI-parameters, zoals perfusie- en diffusieparameters, kunnen 
worden geëxtraheerd en gerelateerd aan tumorkenmerken. Hoofdstuk 2 geeft 
een literatuuroverzicht van perfusie- en diffusieparameters die prognostisch zijn 
voor de behandeluitkomst. Alleen parameters verkregen uit de primaire tumor van 
hoofd-hals kanker patiënten beoordeeld op MRI-diagnostiek afgenomen voor de 
behandeling van de patiënt zijn meegenomen. In totaal werden 31 studies gebruikt 
voor de kwantitatieve analyse, waaronder respectievelijk 11 en 28 studies perfusie- 
en diffusieparameters onderzochten. Hoewel prognostische diffusieparameters 
vaker werden onderzocht in vergelijking met perfusieparameters, vertonen 
beide parameters grote discrepantie binnen de onderzoeksopzet van de 
meegenomen studies. Hierdoor wordt standaardisatie binnen de beeldacquisitie, 
tumorsegmentatie methoden en statistische analyse in de toekomst streng 
aanbevolen.

Deel II: MR-gebaseerde radiomics predictiemodellen voor tumorkarakterisering  
en prognose bij keelkanker patiënten  
Om de haalbaarheid van MR-radiomics in keelkanker patiënten te beoordelen 
werden voorspellende modellen ontwikkeld en gevalideerd in hoofdstuk 3 tot en 
met 5. In hoofdstuk 3 werden modellen ontwikkeld en getest die voorspellend zijn 
voor het behandelresultaat na chemoradiatie met behulp van een single-center 
cohort bestaande uit 177 keelkanker patiënten. Modellen werden gebouwd op basis 
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van uitsluitend klinisch variabelen (bijv. leeftijd, geslacht), uitsluitend radiomics 
beeldeigenschappen (bijv. vorm, rondheid, heterogeneiteit in MR intensiteit) en 
de combinatie hiervan. Radiomics modellen waren in staat om de uitkomst van de 
behandeling te voorspellen, maar een model dat klinische variabelen én radiomics 
beeldeigenschappen combineert presteert beter dan modellen die uitsluitend zijn 
gebaseerd op klinische variabelen of radiomics beeldeigenschappen. Dit houdt 
in dat klinische variabelen en radiomics beeldeigenschappen onafhankelijke 
informatie bevatten voor het voorspellen van de behandeluitkomst. Sub-analyse 
bij patiënten met HPV-negatieve tumoren leverde geen consistente, betekenisvolle 
voorspellende eigenschappen op vanwege het lage aantal patiënten welke 
geanalyseerd zijn.

Medische beeldvorming tussen ziekenhuizen kan verschillen, door de grote variatie 
in merk van de scanner, type van de scanner en acquisitie protocols. Daarom is het 
niet vanzelfsprekend dat een voorspellend model ontwikkeld op data van patiënten 
afkomstig uit één specifiek ziekenhuis (mono-center) kan worden toegepast op 
patiënten afkomstig van andere ziekenhuizen. Externe validatie van deze modellen 
is daarom van groot belang om de klinische bruikbaarheid (generaliseerbaarheid) 
te bewijzen. Hoofdstuk 4 laat zien dat de prestatie van het model voorspellend 
voor behandeluitkomst licht afneemt wanneer het gevalideerd werd op data 
afkomstig van een onafhankelijke externe centrum. Om de reden hiervoor 
te achterhalen, werden verschillende factoren die de prestatie beïnvloeden 
bestudeerd, waarbij strategieën voor tumor segmentatie en slecht reproduceerbare 
radiomics beeldeigenschappen de generaliseerbaarheid negatief beïnvloeden. 
De generaliseerbaarheid nam toe wanneer het model werd gevalideerd op een 
subset van patiënten met overeenkomstige demografische karakteristieken of 
acquisitieparameters overeenkomstig met de getrainde dataset. Tevens verbetert 
de prestaties van het model wanneer de data van het externe centrum naar de data 
van het initiële centrum werd getransformeerd (harmoniseren).

Humaan papillomavirus (HPV) is een virus dat een rol kan spelen bij het ontstaan 
van keelkanker. Bewezen is dat patiënten met HPV-geïnfecteerde keelkanker (HPV 
positief) een betere kans op genezing hebben dan patiënten met keelkanker 
die niet HPV-geïnfecteerd (HPV negatief) is. In de praktijk wordt de HPV status 
van de tumor geanalyseerd door het uitvoeren van een biopsie. In hoofdstuk 5 
werden modellen gebouwd op basis van klinische variabelen en/of radiomics 
beeldeigenschappen om de HPV-status van de tumor middels een niet-invasieve 
methode te voorspellen. Radiomics beeldeigenschappen laten zien dat HPV-
positieve tumoren ronder zijn en een hogere homogeniteit in de tumor textuur 
bevatten, wat de tumorbiologie weerspiegelt van HPV-positieve tumoren die 
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minder invasieve exofytische groei en niet-keratiniserende histopathologie omvat 
vergeleken met HPV-negatieve tumoren. Hoewel een model op basis van klinische 
en radiomics beeldeigenschappen het meest voorspellend is, zou een model 
dat uitsluitend is gebaseerd op klinische variabelen de voorkeursmethode zijn 
vanwege het gemak van implementatie. Deze bevindingen dienen extern te worden 
gevalideerd aangezien de single-center-methodiek toegepast in deze studie.

Deel III: Vereenvoudiging of automatisering van tumor segmentatie technieken om  
de klinische acceptatie van op MR-gebaseerde radiomics voor keelkanker  
patiënten te verbeteren  
Een cruciale factor die de klinische acceptatie van radiomics belemmert is 
de benodigde manuele tumor segmentaties, die arbeidsintensief, tijdrovend 
en gebruikersafhankelijk zijn. Om deze reden zijn alternatieve segmentaties 
noodzakelijk, zoals segmentaties die al beschikbaar zijn of simpeler zijn om uit te 
voeren. Hoofdstuk 6 onderzoekt zes manuele segmentatie strategieën in radiomics 
modellen voorspellend voor HPV, waaronder tumor segmentaties uitgevoerd 
door een niet-ervaren waarnemer, een ervaren radioloog en een radiotherapeut 
(dit omvat de al aanwezige tumor delineatie gemaakt voor het radiotherapie 
behandelplan). Daarnaast werden “eenvoudige” tumor segmentaties geëvalueerd 
waarbij de tumor werd gesegmenteerd op de MRI-plak met de grootste axiale 
diameter (2D volume) of werd de tumor gesegmenteerd door het plaatsen van 
bolvormige volumes in het tumorgebied (met een diameter van 4 mm of de 
grootst mogelijke diameter van de tumor). Bevindingen tonen aan dat minder 
arbeidsintensieve, gemakkelijk toepasbare segmentaties de ervaren tumorvolume 
segmentaties kunnen vervangen, met name de 2D-segmentaties verkregen uit één 
MRI-plak. Aangezien de relevante radiomics beeldeigenschappen uniek zijn voor 
elke uitkomstparameter, hebben alternatieve tumor segmentaties invloed op de 
prestatie van de voorspelling van het model en kunnen deze bevindingen afwijkend 
zien in andere radiomic voorspellingsmodellen.

Zo zijn eenvoudiger segmentaties niet in staat om de deskundige tumor 
segmentaties te vervangen wanneer dezelfde alternatieve segmentatie strategieën 
werden toegepast in een radiomics model voorspellend voor behandelingsuitkomst 
(hoofdstuk 7). Deze tegenstrijdigheid kan het gevolg zijn van beeldinterpolatie. 
Vorm-gebaseerde beeldeigenschappen zullen grover zijn, maar nog steeds 
representatief voor tumor contour, als gevolg van beeldinterpolatie. Daarintegen 
zullen bij beeldeigenschappen die niet op vorm gebaseerd zijn de voxel-intensiteit 
waarden veranderen, met als gevolg dat de waarde van de beeldeigenschap ook 
verandert. Een model dat de uitkomst van de behandeling voorspelt, bestaat 
grotendeels uit vorm-gebaseerde beeldeigenschappen, terwijl HPV status van 
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de tumor voornamelijk wordt voorspeld door beeldeigenschappen die niet op 
vorm gebaseerd zijn. Dit kan de verschillende bevindingen verklaren wanneer 
alternatieve tumor segmentaties worden toegepast op de beide modellen 
(pathologie classificatie versus behandelingsuitkomst). Een tweede verklaring kan 
liggen in informatie over het perifere oppervlak, zoals tumorinvasie. Deze informatie 
is relevanter bij het onderscheiden van het behandelresultaat in vergelijking 
met het bepalen van de HPV-status van de tumor. Mogelijk kan er onvoldoende 
informatie worden verkregen uit een enkele MRI plak om het behandelresultaat 
te voorspellen. De verschillende conclusies voor modellen die HPV status van de 
tumor en behandeluitkomst voorspellen, weerspiegelen de noodzaak om de impact 
van elke afzonderlijke factor van de radiomics-werkwijze op de variabiliteit van 
beeldeigenschappen te onderzoeken voordat radiomics in een klinische setting kan 
worden geïmplementeerd.

Een andere oplossing voor de gebruikers-afhankelijke, tijdrovende handmatige 
tumor segmentaties zijn automatische tumor segmentaties. Hoofdstuk 8 beschrijft 
een deep learning (3D UNet) architectuur om (semi-)automatische segmentaties 
van de primaire tumor van keelkanker patiënten te verkrijgen. Een architectuur 
ontworpen op meerdere MR-sequenties (T1w, T2w, T1w+contrast) vertoont de 
grootste spatiele overlap tussen de automatische tumor segmentatie en een 
tumor segmentatie verkregen van een humane waarnemer. Dit geeft aan dat elke 
MR-sequentie exclusieve kenmerken bezit met betrekking tot voxel-intensiteit 
om tumorweefsel te identificeren. Het handmatig plaatsen van een kubus die de 
tumor omvat (semi-automatische segmentatie) verbetert deze overeenstemming 
en vermindert de werklast van de clinicus aanzienlijk (30 min-2 uur versus 5 
minuten), waardoor de haalbaarheid van zinvolle klinische kwantitatieve analyse 
(zoals radiomics) wordt vergroot.
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IMPACT PARAGRAPH
RELEVANCE

Imagine that you are a medical doctor. Last year you have treated two patients 
with comparable presentation and identical complaints, namely pain in the throat, 
difficulties with chewing and a mass in the neck. After clinical and diagnostic 
assessment, both patients were diagnosed with locally advanced oropharyngeal 
squamous cell carcinoma (OPSCC) and followed a seven-week during trajectory 
of radiation therapy combined with chemotherapy. Now, a year later, one patient 
showed complete response, whereas, unfortunately, the other patient died five 
months after treatment from a local recurrence. Two comparable patients, two 
identical cases, although, the outcome of the treatment are extremely different. If 
we knew this on beforehand, we could identify which patients would benefit from 
intensification of treatment and for whom the treatment would do more harm 
than good. So actually, then we could anticipate by advising on more personalized 
medicine?

The selected treatment of OPSCC patients currently depends on patients factors 
as well as clinical and diagnostic evaluation of tumor characteristics such as TNM 
stage. Diagnostic evaluation with imaging includes the extraction of semantic 
features (i.e. shape, size, extent and metastases) and functional parameters (tumor 
diffusion/perfusion) from medical images (i.e. CT and/or MRI) by the radiologist. 
However, much more information might be hidden into medical images, which are 
not revealed by visual inspection. Radiomics is a quantitative method that enables 
extraction of a large number of “hidden” features, calculated from mathematical 
formulas (“data-characterization algorithms”). A unique combination of radiomic 
features (radiomic model) can be correlated to various clinical outcomes and might 
well play a role in personalized medicine.

This thesis shows the potential of magnetic resonance imaging (MRI)-based 
radiomics to increase reliably prediction if an OPSCC patient will have successful 
treatment and to classify if the tumor is infected with human papillomavirus (HPV). 
Despite its potential, the current format of radiomics still include some challenges 
hampering clinical implementation. Crucial steps to improve standardization, 
reproducibility, repeatability and generalizability are needed. The most important 
step is external validation of single-center radiomic models. Findings of this thesis 
proved already that our radiomic model, predictive of treatment outcome, could be 
applied on external data while maintaining good performance. Another challenge 
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is to obtain a more standardized and user-independent radiomic workflow. This 
thesis investigates the possibilities of simplification and automation to substitute 
the manual observer-dependent time-consuming tumor delineations. We 
concluded that each individual radiomic model reacts differently on alternative 
tumor delineations. Automatic tumor delineations are feasible, although, manual 
adjustments are still required to optimize them.

When the challenges are overcome and radiomics shows to be reliable, radiomics 
can act as clinical decision support tool. In an ideal situation, radiomic models 
are implemented as software extension in current healthcare information systems. 
This software gives information complementary to clinicians’ findings by combining 
parameters of clinical examinations, histopathology, genetic data and diagnostic 
imaging. The software visualizes the likelihood ratio for cancer response in the 
automatically delineated tumor region, where a cut-off value can be used to 
determine the best appropriate treatment for the patient.

TARGET POPULATION

The results of this thesis are relevant to several groups. Firstly, the scientific 
community investigating radiomics or other (quantitative) biomarkers in any 
cancer type or disease might obtain additional knowledge and new insights for 
future research. Especially a remark must be made for the finding that a certain 
approach may not be suitable for all radiomic models, suggesting that investigation 
of every unique model is necessary. 

Secondly, healthcare professionals will benefit from radiomic models. The major 
profit will be for radiologists who are daily utilizing medical imaging to detect, 
diagnose and evaluate cancer progression. Radiomic models might assist in each 
of these steps, although, and also enable quantification of tumor characteristics 
or prediction of treatment outcome. The enhanced radiological information 
provided for the radiologist help further personalize treatment and optimize 
treatment outcomes. In addition, valuable time will be saved by assisting or 
eliminating time-consuming tasks. Extending the radiomic model with parameters 
originating from other disciplines will also aid other health professionals, such 
as the pathologist. Overall, information from radiomic models can be discussed 
during multidisciplinary meetings. While the radiomic model might well support 
clinicians, it will not replace them.

OPSCC patients are an important group who will benefit from radiomic models. The 
routinely non-invasive acquired patient images required for radiomics do not harm 
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or ask for additional proceedings, while it might aid in the selection of the most 
appropriate treatment. This selected personalized treatment might well prevent 
treatment failure and unnecessary side effects as much as possible. Decreasing 
these factors, along with better expectation management, improves the spirit of 
the patient and quality of life.

Radiomics is able to support clinicians, reduce workload for radiologists, improve 
risk evaluations, improve patient management, prevent treatment failure and limit 
unnecessary side effects. All these factors might well contribute to make current 
healthcare more efficient and cost-effective. Therefore, hospitals and healthcare 
generally benefits from the implementation of radiomic models, which might also 
have an impact on the regular citizen (e.g. health insurance).

More internationally, the findings of this thesis might be useful for poor countries 
as well. We prove that radiomic models are able to predict HPV status of the tumor, 
without the need of invasive biopsy. This ability of radiomics will not replace 
the invasive biopsy in wealthy countries, however, it can substitute the costly 
polymerase chain reaction (PRC) immunohistopathology analysis when medical 
imaging is performed is poor countries. Additionally, retrospective analysis of the 
HPV status of the tumor is feasible when biopsy is not performed. 

ACTIVITIES

The results of this thesis have been presented at multiple (inter)national 
conferences and published in peer-reviewed international journals. Lessons 
learned from this thesis can be applied in future research to optimize radiomics. 
Follow-up research projects in our institution are now investigating the potential 
of integrating genomic data in a radiomic model to predict treatment outcome in 
head and neck cancer patients. 

This thesis shows that radiomics for OPSCC patients has potential, but the current 
format strongly requires optimization to make it applicable as clinical decision-
support tool. Importantly, collaboration of research teams, centres and countries 
is recommended to work together towards a trustable, reliable and representative 
tool that is able to support clinicians by providing complementary information. 
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DANKWOORD
Een promotietraject die twee afdelingen combineert: de radiologie en hoofd-
hals oncologie. Een ontzettend toffe combinatie, waar ik onwijs veel plezier en 
energie uit heb gehaald. De afgelopen jaren hebben mij doen beseffen dat een 
promotietraject veel meer is dan onderzoek doen. Naast het ontwikkelen van 
diverse skills benodigd voor gedegen onderzoek (zoals statistiek, programmeren, 
klinische achtergrond en samenwerken) komen lessen op persoonlijk vlak ook om 
de hoek kijken. De persoonlijke groei die ik heb doorgemaakt op al deze vlakken 
was dan ook niet mogelijk geweest zonder de feedback, hulp en steun van vele 
lieve mensen om mij heen. Gezegend en dankbaar wil ik daarom eenieder in het 
zonnetje zeten en hun te bedanken voor hun waardevolle bijdrage. Zonder hun 
hulp was dit proefschrift er niet geweest.

Allereerst wil ik mijn promotieteam, bestaande uit prof. dr. Regina Beets-Tan, prof. 
dr. Michiel van den Brekel, dr. Bas Jasperse en prof. dr. Jonas Castelijns, bedanken 
voor de kans die zij mij hebben geboden om in het Antoni van Leeuwenhoek 
ziekenhuis een PhD traject te vervaardigen. Uit ervaring kan ik zeggen dat het een 
zeer prettig ziekenhuis is om in te werken, waar iedereen onderzoek ambieert en 
mogelijk maakt.

Beste Regina, “We choose to go to the moon in this decade and do the other things, 
not because they are easy, but because they are hard, because that goal will serve 
to organize and measure the best of our energies and skills” (J.F. Kennedy). Dit 
citaat zat in je speech tijdens een diner met alle onderzoekers van het Tuinhuis, 
met als les dat je moet leren van de tegenslagen tijdens een promotietraject. Mijn 
PhD ging niet zonder slag of stoot, maar jij wist mij altijd vertrouwen te geven en 
te kijken naar de mogelijkheden in plaats van beperkingen. Met je onbevangen 
gedrevenheid en hart voor onderzoek, mag je terecht trots zijn op je werk en team. 
Als ambitieuze, innovatieve radioloog ben jij altijd bezig met de toekomst van de 
radiologie. Zet deze inspiratiebron voort. Bedankt voor het delen van je ambitie en 
je feedback tijdens mijn onderzoek. 

Eigenlijk moet ik deze alinea zo kort mogelijk houden, om zo min mogelijk tijd van 
je volle schema te vragen. Maar dan doe ik tekort aan de steun die ik van je heb 
ontvangen. Beste Michiel, altijd in razend tempo verplaatste (of vloog kun je wel 
zeggen!) jij van de ene naar de andere afspraak. Maar eenmaal op locatie, was je de 
rust zelfde en nam je juist alle tijd. Zo ook tijdens onze besprekingen, waar jij altijd 
met een positieve, maar realistische, blik keek naar mijn onderzoek en voortgang. 
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Vooral in dat laatste was het meermaals cruciaal dat jij knopen doorhakte, zodat 
ik niet te veel zij-projecten op mijn hals haalde. Door jouw enorme kennis en 
ervaring knoopte je diverse onderzoeken aan elkaar en zorgde je voor handige 
nieuwe connecties en samenwerkingen. Als bescheiden, maar sociale hoofd-hals 
chirurg bleef je ook tijdens de pandemie betrokken bij je PhD studenten. Het 
gegeven kunstdoek hangt steevast in mijn werkkamer, waar ik regelmatig naar kijk 
als ik even moet ontspannen en de rust moet herpakken (‘Breathe in, breathe 
out, repeat ’). Goede dingen hebben immers tijd nodig. Ontzettend bedankt voor je 
vertrouwen en de structuur die je mijn onderzoek gaf.

Lieve Bos’ Boss Bas, ik weet niet of je het zelf weet, maar zo werd je bij ons 
op kantoor ook wel genoemd. Puur omdat het lekker in de mond lag, want van 
hiërarchie was (gelukkig!) geen sprake. Een echte knuffelbeer en altijd in voor een 
gezellig praatje. Praten over het weekend of andere sociale dingen was vaak iets 
te gezellig, waardoor de tijd voor het bespreken van het onderzoek werd beperkt. 
Naast sociaal, zijn we ook allebei eigenwijs, wat niet altijd hielp in de samenwerking. 
Met name in het begin moest ik hieraan wennen, maar uiteindelijk zag ik in dat 
er een gegronde redenatie aan ten grondslag lag wanneer de plannen en ideeën 
(weer eens) compleet werden omgegooid. Je radiologische en klinische kennis, je 
kritische blik en helikopterview hebben mij zowel op wetenschappelijk, maar zeker 
ook op persoonlijk vlak, laten ontwikkelen. Manuscripten kwamen volledig rood 
terug, waar complete alinea’s waren geherformuleerd. Maar jouw snoeiwerk van 
het manuscript zorgde er juist voor dat het artikel meer ging bloeien. Inmiddels 
heb ik je schrijfstijl overgenomen, waarvoor ik je zeer dankbaar ben. Bas, bedankt 
voor je gezelligheid, lessen, geduld en je inzet. Want pfoe, wat hebben we een 
hoop tumoren samen ingetekend!

Beste Jonas, in de laatste fase van mijn promotietraject werd jij toegevoegd aan 
mijn promotiecommissie. En daar kwam ik gelijk in aanraking met een aanpak die 
mij nog onbekend was. Je zat continue achter mijn broek aan, met als resultaat 
dat mijn planning beter werd nagestreefd. Toen mijn contract werd verlengd met 9 
maanden, wist jij mij te vertellen dat er heel veel baby’s zijn geboren in 9 maanden, 
een beeldspraak voor de vele publicaties die zouden komen in deze 9 maanden. 
Misschien heeft het iets langer geduurd dan we gewild hadden, maar dat lag niet 
aan jouw snelle reacties. Wanneer ik een mail stuurde met een deadline, belde jij 
mij gelijk op dat je er morgen geen tijd voor had, maar wel overmorgen. En dat 
terwijl de deadline pas over 2 weken was. Vol trots praat je over je promovendi en 
hoe leuk het is als we elkaar zouden ontmoeten. Het etentje bij jou en Hafina thuis 
met al jouw promovendi en hun begeleiders was dan ook zeer geslaagd. Bedankt 
voor je begeleiding en jullie gastvrijheid.
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Daarnaast wil ik de leden van de beoordelingscommissie bedanken: prof. dr. Bernd 
Kremer, prof. dr. Remco de Bree, prof. dr. ir. Andre L.A.J. Dekker, dr. Frank J.P. 
Hoebers en dr. Stefan Steens. Bedankt dat jullie waardevolle tijd wilden vrijmaken 
voor het doorlezen en beoordelen van dit proefschrift. 

Als onafhankelijk deskundigen hebben de leden van mijn OOA-commissie mijn 
promotietraject altijd gevolgd. Prof. dr. Marcel Stokkel, dr. Neeltje Steeghs  en dr. 
Abrahim Al-Mamgani, bedankt voor jullie betrokkenheid.

Elk artikel is echt een team effort, wat zonder de betrokkenheid van de vele co-
auteurs niet tot stand had kunnen komen. Jullie onmisbare waardevolle bijdrage 
in de vorm van kennis, ervaring en tijd zorgde ervoor dat de artikelen werden 
voorzien van klinische, technische of statistische onderbouwingen. Bedankt voor 
de goede samenwerking. Winnie, jouw enthousiasme is aanstekelijk. Bedankt 
voor het meedenken en uitvoeren van de systematische search. Zonder jou was ik 
nog verstrikt in MeSH termen. Hedda, de tweede reviewer voor de systematische 
review. Wat een hoop abstracts en artikelen hebben wij gescand, gelezen en 
beoordeeld. Bedankt voor je hulp! Hugo, bedankt voor het delen van je expertise 
op het gebied van radiomics. Een waar genoegen om met jou samen te werken. 
Zeno en Abrahim, ik ben dankbaar dat ik gebruik mocht maken van een cohort die 
jullie hebben samengesteld. Er zijn al vele publicaties verschenen met dit cohort, 
die alleen mogelijk zijn gemaakt door jullie harde werk om alle relevante klinische 
gegevens te verzamelen. Selam, a real helpline when a difficult technical issue 
came up. Your innovative ideas and discipline to keep searching to obtain more 
clarity about the data were of great value. Marjaneh and Joost, no programming 
error was too much for you. You were always willing to help me out. Roland, 
Pim, Ronald, René en  Mark, wat kijk ik trots terug op een geweldige multicenter 
samenwerking. Eentje die zeer vlot is verlopen door de adequate samenwerking en 
vlotte feedback. Roland, binnen één week zullen we beiden promoveren. Wat zal 
Jonas trots zijn. Mark, hoewel je tijd gering was wist je toch wat tijd vrij te maken 
om mij wat handvaten te geven die mij hielpen om de data beter te bekijken, te 
analyseren en te begrijpen. Bedankt voor je statistische expertise. Roque, the PhD 
life is not always easy. We struggled, we fell and we had to motivate ourselves to 
find the discipline to convert the feeling of failure into success and stand up again. 
Therefore, the acceptance of a manuscript is costly, which has to give you enough 
discipline and motivation to go for the next one. I really thank you for our grateful 
collaboration, but also for being able to share our feelings, coffee moments and 
of course the nice dancing during the OOA retreat. Rita en Uulke, sparsessies met 
jullie zorgde ervoor dat er weer nieuwe invalshoeken aan het licht kwamen, die 
nieuwe inzichten en ideeën meebrachten. A special thanks to  Richard Golding to 
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correct and improve the manuscripts on English grammar.

Lieve Jorrita, Beste Marion, Beste Evelyn, jullie waren er altijd om mij uit de brand 
te helpen met praktische zaken. Bedankt voor het inplannen van afspraken en geven 
van informatie die mij nog niet bekend was. Jorrita, je positiviteit, vrolijkheid en 
oprechte interesse maakten je een waardevolle gesprekspartner die mijn tijd in 
het Tuinhuis zeker kleur (Jorrita droeg altijd vrolijke gekleurde kleding) hebben 
gegeven! Beste Minke De Haan, halverwege mijn PhD bleken ‘to do’ boekjes een 
grote uitkomst om mijn dagelijkse planning strakker te laten verlopen. Bedankt 
voor het bestellen van deze boekjes en indirect bijdragen aan mijn planning. Beste 
Carine Sondermeijer, bedankt voor het regelen van al de benodigde papieren voor 
de multicenter studie. Ik ben dankbaar dat ik deze hoeveelheid papierwerk met 
vertrouwen uit handen kon geven.

Lieve kamergenootjes van ‘de Geekroom’. Eén van de kamers in het Tuinhuis waar 
je kunt voelen wanneer er een tram passeert. Of was het toch de wiebelende voet 
van Niels? Ik hoop dat mijn valse zangkunsten en groene medekamergenoten niet 
te veel voor afleiding hebben gezorgd. Dear Stefano, we shared the office before 
you left it for ‘room 10’. As Italian you tried to teach me the meanings behind these 
hand gestures, which were quite a few and therefore hard to remember. Sorry, I am 
still not able to do them. But I had a lot of fun with it during the ISMRM conference 
in Paris. Maybe also due to the nice view from the roof terrace, the good drinks, 
delicious food, our dance moves and, especially, the closing party in Museé des arts 
forains with the carousel. Thank you for the international influences and good time 
together. Lieve Joost, als wandelende encyclopedie was je een grote informatiebron 
voor iedereen uit het Tuinhuis. Er ging geen dag voorbij zonder dat er iemand aan 
jouw bureau zat die jij met alle liefde hielp met een probleem. Zo heb je mij ook 
diverse keren geholpen met het oplossen van een error uit mijn programmeercode 
of door mij je code te laten begrijpen door deze regel voor regel uit te leggen. 
Als programmerende dokter weet ik zeker dat je veel zal bijdragen aan medische 
innovaties in de toekomst. Dear Marjaneh, as the only two girls in the ‘Geekroom’, 
we were strong together. We showed this girl power by sticking the poster “We can 
do it” on the door and give the room some pink touches when the guys were off to 
New York. I think these touches are still there, keeping our spirit alive. Lieve Niels, 
een hardwerkende positivo die altijd rustig bleef, zelfs onder hoge druk. Maar ook 
een echte babbelaar, waarbij het keer op keer genieten was als je vol trots zat te 
vertellen over je oma, je dates (in het begin van je PhD) of je crossfit workout. 
Daarnaast was je ook een luisterend oor en baken van advies wanneer je zag dat 
ik het even kon gebruiken. Met je onuitputtelijke enthousiasme en energie liet 
je graag (onzinnige!) memes of filmpjes zien, PPAP (Pen-Pineapple-Apple-Pen) zal 
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mij altijd bijblijven! Lieve Kay, van stille muis ontpopte je in een echte prater. Je 
perfectionisme en kritische blik zorgden ervoor dat je veel wist over de technische 
kant van de MRI, resulterend in adviezen en ideeën voor mijn onderzoek waar ik 
zelf nog niet aan gedacht had. Leer te geloven in je eigen kunnen, want jij bent de 
specialist op jouw vakgebied. Sorry voor de windows-update grap, maar vergeet 
deze vooral niet bij nieuwe collega’s uit te proberen. Beste Najim, ik dacht dat 
ik altijd vroeg op kantoor was, maar jij spande echt de kroon als vroege vogel. 
Hierdoor stond de deur van ons kantoor al als een warm welkom open wanneer ik 
aan een nieuwe werkdag begon. Door COVID hebben we maar een korte tijd samen 
doorgebracht, maar die tijd heb ik zeker als prettig ervaren. Geeks, allen bedankt 
voor de gezellige mooie tijd samen!

Natuurlijk gaat onderzoek gepaard met een hele hoop leuke en mooie herinneringen. 
Daarvoor wil ik alle collega’s van het Tuinhuis bedanken. Zowel binnen de muren 
van het Tuinhuis met de Sinterklaas viering, het oplossen van de AIVD kerstpuzzel, 
potluck diners, gezellige lunchmomenten, spelletjes avonden en de vele koffie 
momenten (soms met taart, want publiceren = trakteren!). Maar ook buiten het 
Tuinhuis wisten we een hoop plezier te maken tijdens de bezoekjes aan de markt, 
de escape room, NKI Summer party’s, PhD diners, medewerkersfeest, congressen 
en de OOA retreat in Renesse. Een aantal wil ik in het bijzonder bedanken. Lisa, 
het grote brein in het oplossen van de AIVD puzzel 2016! Met veel plezier hebben 
we aan deze puzzel gewerkt, waarbij elke ochtend begon met nieuwe inzichten die 
we de avond ervoor thuis hadden gevonden. Ik schreef met alle plezier code voor 
je, zodat handmatig uitzoekwerk je bespaard bleef. Bedankt voor de samenwerking 
en alle gezelligheid! Femke,  vrolijke energiebom, wat heb ik van jou genoten! 
Op feesten konden wij helemaal losgaan (vooral in de silent disco). Van tevoren 
spraken we dan af dat we de laatste trein gingen pakken, om elkaar op het feest 
aan te kijken en te weten dat we nog niet naar huis gingen. Naast de hoeveelheid 
plezier, gebabbel, danspassen en hoop borrels die we samen hebben beleefd, ben 
ik je ook altijd dankbaar voor jouw ongezouten mening op de layout van mijn 
figuren en presentaties. Ik heb er een echte vriendin bij! Hedda, we leerden elkaar 
kennen toen je als student bij radiotherapie mijn hulp vroeg, niet wetend dat we 
een jaar later collega’s zouden worden in het Tuinhuis. Inmiddels hebben we in 
onze samenwerking veel gedachten uitgewisseld, waarbij we elkaar onbewust 
motiveerden. Dit resulteerde in een systematic review die zeer spoedig gepubliceerd 
is. Bedankt voor je gezelligheid en prettige samenwerking. Een speciaal bedankje 
ook naar Daphne, Judith OH en Judith voor de gezellige avonden bij elkaar thuis, 
voorzien van een heerlijke maaltijd (niet roeren in de pan!), onophoudelijk geklets 
en fanatisme tijdens spelletjes. En natuurlijk niet te vergeten, de vele (gekke) 
danspasjes en momenten waarin we de slappe lach hadden tijdens de OOA retreat, 
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NKI summer party en het medewerkersfeest. Wanneer ik even mijn ei kwijt moest, 
kon ik altijd bij jullie terecht voor goede adviezen om mijn focus weer te vinden. Een 
PhD is immers een sinus van motivatie en effectiviteit (aldus Judith OH), wat door 
deze gesprekken met julie weer helder werd, resulterend in een teruggevonden 
motivatie. Bedankt voor de fijne momenten en natuurlijk ook  de Disney piano 
afspeellijsten.

Ook wil ik mijn dank betuigen aan alle collega’s van hoofd-hals.  De inspirerende 
OIO onderwijs momenten tijdens de lunch op vrijdag, de informatieve meetings 
op dinsdagochtend en niet te vergeten de vele koffie (oké thee) momenten. Luuk, 
Kilian, Bence, Maarten, Rob, Kicky, Martijn, Klaske en Maartje, bedankt voor de 
gezellige momenten en natuurlijk het onderkomen tijdens de brandmelding in het 
Tuinhuis, wat stiekem direct een mooi moment was om even bij te kletsen;). De 
variatie in onderzoeksvelden maakte het iedere keer weer een leerzaam feest om 
met jullie te sparren en samen tot mooie onderzoeksvraagstukken/oplossingen te 
komen. Ik droeg met liefde dan ook bij aan deze onderzoeken, ook al moesten er 
daarvoor stikkers op mijn tong geplakt worden of moest ik in een MRI liggen met 
een nieuwe MRI spoel.

Ook dank aan alle collega’s van de radiologie, radiotherapie, nucleaire 
geneeskunde, genetica en pathologie met wie ik overleggen heb gevoerd en heb 
samengewerkt in projecten die niet in dit proefschrift beschreven zijn. In het 
bijzonder  Petra, Arjan, Cees, Leon, Laura, Conchita en  Wouter.

،ابیز و زیزع هناجرم   .نم یرتکد هرود هارمه و تسود 
 رتفد دراو نیشنلد دنخبل و دنلب ریخب حبص کی اب هشیمه ؟منک عورش اجک زا

.یتخاسیم ور مزور و یدشیم راک  مفادها زا یکی ؛مهاتوک یگداوناخ مان یفالت یارب 
 قفوم هک مگب تسرد )هداز یوضر یوقت( ور وت یگداوناخ مان منوتب هک دوب نیا

.مدش   .دوب نم یارب یسراف یریگدای عورش نیا 
،ناریا زا تشگرب زا دعب  یاه هتسپ نم هک یدروایم هدش رکف و ابیز یایاده 
.متشاد تسود یلیخ هژیو هب ور هزمشوخ  یارب ناوارف هزیگنا نتشاد رانک رد 

،ینف لیاسم مهف .یدوب بوخ یاه هملاکم و یخوش هدامآ هراومه   یبوخ زور یتقو 
،متشادن .دوب نم کمک هشیمه تاه لغب و اونش شوگ ،تمرگ تیصخش   هب ور نم 
.شخبب راک رتفد یوت یا هملد لفلف ندز زاگ رطاخ  هظحل مه راک رتفد زا جراخ 
.میتشاد یبوخ یلیخ یاه  ماش ؛میدرکیم راک هناخ رد مه اب انورک هرود رد یتقو 

.میتفر یم ینامهم هب ای میدروخیم  هب تریذپ فاطعنا یاه تسد و اهاپ و رمک اب 
 یقیسوم یتقو هژیو هب ) یدرکیم توهبم ور همه و یتفر یم یقیسوم لابقتسا

.(دوب اریکش زا ،زیزع هناجرم   ناتسود یرتکد هرود رد ندوب هارمه رطاخ هب هک نونمم 
.میدش مه یارب یبوخ .هدنیآ رد بوخ یلیخ تاظحل دیما هب  .سوب سوب 
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 مسا نیا ایوگ یلو درکیم باطخ ناج ور وت هناجرم ارچ مدشیمن هجوتم ؟ناج ای بارهس
.دوب ت یعقاو مسا یاج هب .دش لح هلاسم    هب لگ نداد هیده اب نومرادید نیلوا رد 

.یداد رارق ریثات تحت ور قاتا همه نیاتنلو زور رد هناجرم  ور هظحل نوا تقو چیه 
.منک یمن شومارف ،اه دنخبل زا منونمم  .نوت هناصلاخ یزاون نامهم و هقالع   هناجرم 

.نوتاهاب ییانشآ زا متخبشوخ بارهس و .سوب سوب  

Translation: Dear and pretty Marjaneh, my PhD buddy and paranymph! Where should 
I start? You always entered the room with a loud “Good Morning” and big smile on 
your face. It made my day! To compensate for my own short last name, I set a goal to 
be able to pronounce your full last name (Taghavirazavizadeh), which I succeeded. 
It was the beginning of learning Farsi. After a visit to Iran, you came back with 
thoughtful gifts, where I especially appreciated the delicious pistachios. Besides 
your tireless motivation and drive to really understand the technical problem, you 
were always up for jokes or good conversations. Your warm personality, listening 
ear and the hugs were always encouraging when I didn’t have my day. Sorry for the 
noise when I ate another bell pepper at the office. Besides the office, we shared 
even more fun moments, where we worked together at home, dined, ran or went 
to a party. There, of course, you always stole the show with your flexible hips, feet 
and hands that moved gracefully to the music (especially when Shakira was played). 
Lovely Marjaneh, thank you for the great time sharing our PhDs, a true friendship 
is born. I look forward to good moments in the future. Boos Boos (kiss in Farsi)!  
Sohrab, or John? I didn’t understand why Marjaneh always picked up the phone 
with “John”, but apparently it is an in place of the name. Problem solved! We first 
met when you brought flowers to Marjaneh on Valentine day, you impressed the 
whole room and I will never forget that moment. Thank you for your sincere smile, 
interest and hospitality. Marjaneh and Sohrab, I am blessed to have met you. Boos 
boos!

Lieve Maud, toen ik je vroeg of je mijn paranimf wilde zijn, zei je volmondig ja. Zelfs 
zonder dat je wist wat die rol precies inhoudt. Op het moment van schrijven heb je 
het idee dat paranimfen tijdens de verdediging trots met het proefschrift in de hand 
achter de promovendi staan te stralen. En die taak is jou op het lijf geschreven. 
Maar… er komt meer bij kijken (sorry voor het nog niet eerder vertellen). Ik hoop 
dat je nog steeds mijn paranimf wilt zijn, want als enthousiaste, leergierige, sociale 
en vooral vrolijke meid weet ik zeker dat die andere taken jou met veel gemak af 
zullen gaan. Ik zal dan ervoor zorgen dat de vragen van de oppositie beantwoord 
worden. Ik zal namelijk nooit vergeten dat jij mijn promotieonderzoek eens 
vergeleek met een zak M&M’s gevuld met verschillende smaken. Van de buitenkant 
zien de M&M’s er nagenoeg hetzelfde uit, maar door juist de kleine verschillen 
te analyseren (die we niet met het menselijk oog zien), kun je voorspellen welke 
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inhoud de M&M heeft (pinda, chocolade of crispy). Een beknopte versie van mijn 
onderzoek in een chocoladelaagje. Gelukkig maak je deze vergelijkingen niet in je 
eigen onderzoeken tijdens je (master)studie, waar je goed gebruik wist te maken 
van mijn kennis en ervaring om een artikel op te zoeken, te vertalen, statistiek te 
bekijken of je verslagen/posters door te lezen. 

Toppers! Ofwel al mijn lieve vriend(inn)en. Ook jullie zijn bijna van mijn 
promotieverhalen af =P. De afgelopen jaren hebben jullie vaak interesse getoond in 
mijn promotieonderzoek, waarin ik zowel de hoogte als dieptepunten met jullie kon 
delen. Werk is leuk, maar momenten met waardevolle vriendschappen natuurlijk 
altijd leuker! Bedankt daarom voor de welkome afleiding en ontzettend fijne 
momenten die we met elkaar gedeeld hebben. Ik waardeer jullie allemaal enorm. 
Lieve Anneke, Carmita, Elyse, Joyce en  Nienke, onze jarenlange vriendschap door 
dik en dun is gewoon goud! Wat hebben wij al vele mooie momenten beleefd, 
en de maat(beker) is nog lang niet vol! Samen gezellig lunchen, weekenden weg, 
escape rooms of spelletjes spelen, feesten en natuurlijk vele drankjes op het 
terras. Bedankt lieve meiden voor de vele keren waarop de tranen in onze ogen 
stonden van de slappe lach, al het gebabbel en ontelbare danspasjes! Lieve Anne, 
Anouk, Denise, Kim en Suzanne, mijn relax (maar ook thee, eet & feest) maatjes. 
Soms waren we iets te relaxt, vooral tijdens een weekend op de Finca la Pajera 
(Maella, Spanje), een plek in de middle of nowhere zonder enige prikkel van de 
buitenwereld. Op deze primitieve plek vonden we rust, waren we één met de natuur 
en mochten we ook nog legaal brand stichten. Het besef van tijd verdween volledig 
tijdens dit weekend. Toen aan het einde van het weekend weer strikte tijden om 
de hoek kwamen kijken, vluchtten we dan ook in de Mac Donalds in plaats van het 
vliegtuig. Mijn duurste hamburger ooit. Meiden, bedankt voor alle PhD detox (k)
uren!  Lieve  Feike en  Vincent, met het stellen van kritische vragen lieten jullie mij 
nadenken over de problemen waar ik tegenaan liep. Deze sparsessies en goede 
adviezen waren een inspiratiebron voor nieuwe inzichten. Dat dit gepaard ging met 
heerlijke maaltijden of versgebakken brood of baksels was zeker geen straf, keer 
op keer was het weer een genot om nieuwe recepten te mogen proeven. Feike, 
jij bent mij al voorgegaan en hebt het goede voorbeeld al gegeven. Nu ik nog! 
Bedankt voor jullie deur die altijd open staat. Lieve Ronald, wat hebben wij samen 
veel gedeeld en meegemaakt. De hoogtepunten werden natuurlijk groots samen 
gevierd, maar tijdens dieptepunten bood jij mij de schouder aan die ik nodig had. Je 
luisterend oor, je vertrouwen in mijn kunnen, de vele carpoolritten waar creatieve 
ideeën ontstonden, het vergroten van mijn sociale netwerk en niet te vergeten 
de bak aan plezier die we beleefd hebben zorgden allemaal voor waardevolle 
momenten die dienden als goede afleiding voor mijn PhD. Bedankt voor het zijn 
van een goede vriend die altijd voor een ander klaarstaat. Lieve Renee, het leek 
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altijd wel of de tijd twee keer zo snel ging als wij aan het ouwehoeren waren. 
De vele adviezen, maar ook gesprekken over koetjes en kalfjes waren een heuse 
afleiding en bron van inspiratie. Ik heb waardering voor hoe je altijd alles weet te 
combineren, onvermoeibaar ga jij altijd door. Ik ben dan ook met alle liefde een 
animatieteam als jullie kinderen hierom vragen, door mij in hun te verplaatsen 
wordt mijn creatieve brein immers geprikkeld voor nieuwe ideeën en invalshoeken. 
Lieve Laurien en Petra, dat wandelingen niet saai zijn bewezen we elke keer maar 
weer. Aangezien we vaak aan het eind van het rondje nog niet uitgepraat waren, 
werd het wandelrondje verlengd. Maar zelfs dat mocht niet altijd baten, waardoor 
we uiteindelijk in de kroeg belandden. Gelukkig waren kroegen ons niet vreemd, 
vooral tijdens de carnavalsperiode wisten we met enige regelmaat hier een koude 
versnapering te nuttigen waarbij de voeten toch wel zeker een beetje van de vloer 
gingen. Zeg ik nou een beetje? Volledig van de vloer bedoel ik natuurlijk! Vol 
energie, dwars door de hele zaal, van muur 1 naar muur 3 en weer terug, ZOIGE! 
Bedankt voor deze hilarische momenten van afleiding.

Lieve vrienden van de muziek,  altijd een vrolijke noot met jullie! Geen muziek? 
Geen probleem, onbewust begint iemand te trommelen op attributen resulterend 
in een heel klankspel. Muziek is, mede dankzij de gezelligheid, een belangrijk 
onderdeel in mijn leven. Van samen musiceren (en knipogen) tot de borrels 
achteraf. En van (straat)optredens tot onwijs veel plezier met elkaar beleven 
buiten de muziekvereniging. Zo waren de sportieve weekenden weg een ultieme 
compensatie voor de wekelijkse zit achter mijn computer. Lieve Bram en Marco, 
elke mijlpaal was een reden om een champagnefles te poppen! De kurken vlogen 
dan ook vaak op donderdagavond tijdens onze eetclub avond door de lucht. 
Hoewel ik soms optimistisch was en dacht nog iets af te kunnen maken tijdens deze 
avonden, bleek dit keer op keer een desillusie (voor mijn werk). De gezelligheid 
overheerste en overwon het productieve. Ook naast deze eetdates waren jullie een 
fijn gezelschap. Als klankbord kon ik altijd mijn verhaal bij jullie kwijt en leerden 
jullie mij dat ik moest leren vertrouwen in mijn kunnen, een PhD is namelijk “in 
veel landen de hoogste academische graad” (aldus Wikipedia, goede bron ook!). Ik 
kijk uit naar nog mooie en hilarische momenten samen. Dus kom maar op met die 
wintersport, weekendjes weg, hardlopensessies, feestjes en andere activiteiten! 
Tycho (en de Brains), de ware pubquiz master, winnen was immers toch écht 
belangrijker dan meedoen. Met jouw bewonderingswaardig hoge niveau van 
algemene kennis, werd ook mijn kennis buiten het promotieonderwerp uitgebreid. 
Altijd handig en leerzaam! Maar ook de gezelligheid die gepaard ging met deze 
avonden zorgden voor hilarische momenten. Tim, designen kan ik wel aan jou 
overlaten. Met je scherpe blik zag je direct als de uitlijning niet klopte. Hoewel ik 
het design al uitgewerkt had, maakte jij het af door het aanbrengen van details. 
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Speciaal voor jou heb ik dan ook extra gele tinten in de cover verwerkt, je bent er 
immers dol op! Stiekem wil ik ook een klein bedankje brengen naar Hans Zimmer 
en John Williams. Twee fantastische (film)muziek componisten die keer op keer 
ervoor zorgden dat ik mij compleet kon afsluiten van de buitenwereld en zo mij 
volledig kon concentreren op mijn werk. Ik heb met jullie muziek misschien wel 
de meeste tijd van mijn promotieonderzoek doorgebracht. Bedankt voor de vele 
afspeellijsten.

Ik ben ongelofelijk trots en dankbaar voor mijn lieve familie die altijd achter 
mij staan, ongeacht de keuze die ik maak. Onze hechte familieband is enorm 
waardevol, ik kan mij geen betere familie wensen. Lieve Papa en Mama, al van 
jongs af aan hebben jullie altijd voor een stabiele en veilige basis gezorgd die mij 
mogelijkheden bood om mezelf te ontwikkelen. Ondanks dat het onderwerp van 
mijn promotie abracadabra was voor jullie, boden jullie mij altijd een luisterend 
oor en goede adviezen aan, met als boodschap dat ik dicht bij mezelf moest blijven. 
Het vertrouwen dat jullie in mij hebben zorgt ervoor dat niks onmogelijk is. Pap, 
het afgelopen jaar zijn we vaak samen op pad geweest, lekker samen klussen of 
tuinieren ( jazeker, een dochter met groene vingers!). Deze praktische klussen 
gaven mij de tijd om mijn gedachten te verzetten en vrij te komen van mijn PhD. 
Mam, samen maakten we er een gezellig dagje uit van toen ik in het AvL HR-zaken 
moest regelen, want zo wordt zo’n regelding immers toch veel leuker! Wanneer 
mijn perfectionisme weer eens iets te veel van mij vroeg, wist je mij altijd gerust 
te stellen met je opmerking “meer dan je best kun je niet doen”. Iets wat ik vast 
nog vaker van je zal horen. Langzaamaan begin ik zelf ook (eindelijk) in te zien dat 
ik soms te veel hooi op mijn vork neem en moet accepteren dat genoeg genoeg is. 
Maar daarvoor zal ik zeker nog een aantal keer je hulp nodig hebben! Lieve Tessa, 
mijn oudste zusje. Dat jij kansen aangrijpt waar ze liggen heb je de afgelopen twee 
jaren wel bewezen. Door te verhuizen naar Sint Maarten liet je alles achter en ging 
je een nieuwe uitdaging aan. Het bracht vele mooie dingen met zich mee, waaronder 
Kess, mijn nichtje Emmay  en een leuk vakantieadres. Laat deze gewaagde stap een 
inspiratiebron voor anderen zijn die altijd in hun vertrouwde omgeving (Hoogland) 
blijven. Lieve Maud, mijn jongste zusje en ja, een 2e alinea. Een echte spring in ’t 
veld. Met je energie voor 10 houd jij altijd alle ballen in de lucht; studie, werk, 
vrienden, sporten, je vriendje Niels en ook nog klussen in jullie nieuwe huis. Ik 
bewonder hoe jij dit allemaal combineert, waarbij je alles voor de volle 100% blijft 
doen. Lieve familie, ik houd ontzettend veel van jullie. Dikke (tweezijdige) knuffel!

Lieve lieve Martijn, mijn trotse hobbyboer! Wat vind ik het fijn om samen met jou 
te zijn. Hoewel ik in de laatste periode van mijn proefschrift niet altijd te genieten 
was (sorry hiervoor!), steunde jij mij onvoorwaardelijk. Zelfs wanneer je voor werk 
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in het buitenland was, wist je een moment te vinden om mij te bellen en te vragen 
hoe het met mij ging. Als echt maatje was je altijd betrokken bij mijn onderzoek en 
durfde je eerlijk je mening te delen (ook al moest ik eerst de vele variaties ‘huhm’ 
ontcijferen). Daarnaast kon ik mijn onderzoek ook gemakkelijk loslaten tijdens 
onze vele fietstochten, kampeervakanties of als we een lammetje moesten vangen. 
Ik kijk enorm uit om nog veel meer mooie avonturen met jou samen te beleven.

Hoe zorgvuldig zo’n dankwoord ook is geschreven, het is altijd mogelijk dat er 
onbedoeld iemand is vergeten. Om deze reden wil ik iedereen die onder deze 
noemer valt, ontzettend bedanken voor zijn/haar inzet.
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