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Het verschijnen van dit proefschrift biedt een wel-
kome gelegenheid, openlijk mijn dank te betuigen aan
allen die door lering of voorbeeld, door bewust streven
of ongewild door persoonlijke invloed, medewerkten
‘aan mijn opvoeding en meer in het bijzonder aan mijn
wetenschappelijke vorming, of die daar althans een

poging toe deden. Liever wil ik geen namen noemen,
want door enkelen te vermelden zou ik velen, naar wie
mijn gevoelens van dank uitgaan, te kort moeten doen.
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A class of completely monotonic Functions
by
C. G. G. van Herk.
Apeldoorn

Non-negative integers will be denoted by 4, 4, . . ., n; real num-
bers by t, u, v, @, ¥, o, 7, a,, ¢,; positive numbers that are ar-
bitrarily small by ¢, £; complex values by z = @ + @y, w = u +} 40,
§ = o +ir. It will be understood that
(0.01) w® = exp (slog|w| -+ is arg w),
where the value of arg w has to be fixed. I shall write 2 = Re g,
Y = Imz, ete. The letter  will stand for a bounded non-decreasing

ction of a non-negative argument; y will be normalized by
the conditions

(0:02)  %(0) =0, x(t) = §x(t +0) + x(t—0)}

~and the same will apply to z,, 7, Z.- If x(2 + &) > z(t — ¢) for
a fixed value of ¢ and for every & > 0,  will be called a point of
ement of z. An open interval @ < @ < b will be denoted by
), a closed interval a = @ < b by (a, b>. An empty sum will
put equal to zero, an empty product equal to unity. If different
tegrals of the same integrand oceur in the same formula, the
grand may be written only once.

function f(z) is said to be completely monotonic in (a, b)
i it has derivatives of all orders there, and if

08)  (—)HM@) =0 (a<a<b k=01,2...);

said to be completely monotonie in <a, b if it is continuous

by and completely monotonie in (a, b).

For the sake of concision no attempt has been made to make

paper correet in the sense of intuistionistic mathematics, I

| speak e.g. of the class {#} of all functions F, while one
whether this is qutte emeat. Yuﬂ I have tried to

e
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be given. On the contrary, the theorem of Porter-Vitali has been
used throughout. In the proofs where it has been applied (of
Theorems 1, 31, 33), it would have been easy to deduce the
uniform convergence of a certain sequence {f,(z)} within a
fixed domain of the z-plane by giving explicit upper bounds
of | [4(2) — fusy ()], but T left this out, as it seemed to be of
little interest. Properly speaking, we could do without this
theorem.

I am indebted to Prof. van der Corput for Lemma 2, which
greatly simplified my own proof of Lemma 3. My thanks are also
due to Prof. van der Waerden for his critical remarks. With the
exception of Theorems 8—16 and 42—47, this paper was finished
in 1943, when it has been discussed with Prof. van der Corput;
by various circumstances publication has been delayed till now.

§ 1. Introduction.

The main problem of this paper belongs to the field of inter-
polation theory or rather to that of integral equations of the first
kind. This problem is a special case of the next one:

Problem (a). Let {2,)7 and {a,}i be two given sequences. Let
(1.01) @, > 0; 2,y >@, (R =1,2,...); 2, >0 as n—> 003

0 == 1525 s )

Let K(xt) be a given kernel, and let K =0 for # = 0,

== 1t Put

(1.02) @) = [ K@, t)dz(0)

1]
To determine the functions y that satisfy the set of equations

(1.08) P gy o h =1, B )

Several cases of problem (a) have been treated in literature.
1 mention the following, including the one that is dealt with here,
but I am not sure the list is complete.

Problem (b). If @, = n, K(, t) = (& — 1)*, we have a problem
that is equivalent to the moment problem of Stieltjes [1].

Problem (¢). If @, = n, K(a, t) = 1*, the problem is equivalent
to the moment problem of Hausdorff [1], [2].

Problem (d). 1t we only add to (1,01) the condition

s "1 o). :
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and if K(w, t) = 1%, we get a generalization of (c) that has been
treated by Hausdorff [1] and Feller [1].

Problem (¢). If the sequence {z,}7 is subjected to no other
conditions than (1.01), and if K(z, ) = (1 —f 4 f2)™", we get
the problem that will occupy us here. In this particular case

1 g
(1.05) F(z) = J%

0
will be written instead of (1.02). The integral (1.05) is convergent
for all values of z, with the possible exception of the values
2 < 0. For the present, the function F will be made one-valued
by excluding the values & = 0, so that F(z) can always be represen-
ted by (1.05). The class of all functions F will be denoted by {F}.

The next problem, which has been solved by R. Nevanlinna [1],
is closely related to the type (a), though somewhat different
from it.

Problem (f). Let {z,}¥ and {w,}7 be two given sequences of
complex numbers. Let |z,| <1, |w,| <1 (n=12,...). To
determine the functions w(z) holomorphic in the interior of the
unit circle, which satisfy the conditions

)| =1 (| 2] < 1; w(z,) = w, =12, )

Obviously the theory of the cases (b)... (e) will have many
traits in common. A necessary and sufficient condition for the
existence of at least one solution consists, in each of these cases,

of a set of inequalities
(1.06) Ao s s By e o) 2= O (n=1,2 ..0)

~ In the cases (¢) and (d) there ave, in addition to (1.01), n 1
inequalities (1.06) that correspond to a single value n. In the
enses (b) and (e) there is just one such inequality required for
every value of n. The explicit conditions (1.06) that correspond
to problem (e) will be given later; these will be shown to be

necessnry (§ 8) as well as sufficient (§ 5),

Stleltjos distinguished a determined moment problem, which has
 unlquo lolul:ion. from an indeterminate one with an inl’inity of
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cases (b) and (e) may be cither determined or indeterminate.
Perhaps this second resemblance between (b) and (¢) points to

a deeper analogy; at any rate, the discussions of §§ 4—6 are

much like corresponding ones of Stieltjes. A necessary and
sufficient condition for the uniqueness of a solution of (e) will
be given in § 6, where a further classification of the determined
cases of problem (e) will be made too.

Different conneetions between the problems (b), . . ., (f) can be
stated:

(o) If all numbers 2, tend to a given value z = 0, (d) tends
to the moment problem of Sticltjes as a limit case.

(B) If all numbers 2, tend to a given value 5, = exp (p2), (£)
tends to a problem equivalent to Hamburger’s generalization of
the moment problem of Stieltjes. As Nevanlinna [1] has shown,
the solutions of the moment problem of Hamburger[1], [2] can
be obtained from the theory of (f).

(7) If all numbers @, tend to a given value z > 0, (e) tends
to the moment problem of Hausdorff as a limit case.

Since various problems are contained in Nevanlinna's problem
(f), the question must be raised whether (e) is also in some way
contained in it. The question is too vague to be denied with
certainty, but as yet I see no way to solve (e) by means of Nevan-
linna’s formulae. On the other hand, if we add to problem (e) the
condition | F(z)| =1 for [z —1| < 1, we get a problem that is
certainly contained in (f). For, let f(w) be holomorphic and
| f(ww) | = 1 within the cirele |w| < 1; let f also be real when
w is real. Then, by the transformation

4w 1— f{w)
e Dy QO T a5 O
TR (x4+1) =X w)].-i-wf(w)
there is a one-to-one correspondence between the functions f

and 27 (Wall [1]).
Now, the condition | z(z) | = 1 in problem (f) has been replaced

by Lokki [1] by the less restrictive one

1 1 07
-;J' J' | w'(a) [*r dr dp = I < oo,
(/RS

o —
o=

and it may well be that problem (¢) can be subsumed under
Lokki's, or even that the two problems are equivalent, "This is o
that wtill has to ha_.d__midld_..-mmm-% '

nowt probuble
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in the expressions (3.27)...(3.30) by more general functions f
as defined by (1.02), results might be obtained that are analogous
to the basic Theorem 17, but I am sorry I had as yet no oppor-
tunity of investigating this question. Of course all these problems
are very closely related, but it still remains doubtful whether the
methods of Nevanlinna and Stieltjes are equally powerful, or
which of these is the most powerful.

In connection with his moment problem, Stieltjes examined
integrals of the type

® dy
(1.07) f(z) = j z’fi

0
where %(0) < . By the transformation

(1.08) w=t11, F(u) = J' Idxt(t)

i

we get an integral of the type (1.05). Hence the functions (1.07)
belong to the class {F}, and they are characterized by

J‘ldx(t)

5

< o

(1.09) t

0

As it has been shown by Feller [1], the Newton series represents
the solution of problem (d). The same holds in certain cases of
(e), and Theorem 48 states a result that is much like Feller's.
There is also a remarkable similarity between the determinants,
defined in (8.44) ... (8.51), and those studied by Barkley Rosser
[1], and one might be inclined to look for more general connee-
tions here.

A solution of problem (a) will be called degenerate, if y only
increases for a finite number of values ¢, and the problem (a)
tsell will be called so if it has a degenerate solution. Perhaps the
wtudy of degenerate problems is not quite uninteresting. In the
onse of a degenerate moment problem of Stieltjes, only a finite
number of the usual expressions A (ay, . . . a,) in (1.06) is positive.
On the contrary, the solution of a degenerate moment problem
! wisdorf ! satisfies a set of inequalitics (1.06) with all left hand
ers positive, except for the very special ease when g only
ou for the value £« 1, A degenerate solution of problem

ni srem 10), Th
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Without loss of generality we can add to (e) the conditions

' For, if we put
' N x a,
' (111) B =, Bt e T e
(1. 5 i
the sequences {,]7, {@.)¢ will satisfy (1.01) and (1.10). Now
3 if F(z) is a solution of (e), and if we put
tz 2 PV R10)
= "—1___: x(”} = a].lJ. S e K|
R 1—t + te,
0

2 =a = L.

_I I (1.12) U

A the funetion
E = v dy(u)
Tt o [l
| Flo) = a'Flem) = [ 1= :
- 1]
i will satisfy the conditions 7(@,) =d, (n=1,2,...). For this
o reason the restrictions (1.10) will always be made, unless the
_,' . contrary is expressed. By (0.01) (1.05) and (1.10) we then have
q (1.13) z(1) = 1.
b Before solving problem (e), some generalities concerning the
‘ functions F will be discussed in the next section.

§ 2. Elementary Properties of the Functions F.

* Any function F(z) is bounded in a half plane 2 = & > 0. It
is easy to prove that F is bounded in a much bigger part of the

a-plane.

e ~~ \
TP
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where » = @ + iy = r exp (gi), 0<s<-g—, o >0. Let
0 =t =1, Then

psin g
1—t4+iz|l=2—
| + |_2(g+sins)

for any 2z in G.

Proor. The lemma is true when ¢ = 0; let us first take
0 <t < 4. By (2.01) we have cos ¢ = —cos ¢; hence, if 1 >0,
we have

| 4+ re?|2 = 22 4 2ir cos ¢ 72 = A2—24rcos & + 12 = | A—re#1]3,
and

|2+ 2| 2| A—re ™| = | Ae®—7| =| i(cose—ising)—r| = Lsine,
or, putting 4 =1 —1,

1 |1—t+ts| = thsine = §sine,

1

'.en'ce the lemma is true. Next, take 7 <t <1. If 2 =0 we
have
e
[1—t+tz]| =¢t|y| Fie
i".. (2.02); if 2 > 0 we have
i |
'-—-t_'—|- | = {(1 —1+ ) + 22} >t Vad + y? =1t|3] >-—:~

(2.08); hence the lemma is true again.
goreEM 1. The functions F(z) are uniformly bounded in a

01:1 domain G(e, p). We have

: 2(p - sin &)
| F(z)l S —'gEiT'.

By Lemma 1 and by (1.18) we have, for any 2 in

Pig. 1.

A ¥
Dy 4 ps
"

1. Let the closed region G(g, @) in the z-plane be

g AL sl i

g i d,@{t) . _2(p 4 sine) p*, . i 2(p + sin ) J
Ajll —t+ & e sine E[d-z-ﬁ#}: a—“Tl
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v 1 v
CHEtE s
Flz)=23 : i (n=1,2
= S e
T

the sequence {F,(z)}? converges uniformly, by the Porter-Vitali
theorem, in any domain G(s, p). For, this sequence converges to
F(z) for any z different from the values z = 0, and the expressions
F (%) belong to the class {F}, hence they are uniformly bounded
in G(e, o).

Since F¥(z) - F™(z) as n — oo we also have

L gkt
(2.04) F(z) = (— )l f . dy(t) (k=0,1, 2 ...)
0

—1 ..i_ tz)k"l'l
for every z different from the values 2z < 0.

TaeoreEM 8. Any function IF(2) is completely monotonic for
a > 0.

Proor. By (2.04) we have (—)* F®)(2) > 0 for any %k and
x > 0.

The converse of this theorem does not hold. The inequality

1 1
ey
yields F(2z) = F(z) for any function F. Now, when f(z) = 272,
we have f(22) = 1f(z). Hence f does not belong to {F}, though
it is completely monotonic for o > 0.
Trurorem 4. In order that a function f(z) be contained in the
class {F}, it is necessary and sufficient that an expansion

(2.05) 1) = T (— e,z —1)%,
where
(2.06) ey = J’lz*‘dx(t) (=0,1,9,...)

be valid within the circle |z —1| < 1.

Proow,  First let f belong to {I'}. Since f(z) will be holomorphic
within the cirele |z —1| < 1, it can be expanded in a Taylor
series (2.05), where

)k/tm“)

Oy = (~—

A
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Now (2.06) will hold, by (2.04); hence the conditions are
necessary. Next, let (2.05) and (2.06) hold. Substituting we have

1 1 d
&) = E (—Pe—1* [ #a0 = [ %4)7
4 0

hence the conditions are sufficient.

TaroreM 5. The function y(f) in (1.05) is uniquely determined
by F(z2).

Proor. According to (2.05) the sequence {c,}7 is uniquely
determined by F(z). Now, by (2.06), {c,}§ is a sequence of
moments of Hausdorff, and the corrcspondmg moment problem is
determined.

Hence there is a one-to-one correspondence between the func-
tions F and y. Two functions F and y, connected by (1.05), will
henceforth be called corresponding.

TaeoreM 6. Im F(z) < 0 for y > 0, unless I'(z) =1

Proor. Since

. idy(t)
WS f|1~t+tzlz

the theorem holds whenever the integral in the right hand member
differs from zero. Now this integral can only be equal fo zero if
#(t) is a constant for £ > 0, or, by (1.13), if x(¢) =1 for £ = 0,
ie. if F(z)=1.

On the other hand, a function may be contained in the class [
of Nevanlinna [1], i.e. be holomorphic and satisfy Im f(z) = 0
in the upper half plane, without belonging to {/}. An example iy
furnished by f(z) = 2t —z. Hence {F} is a subclass in the
strict sense of I, and this also points to a difference between the
problems (e) and (f).

By Theorem 6, a function I? that is not identically unii'y enn
take no real values in both half planes y > 0 and y < 0, Sinee
F(z) is positive if z > 0, we have as a speecial case:

Turorem 7. .a‘-\ny function F(z) is different from zero outside
the halfl line z = 0,

Another proof of this theorem is as follows, It will be shown
in § 7 that to any function /7 there in o function F* of {7} with
the property F(e)f*(s ') = 1. Now I™%(a 1) s holomorphie for
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all values of z outside the half line -1 = 0, i.e. outside the half
line 2 < 0. Henece F can have no zeros for these values of z.

I now proceed to the inversion of (1.05). Any algorithm that
solves the moment problem of Hausdorff will yield an inversion
formula, which is clear by the proof of Theorem 5. However,
x(t) can only be expressed in this way by means of the values
yal i’f} (k =0,1,...). Of course the formulae may be transformed
afterwards into results of a more general type. The formulae
given here are of a different kind. Theorems 8 and 9 are results
of Stieltjes [1] and Hilbert 2), extended to the class {F}. Though
Theorem 9 may be considered as a limit case of Theorem 8, an
independent proof of Theorem 9 will be given.

TrrorEM 8. If 0 <r < oo, # = (14 7)), then

l—udt ldt 8
f —x—t(—)+%fif-)=——HhmIm F(z)d

T g0
—rtig

for any function F; the limit in the right hand member exists
for any 7.

Proor. Using the proof of Theorem 2, it can immediately be
shown that the inversion of the order of integrations:

f‘mdz j () f e

—r+tig —r+is
is legitimate. Hence we may write

2.07 “F dx ; d % o
(207) J(e) =—Tm [ F(z) =eftx(z)j N

—r+ie 0 g
Putting
T 1—t4t Lt gy
(2.08) “-"—te—‘—s r(t, &) —*f * T

17
i

we have, by (2.07),
(2.00) J(e) = f el o)

0
(1'1/“!9' J-

b i ) (U_I
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Let the integrals in the right hand member of (2.09) be denoted
by Ji .- J. It <9, we ha.v'e by (2.08),

®  du te
“‘“‘f Sl

e tﬂ‘ 1—4f L
13
and hence X0
Ll—‘v’e)i?' s t) ) .
0
; ) 7
We also have ¢(t, &) <—, hence
- x(t) :
(2.11) —-j =1,
(1—ve)d

By (2.08) we have

2@ +0)— 7(8—0) (52 du
3 4 _[ + u?

0
'z(‘!?'—i-o)—x(f’“—ﬂ){ﬂ = du }_gx(ﬂ?+0)—x(ﬂ—0)+0(e}.
) E—J-ﬂl—l—uz 0 D

5
and this may be written, by (0.01),

s s ﬂ*H:ld t)
(212) J,= L 039 ) L o) = nJ' %L + O(e):

% :

If ¢ > 9, we have g(t, &) < =, hence

Ve d
(218) Jo<n f e g,
1—0
Jo<af 29 — o).

1—/s
If in addition we have (1 4 1/&)79 <t s 1— /¢ then
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o du i du _ mdu_ te (1 ++/2)de
e e R T e
-1 Wi
i& e
1 hence
p(t, €) = 7 + O(+/¢)
1 and
—
: (2.15) Pees -,a;J.l dx_(t) + O(v/e).
(1+ve)d
Finally we have
(2.16) J; = {x(1)— (1 —0) }f o
1— &“1 3
'|
A = 2 (1)1 L 8 [+ o).
. 1—-0

Now by (2.09)...
; -0 1—Ve L
I(e) =—--n“ﬂ+ d—xgﬂﬂ d—x@+%f m}ﬂa(&

(2.16) we obtain

g t
Y 0 (1+Ve)d 1—0

which proves the theorem.
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extended along the path AB + CD (fig. 2). If this path is replaced
by CEB, a slightly simpler result can be obtained, viz.

(2.17) J‘l de(t) = _:"rg}—)—-l—ﬂ I F(re?")e?"d@
7 —n+e

The proof can best be given in a direct way.

TaeEorEM 9. Suppose (0.02) to hold for 0 < ¢ < 1 only, and
define %(1 +0) = x(1). Now if 0 = r < 0, and if we put
& = (1 +r) % then

& + 0) — gy (¢ —0)
i e sl N RO
¢ &> 10
The limit in the right hand member exists for any r.

Proor. TFirst take r > 0. Putting

ie

1—#(1 +r) + dte

 (2.18) i, 5) =
e have, by (1.05),
(219) ie F(—7 + i) = j "ol e)dx(t)

(1= V) (1—31/3)%9 (1+eVe)d (14+Ve)d 1
R

(1= V&) (L—eVe)® (1+eve)d  (1+Va)d
Let the integrals in the right hand member of (2.19) be denoted

by Ji.. T I
. |1—t(1+?‘)|:=>\/£,

we have, by (2.18),

1+r) lé[l—t(l+r)|2 e

[?’(‘- |H1_ ‘ e = Ve

x/s& _
) I.J‘-xléiv’af "yt = 0(v/e),

‘ 0
1

AR j

(1) ww

dy(t) = O(/e).
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hence

|pte) 2= (1 +7)2 4 &4
—g /el
VARG YR i (),

(2.21) S e “t_ll’fjf] .
[Tl =V +7R4 & dy(t) = o(1).
(148 )t
Finally, if
| 1 —21 +7) | = e/,

and we have

1| jretr) 1 S11—1r,(1~%—sr)|Jrlt(lJrr) 1 O(V)

y(t, )

14| 8 1+7|— e 147
and since y(i, &) = O(1) as e — 0 we now obtain
plt,e) =1+ 1+ O(v/e),
hence

(1+eve)d

eV e)d
Jo= [ e rorvapan=an [T o +otve)

(1-ev e} (1-eVe)d

or

F(# + 0) —y(9—0)

(2:22) = & +o(1).

Now, by (2.19)...(2.22) we have

26 +0) —x(8—0)
9

@EF(-——-?‘ + 4 ) + o(1),

which proves the theorem if » > 0. If 7 = 0 the proof is similar.

Using (2.17), we ean now discuss some elementary properties
of the functions F on the half line 3 < 0. If, in the folowing
theorems, F(z) is investigated within a domain D of the z-plane
that also contains a set of values z = 0, it will be understood
that appropnate intervals of the half line 2 = 0 have been ex-
cuded from D in order to make I one-valued.
 Tugorem 10, Let 0 S < rny & w, & = (14 7)),

g o= (1)

8 1. cale thet 7 )
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Proor. First let F be holomorphic in (—7», — 7). Take
7, <71 <7y and put § = (1 + )~ By (2.17) we have

[N
i 21
& | 2] =r

(2.28)

where the integral in the right hand member is taken in the
positive sense. This integral must be independent of 7, hence
#(t) is constant if #, < ¢ < . The converse is an immediate
consequence of the definition of the Stieltjes integral.

TaeoreM 11. Let 7, >0, 9, = (1L 4 r;)~'. In order that
F(z) be holomorphic within the circle | z| < ry it is necessary
and sufficient that x(¢) be constant in (&, 1L).

Prooy. First let I be lLolomorphic when |z| < r. Take
0 <r<r and put # = (1 4+ r)-L. According to the former
proof, (2.23) holds; hence

2

[ L P

. L

&
which proves the econdition to be necessary. The converse is trivial.

TueoreM 12. Let 7 > 0, 4 = (1 4 r)~L. In order that F(z)

be holomorphic when | z| > 7, it is necessary and sufficient that
x(t) be constant in (0, @).
- Proor. According to Theorem 10 the condition is necessary.
Next, if y(t) is constant in (0, &), we can write, by (1.05),

dy(¢)

F(z) = x(+ 0) + [1 m

#-0

~ Since the integral in the right hand member is holomorphic

for | x| > r, the condition is sufficient.
Tueorey 18, Let 0 <7< o0, Put &= (1 +7)" and
(1 4 0) = g(1). As in Theorem 9, (0.02) is supposed to be

valid only for 0 < ¢ < 1. In order that the value z = —r be a

'; ole of I, it is necessary and sufficient that 2 = ¢ be an isolated
point of inercment of .

Proor., First suppose » = 0, When 2 = —7 i8 a pole, the
dtion F il holomorphie in the intervals (<7 — ¢, —7) and
i !Lf kS is au!l’ieuntly lmn.ll. Aanovdlng tﬂ

e no pointy
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A Clam of o

(2.24) F(z) = § 3. Existence of a Solutlon: necessary Conditions,

RO 4 O)=pp(h=0) % dylt) o
1+ (r—1)D f 1—-—1!—|-ﬂz+f : :
Let us first discuss the determinants

oy D)

=|1,E¢,---,£?‘"1

LA

Since both integrals in the right hand member are holomorphic
in the point & = — r, the remaining term must have a pole there.
Henee y increases when ¢ = ¥, so the condition is necessary. The
converse is trivial.

For r = 0 the proof is similar.

Toeorem 14. Any pole of I'(z) is of the first order with a
positive residue.

Proor. Let z = — r be a pole of I; by Theorem 2 we have
7 = 0. If we put & = (1 - )7, the value ¢ = # will be an isolated
point of increment of x(t), by Theorem 13, Hence (2.24) holds,
which proves that ¥ = —1r is a pole of the first order with a
residue {y(? + 0) — z(% — 0)}9-%, which is positive.

Tueorem 15. In order that F(z) be meromorphic it is necessary
and sufficient that the set of points of increment of y be denum-

1 £ -l
TL—thE 1 —t g 1 —t, &,

o2) D o)

U, 2 80

Ll
(w1 10 8m)

& £ P
L—t+5E 1 —t+-08" """ 1 —1, + it &,

- (8.08) D (51' Y eEzmﬂl)

Fauil

(w0, Bm)

1 & &
g 1 _tl == t’l‘si 1 —12—|— tsz, i 1_‘m+1 -'I‘tm-i-],&:i

LT, g B

L]
(4=l i Bm i 1)

brable and have a single cluster point ¢ = 0. The formula
#, = (1 +r,)"% r,=—z, determines a one-to-one corres- (8.04) D*(El' : -Eam+1)
pondence between the poles z, of I' and the points of increment L
i 2 m
19'“ ol X p— ll é: ‘Em E{ Es 5‘
Proor. If F is meromorphic, F has an infinity of poles R BT T R e A

2, (n=1,2,...)on the half line < 0, and the sequence {z,};
has the value # = co as a single cluster point. According to
Theorem 13, a jump of x(¢) for the value t = &, = (1 4 »,)!
corresponds to the pole 2, = — r,, and the value ¢ = 0 is a single
cluster point of the sequence {#,};. According to Theorem 10,
% increases for no other values of 1. Henee the condition is neces-
sary. The converse is trivial.

Tursorem 16. Any function F that is meromorphic can be
represented by the series

The following formulae hold:

(8.05) D (f: i Eam)

o
1 i

I-dml’ﬂ T e Lt oU |~ ame
2 ( ) 1 —tkﬁ_l"l"t*,;,lfg 1 _'tm“{"tmsi ’lt-—l---lmi y

1P ISR

B.Oﬂ) D*(El e g!m)

tl .. »tm
8-
‘P'l é:ﬂ

1 —‘m ’HHI’Ei' S bt &

53 200, + 0)— (8, —0)
w1 (r—1)d,
where the summation has to be extended over all poles #, = —r,
of F, and where #, = (1 4+ r,)™% #(1 4 0) = »(1).

Proor. The theorem is an immediate consequence of Theorem
16, and of the notion of Sticltjes integral.

d-a*m(k) l 1 o E?-l-k-l'

(2.25) £(g) = 2(+0) +

3

'
(f=1.,. 0m)

B é’ CRC E "
(107 D( 1 2m H)
g U e

i &

B T P

Sty 1 (1) l I TSN -

' 1ty gy
08) D (31 e 'hm-m)

.lllt!“

“"'l-lniﬂ"'“‘.;
The series (2.25) converges absolutely and uniformly in any -|
i domain D of the z-plane, ift we exclude terms that have a pole

in 0, Kyidently the representation (2.25) also holds when /' is xe T T .
rational, Hence any rational solution of problem (e) is degoncrate by "t.t,._-' '- — -
- e E— R e T Rk S iR LA AT T S e oty
- L Ll — ~ b a1y S REEIY
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where 0 =< i < m, except in (8.07), where 0 =k =m -+ 1, and
where the expressions d,(k), d:(_k) are defined by

E
IT iﬂe(l_—tﬁ)l_l B om

(8.09) dymlk) = (—)" 250 o At "
I H(l ) =1 A=1+1 I}
A=1i=1
S
IT iﬂm_l(l'—t].)z T e
(.8.10) d;cm(k)zt__)mm—n xj‘:;m I 1l Zt tls
. I H(l——tj“— 33_‘5'}) i=1A=t+1 I3
A=1i=1
i
II t’“(l—t;_}l_l ko owmEl g — 1
(B s () = (— "5 ot 5
I IT(1—1¢ + 5 e
A=l =1 '
(812) dim alk) = ()" 18
1“ L l—g L gy A
=1 =1

The proof will be given by induction; (3.05) is true when & = 0;
let (8.05) hold for an arbitrary value of k. By putting factors
outside the determinants and by repeated substraction of colurns

we get
D_(ﬁi s esm) 5 dy ()
o I T
Ra II (01—t +teade)
i=1

’ l—tppa + tosabs E(0—tea +laabids - o ETH g+ B,

If’.(l — b1 * th-i-léi)! siniay f;wk—l(l — b+ byiabi)s E?’

gkt =2+ t:mfe’ L gL 11—t + bl
R B A i Pl —tpttafi let.0m)

b Fz;m(k')t:'-ld(l—"rc’-»-l) i 5;, o E:a—l’ 5?“: LS Er‘n-t-k" gf,
IT1 by -+t
o L '

ur. ] —'I. {

A Class of completely monotonic Functions. 19
B ) )
. (= )" (1 — 200 )" L& gt b —tbeys ghta
2 3 Wfye woeyihy E] ¢ i 1 !
{1-'[1 (I—tp + 21 &) = e+t
bin—thia i
fon L—d + bl [(emto.am)
_ ()P (A —tn)* 2 —tyy
= A 1T Sy s
L —tys +fty) 7
R+1 =
|19§{7---55?+k: = LB [N __EL
1— g +4q0és 1—t, + tnéle=1..2m
k. k1 m—1
= d,(k+ 1) ‘ PRI & o, & ’
T —ipo + tiafy 1—d s =i o im)

hence (8.05) is true for any %. The formulae (3.06). .. (3.08)

can be proved in a similar way. Giving & its maximum value
m or m - 1 we get

(3.13) D(iil.. e §2m)

oA
1! ‘E': LELEE E%m_l i= ] b

=~ etetm I piia—g)t T (h—t,)
ILIT (10— +pe) su<sm © *
A=1i=1

:f. y e é:ﬁ LA fzm)
(8.14) D (tl e

Sm— m
- | 1;‘5;;;'- S gm0 Tt —4) 10
IT I (1—4 +48) i sas
bovodipgg

Aml t=1
: Lf.. b B lamtame T ey gt T (i)
iﬁ: ;H,-, (1 =ty + t8) tsp<hsmpy

(s =

51 e sl e-ﬂm-l-l

(8.15) D(
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- - k,) be a permutation of the set (1,2,...¢), and

. ; __n (Js1 ik J be equal to 1 or — 1, whenever the permutatlon
- ly) s even or odd. The product

II (t;—¢

is transformed by the permutation (fy, . . . fp) = (f, . . - tx,) into

I' I (5 — — )
1's.u<25'9('k‘1 e Pa i 35}&9359( i
A Hence we have, by (3.13)... (3.16),

S : EJ. § o

:?) D(t:.-l ti,.,)

- TR
() sgn (k. k) AEEIEE II gtt(1—g, )1 11
I a0 e
=1 451
E] E .
4343) D*Gh el
., 1=i I;Isz (&5 "’
wugn (ky . . k) s I Aa—p t T y—t%
5 .' ‘ 1‘[ H (l_t“—f"txf;)i =1 1zp<Ad=sm &
A | A=1 i=1
( ﬂ') B(ﬁ 5§m+1)
5; ! t’fm-ﬂ
\ I .(Ei.'_'gs‘.) ma-1

) 2 Htng
N I‘I I‘I (1"—“2“{*:36 )t‘. 1 ] 1=p<A=m+1

A=1 i=1

(€ €
. ﬁﬁ(ﬁ; L'i ::+!.)
.' I (5—¢&)

S, PR
AII IT (1—t3+5,) 4= LEpS AR
] gy

..ﬁﬂl' -k

tmut L ,'., 1} ;f:" [

(3 —1t,)

(tr—1,),

(t—1,).

A Class of completely monotonie Funetions.

Bsegn(lky ...

43
ky) 11 rg;M (1—2, Y
()] A=1

== l tﬁ—i«H}' (1—)1, 13—2""’1 (ot s

. g
= |18 Yt . . \(A:x..g)ﬂ[llir(l—fz.)”
[
S PR SIS 1Ay
¢
— { = )%{QQ”I]H t (1 — tl)z" H (tz_ —= i#)
Rs '(_(-CJ =0

21

51 —5) g g

Hence, putting (g, £. 7) equal to (m, 1, 0), (m, 0, 1), (m+1,0,0),

(m, 1, 1) successively, we obtain

Tl iy L0

Al fwl

Lsp<Asm

_'(ti; tar. ‘,u)-"l.

Y sgn (k... m; ﬂt’“"j“ B 0 Ht I (H—t)
tm) A=1 ls,u-c.ﬁém
&1 sen (k; . . - A:.m) 1] z;;';ﬂ (1—ty, Y= (—) i) ;}'_11(1 —1) 15P1;[35m{t“_£”}'
A w1
Y sgn (b ...k m+1)]’[t’”""*‘(1—~t ) ﬂ( —yheoern T =t
(1) 1su<A=mil
1

¥ son (hooi k) Ht’;‘;‘lﬂ(1~—ch}?~=(_)5&m(m—1' Mea—t) I (G—f)
tm) A=1 A=1 1sp<Asm

and, by (8.17)...(8.20), we finally bave the identities

(8.21) ED( '52'“)

(mj tk . tf’w
I &8
=(yame e e I I e
H H (1-‘"f;_+tzf) A=1 1ng<i‘.£m
A=1i=1
(8.22) ED*( "t‘“") i
; by oo by
IT Ot ==& "
=L (__)%mllm-—l] lS;«:iSZm n (l—t;_) I'I




€ Gl Gl van Herk,

r
t‘m) el
hlj L) tkm
T ’rﬁ (mt1) 1= ’ (&—¢&)
e [ Yamim i<i 11l — ;s K
( ) = '.Em;‘,-;.;%-} £ Hﬁa(l—a) IT (t—t,)%.
li T Gt

A=1 =1
From these identities it is easy to obtain a set of ne
conditions for the existence of a solution of problem (e;essm
foTEEOHw 17. Let N = N(yx) denote the number of values
‘ Nr which the corresponding function y of F increases: hencé:
< o0 if and only if I(3) is rational. If N < co, the set {r,}¥
P of values ¢ — 7;, where y(t) increases, is supposed to be decrea;u;gl

i ¢ (3.25 1 2 T e 2 'I'a > Pose Ty 2 0.
! e 01 =1,2,...), §g¢$,ifz'#j; put
(B 20) F(§) = s

(B27) A o) = (—)

GP.'.E,Q a%( -_Ez s i) = (AR | L L B gk a B k|

(B8) A8, bmia)= (50|, o £y W

.-".;@_.-SQLA* (El oy m+1)=(_) Yamim+1) [ L4 oo E?‘ o€ “:52‘ of i
: ; ] { e e bR £

. If no ambiguity is to be feared, we shall write

@BL) A, =4(&...8) 47 =44 . .8,

We then have the equalities

i
- “iég [(;...1,, 2m1)t

A
! J@tﬂ'ﬂ} Ay = 15“:‘52‘“ ' J. j y szlgul;[? sm(tl_t“}
I. 0 i} ﬁ ‘djf(ti)"'dx(tm)e
: =1 5131(1 ft i)
5 i W i i .
m! . m  Zm e i dX(z]_) . ‘dx{'tm)’
.. L (1—t+ 48
p it I-_[ : =1 fs
L N R P P
i o i m! el m Zm—1 (31) PR 4 6 )
o o IL I (A—t44E)

A=1 =1

B 1 - T T, bty )
” et T _m_i?.a.( _t;');ipglsm(tj' )

and in particular
(8.36) Ay =N =An1= Ay =0

Yama(m+1) PO,
Ils gﬁ} ey §§ 3 Oﬁs', ‘5‘555, Sies qlf:'”_l ‘({_1 Yl

A Class of complatel

it N(x) <m,

it N(x) =m Tn =0
i Ny =m u=1
if N(y) =m+1, Tir =0 7&'-;

(8.87) Agi=Dmsr =9
(3.38) A%, =A3nn =0
(8.39) A§m+1 =0

Moreover, if

(3.40) £, < £;a (1’ =1, 2 s 1
we have the inequalities ‘
(8.41) A, S50, A5=0 (n=1,2,..)

i

in all cases different from (8.86).. . (8.39).
Proor. By (1.05), (8. 26), (3.27) and (3.31) we have

14
i x(ts,)
1
0
1ﬂtk+tt, o Ty, e, £i l=tonlim), &

where kyy - o km ean he any numbers. Hence

i e
A g E 1y E;'---s’ss 3 =TT e
=5 ml  (m ' ; 11—t i b d
bodylts,) gt J‘l' dy () 1
J‘ 1—tk +t7¢ .‘, g = 1__tﬁ7_m+tkm55 (i=1 0 2m) .
0 ]
|

where the summation is extended over all permutations (-« )
of the numbers (1 . ..m). The right hand member can be written

as an m-fold Stieltjes integral:

’/m(m+1l
Agm= j- rdx(tl) L) 2 ‘1 Hie T
1—#, + Inél 1-t,,,+ TR T R LR
01) and (8.21) we obtain (8.32). The proof of (3

o

T

hence, by (8.
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ure), if the corresponding integrands vanish for all combinations
(booil,,) (Ty,+ 4« 7y, ), where Tiy++» Ty, are any values, dif-
ferent from one another or not, for which x(t) increases. This is
always true, whether F is rational or not. If N(x) < m, every
combination of m values v must contain at least two of them that
fre equal, hence, owing to the factor IT(t; — 1, )% these integrands
vanish for all combinations (i -+ - 74, ), which yields (3.86).
If N(x) = m, there are always possible combinations where the
values ¢ are different from one another. In this case, it is only
owing to a factor [Tty or TT(1 — t3) that an integrand can vanish
for such a combination (7i, +« .7, ), and this requires that one
value = be equal to zero or unity. Evidently this leads to the eases
(8.87) ... (8.89). In all other cases (3.40) implies (8.41).

I now return to the conditions (1.01) and F(z,) =a, (n =1,
% .. .) of problem (e), In the rest of this section the notations

1 L ———————

A Ol of completely monotanfe Funetions, i

ik

000, 40000y 1 @y vt

! AMememoaann . 4 i i in ”'
(3'5]) (-):ﬂl'“(‘ﬂ)q{ ) ].{l!(- -o-u‘-l‘l;")a'f”'(‘ ﬂ"m"‘°" ""H { (fmdyo Bl

1 M 18, If F(@) is a non-degenerate solution of problem
THroRy 4 @) 18 i

(e), we have, for any n > 0,

(8.52) (—)*D.(@/F) > 0, (—)*Di(@|F) >0,

< < Puy =10 VARSI

i = = il
where either z < @, k = 0, or &, s

T e, 1= M. I 1 LT ticular we I ave h)[ ‘Il\\, n
U.l 1 e,
[6) (rn /-._ ) k 1 I p

1, 00y (@)} > 08
(3 53) (_")“{ Jn-—T(‘Tn}'_a’an-ﬁ- 1({?3"}}>0, (_")MJ_J{jﬁ‘ﬁ-—l('ru}_urrd rr(’.}ﬂ l(’u)

If F(a) is a rational solution of problem (¢), the expressions

i % ’ ing cases excepted:
D, and D¥ satisfy (3.52), the following | . e
—0 for n =2N and D¥ = 0 for n = 2 i

for n =2N — 1 and Dy =0 for n & ‘Jh:i

9.

(«) Ty >0, 7y <<1; then D,
(B) Ty =0, 1, << 1; then D, =0

= * — (0 for n = 2N
(384) (y) Ty >0, 7, =1; then D, =0 forn = 2N and Dj

of Theorem 17 will be used throughout. Let F(z) be a solution
of (e), and let us put

(B.42) D, (0| F)=4(z, ay. .. Zn)y Dy(a| F)=A%(2, 2 . .
By (8.27). .. (8.80) we can write
(8:48) D\(@o|F)=— P (@) +Qu(2) F(2), D3a|F)=P?(2)— a0*(@) F(a),

where the expressions P
nominls:

) (B=1,2,, ...

w o+ OF denote the following poly-

I P e S i D T S s 10

1 m—1 . ;
1, a-s'! .oy w! ,a,-, av-.?,!-_._‘_’ aix;n

0.0; ... 0 g e g
(B.45) Q. (2) = (—)’/z"ltmﬂl : 0 1. = ‘
19 -T;" v s ouy a’v:n—], &,:’ aimi, AR a?w;n

(a.‘iv‘” Py (@)= (—) Yam (m+-1) 41

(E=1...2m)

[(E=1...2m)
Yom ™, (LA SNl e
(B.40) P (2) = (— ) Yamem4a) s 0 i »
1, gy v o sy :I':-“, A, Qs o o oy a,w:“
-1
(B47) Ofa(@) = (—)hoimine | % 00en0 1, @ L, om {
]._1 Ly aany m:n, a.x,, a; .'I,‘ta’ " ey aji‘r;“ lti=1...2m) s
. ]lm) _-_’wm’ 0, 0, .-.,0,
(“"8) ‘“Iﬂlll('?") = ('_‘)%M{m_” -
e, BT Ay Oy Ty, -y ™

-

(i=1...2m)

3
[£=1...2m+1)

1

(8.49) Qm-i-ﬂw)':’('—)5‘3"‘““—1:4--1’ O 5 S S
(S B TTTEN )

L2y yal,a,am,. .. aa

L@y oia™, 0, O 0

* 2 L] L L | » 1] Foe oy 1]

(1.60) le-l(“‘) o () i (1) Ao 4 ’ A 4
y @iy vn 0y w‘ [} aw‘!’.,. ﬂ‘“!‘, Rl H‘iv”‘

(=1, llﬂl_l!l_}.

o

= ’ * ) =N
= = =N ——land DF=0forn =4
(8) Ty=0, 7y —1; then D,=0forn= il

A rational solution F(z) is unique; hence a degencrate problem
ration: z
is always determined. - L
(EJP;‘;(‘::;FW };[f F(x) is not rational we have N(y) = o0, henc l:u)
illeql.llaﬁfS( (8.41) can be applied to the expressions A, @1y u.[ ( :“
: : : : ¢ lues @, @y, . . - ¥, AC
(2, @y, « - o L,) @S soon as the va 2 .
il (w:adaq’as to form an Increasing sequence, W.lll(,h .UL,“ In1
rzariagﬁj a permutation of the rows of the determinants l,f m';:
. : G 'l ") O " A -
eA*ecIZ thi}; way (8.562), and (3.58) as a special case, can be
o i ; 7 is rational,
tdir;}(ic inequalities (8.41) can also be a.ppllj:d when [ .:8 ra;lt,1{:1i:“1
and hence (8.52) generally holds, except lf' we h:iw;m.u ¢
one of the cases (3.36) ... (8.39), which yields 1(.31:)*(1.‘ e
Now, by (1.08), the expressions D,(z,| F}l‘;m( Dal | Aape
i : 3 i f the solution I7. Thus it Tfollows |
e e ot have both a rational
2 A 3.54) that problem (e¢) cannot 8 i :
(5'?3(3 :23 r(atiorgal solution. Morcover, two rational Es(_lllI:.luim })l
b ; i = F n=1, e
Zlnd F. would satisfy the equations Iy (@,) = Fola,) (n
2 - -
hence they would be identical.

* De te
§ 4. Discussion of the Polynomials P, . . ., Q. Degenera
- Solutions.

A further analysis of problem (e) requires a more detailed dis-

"ined L (801 ).
cussion of the polynomials Py, .. . Q" defined by (8.44) . . (8.51)
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We begin by supposing that the values @, are different from one
another and different from zero. and that the values @, are quite
arbitrary. By elementary properties of determinants we have
(4.01) Pi(a) = ay, Qy(z) =1, P{(2) = aymy, Qf(z) =1,
(4.02) P, (zy) = a,Q . (2), ink) = aw0n(m) (k=1,2,..., n),
and
(4.08) { P(0) = (=) - « - @, {Prsy(2a) — 3,00 (a )},
0a(0) = (=) P2 () — a,2,0%4(@,)} ¢ (n>1).

Turorem 19. The following recurrence formulae hold for
i =

(108)  Qs(O)Pofe) = QuOPars(e) + L P (),
: *(0)
(4.05)  Q,4(0)Q.(z) = 0,(0)0, (z) ¢ o aQp_i(@)
P 1(0) i~ 2 :( )
(1.06) m Pr(@) = Q.(0)2P,_4(x) + R o Py (),
P4(0) s P (0)
(4.07) w_1—-T_ (@) = 0,(0)0, () + T O% i(n).

Hence the expressions P, (), ..

. Q%(») are uniquely deter-
mined by (4.01), (4.03),...

(4.07) if and only if
(4.08) PE(0) #£0, 04(0) £0 (k=1,2,..

Proor. Let the rows and the columns of an n-rowed deter-
minant 4 be successively denoted by the numbers 1,2, ...n.
Suppose n > 1, and let, for p < =,

LS m < py <

wi—1)

Sy anlEn<ny<. <y, S,

Let 4, ") be the subdeterminant obtained from A by leaving
out the rows gy, ...pu, and the columns wy, ..., and let
Wt= 1,0 We then hve) the welliigiomn identity

:_(_dnﬂ.g) AAE;::J — A.E‘:ﬂ A L"lﬂ e AB‘:) AL’:I"
Iy =1, ptg = 2m 1, vy = m 1, vy = 2m + 1, and
'Ai- 1!”! LI mﬂl-ﬂ,’ or el CRCNCY ] 0‘ '.r.

P L‘—

by .,"'..,‘,' il i ,I.' L ,"."'."_.i -

.,-_A\1,..

=|1,..

...|1,

A Class of completely monotonic Funetions. o

-1 m—1
o @Gy Qpilyy o ooy Qg 1(;-:1...2»1'—1}

L, et bt @

L
x;ﬁ s @l ey Ayl l[€=1...2'm)
4 1
7 el P8 wom @0 0 cen
A TR Sl P i o
: e M |(i Al 1; xe: ¥ ey w'gu ] as'mb W Ay aim:"(i—l...

hence, by (3.44)...(3.51),
QBm—l(O)PZm("E) S QZm(O}PQm—l(w) =4

Next, if we put gy =1, gy = 2m + 2, n=m--+1, 1r=mts
and

P3.(0
w__.%_.(_)_p;‘“m_l(m)_

1 Zam

T 0 0 s By I
L, By« ooy Bl By o oy GlT \opm, midd

we obtain, by (4.09),
Q2n(0) Py (@) =

-

A:

2m+1( ) P*

Qs w1 (0) Py () + S (),

wﬁm*—l
hence (4.04) is right. In the same way (zL.05) can be obtained,
both for even and odd values of n, by putting ;i = 1, gy = 2m |- 1,
vy =m-+1, v, =2m + 1 and

0,005 55 o B WL CBE S S

=1

A n
L, @y o0 o Ty T Oy Billly o o oy B

{(:-1...21’»]'
resp. by putting oy = 1, pto =2 + 2,7 =m + 1, 9y =M -+ 2and

050y L e 3 S i

4= =
1,2 0007 Gy Gy o v o Q45

(i=1...2m+l)

The equalities (4.06) and (4.07) too can be obtained as par-
ticular cases of (4.09). However, they can also be dedueed from
the recurrence formulae for P, and Q, by means of a transfor-
mation, which will also be useful afterwards. Let ¢ be a function
of a,...a, (which may also depend of ay,...w,), and put

Tﬂ(p(a" CRCINT ] an)=a1 LR GHQQ((III, LRLEE S | G;IJ.
g+0) { UW"(“],! o ly) = (@@ 00 Ay
~ We then have

u TnU an -w,,. oo 000
ULl = a0 T Vo=

e m—=1
Lz . ﬂ?,? 1s @iy == s Ay ‘(i-l...ﬁm—l]
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Now we have, as an immediate consequence of (3.44)
and both for even and odd values of #: )

. (4.18)

. (8.51),

VTP ,(2) = Q3(2), U,T,0,(z) = PHa),
and hence, by (4.11),

(4']4) UﬂTﬂP:(‘r) == ‘EI =123 mﬂgﬂ(a’?)’ UHTRQ:‘(EB) =w1 bl ‘TMPn(m)'

an?}(riegf;ecting the transformation U, T, on the equalities (4.04)
i (4 5), we thus obtain the recurrence formulae for P* d' *
The condition (4.08) is evident e

TurorEM 20. The following ec

§06) tor 0 — 1) jualities hold for n > 1 (and

L]

(419) P@0u(e) — 2P(@)0%(e) = PHOI0.) TT (1 —2)

k=1 Ty

(410) 0us(2)Py(0)— P, )0, 0) = OO} (2]

& ol Wi

n k=l Ty,
(417) Q,s(2)Ph{@)—aP, 4 (2)0%(@)=0,1(0)P*(0) TL (1 —E)
k=1 @ !

(4.18) Pl \(2)Qn(2)—2QE (2) P (x)=P*_,(0)0,(0) T (1—3)

n—1
E=1 @y,

: * *
(10) P2 1@03()—01(0)PYa) ..., 10, 40)0u )] (1— 2
- ' k=1 &y,
ROOF,  First (4.15) will be proved by induction. When n — 1

(4.15) holds; let (4.15) hold i
thien Have, by (4.01) .). 'I(J‘Lo;\ihen n 18 replaced by n_—l. We

!":_I(OJQ,‘_I(O){1):(-1')0“(&?) LI R‘P“(u’?_}Q:(&i)}
P”(O)Q“(OJ(] % = ;}:) {P*-l(m)QN~1(m) __mPu—l(w)Q:-—l(m)}
= P00 @P0)0,0) 1T (1 —2),
k=1

&y

henoo, if ¥, (0
' =1 (0)Q._1(0) =£ 0, (4.15) holds for ti
Thuw (4.15) holds for any u(tl e e

e given value n.

i . at satisfies (4.08). Since (4,1

I%’;ﬂ“ﬁéngty bt,:rwv:e-.n polyn(m;iulﬁ. which is true for nl'l:i(lsl'a;:;
ue W @y @y o.a, that satisly (4,0 ual.
ey if (4,08) s not sutistied. A ﬂqmﬂlw

jor we have, by (8.44) ... (8.40), (418), o

‘-a._.__/
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Op1(0){Qna(®) P (@) — P s (@)Qn(@)}
2H0) e S
= m{Pnul(m}Qn—l(m)__ aP, (2)0a_1 (@)}
PLOPOT (; 2)
iF Q‘l’l"l(o) AT H I Z, !
hence (4.16) is true if @, 4(0) # 0, and consequently if Q,,_1(0)=0.
The equalities (4.17) . .. (4.19) can be obtained in the same way.
Treorem 21. Ifthercisaleastvaluen forwhich P¥(0)Q,(0)=0,
the expressions Py(0) and Q,(0) cannot both be zero.
Proor. The theorem is true when n = 15 S0 let » > 1. First
suppose PX(0) = 0. By (4.03) we then have

(41'20) Pﬂ-—l(‘r’ﬂ) = a’ﬂQﬂ‘-‘l(w’ﬂ)’
since the values a, are all supposed to be different from zero.

Now, according to our assumptions, P¥ _1(0)0,_4(0) # 0. Hence
we have, by (4.15),

Pf_i(mﬂ}Qﬁ_l(wn)——wﬂPﬂ—1{&?ﬂ)Q:—1(ﬂ7ﬂ) = Py_1(0)¢.(0) il (1 _'in')
k=1 &y

or, by (4.20),
Qn—l(wﬂ){'Pf—-I(mn) S a’nmﬂQf-l(mw)} i 0*

hence Q,(0) £ 0 by (4.08). If Q,(0) =0 we obtain PX(0) # 0
in the same way.

Turorem 22. If, in addition to the assumptions made on
the sequence {z,}; in the beginning of this section, the values
@y, ... &, ond @ are positive, and if

Ly k=1

(4.21) PE0) > 0, 0x(0) >0 (k = 2,8, <o o),
the following properties hold:

(a) The polynomials Pola), . OF(x) are positive for @ = 05
the values ay, ..., arc also positive.

(b) The degrees of these polynomials are determined, for
n — 2m resp. n = 2m + 1, by

({I..Z‘Z} [ | ‘_‘D"!'lls? = — 1 E] LQﬁ m] =1y [Z)gm] = I»Q;fll =l 1'

[Pilm-l-liz'ﬂ'l'! [Qﬂm-l-‘l.]_:'m" ['p:'mﬂ-d'_'g”l rQ':'m-H] == M
(0) 'The zeros of these polynomials are simple and negalive,
In what follows the zevos of P, O P* and QY will be denoled
M, __._I‘_n.nd 1) 1‘cu_|;:m:tivcly, and, il we take
he alolite values of the zeros will be supposed

L

70,
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(d) The zeros of P, as well as those of Q¥ are separated both
l')l):;‘| the zeros of P¥ and by those of @.: conversely, the zeros of
.II . ::'s ttrcll as those of Q, are separated by the zer’os of P d
ol @y, Compared to P, and QF, the polynomials P* and ﬂ1 iiﬂ
the zeros with the least absolute values: : e

(du')ﬂ) [f::;. i< afz,i =< 'xn, i—12 an, il ﬁn, i = mn, i—12
pﬂ,i == O{':a, i < ;6:,1'-—15 ﬁt,s’ < Jgn,i = ﬂt —1*

. I"ltt)()u‘. : By (4.01) the properties (a) and (b) hold when % — 1
By induction they hold for any », which is evident b (4.04 o,
(d..l(l'?), (4.21) and (4.02). o

H. n = 1 the statements (c) and (d) are meaningless. If n — 2
(f,:} 15 true by (a) and (b), and (d) is also true, zince thcre—i :
single zero of Py and of Q,, and no zero of P, or QF. Let us ’raskz
% = 2 and assume that (c) and (d) hold for n — 1. ]iv ]wpothéﬁs

A 1 4
there will be at least one zero or iy of B 1» and we have, ac
=1, n—12 3 E

P

cording to (4.23),
Sgn Pn—-1(°‘f—1, 2t S i

hience, by (4.04) and (4.06),

sgn P ey, ) = (—)*,

(h.24) Y
sgn PA(ok o) = (—

(¢=1,2,.. s [P:—{”'
5 It no= 2m, we hax.fe P, (0) >0, P§ (0) >0 by (a), hence
| “,,,l(a.') t:huilngcs sign in at least m — 2 points, and P7(2) in at
eusl m 1 points of the i ral (od ;
. ]” e mterval («5, ; ,_y, 0). fn —2m 4 1,
Aaln - n the same way that P, ., changes sign in at least
m ~ 1 points, and P¥ . i cast 4 i ;
s ipte, Pomi1 10 at least m points of (af, ... 0). Sinee
, and ! n A6 positive if @ > 0, the coefficient of the hichest
}‘mwur ol uIJ these polynomials must be positive. This yi_elds
or @ < 0 and | @ | sufficiently larg ’ - ’
: suffic v large, and for even resp. ;
i p. odd values
- (v 2 vy [ fr—
(_1'.25) {.’:gl] IJEm('*'J == ('—) 1’ sgn P;‘m(‘r):' (_)m,
sgn ! | I.(m)]: (__)'m, sgn Pé*m-l-ltm)g:p(_—')m'
J:Ium]mr'inu this result with (4.24) we obtain that P,, and
'I.""" change sign at least once in (—oo, A, anzdm that
Py changes sign at least once in (— oo, o«.;’fm ":}._Hence if wc;
denote the number of negative zeros of a ])ol.\,;;mmin.l [ by »(f)
we have, for even resp. for odd values of n, i

(" "oy -
W lan) & m—1, »(PE) & m, W Pymaa) & my v(Plia) & my

und, by (4,22), all weros of £, and Py will be simple and negnlive,
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Now the recurrence formulae (4.04)...(4.07) are invariant,
by (4.18) and (4.14), for the transformation U,T,. Moreover,
by (4.10), (4.18) and (4.14), we have for k = n:

T p*

U T,Pr(®) = Gryg o+ Oy - - 2,0 (2),

U—nTnQR.(x) = Opyg e Qulyiq - - a?,,P*{m},
and since the valucs @, and @, are all positive, the set of inequali-
ties (4.21) is also invariant for the transformation U T,. Hence
the zeros of the polynomials

%/, :
UnTﬂPn(m) = Qg (w)1 UnTﬂP:(‘r) = Wi wn@ﬂ(w)

are simple and negative, which completes the proof of (e) for
the value 7.

Next we prove that the zeros of P, and P* separate one another,
and that («f ;. 0) contains no zeros of P,. In the particular case
n = 8, P, as wel as I’} have a single zero, and, by (4.24), we have

sen Py(od ;) = 1, sgn P3(eg,) = —1,
hence our statement is true. If n > 8 there is at least one zero
of P, ,, and we have, in virtue of our hypothesis,
* i
sgn PR y(wa,4) = )
hence, by (4.04) and (4.06),
426)  sgn Polopad = (=), sg0 A0, ) = ()
(i=1,2 ..., [Paal)

If n = 2m, both P,,, and Pj,, will change sign at least m — 1
times in the interval (g, 1, m 1, 0); if 7 = 2m + 1, both Pj,.q
and P% ., will do so at least m — 1 times in (¢, 1o 0)- Com-

paring (4.26) for n = 2m and ¢ = m —1 with (4.25), we obtain
that P¥ changes sign at least once in (— o0, tem-1, m-1)s the
same holds for P,,.; and P ., with respect to the interyal

(— 0, %gp ma) Now, by (4.22), we can infer that both the

zeros of P, and of P are separated by those of PoLq hence

¥ == %k -
(4.27) By < By < g a1 Entlye S %y < %1, i1

Morcover, it follows from (4.24) and (4.25) that both the zeros
of P, and of PY are separated by those of P¥ ;, hence

. A {30 i o i
Bl bl < Byt < Ol t Xl S Ky S Fnel gmld
and by (4,27)
Rt < af (< <a
nl' el d PR e Rt o TH L Oy Al

whhhgmmt. Applylng the teanstormation U7,
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to the polynomials P, and P}, we get the result that the zeros

of 0, and QF also separate one another, and that (2, has the zero
with the smallest absolute value.

From (4.15) we get, by putting o = «

P:('%.s)@n(“n,s) = -0 ('& e 1: 2, Riimis g [Pn])s

and since we have just shown

sgn Prle,, ) = (—)
we also have

sgn Qe s) = (—)%

Since @, has at most one zero more than P_, the zeros of 2

and @, separate one another, and evidently (0, has the zero with
the least absolute value. Applying the transformation U, 7 . owe

get the corresponding property for the zeros of P¥ and OF, which
completes the proof of (d) for the value n.

I'rom now on it will again be supposed that (1.01) and (1.10)
hold, which implies, by (4.01),

(4.28) Py(2) = Qy(z) = Pi(z) = Qf(z) =
Let us put

i = Pﬂ(m) R* P$(T} o :
(4.20) R (i) = 0.@)" Rifa) = f’IQn @) (mi=T 2 e 0)s
hence, by (4.28),

(4.30) Ri(z) =1, RMzx)=—
and, by (4.02),
(4.1) Rym)=Rio) =6, (k=1,2...n),

in all cases where these expressions are not indeterminate.
Trasonem 28. The following statements are consequences of
(4,21):
() R, and R¥ are positive for = > 0.
(b) Putting @, = 0 we have

(1.82) (=) {Ry(@) — R,(w)} > 0
o =B <wy, (h=01...,0n—1), or 2, <@ Ik=mn,
while

(4:88) (—=)*{Ry_ (@)—R¥ (@)} >0, (—)*{R,(@) — R,(@)} > 0,
for @y < @ < Dy (6 =0, 1, s oy i 2), O0 B,y < @) Jo 9 g 1,
(©) R“ anl }: belong to the class {F),

() R, and RY are inerensing functions of a, for WO Wy
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Proor.

Ad (a). According to Theorem (22a), the polynomials
P, ...Q¥ are positive when @ > 0. Hence R, and R} are
positive, by (4.29).

Ad (b). We get (4.32) and (4.88) as immediate consequences
f (4.15), (4.16), (4.19) and (4.21).

Ad (¢). According to Theorem 22(c), the zeros §, ; and f# .
of 0, and Q% are simple and negative; according to Theorem
22(d), P, and @, have no zeros in common, nor have PF and
0F. Hence the poles of R, and R} are of the first order, and, except
for a pole of RY in the origin, they coincide with the zeros of (),
resp. of 0F. We thus obtain
: ,1:0 A%,
Rye) = B "5+ Gula) RIG) =20+ B 5

+ G (2),

where G, and G¥ are polynomials, and where the residues 4, |,
A¥ . must be positive, according to Theorem 22(d). If the degrees
of 'I-"u, .o OF are taken into account, it is clear that G,l and
G* are constants. Let them be denoted by w, and wj. This
yields

A Ay !1: ;
Tyt un, R: o e T, | E ”,",
L84) Ro8) = ('e}"-'_ u,s‘+ (=) b = {i}z_ﬁ: :
hence
(4.35) = lim R,(z), u¥ = hm RX(2).

=30

Aceording to (a), these limits are non-negative, so now it fol-
lows from (4.84) that R, and R¥ can be represented by a
Stieltjes integral of the form (1.05). Finally we have, by (4.31)
and (1.10),

Ry = RH1)y =1,

hence R, and R¥ belong to the class {F}.
Ad (d). By (4.08), (4.04) and (4.05) we have
2
(=)Quet(0° 2] = 5,08 (0,)P (@) — Qucalan} PR,

n

(“,nQﬂ‘i(u}a(;( ?man:—ltmrl)(..)u l(w T 'an I.(mn)()n l(‘-‘)?

hence, by (4d8)and. (4.18),
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aP ; I’—- T
—)"Q1(0) { Qu(m)—2"" “(”” p,,(m)""%n@")} | PRE A (2,) — Rys(2,)} > 0,
Gy Gy, and, by (41-38),
) — Quaa(@, ) Pr_y(z E )} | a, = 9,R, 1(2,)+OERY (z,), &, + 85 =1, 0 <9, < 1.
: ( ) —aQna(2,)05_1 (@)} Hence we have
e ).Qe(ﬁ) — Onal@)Po(@)} (— PRI (@) —a} > 0, (—V{Rya(a,) — a,} > 0,
Q%1 (@) Pol) — Pr_y(2)0,(2)} and, by (4.03),
i o * o _ : :
= PO 02 ) ¢ 0,000ate | T (1 —2), BRI
01" L e T which completes the proof.
(4.86) Q(z) aR?{m) = (—)"1P}_,(0)0,(z,) “I"_[l (1 _._'f_) ) | The necessary conditions for the existence of a solution of pro-
oa, k= Zy, blem (e), which have been obtained in the preceding section, can

In the same way we obtain now be expressed in a somewhat different way, and the explicit

: § BR () _ n—1 o solution of a degenerate problem can be given.
' W ) aQy(e . = (=2 ... 2,0,4(0)0n(z,) II (1 __;r-_)' ' TrroreEM 25. If problem (e) has a solution, all values
! k=1 ‘I )
~ which proves the statement. 1 3 PHo), 0.0  m=28:..)
o ~ Tumorny 24. The set of inequalities (4.21) is equivalent to ¥ are positive, except for the following cases, where the problem
- tﬁa system 2 is degenerate:
. *
Y (k=28,...,n) (B) Ty =0, 7 < 1; then P;¥(0) = 0 forn = 2N, Q,(0) = 0 for n = 2N + 1;
(ﬁ) N 1 n
. bli’nomr. First let (4. 21) hold. According to theorem 22(&) the - (y) 7y > 0, 5, = 1; then P;j(0) = 0 for n = 2N + 1, 0,(0) = 0 for n = 2N;
T ynomials P, ... QF are positive for k¥ =2,8,...n and (8) Ty =0, T, — 1; then P¥(0) = 0forn = 2N, Q,(0) = 0 for n = 2N — 1,
. 220. We th _ '
) i e By ), ) Here the values N, 7; and 7, have the same meaning as in Theo-
- sgn (R y(@p) — a,} = (—)*, sen {By_ (@) — @} = (—)*4, E 3 rem 17. |
A g enee a is included in the strict sense between R v1(z) and g Proor. By (3.43) and (4.08) we have, for any solution J* |
H| Uy (@), which yields (4.38). of problem (e), |
P 0011;’&1‘88 can be proved by induction. If (4.38) holds, we \ PEOY=(—)""2, . . . Wy Dy (@], F); Qn(0)=(—)"2DF (2, |F):
\ ' P k=2, Li%a) ’
_. # y for & = 3 Hence, by Theorem 18, the values PE(0) and Q,,(0) are positive, i
B ag = B, + 33_ ' except for the cases («)...(d). '
) ' 2 oy

an d, since @, > 1,

According to Theorem 16, any rational function of the class {F}

8y <1 < 6.9, can be represented by an expression of the form .

over we have, by (4.03) and (4.28), el
E“ta) = aty(l—da), Q4f0) = —1 + ayoy, (480) F(a)s

My
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tions I\’n(:-v) and Rj(z): if these belong to {F}, they depend, by
(4.22), of exactly n positive parameters, g
TarorEM 26. If a rational function r,(a) of the class {F}

satisfies the equalities
Tu(®2) = Qg =13 Bre o 8,
(4.38) holds for k=2,3,...n and we have identically
ra() = R,(a). :
Proor. First let n = 2m. Since r,(2) satisfies (1.03) for
=1,2,...,n we can apply the preceding theorem, where
N=tn<l, 5> 0.

Hence (4.21) holds, and, by Theorem 24, the inequalities
(4.38) hold also. Moreover, by (3.48) and Theorem 18, we have
‘D‘Zm(ml?'E m) T PEm(m) + Q2m(a‘1}?‘2m(m) =0,
which proves the identity of r,,, and R,,. If n = 2m + 1, we
have in the same way i i

N=m+1 15<]1, 15=0,
which yields (4.21) and (4.88), whereas

D2m+1(m|rﬁm—i—1) = — Ppl@) + Qamur(@)ramul@) =0,
which proves that r,,., and R,,,, are identical.
l.I-IITl(lIlEM 27. Let a rational function 7} (2) of the class {F}
salisfy the equalities \
#*
er () = ay ==, 2, i)

Then (4.88) holds for k = 2,8,...,n, and +}(2) = R¥=x).
Proor. It is similar to the preceding one. v
I'ngorem 28. If problem (e) has a non-degenerate solution,
all values @, and 9%, defined by
(‘1“'\1'0) a,= ﬁ-}aRu-—l(moa) _I_ ﬁ:R:—l(wﬂ)ﬂ 19’?1 + ﬂl:: =1 (ﬂ == 22 3! " 'J’
are positive. In the case of a degenerate problem we have
$>0,9F >0 (h=238,..,n—1), 9,0%=0,
for a definite value of n. According as ¢, = 0 or #* = 0, the
solution of the problem is R¥ (2) or R, (). ’ ,
]’I.f.DO[I‘“.* If the problem is solvable and non-degenerate, all
values PJ(0), Q, (0) are positive, by Theorem 25. Hence all
vn.l_umﬁ ([ t?::' are positive, by Theorem 24,
Il the problem is degenerate, we have, for a definite value of w,

BR0Y> 0, Q4(0) 30 (kw2 8,0y, me=1), PHOI0O(OLOE
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In particular we have, by Theorem 25, P¥o)=0if 7y <1,
and 0,(0) = 0 if 7y = 1. Hence the solution of the problem can
be represented by r,(#) in the first case and by 73 () in the second
one, where » has still to be determined. In both cases we have,
by Theorem 24,

Qe = 1 (B =28v-a =1,
henee, by Theorem 23,
Hn—l(wn) e R:—l(mn)'
Thus we can always write
a, = 9,R, q(z,) + BERE @ P+ 4 =1,

Now by (4.08) we have

(il- 4‘1) Ipf(o) o (—)"-ﬁfml KN ‘vnQn—l(mn){Rn—l(mn)_ R:—l(mn)}i

Qﬂ{o) = (——)”19-‘;.1!,,(2:_1(:1:,,){R,,_l(m,,) i R:—-l(‘vn)}’

hence #% = 0 or ©, = 0 according as P7(0) =0 or @,(0) = 0.
In other words: the degenerate problem (e) has either a solution
r,(z) when #¥ =0, or a solution r¥(®) when &, = 0. In both
cases we have » < n, by Theorems 26 and 27, and, by the same
theorems, the solution is equal to R,(x) resp. to R(z). On the
contrary, the cquations a, , = R (%,1) T€sp. Gpy = R¥(@peq)
are incompatible, by Theorem 23, witho <#, <1(k=2,8,..4,
n—1) and » <n—1. Hence »r =n—1, which proves the

theorem.
Turorem 29. In order that problem (e) be degencrate it is

necessary and sufficient that
0D <P <1 (k=2 8,.. n—1),
and either
Gy = Roa(@niy) (» =10,1,2, s 45)
or

a’u.+y T R:—J.(mﬂ-{-v) (‘.l-' = u’ 1" 2’ * i ')

for a definite number n > 1. In the first case the solution of the
problem is &, _(2), while #% = 0; in the second case it is Y, (a),
while &, = 0,

Puoor, By Theorem 28 the conditions are necessarys by
(4.81) and Theorems 23 and 24 they are suflfieiont,

Prom now on 1 shall leave degenerate problems out of con:
all soncetorth a solution of prablem (e) will slways be

AEHN Y WEY
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§ 5. Existence of a Solution: sufficient Conditions.

In Theorem 28 the conditions
(5.01) a,, = 9,R, (=)L '{9fR:__l{mﬂ), i, + i')‘: =1, 0 <, <1
n

i (n=238,...)
:ve lli)een shown to be necessary for the existence of a solution
of pro .)lem1(e?. VV(-:‘ shall now prove that these conditions are also
sufficient. So in this section it will always be supposed that (5.01)
holds; hence (4.41) is also true for any n > 1 )
Rim;(m;m 30. For any @ > 0 the sequences {RX(z)lr_, and
{R,(2)},-; are monotonic and bounded; hence the limits

(5.02) R(z) =lim R (), R*(z) = lim R¥(z)

exist (for the present only for @ > 0). Moreover we have
(5.03) R(z,) = R¥(#,) = a, (=l 8000 )

and

% 3 -
(5.04) { R:(‘rJ e ‘::}IF('B)-} R, (@) for my <t <wy,, n=2l,
R (z)<R*(2)SR(x)<R () for 2y, <@ <@y, 4 n=20+1,

A solution F(z) of problem (e) satisfies the inequalities

(5.05)  (—)H{R*@)— F(2)} 20, (—)*F(@) —R(z)} =0

l (e <e<opy, £=0,1,2,...),
ienee any solution is included (in the wide!

B o o 0) (in the wide sense) between R

P N 3
[' lr immu. According to (5.01) and Theorem 24 the conditions
of Theorem 23 hold for any n. We thus have

P* nl > o iy T NS 5
f\"’:‘y.) E: ;;:l'l{‘t) ) Roa(2) > R, (2) for wy <@ < myy, n =2,
(@) < R (2) < R, 4q(e) < R,(z)for Cyppr <& Wgpip =201,
(

henee the sequences )Y T
" i ,|q- . es {R i,)},n__1 and {& (@)}, are monotonic and
rr_m" i, which 11::;1~0vn:*.s (5.02). In particular, when a is different
@y, @y, .« ., there i3 always one sequence in i '
ys « creasing ;

other one decreasing. : g

Moreaver, (5.08) holds by (4.81), and (5.04) by (4.88). Finally
(6.05) holds by (8.43), (3.52) and (4.29). '
. IJII';EJH.I':M‘ 81. For all complex values of z, with the possible
exeeplion '.)I o set of values on the half line 2 = 0, the functions
R(x) and R*(z) are holomorphie, while

(6.00) R(a) w lim R, (x), K*(x) = lim B*%(s)

k3

T R ——
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holds uniformly in any domain G(z, @), such as it has been defined
in Lemma 1.

Proor. By Theorems 1 and 23, the functions R, and R}
are uniformly bounded in any domain G (e, o). Hence the theorem
is an immediate consequence of (5.02) and of the Porter-Vitali

theorem.

By (5.08) the functions R and R* have the required value a
when @ — a,, for every k = 1. Hence, if we show that R and R*
belong to {F}, we are sure that the conditions (5.01) are sufficient
for the existence of a solution of problem (e), since there will
be at least one solution indeed (R and R* may be identical).
This will be done by means of Theorem 33. The real difficulty
of this theorem, however, is how to prove (5.16). The formula
(5.16) can be obtained in a very clegant way by means of a
theorem of Helly [1], which has also served to overcome a similar
difficulty in the theory of continued fractions 3). Yet, the theorem
of Helly is based on Zermelo’s axiom of choice, and the well-
known objections can be raised against it. For this reason I shall
proceed in another, though more complicated way.

TuroreM 32. Let y be the corresponding function of F, and

: F
(5.07) ¢(s) = J. tdy (2)-
0
We then have

) ® A JJHW F(z)dz (0 < . Res>0)
: )= — | = «<1,0=Res>0),
? o R

a—io - X

if we put

[arg(I_Z)] < &

2

along the path of integration.
Proor. By the theory of residues we have

Ehie d
5.09 _— = 2mil 0st& 1)
L O B e e oo (0StS1)
a—foe
for, if we shift the path of integration to the left, we only pnss
the pole 3 = 1 —t-', Moreover we have, along the path of in-
tegration in (0.08),
e o |1 —¢+t8| & (0=t 5 1)

(1], ) ! :
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e - . ds
i)

o0
= m"le%“mf |1 —z[* gy
B

o
-1 . %mlT ——
<antewntel [ty g, g
B

- _1_ R dz
) O—ara—erw T O
uniformly for 0 <¢ = 1. By (5.07) we obtain
e e __
g .'am_,o I 1 —2p (1 —i + =) + O(ﬁ‘ﬁ)ldz(t)

R )
BW?IJ‘ (1 ——z)s'i-l f 1’—"t+ tz -}_ O(ﬁ*ﬂ‘)’
0

a—if
~ which yields (5.08).
- Lemma 2. 1
. =0, B, =20 (v=1,9 i 1)
n n
II §%=A§1, Eﬁy:Bgls max “w.ﬁ,,:é‘,
me! have 1 1=vsn
7 - i
" 21} %l = e
- Proor. The lemma is true when 7 = 1, so let n o)

_I"‘? “_Sinae-“a,, =L 41 (r=1,2,.. .n), we have 0=¢ =1,
en g = 0 or 8 b 1 _the lemma is trivial. Hence we can take
< 1, which implies that at least one product e, 8, is different

zero, and that 4 and B are positive.

I1'1'= exp [ (o1 ~!'-€r)'{10gll—— | +iarg (1—z
= 2| 4 iarg (1—z)
%—(ﬂ—}-l)log] 1—~z[ +rarg(1l—z)} g]]__,zl-—crﬂe%nﬂr‘&

where the value a, is independent of ¢. By (5.09) we thus have
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- ae

hence we may confine ourselves to the case ¢, = g, (v=1, 2,...n),
which implies 4 = B. |
(¢) Let the restrictions of (a) and (b) hold. Putting -

g,;. = A"‘la\y (--1-' = 1, 2, e 'n),
we have
k]
Y, =1, max a, = A %.
1 1=vsEn
Now

T < A
1:

would yield

= M=

G=4r D a SAve S Ve
15

so if the lemma were true for the sct (o, . .. a,), it would also
be true for the set (xy, . . . @,). Ilence we may confine ourselves
to the case 4 = 1.

(d) So now we can put

%, =0 (=12 ...0); 2dea=1; -max wl = e.
1 1=v=n
This yields
max o, = /¢,
_ 1sp=n
hence

n 7t
T ol < X o«, max «, = 1/5
1 1 1=v<a

which proves the lemma.
Tt can easily be shown that in the preceding lemma the equality
? %8y = Ve

can hold only if e=n"? (n=1,2,...). _
Levyma 8. Let g(u) be of limited variation in (0, 1). Let

G110 p0) = (1) = 0, max | [‘pl)du| ==,
osts1 'y

and let the total variation of ¢ be limited by
(8.12) J"[ dg(u) | < 2.

ey AL T
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Proor. Without loss of generality we may suppose that the
range {0, .1) can so be divided into a finite number of subintervals
Ty By e e that either ¢ = 0 or ¢ < 0 within each 4, while ¢
’f.ak;es a different sign in every pair of consecutivev intervals
Gys 3 For, as easily can be shown, any function @(x) of lifﬁited
va?natlon n €0, 1} is the limit of a sequence of functions @, (u)
with the property just mentioned. :
Let f, be the length of ¢, and put

|
‘ J.rp(u)d.u = a,f, (»=1,2,...m).

‘Hence %yfy = 2¢, by (5.11). Moreover we have X g, = 1. Ob-
viously e, is equal to the maximum value of | @| in 4, at the
e 2 }'
utmost, and, since .(;J(OJ = @(1) = 0, the expression 22, is equal
to the total variation of ¢ in (0, 1) at most, hence, by (5.12),

n

Wl

! b
pel

Now it follows from Lemma 2:

[ otw) | du = Z 0, < /2o,

1]

By (5.11) and (5.12) we have ¢ f’l Now put
V2 when 0< u < ﬁlﬂ/ﬁ : |
p(u) =1 — -e‘;‘z\/z_s when 7, V2e < u < (P Iﬁg)\/ﬁs
(-——}*’VE; when (ﬂl+a9-2+fs}'\-x£<u<: (-e91-+193+?z+1}V‘é_e:

(=0 [ —5] )

where 9y and @, are defined by

1 1 ]
191 -|— ?93 | —— [ —— =8 I']?_E 02 S
I BT e M

Itlld “h{ re QJ 18 (1"']“(‘{{.‘ m tl. p
1 lainmge 1 111
( ) € Iren L 0o1in tS ().I tl](’. beg O!It

o) = Holu + 0) + pu— o)},
Phis example shows that the coelficient V2 in (6.18) cannot
be replaced by a smaller one, For, the integral |

Jllwdu}!dvi'.

A Class of completely monotonie Funetions. 43

attains its maximum value
Vg -+ 2e(92 + 92— By — )

when ¢ is the function just mentioned, and here the expression
9% 4 92 — @ — 9, is bounded and negative (hence equality is
only possible in (5.18) when & = 0). 1 leave out the proof which
is rather long.

Of course Lemma 3 can be given in a less restricted form, where
the total variation of ¢ has an arbitrary positive value.

THrorEM 83. Let &, >O0fork=1,2,..., andleté - &> 3
for k — 0o, Let the functions F, all belong to the class {F}, and
let the limits

(5.14) lim F (&) = 4,
exist for k=1,2,... We then have
(5.15) lim I, (3) = F(z),

uniformly in any domain G(e, ) as defined in Lemma 1. The
limit F belongs to {7}, while the corresponding function g
satisfies
(5.16) lim J‘l | %(t) — xa(t) | dt = 0.

wer e

(The theorem also holds when &, and & are arbitrary complex
numbers, different from the values 2 = 0, but we need not use
this generalization, which requires less elementary estimations
in part (a) of the proof).

Proor.

(a) By Theorem 1, the functions F, are uniformly bounded
within a given domain G(e, ¢). Moreover, it p < & which can
always be supposed, the sequence {F ,(2)}n-y converges in an
infinite set of G. By the Porter-Vitali theorem (5.15) holds
uniformly in G.

(b) Putting

(317)  el(s) = [ taga )  n=12..,020)
0
we have, by (2.04),
g (=)
f "Ui } i
By the mllfurm'qqunrﬂencv ol the m.;ucruw_{l",,{:s)}f_l wo huve

I (1) (= 0,1, 8y s00)s

L E(1) e lim F(L),
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hence the limits

Y

(5.18) e(k) = lim ¢, (k) :f—r) F®(1) (k=0,1,2,...)
it k!

exist. According to the theory of the Hausdorff moment problem,

the sequences {c,(k)}r_, are completely monotonie, ie. the
inequalities

E"a e (T) cu(v + k) =0

hold for any N =0, £ =0 and n = 1. Hence, by (5.18), the

sequence {c(k)},_, is also completely monotonic, which implies
that the moment problem

ek) = ["tdyt)  (k=0,1,...)
0

has a uniquely determined non-decreasing solution 7. Since
¢,(0) =1 for any # =1, we have also ¢(0) =1 and »(1) = 1.
Now it follows from Theorem 4 and (5.18) that F(z) belongs
to the class {F}.

(¢) The expression (5.07) is bounded in the half plane 6 = 0,
since | e(s) | = e(o) < 1; it is also holomorphic in the half plane
o > 0. The same holds for the expressions c,(s). Morcover we can
prove

(5.19) lim e, (s) = ¢(s),

n—> 0o
uniformly in any rectangle 0 < ¢, < ¢ < oy | 7| = 7. For, let
0 < a < 1. Since the sequence {F,(z)} converges uniformly
on the line Re z = «, we can assign to any ¢ > 0 a N(e) such that

| Falz) — Flz)| < ¢
for m > N and z = « + 4y. Hence, by (5.08) and (5.10)
J‘M_iw Fn(z) s F(z) 1

1
|en(s)—e(s)| = -

(1 —z)ptt
fiit.'%'-”l"f _dL
= 2?‘ [ 1 el lﬂ"'"l
S | | _zlﬂ' 1 [ 1 [y Jﬂ'n-l-l
| 1= | <1 : |ten| =1

whioh proves (5,10),
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(d) Now (5.16) remains to be proved. According to Burkill [1],
the transformation of Mellin can be applied to the integral (5.07),
which yields :

1 1 O+ mc{s)t—s
— : 0<<t<1).
(5.20) 1—7(1) :J dpu)=5— "—ds (s3>0, )
#

g—fm

If we replace dy(u) in this formula by udy(u). and next replace
s by s —1, we obtain

1 1 ﬂ'+i—°¢‘c(3)tl~ 3 ]
: 1).
(5.21) .f o Sl (o>L0<i<])

2
3 O—tisn

J

t
we have, by applying (5.20) and (5.21),

Since
1 2l

y(u)du = 1 —tx(l) — j udy (u)

1 1 F+ie C(ﬁ')tl_s p
e VIR = — s,
fx(u)du —1—1 27{1:.[ -
+ a—im

hence, by (5.17),

1 -+ 0o {B(SJ oy CH(S)}tl—s
f{x(u) gl = —o— f i

—{00 -
“ (6>1,0<t=1)

Now the integrand in the right hand member is holomorphie
for ¢ >0, with the exception of the pole s = 1. Since ¢(s) — {-,,(‘t.:)
is bounded for ¢ = 0, this inteprand is O(z=2)as l T [ l—> €0, ulzn-
formly in a strip 4 < ¢ = 2. By a change of the path of integration
we thus get
1 1 1o+ {P(?) _ C,.‘{-ﬁ')fl"' i 1— Jn
I () — )} =  2m s(s e ) ¥ i |'
t Lo —im { 1|
The integral round about the point s = 1 ean be evaluated,
which yields
il o o YTl
1 1 Bt fe(s)—c,(s)} domt(1 oHogll
(5.22) j () — ()}t = — j v ol
' Y= i ((] o % )

Aceording to (o) we have, for any ¢ = 0 and T = 0,

L 00— 0, (1) | <8
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for t<a =<1, |1:|<1' and n > N(e, T). Hence
Vot-iT =L f1—8
J L) —cloim

s(s—1)

\ j o) — a0}t =

el

Ya+iT

+ |e(1)—e.(1) | < Olevt) + O(T1y/t) + &

for e—=+0, T— o0 and 0 <t =<1. Putting T =¢e! we thus
obtain

(5.28) UI () — ga(u)} du

= O(g)

for 0 <t =1 and n > N(e &'). Since the left hand member is
continuous for ¢ =0, (5.23) also holds for 0 =<{ =< 1, which
yields

max
0=t=1

= Ae¢

2

J. {() — z,.(u)}du

where A is a positive constant, and n > N (e, ¢1). Now

%(0) — 24(0) = 2(1) — x,(1) = 0O

while the total variation of y({) — x,(f) in <0, 1> is equal to 2
at the utmost. Hence, by Lemma 3,

[l 20) — 2a0) | &t = V25,
1}

80 (5.16) is true.

Using the theorem of Helly, we would have obtained

lim y,,(2) = x(¢)
=00
for every { where y is continuous. It can easily be shown that this
result is equivalent to (5.16), but I prefer the latter statement
from the standpoint of intuistionistic mathematics.
Turorem 84, The functions R and R*, defined by (5.02),
belong to the class {F}.
Proor. All functions R, and R¥ belong to {F}. Ience the
theorem is right, by (5.02) and Theorem 83,
Tugonsy 85, The conditions (5.01) are sufficient for the
exintence of a solution of problem (¢).
I'voor. By Theorem #4 the functions & and B* are solutions
of problem (e), hence there is at least one wolution,

pEm———
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§ 6. Questions of Uniqueness.

In this section it will always be supposed that problem (e) is

solvable, i.e. that (5.01) holds. If the solutions R and K% are

[ identical, the problem is determined, by (5.05); if not, the in-

determinacy of the problem is a tautology. Hence the question

whether a problem (e) is determined or not comes to the question
whether R(x) — R*(x) is identically zero.

I begin by replacing the polynomials P, . .QF of § 8 by
other ones, which satisfy recurrence formulae th’l.t are somewhat
simpler. Let

P} (0)P5(0)

L SO mn@n—l(u)gn(o)
for n > 1, henece, by (4.41),

(6.01.) Na —

(0)Quslwa) B
nQn—l( ) n-—l(’i ) 'ﬁn'

The first factor in the right hand member is positive, and
independent of 4,; hence 9, > 0.The converse also holds: to any
set {n,}% of positive values there is a corresponding set of values
9, that satisfy 0 < @, < 1. Putting

(6.02) N =

o) o) = 20 o ) Gy PR ) Rl
(6'0'5} {Tﬂ("v) oy @nﬁ! 'an((f) BN Qn(g) ( ) I)*( )1 ' 1 (';} . (()]I
we have, by (4.28),
(6.04) () = pi(@) = ¢ (@) = yi (@) = L.

Moreover, the recurrence formula

| (6.05) {‘?’n(w)=qvﬂ_1(m)+1?n<;f-'f_1(=v}, @ (@) =Py (@) 4 (@1n) 0 ey ()
: wn(m)-__y:ﬂ'—l(ar)+1?'1’2'1;1P:=—1('I‘)’ T;J:{w)‘;wr—»l(‘t}_'_ ("vﬂ?}u)l_lflﬂ .'J("‘!}I
can be obtained from (4.04) ... (4.07) for any n > > 1. By (4.15)
we have
w
(ﬁ.ﬂ(]) (m}Tprt(a‘}_‘TW:z(B)'f:a 'T) = I_[ (I = "')

g
while (4,28) yiclds
Bty ] rpll(""-:) Wy q-':(.]‘.')
(11.07) .R,‘(;ﬂ) 4 -w"(m). it (.f.] mw?"tm)'

het
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=BG =—— —5
b ' oy (@)yn (@)
By Theorem 31 we now have

R*z) — R(z) = lim — =
_ v 2P, ()0 (2)

for all values of z, except the values z < 0.

] Lemma 4. Let 4, = B, = l;leta, >0,b, > 0forn=2, 8,...;

A, =4, 4+ a;B, 4y By=2B, ;+b,4,
‘We then have
il "
Angl-i_zak! B»ngl-{-zbk (n'=1;-2)-")'
3 2
(A confusion with the values a, — F(2,) might be excluded).
Proor. The lemma is true for n = 1. Assuming the lemma
holds for n — 1, we have

n—1 n
Awgl'i—zzak-{‘a’n(l+Ebk)gl+2aks
L] 2

E n=1 ni—1 n
B,Z14+2b,+b.(1+Za,)=1+ Xb,

N 2 2 2

' '-‘ - Limma 5. Let the assumptions of the former lemma hold; let
§ (ak _]" bk} = Q0.

We then have A,B, - © as n — .
According to Lemma 4 we have

AR B, = (1 = %ak) 1+ 3 by) > o (a, + b,),
2 2

A, B, increases indefinitely as n — co.

HEOREM 36. If the series

8, problem (e) is determined.

ding to our assumption, at least one of the series
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~ is divergent, hence

< 1
E(wm + — ) —
2 mﬂ.ﬂ-‘ﬂ =
for a given positive value of 2. Putting
A, = ﬁ”-n(w)’ By = W:(m)’ Ay, = Elp, b, = (w.ﬂq“)—l,

we have, by Lemma 5,
wa(@)pn (@) — (n — o).

Moreover, if n — oo, the product

ftp—)

tends to a finite limit, which is either zero or different from zero.
 In both cases the right hand member in (6.08) will be zero for
P e B Y

Turorem 37. If

]
6.10 b = 00,
(6.10) S
the problem (e) is determined.
Proor. Since
1 1 ( J\/— 1 ] 2
- SOl (VY T ISR ] [ .
o s T M '\/EL'“ 0 NaV &y V’E

(6.10) implies the series (6.09) to be divergent.

Since problem (e) is determined if (6.10) holds, it will so much
the more be determined if
2 |
(1.04) 2— = .
1 m'ﬁ
This is a special case of a well-known result of Hausdorff and
Feller, which has already been mentioned in the introduction.
Levmyma 6. Let 4, — B, = 1; let a, and b, be arbitrary com-
plex numbers; let
A, =4,,+ a,B, 4, B, = Bieeh bﬂAu-_‘l
for n = 2,8, ... We then have

L1 4 | o]+ |be]) | Bol S I:I(l + et bl
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n—1 n
Al 14l B SO T ] +[) < T+ o] + o),

and similarly for | B, |.
Lemma 7. Let the assumptions of the former lemma hold, We
then have

[ Ao | ST o]+ [0 )—T1 0+ o] +] 5]
er__Bn| =<_-l;I(l"|"ak| +lbk[)_];[(]-+lﬂx[+lbk|)

for m =n = 1.
Proor. If m =mn the lemma holds; suppose it holds for

(m —1, n), where m — 1 = n. According to the former lemma
we have

I A m'_A'nI = | Am—l + ﬂ'mBm—l__Anl :—’: | Am—l_"ﬁnl +IamBm—-1[

m-1 n m—I1
S'[a[(]' + | @y +[bk|)—-121(1 + | ax| + | b ) +]am]1;[(1+|ak| + | By))

ST(+ | o (Bl T s o (1S

2
and similarly for | B, — B, |.
Tanorem 88. If the series (6.09) converges, the sequences
{@al@) i1y « - - {}i(=)}2_, are uniformly convergent within any
circle |z| = p. The limits
(0.11) ¢(z) = lim @,(2), @*(z)=lim ¢(2), p(z) = lim p,(2), ¥*(z) = limy¥(2),
N=—co == n—>u N>

are entire transcendental functions of z.
Proor. Putting

Au = @1:.(2‘)! Bn = Q?:(Z )1 Gy = Mas b'n =k (m:aﬂn)_lzr
we have, by Lemma 7,

(e —a(a)]| S T (147, + 2 {ﬁ(1+nk+ [z')—l}-

2 Tplle Lna Trlle
: ENE: ‘|
[?’:,{Z’)- —QJ:(Z)[ i II (1 ‘[’ i l‘ _'_l) [ H (1 + N '__|_‘) =, }v
2 Tl Lntl Tt
where m = n. For | 2| = o the first factor in the right hand mem-
ber of these inequalities is uniformly bounded, since

f} (r;,. i ) < o0,
o EuMfn
For the snme renson the second fuetor tends to zoro o8 6 = w0,
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which proves the uniform convergence of the sequonces |,
and {@;}. ence ¢ and ¢* are entire functions. The statements
concerning {p,} and {pX} can be obtained in the same way.

By (6.05) the functions ¢(z), ..., p*(x) are increasing more
rapidly than any polynomial of arbitrarily given degree, when
x —» o0; hence these functions are transcendental.

TurorEM 89. If the series (6.09) converges, the funetions K
and R* are meromorphic and not identical.

Proor. If the series (6.09) is convergent, we have, by Theo-
rems 81 and 88,

L

*(n
— M, R*(z) = {P_(“'“)

P(z) 2p*(2)
for all z except the values z = 0. By analytic continuation (6.12)
holds for any =z, so R and R* must be meromorphic, Morcover
we have, by (6.08),

(6.12) R(z)

(6.13) Ré(x)—R(a) =—— .

Since

o0 '[ @ 'I @xK

F—<wii—=< E(n+ )fﬁoa

g @y A’Z‘ J\/ S % 2 i TN

the product

= z
()
1 m-n

is not identically zero, hence R and R* are not identical.

Summarizing the results of Theorems 86 and 39 we can now sny:
TaeEorEM 40. In order that problem (e) be determined, a
necessary and sufficient condition is

« 1
X (??n == ‘) = 0.
2 &y tly

Some remarks on the indeterminate case may be inserted here.
Evidently there is no eriterion which, analogous to Theorem
47, only depends on the values @, and which implies the indeter
minney of problem (e). For, whatever the values w, may be,

we onn always take

S i 7, - o,
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which implies a determined problem, acecording to Theorem 40.

By Theorem 40 it is also evident that both the determined and
the indeterminate case of problem (e) can occur. Ience, if we
change our problem by requiring that solutions only have to be
completely monotonic, and thus leave the condition (1.05) out,
this new problem ean still more be indeterminate. I do not know
whether an example of this case is known, but at any rate an
explicit example of an indeterminate problem (e) will be given
in the next section.

Trarorem 41. The zeros of gp(z),...yp*(z) are simple and
negative. The zeros of ¢, as well as those of ¢, are separated both
by the zeros of ¢* and by those of y, and conversely. Compared
to @ and y*, the functions ¢* and p have the zeros with the least
absolute values. The functions ¢, ...y* are of genus zero.

Proor. By (6.03) the zeros of @, ..., coincide with those
of P, ...0QF they will be denoted as in Theorem 22. According
to the proof of this theorem we have

A e gk
U, g < 1,0 <0y 0y 0 T Oy o <O,

{9»,5 < ﬁ\fe%-l,i < 0& ﬁ:{ < ﬁ:—l—l,ﬁ’ =< 0.

Hence the limits

(6.14) {

ai = ]]m G"n.:‘. £l 6!’ — linl ﬁn,-#’ 3
6.15 o o =1 9
T R T
—=o0 n—swn

exist; they are all real and = 0. Moreover it is evident, by (6.14),
that the values w«;,...B" and the cluster points of the sets
{o, by oo {BF .} are identical. Hence, by a well-known theorem
of Hurwitz [1], the values e, ...fF coincide with all zeros of
Pyt
Next we have, by (4.23) and (6.15),

(6.16) asf—imfé%up o, =0 =0, ﬁ?gafgﬁf_p fgﬁz‘gﬁf,

Now, by (6.12) and (6.13),
©17)  g*ewe — ) =11 (1 —2),

1 &y
and sinee the right hand member is different from zero for 3 = 0,
the expressions ¢*(2)y(z) and ze(z)p*(z) cannot be zero at the
gume time when z = 0, Henee (6,16) implies

(B:18) o <l < gy Uy <l <y fl<al < Py O <SPS i

which proves that the zerow of g, . p* are simple. Moreover

"
|
|
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(6.18) proves that the statements about the separation of the zeros
hold, and that ¢* and p have the zeros with the least absolute
value. Putting 2 = 0 we have, by (6.17),
@*(0)y(0) > 0,

hence «f < 0 and #, < 0, hence all zeros of g, . .. y* are negative.

We still have to discuss the genus of ¢, ... ¢*. Take 2 = 0.
By (6.14) we have | o, ;| > | ®ny1,6|» hence
@ z @ @

IS QIR sy (L s,

g r E | | Qg |

which implies that the product

i
i=1 %op,i

is an inereasing function both of n and j. Since
T Ll o
P v W)y il (1__),
‘p(o) 00 tpn(o) n-r® j—w i=1 Ui
we thus obtain
L @ ) 4 ] ) i
M = lim lim IT (1 ___.) = lim II (1 __) =11 (1 _—),
‘P{D jor o n—roe i=1 & PR I | oy 1 oy

where the infinite product in the right hand member is convergent.
Hence

1

s 2
Gpi1,i

1yt

and the function ¢ must be of genus zero. For similar reasons ),
¢* and y* are of genus zero.

We thus have, for any finite value of z,

@(EJZQJ(O)I?[ (1 —E) p(z) = y(0) f:l ('l ——f)

(6.19) o 5 4 4

g*(z) = ¢*(0) 1—11 (1 —;?), ¥ () = p¥(0) ].Ll. (l —ﬁr).

where, by (6.04) and (6.05),

(0.20) p(0)=1+ X 5,0 p(O)=1, *(0)=1, y*(0) =1+ X (@ i)
!

minnte problem (e¢) remaing indoterminate, if one of
W left out, This lends to the question
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what becomes of an indeterminate problem, if a condition IF(&)=q,
where & is positive and different from all values z,, is added. I
begin with

Lrymma 8. Let the polynomials @,(z), ¥ (z), ¥,(2) and ¥¥(z)
satisfy '

() = Pi(a) = ¥i(a) = Pi(x) = 1
and
@n i @n-- fust= j'-nq}r—l’ (b:: i cp::—l i #uw(ﬁvn ~11

e — s = Z.nm'pf_l, Ip::‘ == ':Z’:‘_l e L

for n > 1, where 1, and g, are arbitrary positive values. We then
have:

(n) the zeros of these polynomials are simple and negative;

(b) the zeros of @, as well as those of ¥} are separated both
by the zeros of @ and by those of ¥,; conversely, the zeros of
@Y and ¥, are scparated by those of @, and ¥}; compared to
the zeros of @, and ¥ the polynomials @F and ¥, have the
zeros with the least absolute values.

Proor. The proof is nearly the same as that of Theorem 22,
which is only a particular case of the present lemma.

Turorem 42. Let the condition F(&) = a be added to an
indeterminate problem of type (e), where & is positive and diffe-
rent from all values &,. If « is included (in the strict sense)
between R(&) and R*(&), the new problem will still be indeter-
minate, If « is equal to R(&) or to R*(&), the new problem has a
unique solution R(ax) resp. K*(z).

Proor. Since a is included in the striet sense between R(£)
and RK*(&), it will still more be included between R, (&) and
R*(£), by Theorem 30. Hence the value

_ Palf) —wpal§)  yal§) Ra(§) —a

ald) —odyi(§)  &(E) T RI(E) —«
must be finite and positive. Now we can introduce a set of poly-
nomials @,(a), ... P%(x) by putting

(“‘21) Cu =

0,22 it i) & g
i) B = g (S g T = 4 (E2a)

By (4.81) and (6.07) we have

< R b S g
l Pn = @ CnPns Bn = Yn 1 Loy,

';ﬁn("rﬁ'j 'ﬁ:('"k} 1
iy (my) mkﬁ}: ()

while., by (0,213,

ay (oo 1, Q5 ekl

-
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pal€) _ #nlé)
(6.23) Pal6) _ i LR
Pal8)  E9u(8)
Hence, if we put
= =%
- Pul®) —u Fa (@)
R, (@) = o2 RH@) = —5—
) =g T o)

the functions R, and R¥ take the values required for the argu-
ments &, . . . &, and & By (6.22) and Lemma 8 these functions
belong to the class {F}. Now, if n — o0, £, tends to a positive
value £, since both the numerator and the denominator in (6.21)
tend to finite values different from zero. Thus the limits

@(z) = lim (lﬁ-u(z) = f}?(z) {7 Z;'p*(ﬁ): v oixy

== 0O

P*(z) = limpy (=) = p*() + (50)7'p(z)
exist for all values of z. Putting

P8 oy _ PO
) =5er ©" "Wy
we have R, () R(z), R¥()-> R*(z) for any z>0 and
n — 0. Hence, by Theorem 33, R and R* belong to {F}. The
functions B and R* are solutions of the original problem (e);

by (6.23) they also satisfy the condition
R(¢) = R*(§) = «

Finally, R and R* cannot be identical, which is immediately
evident by (6.06) and (6.22). Hence the first part of the theorem
is true.

As to the second part, we may suppose o= R(£) and @y <& <@gpa
in order to fix the ideas; the other cases can be treated in the same
way. Now, if we add the condition F(%) = a, the problem
remains solvable, since ' = R is a solution. By Theorem 30 any
solution of the new problermn will be included (in the wide sense)
between two such solutions R(z) and R*(a), whether these be
identical or not. Hence, by Theorem 30,

R¥(z) = R(x) = R(a),
R @) = R(zx) = R(z)
Now R and T* are solutions of the original problem too. Hence
R@) = R(a),  R*@) = R@) (g < @ < @)
which ylelds
o Rm) e R(w)
T R(o)

(Inal < < E)u

(6 <@ < ayp)

(l’l-'“; o< ‘).
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Since R, R and R* are holomorphic for 2 > 0, these functions
are identical, which proves the statement.

Theorem 42 contains a slight improvement of Theorem 30. For
we now have:

TaeoreM 48. Any solution F'(z) of an indeterminate problem
of type (e), which is not identical with R or R*, is included (in
the strict sense) between KR({az) and R*(a), for any positive 2
different from the values a,,.

The results of Theorem 42 can be extended without difficulty
to the case where a finite number of conditions F(§,) = «, (v=1,
2,...N) is added. Yet, the fact that there are special cases,
where an indeterminate problem becomes determined if a single
condition is added, only leaves room for generalizations of Theorem
42 that are rather eumbrous. Perhaps it is useful to introduce a
notion here which seems to be new. If a determined problem of
type (e) can be made indeterminate by leaving out a certain set
of N conditions F(z,) = a, (v = vy, ¥5, - . . 7y), but not by leaving
out less than IV conditions, the number N will be called the degree
of definiteness of the problem.

Turorem 44, Let a problem of degree 1 become indeterminate
when the condition F(z,) = ay is left out. The problem will
also become indeterminate when any condition F(z,) = a, is
left out.

Proor. In what follows any problem of type (e) will be
denoted by P(z), where () is the set of the values x for which
I'(w) is given. Moreover, it will always be supposed that the
sequence {@,}; belongs to (z); for the sake of concision the a,
will be dropped in the notation. Thus, in the case of P(&, &,)
the values of F will be prescribed for @ = &y, @, ..., & o
whereas in the case of P these values are given for @ = @y, @, . . .
only. It will also be supposed that the arguments ay, @,, ...,
#, &y ... are all different and positive. IFinally we shall put
I'(&,) = o, whenever the value F(&,) is given.

Now let P(&, &) be determined, and let P(&;) be indeterminate.
In order to prove the theorem it will suffice to show that P(&,)
s indeterminate, Since P(&) is indeterminate, P will be still
more so. Hence all solutions of P will be included (in the wide
senke) between bwo nonsidentical solutions K(w) wnd KA*(w) of
£, and in the snme way all solutions of P(§) are included between

Rin) and B*(@), According to Theorem 42, o, must bo neluded
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in the strict sense between R(&,) and R*(£;). Henee R and R*
cannot be identical with R and R*, so it follows from Theorem
48 that R(&,) and R*(&,) are included in the strict sense between
R(%,) and R*(&). Now P(&, &) is determined, while P(&) is
indeterminate; hence, by Theorem 42, o, must be equal either
to R(E,) or to R*(£,), s0 «, is also included in the stricl sense
between R(&,) and R*(&). Now P(&;) must be indeterminate,
again by Theorem 42, since P is indeterminate.

TarorEM 45. A problem of degree N becomes indeterminate
if N arbitrarily chosen conditions F(e,) = a, are left out.

Proor. According to the former theorem the statement is
true when N — 1; let it hold for any degree < N. Using our
previous notation, we can supposc, without loss of generality,
that P(&, . .. &y) is of degree N, and that P& v Ea) S RINS
determinate.

Let 1 =<k =< N. According to our assumptions and to the defi-
nition of degree, P(&p-. . & Enpnirs - Goy) is of degree
N—% hence P8y ..o Ex Enapirse o+ Son) 18 indeterminale
(according to our hypothesis). Hence it remains to show that
P(Eyiqs - - » Eay) is indeterminate.

Now P(&; ... Epy.q) is of degree N—-1 (according to the
definition of degree), hence P(&, &yiqs - - - Say-1) 18 indeterminate
(according to our hypothesis), while P{&y, Epyrs » o « Egy) 18 clotiers
mined (according to the definition of degree), hence P&y 1+ fan)
is indeterminate (according to Theorem 44).

Now it is natural to extend the notion of degrec of definiteness
to all problems of type (¢). According to this generalized notion
of degree, indeterminate problems are of zero degree, while
determined problems are either of (finite) positive or of infinite
degree. An introduction of negative degrees is not to the purpose,
since a further classification of the indeterminate problems of
type (e) seems to be impossible. Any indeterminate problem oan
be made determined by the addition of an arbitrary number,
or even of an infinite number, of appropriate conditions I(£,) = ey,
which. is immediately evident by Theorem 42,

In the case of a positive degree N, the number N -1 can hie
interpreted, according to Theorem 43, as the number of supor:
fluous equations of the system F(w,) = @, (n = 1,9 .. .), which
determines I, One might conneet the notion of degree with the
theory of Infinite matrices, but this would give rise to questions
thit wee beyond the scope of this paper.
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Turorem 46. The solution of a problem of type (¢) of finite
positive degree is meromorphie.

Proor. Let N be the degree of the problem considered. First
leave N —1 conditions F(x,) = a, out. By Theorem 45, this
gives rise to a determined problem of unity degree, which has
the same solution 77 as the original problem. Now this new problem
becomes indeterminate if one more condition is left out. This can
only happen, by Theorem 42, if F is equal to one of the funetions
It or R* that correspond to the final indeterminate problem. Since
the latter are meromorphic, ¥ must be meromorphic too.

Some questions eoncerning the notion of infinite degree must
still be viewed here.

Turorem 47. If a problem of type (e) is of infinite degrec, a
denumbrable set of conditions

F(z;) = a,, 1 =S |

aan be left out, and still the problem remains determined.

Proor.  Let, in the original problem P, {x,}7 be the sequence
of abscissae @ for which the values F(2,) = a, are given. Since
I i supposed to be determined, the inequality

| Ryfe) — R¥@)| <e

will hold for any & > 0, # = 1 and n = N(e), if N(e) is an appro-
priate function of e. Put & = 2-! and 4, = N(2-1) 4+ 1, and leave
the condition £(a; ) = a, out, which gives rise to a new problem
Py, Instead of the sequences {R,}; and {R¥}; of functions that
limit the solution of P, there will be two other sequences {R, ;7
and (R} )7 that correspond to P,. Evidently we have -

B = Ru, R:l — 0 o B=1,2, cue 3y —1)
| Ry (2) — RY .1}|<21 =1, n=4—1)
According to our assumption, P, is determined. Hence the
inequality
[ R, 1(2) — \’* 2)| <e
will hold for & = 0, @ = 1 and n = N (), if N,(¢) is appropriately
chosen, Ml 2-4 uml iy == Ny(27%) 4 1, and leave the con-
dition I(x,, J ty, out. This gives rvise to a problem Py with the
oorr vspumlmg sequences (K, o and (R¥,1". We now have

le"" - R"!" !\":9 g "\n,‘l (0w 1y 8000 'il — 1),
| By a(0) = R gla) | <80 (@@ b v 1)

A e W g

3
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This process can be carried on. After having left out &k con-
ditions
(6.24) Fla,) = a,
where v — 1,2,...%k and
A e

we obtain a pmblcm P, with the corresponding sequences
(R, s and {RS) 2., which satisfy
Bos = B e Ky =BT v die=Ty % wny =Ll
| R, (@) — Ry (2) | < 277 (x=1, n=t,—1)

Let P_ be the problem that comes into being if we leave out
the denumbrable set of conditions (6.24), where now » = 1, 2, . ..
Evidently the solutions of P, are included between the elements
of equal order of the sequences {R, )y, {RX}, where

ﬁ?l=Rll.k5 R::-R—:,k {n—],u...., ?:F“,_ 1)

for k=1,2,.... Hence P_ is determined, which proves the
theorem.

Next, the question must be put what becomes of a problem of
infinite degree, when a denumbrable set of conditions F(z,) = a,
is left out. The degree of the new problem may be zero, positive
or infinite again. Evidently two cases can be distinguished here:
either a problem of infinite degree may be transformed into
another problem of positive degree by leaving out an appropriate
denumbrable sct of conditions, or this may be impossible. The
problems of the first kind will be said to belong to the class A,
while those of the second kind will belong to the class B. Neither
of these two classes is empty; for, all problems that have a non-
meromarphic solution belong to B, according to Theorem 40,
whereas the problems that arise from an indeterminate problem
by the addition of the conditions R(&,) — o, resp. R¥(&,) = ay,
where » = 1, 2, . . ., all belong to the class A. One might eonjec-
ture that the set of problems of infinitive degree, which have a
meromorphie solution, is identical with the class 4. However, |
have not as vet solved this very interesting question.

It hos already been said in the introduction that completely
monotonie functions can be represented by Newton series, If

(TR B o
" ’ 1 m' i
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holds, any function f, which is completely nionotonic in (2, <),
where @y < z;, and which satisfies the conditions f(z,) = a,
(n =1,2,...), can be represented by the expression

(6.25) X [ay,a5...¢.0(c—2)(e—a)... (@ —2, ;)
n=1
where the divided differences [ay, ...a,] are defined by
Biy - - Ba) =B ]

fnd

(626) [aﬂ.] =G [as‘l LT : =

n

ol —— I.r"fl.

Since the functions F are completely monotonie, (6.25) will
also represent F(w) if (1.04) holds, which implies that we have
to do with a determined case of problem (e). The question can
be put what becomes of the series (6.25) if we give up the con-
dition (1.04). An answer is given by

TueoreM 48. Let the problem F(z,) =a, (n=12,...)
be solvable. The series

-]
(6.27) Zleg...0,)r—a)z—ap)...(2—@,,)
n=1
will then be convergent in the half plane Re z > 0. In order
that the series represents a function of the elass {I7} it is necessary
and sufficient that (1.04) hold (in which case the series represents
the unique solution F).
Proor. Let
(s
(1.05) [
1+—t=F
1}
be a solution of the problem considered. We ean exclude the
case where F is a constant; hence there will be at least one value
of 1, different from zero, where y increases. For convenience put

1= .
Morcover, let

(6.28) F(z) -_:kil[al e @ l(r—2y)(8-—0) . . . (R—2py )t 0,(R)-

Now we oblain from (1.05) and (6.26), by induction,

! “dr)
it i = (=) Jr]"m - )

Nim]

honee we have, by (0.98),
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" 1 ol dy (1) ,
(6.29) 0.(z) = I} (1 ﬁw_k) J (1 —1+ )11 (1 A &i)
x=1 k

and here the integral in the right hand member converges in any
domain G (e, o) as n — 0, as can be easily seen (for the definition
of G see Lemma 1).

Now we must distinguish between the case where

1
6.30 Y
(6.30) S
diverges and the case where this series is convergent.
(a) 1If (6.30) diverges, the product

l] (1-- ﬂ%)

is divergent as n — oo, when Re z < 0. When Re z = 0, this
product converges and is equal to zero, hence
o(z) = lim g,(z) = 0.
i 0
The series (6.27) is then convergent and, by (6.28), it represents
the unique solution F,
(b) If (6.80) is convergent, we have

o 2 l_d—_(ii(z)
(6.81) o(z) = lim g,(2) =1II (1‘;]) 'j(l.—t z)l](l G i )
n—-»o 1 0 o=l

for any z, if we exclude the values z < 0 (since (6.30) holds in
any domain G). By (6.28), the series (6.27) will be converge nt
again, even in any domain G. Yet, as o(z) cannot be identically
zero mow, the series (6,27) cannot represent the solution [,
Now F(z) might be any solution of problem (e), hence (06.27)
represents no solution whatever of this problem.

We can replace (6.28) by
(a0 a)le — o) — ) (@) = FlE) — 0l

Elnm I;Iw Nawtun series {8 overywhere convergent in case (h),
L I and p on the half line 2 = 0 must neutralise
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§ 7. Applications. L - RN Agsy
_ 6 =1y & =17 7 785 L= 5> BT 7a00 4
In this section different questions wi]l be trea.ted that are in
----- {¢.)s must be completely monotonie.
e?mmples af functlons that beloncr to {F } '
If 0 <« < 1, the function z=* provides such an example. For

Taking « = 1 we obtain from (7.01
we have, when|z—1|<1, aking « = § (7.01)

1 du
1Yo (ot Ty :
k='0
~ while hence ’
, 13
e R e O A ) N (o) g L) 0 —2) i 3 f o _ f do
el T (k41T (x) (k1) ; V1—#24-zi? WO (—ulfuz)Vu(l—u) = . (1—1?—]—1}2)’\#'1}(-5’-..]1;
= mxm.rt““—i(l e 2 k where 0 ==t =1 and where the square root in the left hand
3 n : member is to be taken positive when s > 0. This being so, the
hence, by Theorem 4, . integral b o
' | sin . [ 4971(1 — 1)~ (7.08) Fy(z) = —f ' _
' 7.01 e j dt - o i 2\ 4B 2
1) = e (0 <o <1) frav’(_l (1 — £ + 2?)
2 ] b itten. in the form
S Ewdently this is a special case of well-known formulae in the OB e R e : :
theory of the Gamma-function. Integrating (7.01) we obtain Fie) = 2 1odi J dv _ (o)
| ' (i ot ) Vi—p) G—vtuw)vepe—o) J 1—otu
I, (7.02) J.lz‘“dm D L1 f AL . 0 0 ( ) )
J 2 log & / 1—i-t where '1
‘where JA
N — e =1—v),
. . 1 t ; M) 'r*\/v.[ V| 1——t"‘){t2——v) B2 \/(1—1;2)(1—1; 7?) i ) g
j 1'% | ¥ (1 —¢)~*sin o dow = 7 - =] gl—-——)
1 e Flifo 9') TS Hence F1 belongs to {F} since I';(1) = 1. A more clegﬂ.n_t way
- Alence the function (7.02) also belongs to {F}. According to ' to obtain this result is e follows. If |z —1 | <1, F; can be
"ﬂiamm 4 it can be expanded in a scries expressed by a Taylor Ser“’?
-y an' A= . b L Fi(z) = E (—)Peuls— 1)",
i Z ].Dg 5 k§0( Yeile— 1A B0 i

where

id .['01‘ | #—1| < 1. Hence we have

B e s
| ,, mﬁ\( = J E gisi= 1 -k-
i

ck=_l1-3--a(2k~1)}a. '_

— e (x—1)F, B (_2,‘:7)

Now we have




% Ea(z“"l_%)—f
 where o

- (1.05) da—= iV, =98
‘The case 4, =1 (n= 2, 8,...) is easy. By (6.05) we have

Caal®) 4 il e zp, 1(2)
‘\/mj n(m) T ‘pw—l(‘zJ + '\/f{:_n »

Pal®) =y, 4(@ %-1@) . w“_l(;n) ’
Ynl@) = yna(@) + V/;{s 3 ':"n(m) 'Pn-l( )+ \/w

(m) = ‘pn—l(m) +

henee, by (6.04),

. : Q?:(:m)='n ! :' = Fn e
Whl(!h ymlds (4 (w) P, (w) @ (ﬂ'.‘] {-n, 1.2 )

Pal@)+ Vag, (@)= (1+ VwE) {wpa(@)+V imn_l(m)}=fi(l+ | f)
o7

y
- {wn_l(m-hv&qan-lnma_}:@(1—]@’

e i (V)
: &y
o) = | | Vf’—) }
L E L
50 the functmns R, and R} can be expressed by the formulae

{0

pu(@)—Vag,(@)=

In this case we obviously have

R(@) = R*(&) = ﬁ—}”

On the other hand we have in the indeterminate case, by (7.00),

)
Ry )
__I_f:LI(I“LV'%)“?I(l“V%)
VD013

R*(w)=

and these solutions can also be characterized by

R(a)R*(x

)
fi (1 w)

R*(z) — i L e N

() R(a:]_ s R(e)>0

R V)

Now let us consider the particular case
@, = Mt (0= 1, 20 Sl
which corresponds to an indeterminate problem. Putting
(7.07) s=n¥z (a=a+iy §=a- m‘

where ¢ = 0 will be taken when z > 0, we obtain 4
ﬁ (1_ VE) ks ﬁ ( R s'in: o
1 g k=1 ;
0 o o . Pl
I (1 + V ) it (
IR . T

= “E'_'l’

(& = 0).
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or I
@ (ﬂ-ika w (:'z‘m)"
=, = e
Ble) =8 S e wl
o (v = (sl

R*¥(z) =

| ) — -

1-=0(4Ji!~+~1)! kgﬂ(ﬁhk—i—g)!
It is immediately evident, by the last formulae, that R(z) and
R*(z) are meromorphic functions. R is holomorphie in the origin,
whereas R* has a pole of the first order there with a residue

6z The other poles of R and R* are identical with the zeros
of the functions

o (mhz)F @ [(pl=)k

—

po(dk + 1)1 Zo(dk + 8))

According to Theorem 34 these must be simple and negative.
By (7.07), these zceros correspond to the roots of the equations

e—e*t+ 2sins =0, &—e*—2sing =0,
and, in order to compute the first, we thus can put s = (1 + i),
where p > 0, which yields
cos p—sin p k4 cos g-+sin g 7
708) ¢ = — =cot( —), ele= 178 g ( _)_
( ) e €os p—sin p : —I_é €os p—sin o & Q+/1-

If the increasing sequences of the positive roots of the equations
(7.08) are denoted by {p,]7 and {o¥};°, we evidently have

T 7T
n=mna—= +0(1), g5 =na+ -+ o1),

ag n — co. Of course more accurate asymptotic formulae can be
given.

If Fy, Fy belong to {F}, other functions with the same property
can be obtained by a transformation. Some of these transfor-
mations are trivial, e.g.:

F(z) = Fi(z + &) + Fi(1 + «) (o > 0),
F(z) = Fy(az) : Fy(a) (@ > 0),
F(z) = aFy(z) - (1 —a)Fa(z) (0 < o < 1).
Less trivial is
Turonem 49, Let 7, belong to (I} Let
(7.00) F(n) wa g~ Fy(373), .
Then F belongs to {1} l
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Proor. Let

L dp(t)
Fl(z):_[\l-—f,l-{-—tz-'
(1]

Putting w = 1 —{, z(u) =1 — x;(¢), we get

Ly J‘l rix(u-)_

*
1—w +uz
0

which proves the theorem.

TneorEM 50. Let
(7.10) Ez)Fi(z ) = 1.

When F, belongs to {F}, the same will hold for F.

Proor. Firstlet Ffy(z) be a rational function, which, if represen-
ted by (4.39), contains n positive parameters. According to th.c
symbolism of § 4, F; can be denoted either by r,(2), when Fis
regular in the origin, or by 75(z), when the origin is a pole. Let
{x,}? be an increasing sequence of arbitrary positive values;
put Fy(2;) =a, (k=1,2,...n). According to Theorems 26
and 27 the function F, will then be identical with R,(z) resp.
with R¥(z).

By (7.10) we thus obtain the expressions

Q.Y Q)

P,(s71) aPy(™)
for F; it must be shown that these belong to {F}. Let us consider
the expressions

?32\?13(3):2”1_1@;:1(3”_1): qzm(z):zmpg‘m(z_l)i
p:‘m(z):zmgﬁ m{z_l )5 Q‘j;n(z)zzmmlp‘.’.m(zl_l)’
p‘z‘.m-*.—l(z}-__zmQ‘Z m-+-1(z_l)’ Qz M‘I-l(z)zzmp‘d m+1(:" ; }’
i * -
p;"m-m.(z):zmggmﬂ(z_w: Qo1 (3)=2" P (37),
which have the following properties. po '
()L e qf are polynomials of 2, which are positive [or

2 — 0, This is an immediate consequence of Theorem 22(a) nlul{la')'.
(b) The degrees of p,, - . . ¢* are equal to those of P, ... (/5

ginee P,(0), ... Q%0) are positive and since

| "U rll.| — |.()rm,l! [ !)":m|:" 1(1"‘3111 !' [ i}:! el l.l".|.Qﬂ'nr i1 l? I| I}:ﬂrl-l] IQ;IH'H l'

() 'Phe geros of p,, . . . gy are simple and negative, sinee these

(7.11)

a:w[’ the zevos of P, .. QF (in another areans
o




~(d) The zeros of p, as well as those of g} are separated hoth
by the zeros of p¥ and ¢,, and conversely. Compared to p, and
~ g the polynomials p}¥ and g, have the zeros with the least ab-
solute values. For, by Theorem 22(b) and (d), the following
couples of polynomials have zeros that separate one another:

(Pﬂm £§n)s (Pﬂm’ Q2m)! (ng! I_)gm}! (Q;m! Qsm)s

(Elm-hli P;M.I ).! {Eﬂ w12 _Qz m+1-)’ (-_Q_;ma—la P ’;m+-1)’ (Q_;Im-;-p Qsm-(-l)'

In cach of these cases the polynomial that has the zero with the
greatest absolute value has been underlined. We thus have, by
(7.11), the following set of corresponding couples whose zeros
separate one another:

(Q;m ga_-m): {g;(m? E;‘m-}’ (P2 ms gam)r (P2ms }'_’;m)a
('ﬂilm«-l-l! Q;mﬂ ) (Gamir Pamir)s ('E;wv ?:mﬂ)’ (}'_’;mﬂ- Fami1)s

absolute value, which proves the statement (d).
This being so, the expressions

r Qam(z™?) ) Pom(2) (1) _ Paa(?)
Pyu(z) 200n(3)  2P3()  Gam(®)
Qzmea(z™) = Pama(?) Q;:mﬂ(z_l) o p§m+1(z)
y PruaG™) Gaanl®) 2PLu(") ) W (3)]

must belong to {F}, for similar reasons as have been used in the
'_pro.of' of Theorem 23(c). Hence the theorem is true when Fj is
~rational.
In order to prove the theorem when F, is non-rational, we can
take 2, = n and @, = F;(n). The corresponding problem (e) will
be solvable, since it has the solution F;. Moreover it is deter-
mined, since

~ Hence we have at any rate
(7.12) F(z) = lim R, (2)
for 1 > 0. Let &g
Sa(g) = 1: R,(s7).
As it has just been shown, S,(z) belongs to {F} for any n.
~ Moreover, by (7.10) and (7.12), the limit
O AT )
) = F(x)

where the underlined polynomials now have the zero with the least *
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exists for z > 0. Hence F belongs to {F}, by Theorem 88,

The function

1 dt _log= L
F(z):.‘[l——t—{—m—z——l d
0
belongs to {I}. Hence '.i
Bl
LWl zlogz

also belongs to {F}, in accordance with (7.02).

By Theorems 49 and 30 we also have the transformation

(7.13) (Fy(e)} = 2F(2),
which provides other couples of functions belonging to {F}. *
For the rest, (7.13) is substantially cquivalent to a .theorem- ol
Kaluza [1]. Now ¥ can be expanded, by Theorem 4, in a Taylor

o oy

series

Flo) = 3 ()eale— 1)

n=0

valid for [z —1| < 1. Hence we have, by (1.13), (2.06) and
(7.18),

F:(z) A {1 + (z2—1 )}n%ﬂ (_)nc“(z.——- 1) =1 __,n?l (__)n{cn_l__ c“){l'-—- 11
Putting t.' .

’ N e _w e il i
(7.14) ) 1 Eld“(l z) (| I )

we thus have, by (2.06),
Aﬂ == c,n_-_l —Gn = -I-ltﬂ#]'(l =—— t)dx(t)l
0

|

Hence the sequence {4,}; is a set of moments of Hausdorff,
which implies that it is completely monotonic.

As an example, we can take for Fy the elliptic integral (r.08),
which belongs to {F}. Hence, if we replace # in (7.14) by 18
we get the development

' ™ .,d_'_: .
N it =1—Z 4 (s] <)
Sm V(L — ) — ) i ) b
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- tonie. This is u generalization of a result of van Veen [1], who
proved that these cocfficients are positive and decreasing.

If, ' e s o : i 2

1 l_!qus.tiign (7.10), we require F = Fj, we obtain the functional
3 (7.15)

which is satisfied by

F(2)F(z) = 1,

Fl=2*"' (O=z=1}

. .It woult:i be interesting to know whether there are other solu-
) tions F of (7.15), but as yet I have not solved this problem.

! No use ha.s been made, in the preceding investigation, of con-
I:_mupd 'fract_mns. Of course we could have done so, since the
" expressions R,(2) and R}(z) are approximants of odd resp. of

- even order of the continued fraction i

vg.-h-ich is an immediate consequence of (6.04), (6.05) and (6.07)
If t!le corresponding problem (e) has a unique solution F, (7.16)
i Obwous!y converges for any 3, different from the values z < 03
L - therg ’wﬂl also be convergence within the opeﬁ intervals of—the

¥ --ha]_f line ¥ = 0, where 77 is holomorphic. '
When the corresponding problem (e) is indeterminate, (7.16)
i diverges, except for the values z =, (n =1, 2,...). However
b_y- contraction of (7.16) we can obtain the continued fra,ction;

Na

H 1 —(I—i) E(l—-i
o 1 |1+7?9 1_F£ Il—i—??d' =
A Ma E

) Lally (1 _i)
_H_ms"?a m_z e
14— 1 P2l

®gTe @yt TyNa

'_whichl,_ga.ve the sequences of approximants (R,(2)}y., and
! Jnwy vespectively, and thus converge for every z, the poles
=) a : .
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determined. These continued fractions can also be obtained
as an immediate consequence of the recurrence formulae

B e e |
T L L

T19

* wn—ﬂi‘n—-l) % mv&—lﬂ'ﬂ_l( A ) wof |
=11 -} —— ) — 1— |
(Pﬂ(z} ( l_ @0, tpﬂ_1(5) 2 B ‘Pn--l(‘)l

£ wﬂ—lnu—l) F I"r'm-—:l'nﬂ—l( 2 ) " : |
= (1 4 Zetlint)on ey — 22l — —ytg(e
| (@) ( e e P Lt Ll

which in their turn follow from (6.05). Properly speaking, (7.17)
and (7.18) are only another way of writing the system (7.10).
Conversely, for any increasing sequence {x,}1, where @, =1
and x, — o as n — o0, and for any positive sequence {n,}s , the
continued fractions (7.17) and (7.18) represent a function I,
and so does (7.16) if it is convergent. Since there are always
determined problems (e) that have an arbitrarily given function
F as a unique solution, the following theorem holds:
TaroreM 51. Any function F(z) ean be represented for nny
2, save perhaps for the values z < 0, and even in an infinity of
ways, by continued fractions of the types (7.16), ... (TA8)

If IF(z) is given along a line Re » = « (0 < < 1), we can state
an explicit formula for #, thus solving the problem of the inver
sion of (1.05) in a stricter sense than it had be done in Theorem 8
and (2.17). For, combining (5.08) and (5.20) we have

| 1 potimi atim  F(z) e ;
(7.20) x(t:] — =91 +4_:';é ?-d.S'J. m da ‘.ﬂ'} 0, 0<ﬂ<1!’ ].
g—iw a—in <

for 0 < £ < 1. T have not suceeeded in finding an expression for

y that contained only one integration. r

i !
Next, some remarks concerning the limit

(7.21) w = lim F(x)

] s 4

@r b
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occurs. Besides, all solutions F of a problem of type (e) have the
same limit value u, since
u = lim a,,.
n—>| oo

For any value of « there are corresponding problems (e) that
are determined. On the other hand, we have shown by an example
that an indeterminate problem ecan correspond to u = 0. Now
it is elear by the transformation

Pl — S g
14w

that at least one indeterminate problem (e) corresponds to any
given %. Hence the question whether a problem of type (e) has
a unique solution, has nothing to do with the value of w.

While stating problem (e) in the beginning of this paper, we
have used the sequences {#,}] and {a,};. Now it is possible,
by the fransformations (6.02) and (7.05), to express the same
problem in terms of the sequences {z,}; and {,),, and we
can ask what becomes of the condition u = 0 in this new for-
mulation. The answer is contained in the following theorem:

TaeorEM 52. Let

V

0)

(7.22) Tope = Aops Tarsr = Agary-

In order that a problem of type (¢) be determined, it is necessary
and sufficient that
o =1
-,
g & =ea)
2

V’acn

In order that its solutions tend to zero as @ —co, it is necessary
and sufficient that

(7.23) 3 Myt - )50 VB, = 00,
2

Proor. FKvidently the first statement is only a transeription
of (7.04). In order to prove the second part of the theorem, we
need an expression for the limits w, and «* defined by (4.85).
By (4.22) we have

0
Ugy = Ugnyy = 0,

HO We mw confine our attention to the limits wy, o ood wl, . Let
Pus v ooy be the coelficients of the highest powa

Pl oo ymte) By (4.22) and (6,06) we obtud

——C
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| * £ e P |
Pon  —Pam—a T NamPem—1> Pam — (Tam "Jz-m] Pamas
& e ey 1
(7.24) Pam i?zm‘i’zm;v Tiuinz '_"'fl’i:ﬂ—l H(@2m Mam ) ﬂ”unll 1
Pams1— Nomi1Poms Pomir=Fom T (Tammr1Pamer) P

s o ; =1
Pom1= Wom T Nome1¥Woms Vami1— (e Tamsr ) Wame

Hence, by (6.07),

i 2 e
1 . 1 Yom 1 Lo Nom  Yom-1
& SR gy o
(7.25) Usmis Pomir  Yzm  NamerPom  UYam Namir  Pam-
. - ’k
1 1,1: 1 Yo
2m 2m—1
T Tk 'Jl_ L Nam =
Udon Fom  Uom—1 Pom—1

Since all values in these formulac are positive, we have
L ’
Ui 1 == Uiy =5 Mgy (i 1,02, iy
whereas it is obvious that

= = #
(7.26) o= limiag, . o = lim ..
m—w -

Using the notations (7.05) and (7.22), we have, by (7.24),

% : 2 % 2 %
Womt1  Pamlom¥oma AomWom 4 .8 ‘P.am I

= g ) i Ag ; = MouToms1 0
Pamir  Tomra1om+1P2m—1 om+1F2m—1 Pam-—1

hence, by (6.04),
(7.27) Vs (gy « v+ Hasmir)®
Pami1

By (7.05), (7.22), (7.25) and (7.27) we have

2 *
1 1 wzmvzm Troﬁm—l
= L + Lo mMaan -1_
Ugmiz  Ugm— Nami1! Prm
e V’I 2m—1
= + (W’-B m\/wz " I j-5?.-mj'r%ll'a—l—'.l ‘\/“I 2 'nH-I) T
uz'm— Pam-—1

o J
= ——— -} (a7ey .+« Rzm—l)Exam‘/%m"—(”z”u oo r Mgen ) Tgmua V Uit

Ugm—1
or
1 Zm_\-i—l. : p—
(7.28) — =14 X (mgg... -’“fc--l)zn«-\/“"m
Wom 1 ko
minee . Now, by (7.26) and (7.28), the condition w = 0

nnd the Ill-ltl.l!lllmlt (7.28) are obviously equivalent,

Mur that a funetion 2 admits an asymptotio




f! éwm F(z) = f

II-

dy(1) dy(t)
AT ) +f e

we have

F(S) E—— = F(z) —dy— ?

a1 1 Al .
= [li=rra+ Eerera—vjaw

+0

T A et
= (—) f“z)ﬂ( z+zz)d %(t),
+0

~ hence

= . L dk -ﬂ_- 1 (1 _.tjnl 5
(o) | r—E 2] - [ BT,
; +0
Now, in any domain |argz| <@ < & cither Imz— o0 or
2 -> o as | z| — co; hence the integral in the right hand
er is smaller than

L1 — gy
L ] g_.| .[ 1 d..x@):
+0

r where & only depends on ¢. By (7.80) the cxpression (7.34) is

te; it tends to zero as | z| - oo, and thus our conditions are

Now, for @ > 1 and for any £ =0,

"1 dx(t) ' J‘ﬁ J‘lg rdx
i B £+ ta g
Sinee both mtegrals in the .nght hand member can be made
arbitrarily small by an appropriate choice of & and @, the left
hand integral tends to zero as ¢ — . Hence dy = ;:(—l- 0). Next
e have, by (7.29), .
L y ady ()
(7.85) dy = hm m{F( oy ——
1—t

R ) _l_m)}dx()

Since the integrand is positive we get, for any & > 0,
o 4 1—t } ()_rdx <dn
2o {? il —1 + )
[ €
hence, as & — 0,

J‘1 dxt(t) &,

G0
and by (7.35)

i it et P
-dlz_[ 1 ﬁllmjt(l—t—k%)x) -
' +0
Since the limit in the r:ght ha.nd member s nou-nagaﬂm, 'ﬂh
obtain £

Now, let dg, dy, -
holds, and consequently we have

: du
dppy = lim ﬂ?'”“{FW) — By
w-» 0 _ 0@
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Sinee the integrand in the right hand member is positive, we
)

get, for any ¢ > 0,

&
hence, as & — 0,

1
.[t—“"‘(l —H* A E ()P due

=0
and by (7.36)

1 :
(= )'*rtﬂ...1=f t-n1(1 — )" dy(t) — lim f il e
00 j :
0 1o
Since the limit in the right hand memberis non-negative, we get

1
(—=)Pdq = JA 1 — )" dy(2).
40
Hence the conditions (7.30) and (7.31) are necessary.

!ﬂ\-’i(k‘,llt]bf one part of Theorem 53, where the conditions are
said to be sufficient, is a transeription of a result of Sticltjes *)
As to the other part, this is closely related to a theorem of I‘iﬂﬁl:
burger 5) and R. Nevanlinna [2]. if and only if .

J‘ldx(!} W

——— s BTy
1

+0

for else the transformation (1.08) does not apply to F.

I'rom FT.QQ) we obtain, by the transformation (1.08), the
asymptotic development of Stieltjes :

F(x) —z(+0) = J-m T L

2+ u 2 22 o8 e
13

where the moments ¢, are finite:

e

1
p = (—)'dyy = f(! L1yt dy(t) = J " dy(u) < co.

+0 0

o . .
; k. ' Let {&:}; be an increasing sequence. Let & = 1
and & —» @ as ¢ - 0. Furthermore, lel

TurorEm 5

gg= 150 <igy < 1 (8 =2,8,,..); limg; =0,
—+m

) Bomgrann (1], pp. 4, 408,
Y) o AMBuRaen (1], pe @08

Wi i s
| =21 . =) %
ml:l'l.[ it I i(].—-£-|"fﬂf)1d1(tJ _f tn-x-L_“dx(t)é('_)“dnH!
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There are functions @ that satisfy

F(&) >0, (1 =2,8,...); lim F(g) = 0.
W—r o0

Proor. The proof is based on the construction of a problem
of type (e), which is characterized by two sequences {a, )y and
{a,)y, defined for the purpose; so in particular we mugt put
2, = a; = 1. The functions R,(z) and RX¥(a) will have the same
meaning as before, while «, will be included, in the striet sense
and for any m > 1, between R,_(x,) and R* (@,). Thus R,
and R¥ belong to {F} for any n, and our problem (e) is solvable,

In order to avoid the necessity of distinguishing at every turn
even and odd values of n, I shall write (R,, R,) instead of
(R,, R¥), where R, (a)is the function of the couple (R, R¥) thal
tends to zero, while R ,(z) is the one that tends to u positive value
as 2 — o0, If we have, for a certain value of n,

a; < R, () (5= 2,8 i )}

our theorem is obviously true. Henceforth this case will be ex-
cluded.

Next, an increasing sequence {9'(%)}-1, of indices will be defined,
where j(1) = 1, while we shall take @, = £y, Hence a; == l;
whereas the sequence {@,}; is increasing, and @, — 0 as n = &,
as it is required. Moreover the following conditions, where n = 1,
can be fulfilled:

o, < @, < 2o for © = j(n),
(7.87) Lo <min (R(&), R,(E)}  for 1 <i <j(n),
a; < R, (&) for 1 > j(n).

Evidently (7.37) can be satisfied il n = 2. For, if we nssign
to a, and ¥, any provisional values (provided ay = 1 and
0 << 9, < 1), and if we put, as before,

4y = B Ry (2s) + 95 RT(we), Hh+P=1

there can only be a finite set of values a«, such that o, > RE(&)
R,(£,)- Now, by Theorem 23(d), R¥ is an increasing funetion ol
a,, and hence of &, Thus by an appropriate choice of @y (while
@y remains fixed, though arbitrary), the inequalities

(7.88) o, < Ry(&,) (6 =2, 8, v

will hold, On the other hand, there must be an inlinite sel of
(nclloon ¢ wuol that 2, = R¥(E), according to the assumption just

;M be chosen that (7,88) holds, while at the
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same time there is an index ¢ = §(2) among the latter set that
satisfies

ey < By(&im) < 2oy

Since &, = 2, we have R,y(&;s)) = @y, so our statement, is true.

Now let (7.87) hold for an arbitrary value of n. The argument
is the same as in the case n — 2. For any provisional couple of
values (z,.,, #,,,) there is a finite set of indices ¢ > j(n) such
that «; > R,.,(&,), whereas there is an infinite set of these in-
dices such that «; > R,(§,). Hence, by an appropriate choice
of #,,, (while @, , remains constant, though it still has an ar-
bitrary value > w,), we can obtain «; << R,.;(£,) for all § > §(n),
whercas there is a particular index 2 = j(n + 1) such that

R (&) < o, < R, 41(&) < 2« In this way (7.37) can be satisfied,

for n + 1, and hence for any valuec of n.

By (7.87) we have o, << R(&,) for 1 < ¢ << j(n) (since R is
included in the strict sense between B, and R), i.e. we have
w; << R(&;) for any value of <. Now R(x) tends to zero as @ — co,
since «;, — 0 as ¢ — oo, hence the theorem is true.

It was the aim of this paper to get some information about
completely monotonic functions that decrease arbitrarily slow
as & — o0. The results, as seen from this point of view, are rather
scanty, and no doubt much work on this subject remains to
be done.
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SAMENVATTING.

In dit proefschrift werden functies #'(z) onderzocht, die buiten
de coupure z =< 0 voorgesteld kunnen worden door een integraal
van de gedaante (1.05), welke gedaante een uitbreiding is van
cen door Stieltjes onderzochte integraal.

Er werden eerst enkele algemene ecigenschappen van deze
functies afgeleid. Voor z > 0 is iedere K volledig monotoon.
De afgeleiden in het punt = 1 konden met behulp van een rij
momenten van Hausdorff worden uitgedrukt. De inversie van
de integraal (1.05) voerde tot een uitbreiding van uitkomsten
van Stieltjes en Hilbert. et geval waarbij F op de coupure
2 = 0 holomorf is op geisoleerde singulariteiten na werd onder-
zocht. Bir werd aangetoond dat de gevallen, waarin cen F een
asymptotische ontwikkeling toelaat, nauw samenhangen met het
momentenprobleem van Stieltjes. Onderzocht werden nog voor-
stellingen van een ¥ door een reeks van Newton en door een
kettingbreuk.

Daarnaast werd het probleem behandeld, de functies F te
bepalen waarvan de waarde in een onbepaald aangroeiende rij
positieve argumenten is vastgelegd. Een noodzakelijke en vol-
doende voorwaarde voor de oplosbaarheid van dit probleem
werd gegeven, evenals een noodzakelijke en voldoende wvoor-
waarde voor de bepaaldheid ervan. In het geval van een oplosbaar,
maar onbepaald probleem konden alle oplossingen tussen twee
meromorfe oplossingen worden ingesloten. Er werd cen indeling
van de oplosbare problemen gemaakt met behulp van het begrip
seraad van bepaaldheid”, waaronder verstaan werd het kleinste
aantal voorwaarden F'(z,) = a,, dat, weggelaten, het beschouwde
probleem onbepaald maakt. Naast de onbepaalde problemen
(van de graad nul) konden problemen van positieve graad en van
de graad oncindig worden onderscheiden. De laatsten vallen in
twee niet-lege klassen uiteen.

Enige aandacht werd besteed aan een correcte formulering
in intuitionistische zin. Hoewel hier niet consequent naar werd
gestreefd, werd b.v. toch van het bekende theorema van Helly
geen gebruik gemaalkt.

Enkele toepassingen werden aan het slot behandeld, doeh de
meeste van deze uitkomsten waren reeds in de libteratuur bekend.

STELLINGIN,

1,

Zolang men onder wiskunde geen complox Vi welensehnppon
wil verstaan, moet wiskunde opgeval worden whi sndereook vin
het aftelbaar oneindige. Aan de heuristinehe wanrde v hol
bekijken van aanschouwelijke continum doet dess Sirnswiise g
afbreuk. De continua kunnen dan echter niol iy pustysrsame
lingen worden beschouwd.

1.

De studie van de wiskunde herinnert de mons ulbdruliealiji
aan zijn nietigheid, overtuigt hem van de ondoorgrondelijihsid
van het oneindige, en bezit daardoor religicuse waarde,

I11.

De bewijzen die op een descente infinte (Fermat) berusten
kunnen in negatievrije vorm worden geleverd.

E. LaNDAU, Vorl. iiber Zahlentheorie, 1927, T p. 122, 111 p, @07,
@G. F. C. Griss, Proc. Ac. A'dam, diverse mededelingen i e
laatste jaren.

/8

Het dertigtallig stelsel verdient de voorkeur boven het tien
tallige. Goed herkenbare cijfertekens zouden verkregen worden
door in de cijfers van de eerste decade een laag- resp. hooggeplaatste
horizontale streep aan te brengen.

V.

Het verdient aanbeveling de afgeleide van de orde o van /(i)
te definiéren door

1 b :
119(2) = i t’L)J‘ =% (e 1)) dls

i

Mvunr alle redle @, do integranl in hot rechter lid



bestaat en 0 << « < 1. Voor bepaalde onderklassen van de aldus
gedefinicerde klasse {f} kan hieruit {'*(@) voor andere waarden
van « door analytische voortzetting worden afgeleid. Het streven
{@ voor cen zeer uitgebreide klasse van functies te definiéren
moet als ondoelmatig worden beschouwd.

VI.

Waarschijnlijk is het mogelijk stelsels integraalvergelijkingen
van de eerste soort, van het type (a) uit dit proefschrift, en met
kernen van een veel algemenere gedaante dan in de tot nu toe
behandelde gevallen optraden, op te lossen volgens de methode,
die Stieltjes al heeft toegepast, waarbij van de complexe functie-
theorie slechts een bijkomstig gebruik wordt gemaakt.

VIL

Het in dit proefschrift behandelde interpolaticprobleem kan
‘worden uitgebreid door de functiewaarde voor te schrijven voor
de argumenten

200t

Bpypg — Ty CXP >

waarbij: p geheel en constant; ¢ =0, 1, ...p —Lv=1,2,...3
0 <y, <& <... m,—>® voor ¥ co. Nieuwe gezichts-
punten levert een dergelijke uitbreiding feitelijk niet op; met
‘name gelukt het niet, het mogelijke optreden van cen onbepaald
geval door een geschikte keuze van p uit te sluiten.

VIIIL

Door Grommer zijn noodzalkelijke en voldoende voorwaarden
nangegeven voor de realiteit van de nulpunten van een gehele

functie van het geslacht nul. Waarschijnlijk kunnen deze voor-
y mden ook zonder van de kettingbreuktheorie gebruik te maken
worden afgeleid. Voor wat betreft de realiteit van het absoluut
: kleinste nulpun

t is dit zeker.

J. Grosmug, Ganze transzendente Funktionen mit lauter
reellen Nullstellen, J.ld.rua. Math, 144,

definitie van een eenduidig g-em-idﬂ'g;a o ml =
van het keuzepostulaat of van de tweede
is.

Zij f(t) voldoend vaak differenticerbaar voor & 0,
x ol '1'1, .
1 s |
Ck(m) - ;J {f”ﬁl(t)}adt, € = lim sup ak(m) fh
0

Voor het geval tevens f(0) = j'(0) = 0 heeft men
¥

clﬂ(m) <4 G_u(.m) Cﬁ(m)! I *
en het is niet mogelijk de constante 4 door een klei'nm-ﬂlha
vangen. Voor iedere tweemaal continu differenticerbare funotie /
volgt hieruit Ping i

DR A
doch volgens een in '89 geleverd (nict-gepubliceerd?) bewijs viin
Carleman heeft men '

o =0 Oy +

s |

Waarschijnlijk is de variaticrekening een ongeschikt hulpmiddel {

om deze laatste betrekking te bewijzen. i
Harpv-Lrrriewoon-roLya, Inequalities (1084), p. 175, 18T,

XI.

Indien de grootheden ¢, en ¢, nit de vorige stelling eindig ﬁgm
geldt dit ook voor de grootheden ¢, voor 0< k << n. Stelt men

¢ = lim ey (ar)
B

dan kan gevraagd worden wanneer de existentie van ¢, <
dic van ¢, voor iedere willekeurige (ook niet-gehele) & ten ge
heeft. Vermoedelijk is hiervoor nodig en voldoende  dat
gereduceerde momentenprobleem

ep = | urdp(u)



materinal voldoet aan de eisen die voor een periodenonderzoek
moeten worden pesteld. Zonnevlekken vormen voor een dergelijk
onderzoek geen geschikt object, en tegenover de uitkomsten die
op dit gebied zijn verkregen is cen grote mate van reserve ge-
aorloofd.

XVIII.

Uit de waarnemingen bij spectroscopische dubbelsterren volgt.

niet, dat de snelheid van het licht constant is en onafhankelijk
van de snelheid van de liechtbron.

W. pE Strter, Proc. Ac. A'dam 15 (1913) p. 1297,
16 (1918) p. 895,

XIX.

Bij de interpretatie van waarnemingsresultaten is het juister,
met alle effecten rekening te houden waarvan het bestaan rede-
lijkerwijs kan worden vermoed, en liever te veel onbekende
parameters in te voeren dan te weinig. Het principe van de
cconomie van het denken, dat in zulke gevallen gewoonlijk een
woordje meespreekt, heeft in dit opzicht een hoogst betrekkelijke
wanrde.

XX.

De wiskundige ingewikkeldheid van de natuurverschijnselen, —
die de ingewikkeldheid van de gangbare natuurkundige voor-
stellingen verre overtreft —, maakt de inductieve methode tot
een inadequaat middel voor het beschrijven van toestanden en
het formuleren van natuurwetten. De wijsgerige conclusies, die
op grond van inductief onderzoek werden getrokken, zijn alleen
daarom al onvoldoende gefundeerd.

In overeenstemming hiermee dient de theoretische natuurkunde
als een deductieve wetenschap te worden behandeld, die, ten
nauwste verwant aan de Fuelidische meetkunde, uitgaat van
duidelijke primitieve begrippen en evidente axioma’s. De meeste
van deze axioma’s zijn een uitvloeisel van het verzamelings-
theoretische bekijken van de natuur, d.w.z. ze hangen samen
mel ong inzicht in de ,natuurkunde van het oneindige™, De
moeilijkheden van deze opzet komen vrijwel alleen door het te
kort sehieton van de huidige analyse, De ervaring hooft yoor oen

-
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axiomatische behandeling nauwelijks betekenis, mane iy wel van
beslissende waarde voor het achteraf tootsen van eventuele
theoretische resultaten.

Zonder enig verder model kunnen de volgende uitkomsten
worden verkregen:

(a) Ken beschrijving van de natuur is mogelijk door ann fader
ruimtetijdstip een constant aantal onafhankelijke scalaire velds
arootheden toe te voegen; deze zijn analytische functios van de
LEklassicka::) cobrdinaten; het genoemde aantal hangt nauw saiien
met de structuur van het heelal.

(b) Het aantal onafhankelijke veldgrootheden bedrapgt  ten
minste 5, en vermoedelijk ten minste 6.

(¢) Er geldt een analogon van de quasi-ergodenhypothese vin
Ehrenfest. Men behoeft hiertoe slechts de punten van een fasens
baan, die een fasenruimte overal dicht vult, te vervangen door
toestanden in bollen met gelijke straal (of in andere gebieden),
waarvan een vierdimensionale variéteit een abstracte constellntics
ruimte overal dicht vult.

(d) De veldgrootheden voldoen aan zekere nieb-linenire
differentiaalvergelijkingen die, wat hun ingewikkeldheid hetreft,
met geen van de uit de empirie geabstraheerde vergelijkingen
kunnen worden vergeleken; deze laatste dienen dan ook te worden
beschouwd als sterk geschematiscerde uitkomsten, die alleen in
speciale situaties bij benadering gelden. Van iedere veldverge
lijking kunnen ongeveer 5000 termen exact worden aangegeveny
daarnaast zijn er ten minste evenveel termen, waarvan de strues
tuur nog moet worden opgehelderd.

Men mag niet verwachten dat het verloop der versehipnselen,
ook a'fgezién van triviale normeringen, door de axioma's volledig
zal zijn bepaald. Met name werd geen enkel axioma gevondan
waarin de richting van het tijdverloop optreedt, zodat de riehting
waarin de verschijnselen zich afspelen volgens deze voorstellingen
nog eeheel onbepaald is.

C, G. G.v. Heri, Proe. Ac. A'dam 82 (1020), p. 14085 B8 (1000)
p. 98, 295.
Id., Proc. Xth Int. Congress of Philosophy, p. HO0-HTL

XXI.

Het opwekken van wisselstroom van zeer lage frequantion kan
wanmolijolijk het best geschieden door de horstels van oen



gelijkstroomdynamo met de gewenste frequentie te laten roteren,
en de gang van de aandrijvende motor automatisch te regelen.

XXII.

Tedere theorie van het gehoor, die de verschijnselen in de eerste
plaats zoekt te verklaren uit de eigenschappen van het oor zelf,
dient uit te gaan van een beschouwing over infinitesimale tril-
lingen in een schematisch slakkenhuis. Waarschijnlijk is de invloed
van wervelbewegingen dan verwaarloosbaar klein, wat nood-
zakelijk tot een variant van de resonantiethcorie van Helmholtz
ZO1 VOerch.

XXIIT.

Vermoedelijk kan door een statistisch onderzoek van de tijd-
stippen, waarop ,spikes” optreden in het electrencephalogram
van sommige epileptici, een bovenste grens worden verkregen
voor het aantal onafhankelijke ,,centra™, van waaruit de spikes
worden opgewekt.

XXIV.

Zeer waarschijnlijk heeft de kennismaking met de getijden
aan de mond van de Euphraat een beslissende invloed gehad
op de ontwikkeling van de godsdienst in Babyloni€é. Deze
hypothese verklaart het geloof in de correspondentie tussen
hemelse en aardse verschijnselen, de betekenis van de maangod
en het feit dat de maanverering juist in Ur een centrum had.

XXV.

Vermoedelijk is Pred. 1:5—-11 door Babylonische denk-
beclden geinspircerd. Het is echter niet nodig de wvoorstelling
over de kringloop van het water in vs. 6 aan Oosterse invloed
toe te schrijven, zoals blijkbaar door Renan werd gedaan.

Tnias @ 198.
. Rewan, L'Beclésiaste, p. 98.

XXVI.

Het kan betwijfeld worden of het individualisme van de
Prediker een goed argument is om zijn geschrift in Hellenis-
tiseho tijd te dateren.

Par, € Vaugsy, Nw, Theol, Tijdschr. 1 (1040) p. 06,




