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Het verschijnen van dit proefschrift biedt een wel- . 

kome gelegenheid, openlijk mijn dank te betuigen aan 

allen die door lering of voorbeeld, door bewust streven 

of ongewild door persoonlijke inyloed, medewerkten 

aan mijn opvoeding en meer in het bijzonder aan mijn 

wetenschappelijke vorming, of die daar althans een 

poging toe deden. Liever wil ik geen namen noemen, 

want door enkelen te vermelden zou ik velen, naar wie 

mijn gevoelens van dank uitgaan, te kort moeten doen. 

 



   
    

      

   
    
   

     

   
    
   

   

    

A class of completely monotonic Functions 

by 

C. G. G. van Herk. 

Apeldoorn 

i
t
s
 

  

Non-negative integers will be denoted by i, j,..., n; real num- 
bers by t, u, 0, 2, Y, O T, @ys C,3 positive numbers that are ar- 
bitrarily small by «, e,; complex values by z = # + iy, w =u + iv, 

— gs =o +r. It will be understood that 

* (0.01) w* = exp (slog| w| + is arg w), 

Sihere the value of arg w has to be fixed. I shall write x = Re z, 
y = Imz, ete. The letter y will stand for a bounded non-decreasing 
function of a non-negative argument; y will be normalized by 
the conditions 

(0.02) 40) = 0, z(t) = H{x(t + 0) + x(t—0)}, 
and the same will apply to z,, %, Ya. If x(t + ¢) > z(t—e) for 

a fixed value of ¢ and for every « > 0, ¢ will be called a point of 
Se ccnent of y. An open interval a < x <b will be denoted by 

( a, b), a closed interval a < a Sb by <a, b>. An empty sum will 
be put equal to zero, an empty product equal to unity. If different 
integrals of the same integrand occur in the same formula, the 

grand may be written only once. 
\ function /(a) is said to be completely monotonic in (a, b) 

if it has derivatives of all orders there, and if 

B) (—)¥%(e)20 (a<a<b, k=0,1,%...)) 
said to be completely monotonic in <a, b> if it is continuous 

, b> and completely monotonie in (a, b). 
or the sake of concision no attempt has been made to make 

his paper correct in the sense of intuistionistic mathematics. T 
hi | speak im of the aloes ee of all Fonothlons ss widesdme 

    

   

  

   

  

      
    

  

   

  

    
    



2 Cc. G. G. van Herk. 

be given. On the contrary, the theorem of Porter-Vitali has been 

used throughout. In the proofs where it has been applied (of 

Theorems 1, 31, 33), it would have been easy to deduce the 

uniform convergence of a certain sequence {/,(z)}P within a 

fixed domain of the z-plane by giving explicit upper bounds 

of | fa(2)—fney ()|, but I left this out, as it seemed to be of 

little interest. Properly speaking, we could do without this 

theorem. 
I am indebted to Prof. van der Corput for Lemma 2, which 

greatly simplified my own proof of Lemma 3. My thanks are also 

due to Prof, van der Waerden for his critical remarks. With the 

exception of Theorems 8—16 and 42—47, this paper was finished 

in 1943, when it has been discussed with Prof. van der Corput; 

by various circumstances publication has been delayed till now. 

§ 1. Introduction. 

The main problem of this paper belongs to the field of inter- 

polation theory or rather to that of integral equations of the first 

kind. This problem is a special case of the next one: 

Problem (a). Let {x,}° and {a,}? be two given sequences. Let 

(1.01) a, > 0; w44 > 2, (a =1, 2,...); @,+ 00 as m— 00; 

Gy 0: (y= I, 2; oss): 

Let K(x, t) be a given kernel, and let K=O for 720, 

OS7S1. Put 

(1.02) fe) = J K(@, *az(d). 
To determine the functions x that satisfy the set of equations 

(1.08) tHe) Sa, (= 1,2) <2.) 

Several cases of problem (a) have been treated in literature, 

I mention the following, including the one that is dealt with here, 

but I am not sure the list is complete. 

Problem (b). If a, =n, K(a, t) = (t-'—1)*, we have a problem 

that is equivalent to the moment problem of Stieltjes [1]. 

Problem (c). If a, =n, K(a, t) = , the problem is equivalent 

to the moment problem of Hausdorff {1], {2}. 

Problem (d), Uf we only add to (1,01) the condition 

i 4 ; ‘ 
11 O84 ee y (1.00) re ™ a @, 
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and if K(w, t) = t*, we get a generalization of (c) that has been 

treated by Hausdorff [1] and Feller [1]. 

Problem (e). If the sequence {a,}? is subjected to no other 

| conditions than (1.01), and if K(#,t) = (1—£-+ t2)"!, we get 

the problem that will occupy us here. In this particular case 

1 ¢ 
(1.05) F(z) = [“. 
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will be written instead of (1.02), The integral (1.05) is convergent 

for all values of s, with the possible exception of the values 

z <0. For the present, the function F will be made one-valued 

by excluding the values z & 0, so that F(z) can always be represen- 

ted by (1.05). The class of all functions F will be denoted by {F}. 

The next problem, which has been solved by R. Nevanlinna [1], 

is closely related to the type (a), though somewhat different 

from it, 

Problem (}). Let {z,}2 and {w,}? be two given sequences of 

complex numbers. Let | z,| <1, |w,| <1 (mn =1,2,...). To 

determine the functions w(z) holomorphic in the interior of the 

unit circle, which satisfy the conditions 

| w(s)| S1 ([z| <1; w,) = 2, (= 1,.2) ore), 

Obviously the theory of the cases (b)... (e) will have many 

traits in common. A necessary and sufficient condition for the 

existence of at least one solution consists, in each of these cases, 

of a set of inequalities 

2) 0 (nis TDi oetale — (1.06) Alps < 5 Bigs yy 

In the cases (ce) and (d) there are, in addition to (1.01), m= 1 

inequalities (1.06) that correspond to a single value n. In the 
eases (b) and (e) there is just one such inequality required for 
every value of m. The explicit conditions (1.06) that correspond 
to problem (ce) will be given later; these will be shown to be 

necessary (§ 8) as well as sufficient (§ 5), 

Stieltjes distinguished a determined moment problem, which has 

unique solution, from an indeterminate one with an infinity of 
i. The terms have also been applied by R. Nevantinna 
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eases (b) and (ec) may be either determined or indeterminate. 

Perhaps this second resemblance between (b) and (e) points to 

a deeper analogy; at any rate, the discussions of §§ 4—6 are | 

much like corresponding ones of Stieltjes. A necessary and 

sufficient condition for the uniqueness of a solution of (e) will 

be given in § 6, where a further classification of the determined 

cases of problem (e) will be made too. 

t Different connections between the problems (b), ..., (f) ean be 

stated: 

(a) If all numbers x, tend to a given value « = 0, (d) tends 

to the moment problem of Stieltjes as a limit case. 

(8) If all numbers z, tend to a given value % = exp (wi), (£) 

tends to a problem equivalent to Hamburger’s generalization of 

the moment problem of Stieltjes. As Nevanlinna [1] has shown, 

the solutions of the moment problem of Hamburger [1], [2] can 

be obtained from the theory of (f). 

(y) If all numbers z, tend to a given value x > 0, (e) tends 

to the moment problem of Hausdorff as a limit case. 

Since various problems are contained in Nevanlinna’s problem 

(f), the question must be raised whether (e) is also in some way 

contained in it. The question is too vague to be denied with 

certainty, but as yet I see no way to solve (c) by means of Nevan- 

linna’s formulae. On the other hand, if we add to problem (e) the 

condition | F(z) | <1 for | s—1| <1, we get a problem that is 

F certainly ee in (f). For, let {(w@) be holomorphic and 

| Hw) | <1 within the eirele | w| <1; let f also be real when 

w is real. Then, by the transformation 

Avo 1— f(w) 

eae 8 care 
there is a one-to-one correspondence between the functions f 

and J? (Wall [1)). 
Mi Now, the condition | w(z) | < 1 in problem (f) has been replaced 

by Lokki [1] by the less restrictive one 

I ifs | w'(a) [Prdrdp SIy< 0, 

a= 

    

  

% 

a it may ab be that problem (e) can be subsumed under 

i's, or even that > two problems are ae eg pis is a 
  

    

    

      

    

   
   

    

   

              

   

     
         
       
   
     
    
 
 
 

   

 
 
 
 

A Class of completely monotonic Functions, 5 

in the expressions (3.27)... (8.30) by more general functions / 
as defined by (1.02), results might be obtained that are analogous 
to the basic Theorem 17, but I am sorry I had as yet no oppor- 

tunity of investigating this question. Of course all these problems 

are very closely related, but it still remains doubtful whether the 
methods of Nevanlinna and Stieltjes are equally powerful, or 

which of these is the most powerful. 
In connection with his moment problem, Stieltjes examined 

integrals of the type 

(1.07) f(z) = J ee   
0 

where Z(00) < o. By the transformation 

(1.08) u=ttA, Zu) = | = 
t 

we get an integral of the type (1.05). Hence the functions (1.07) 

_ belong to the class {F}, and they are characterized by 

[e an 

  

  (1.09) 
0 

As it has been shown by Feller [1], the Newton series represents 

_ the solution of problem (d). The same holds in certain cases of 
(e), and Theorem 48 states a result that is much like Feller’s. 

There is also a remarkable similarity between the determinants, 
defined in (3.44)... (3.51), and those studied by Barkley Rosser 
(1), and one might be inclined to look for more general connee- 
tions here. 

A solution of problem (a) will be called degenerate, if x only 
increases for a finite number of values t, and the problem (a) 
pet will be called so if it has a degenerate solution. Perhaps the 

tudy of degenerate problems is not quite uninteresting. In the 
¢ aso of a degenerate moment problem of Stieltjes, only a finite 
mu imber of the usual expressions A (a, ...4@,) in (1.06) is positive, 

On the contrary, the solution of a de cénabe ts moment problem 
usdorff satisfies a set of inequalities (1,06) with all left hand 
ers positive, except for the very special case when y only 
ex for the ah te 1, A degenerate solution of problem 

it ul 
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6 ¢. G. G. van Herk. 

Without loss of generality we can add to (e) the conditions 

(1.10) =a =1. 

For, if we put 

Z Wao a 
(1.11) a= 7 a (n= 1, 2,.-.), 

the sequences {Z,}%, {@,}? will satisfy (1.01) and (1.10). Now 

if F(x) is a solution of (e), and if we put 

LARS Si. Sali eee 
@aa) 0 o =, te) "| ae 

0 
the function 

7 1 dx(u) 
=a EF sa ees F(a) = a;'F(en) = [7 ae 

0 

will satisfy the conditions F(@,) = 4, (n =1,2,...). For this 

reason the restrictions (1.10) will always be made, unless the 

contrary is expressed. By (0.01) (1.05) and (1.10) we then have 

(1.13) x(1) =1. 

Before solving problem (e), some generalities concerning the 

functions F will be discussed in the next section. 

§ 2. Elementary Properties of the Functions F. 

~ Any function F(z) is bounded in a half plane # 2 E>o. It 

is easy to prove that F is bounded in a much bigger part of the 

a-plane. 

Tegel 
ea 

  
Fig. 1, 

1 ‘ + 
ny i Rmyten A l 

sm— he pari ks 

et the closed region G(e, @) in the s-plane be 

    

    
   

    

  

    

    
    
   
   
   

   
   

    

      

    

   

A Class of completely monotonic Functions. 7 

where 2 = x + ty = r exp (¢?), O<e<—, @>0. Let 

O24 S13.) Then 

o sin é 
L—ttik| == 

| " l= a sine) 

for any 2 in G, 
Proor. The lemma is true when t = 0; let us first take 

0<t<t. By (2.01) we have cos p = — cos ¢; hence, if A > 0, 

we have 

| 4+ re? |® = A? + 2ar cosy +77 2 M—2Areosa + = | A—re~*4]2, 

and 

|a+<2| =| A—re| =| Ae*—r| =| A(cose +isine)—r| 2 Asine, 

or, putting 4 = t-1—1, 

4 |1—t+t| Stisine = fsine, 

hence the lemma is true. Next, take }<#S1. If #<0 we 
have 

[1—t+e#| 2t|y| > 

by (2.02); if 2 > 0 we have 

ji—t+t| = {((L—i + te + 8y)4 > 1 Var Fg = t|2|>4 

(2.03); hence the lemma is true again. 
HHOREM 1. The functions F(z) are uniformly bounded in « 

jven domain G(e, @). We have 

2(o + sin e) 

esine 

      

  

   
    

  

   
   

| F@)|< 

  

Proor. By Lemma 1 and by (1.18) we have, for any # in 

2(@ + sine) 
—esine | sitileg 

         
   

   

  

   

  

               

Gut)» _ alo -sins) 
Va Tin) * g sine J ext. 

MAtigete |       
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Lo 7) 
n 

the sequence {/,,(z)}? converges uniformly, by the Porter- Vitali 
theorem, in any domain G(s, 9). For, this sequence converges to 
F(z) for any z different from the values z = 0, and the expressions 

F (3) belong to the class {F}, hence they are uniformly bounded 

in G(e, @). 

Since F(z) > F(z) as n -> co we also have 

(2.04) F(z) = (—)*! [ Hdx(i) (e = 0,4, 2...) 
0 

1—t-+ iz)" 

for every z different from the values z < 0. 
Turorem 8. Any function F(a) is completely monotonic for 

a> 0. 

Proor. By (2.04) we have (—)* F(a) > 0 for any k and 
a> 0. 

The converse of this theorem does not hold. The inequality 

1 > 1 

U3 0 Sen BL — Fa} 

yields F (2x) = $F (x) for any function F. Now, when f(x) = 2-*, 
we have /(27) = 4/(z). Hence f does not belong to {Ff}, though 
it is completely monotonic for # > 0. 

Trurorem 4. In order that a function f(z) be contained in the 

class {F}, it is necessary and sufficient that an expansion 

  (a >0, 0<t<1) 

(2.05) fla) = © (rose — 1) 
where 

(2,06) c= tdx(t) (k= 0,1,2,...), 

be valid within the circle |z—1| <1. 
Proor. First let / belong to {7}. Since f(z) will be holomorphic 

within the cirele |z—1|<1, it can be expanded in a Taylor 

series (2.05), where 
h) 

Cy (—yo 
—  «@   

A Class of completely monotonic Functions, 9 

Now (2.06) will hold, by (2.04); hence the conditions are 

necessary. Next, let (2.05) and (2.06) hold. Substituting we have 

ee ee) SOG Ne je) = % (—e— uy | tae) = | ae 
0 0 

hence the conditions are sufficient. 

TuroreM 5. The function x(é) in (1.05) is uniquely determined 

by F(z). 
Proor. According to (2.05) the sequence {¢,}7 is uniquely 

determined by F(z). Now, by (2.06), {e,}7 is a sequence of 

moments of Hausdorff, and the corresponding moment problem is 

determined. 

Hence there is a one-to-one correspondence between the fune- 

tions F and y. Two functions F and yz, connected by (1.05), will 

henceforth be called corresponding. 
TuHEorEM 6. Im F(z) <0 for y > 0, unless F(z) =1. 

Proor. Since 

ta P(g) =— uf tay(?) 

0 
[i—t+el? 

the theorem holds whenever the integral in the right hand member 

differs from zero. Now this integral can only be equal to zero if 

z(t) is a constant for t > 0, or, by (1.13), if x(¢) = 1 fort > 0, 

ie. if F(z) =1. 

On the other hand, a function may be contained in the class / 

of Nevanlinna [1], i.e. be holomorphic and satisfy Im /(s) = 0 

in the upper half plane, without belonging to {/*}. An example is 
furnished by f(z) = 2-t— 2. Hence {F} is a subclass in the 
strict sense of J, and this also points to a difference between the 

problems (ec) and (f). 
By Theorem 6, a function / that is not identically unity ean 

take no real values in both half planes y > 0 and y < 0, Sinee 

F(z) is positive if z > 0, we have as a special case: 
Turorem 7. Any function /(z) is different from zero outside 

the half line «= 0. 

Another proof of this theorem is as follows, Tt will be shown 
in § 7 that to any function / there is a function £* of (4°) with 
the property #(a)2*(ae!) m= 1. Now J*(a"t) in holomorphie for
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all values of z outside the half line z1 <= 0, i.e. outside the half 

line z <0. Hence F can have no zeros for these values of z. 

I now proceed to the inversion of (1.05). Any algorithm that 

solves the moment problem of Hausdorff will yield an inversion 

= formula, which is clear by the proof of Theorem 5. However, 

z(t) can only be expressed in this way by means of the values 
F(t} (k = 0,1,...). Of course the formulae may be transformed 

. afterwards into results of a more general type. The formulae 
given here are of a different kind. Theorems 8 and 9 are results 

’ of Stieltjes [1] and Hilbert *), extended to the class {F}. Though 
Theorem 9 may be considered as a limit ease of Theorem 8, an 
independent proof of Theorem 9 will be given. 

TrHeoreM 8. If 0<r< oo, 6=(1+7r)", then 

tg 1—0 of 1 dq 

f SO) 4g | AO = — © him tm F(z)dz 
% e>+0 

a B 1—0 —r+tie 

for any function F; the limit in the right hand member exists 

for any r. 

i Proor. Using the proof of Theorem 2, it can immediately be 
shown that the inversion of the order of ae 

: [Fee = j wf —* 5 
—rt+te Be iie 

is legitimate. Hence we may write 

  

da 
é) =— F = ee 

a” tm for eo f tn f | 1—2t + tx + ite|™ 
—r+ie 0 

Putting 
Yt te A=t du 

08 u = ————_, o(t,e)= | *# 7 (2,08) a oe eee 
1-1 

+e 

we have, by (2.07), 

(200) (oy = [ 289 ag 
0 

panveb o—0 O40 (ne Ved 
i si J wtf oe (a | 

  

l=Ve ai 
we » a ot 8 psa) ad we, * 

PRS: UL i Lim * ye ere S BOM i Paihia Ti i) ie SY oh BH rail) 
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Let the integrals in the right hand member of (2.09) be denoted 

by Jp--s J. If t <9, we have, by (2.08), 

  

2 du 2 du te 
ote) < | =< | fo aS 

1-19"! 1-19 
te té 

and hence 
—Ve (i-Va)8 

(2.10) Jy < e[" oy Ss Zafe a, dy(t) = O(r/e). 
0 

We also have p(t, €) <= hence 

o-0 d t 

(2.11) jee | oe = 00): 
a—v ed 

By (2.08) we have 

Y Ege. 0) 7(8-—9) ? du 

oe 
F) Taha 

itu   

0 

_ x0-0)—1(80) fx p?_ du | _ex(9+0)—x9—9) | 9, 
— 7 a i+e) 2 o ’ 
L 1-8 
f be 

and this may be written, by (0.01), 

}-+0)— x(0 +0 dy (t) 
(aaa) f= at FM) 5 oan fA + Ol) 

é : 

If t >, we have p(t, ) <2, hence 
v 

fm caf BHO oy 
       
   

    

        
   

  

   ‘0 dy(t 
(2.14) Ia<af FAD o(4), 

1-8 

Tf in addition we have (1 + ae <ts1— vs, then 

im ee: 

1+ an fae ut 

et 4 pen) pie it ang 
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sa ie edu te (1 +-/e)de 
elites (age ae ve 
“ to—1 

mon: 

  

  

    
hence 

plt,eé) = a+ O(vV/e) 

           

  

and 

(2.15) Is= af ee + O(+/e). 

(1+Ve)d 

Finally we have 

(2.16) J, = {x(1)— 

1-9 a! 

t \ . 

i = FG) x0 —0)) +000) = Sf 29 4 04, 
1—0 

Now by (2.09)... 

0 Q4+Ve)8 1-0 
which proves the theorem. 

(2.16) we obtain 

oe hat 
: 

  

      

     

   
    

    
   

    

   

     

   

     

A Class of completely monotonic Functions. 18 

extended along the path AB + CD (fig. 2). If this path is replaced 
by CEB, a slightly oe result can be obtained, viz. 

Vdy(t) _ 
(2.17) “PF (re?! \eP'dgp. 

J ai 
t eats 

—n+e 

The proof can best be given in a direct way. 
TuEoREM 9. Suppose (0.02) to hold for 0 <%< 1 only, and 

define y(1 +0) = (1). Now if 0 Sr < @, and if we put 
@=(1+ 7)", then 

HO 8) HOO) she de He), 
do €>+0 

The limit in the right hand member exists for any r. 
Proor, First take 7 > 0. Putting 

a ; ve 
(2.18) p(t, ¢) = 1— a1 +7) ae ie 

we have, by (1.05), 
1 

19) ie F(—r +42) = J w(t, e)dy(t) 

(1— Vs} lene (tev e)P (14/8) 1 

eo ee 
(l— Vv s)d (l—ev's)0 (1tev6)d (14+Ve)0 

_ Let the integrals in the right hand member of (2.19) be denoted 

y1---Js- If 

     

  

     

    

   

    

|1—t1+r)| = Ve 

we have, by (2.18), 

| p(t, e) |= jee abs | > | — +r) > = 

hence | (t,¢)| Se and 
(1—V e)d 

|n| sve | dx(t) = O(v/e), 
0 

   1 

| Js| < ve J dy(t) = O(s/e). 
(14 Ved 

The 

Ho, : 4 q me po i ° a - ™ 

UJ 7 J Ld 4 ° 

1 
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a hence 

= | p(t, e) |? SL +7) 4+ &, 
= eee TAS. ef s)0 

~ [nl s Varn se [ Ol) 
(2.21 | 

  
  

      

(a—ve)O 
(1+ /8)8 

l\Ja| SVQ 47)? + éf * dy(t) = o(1). 

} GteV/e\t 

Finally, if 
|1—#(1+7r)| Seve, 

F and we have 

L i 1—t(1+7) 1 |1—z#(1+r)|  |#1+r)—| 
ae —_ =< =O : 

w(t, eB) ok-tr 28 Ts l+r|_ & 1+r ; (ve) 

and since y(t, ¢) = O(1) as e-> 0 we now obtain 

i ve) =1L+4r+ O(ve), 
z : hence 

- (+eved (L-+eV ey 

; pap arrrocvetany=atn [ax +01ve) 
_, (l-eV e)O (eV eld 

. or 
# + 0)— x(#— 0 - (2.22) I= es + 0(1). 

(2.22) we have 

ieF(—r + te) = aa 

. Now, by (2.19)... 

+ o(1), 

    

which proves the theorem if r > 0. If r = 0 the proof is similar. 

            
   

  

Using (2.17), we ean now discuss some elementary properties 

: of the functions F on the half line z <0. If, in the folowing 

theorems, F(z) is investigated within a domain D of the #-plane 

that also contains a set of values x S0, it will be understood 

that appropriate intervals of the half line ¢ 0 have been ex- 

cluded from D in order to make F one-valued, 
nese 10, Let " malas = %) a ~ pane 

    

an 
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Proor. First let & be holomorphic in (—7,, —7,). Take 
7 <r<r,g and put = (1+7)". By (2.17) we have 

lease ee =5,| Bie 
0 Jel=r 

where the integral in the right hand member is taken in the 
positive sense. This integral must be independent of 7, hence 
z(t) is constant if #, << t< 0,. The converse is an immediate 

consequence of the definition of the Stieltjes integral. 
TororEM 11. Let r, >0, 3, =(1-+7,)"'. In order that 

F(z) be holomorphic within the circle || <7, it is necessary 

and sufficient that y(t) be constant in (%, 1). 
Proor. First let F be holomorphic when |2| <1. Take 

O<r<r, and put @= (1+ 1). According to the former 

proof, (2.23) holds; hence 

fet 
: t 
ob 

which proves the condition to be necessary. The converse is trivial. 

TuEorEM 12. Let 7 >0, 8 = (1+ r)-!. In order that F(z) 
be holomorphic when | z| > 7, it is necessary and sufficient that 
x(t) be constant in (0, @). 

- Proor. According to Theorem 10 the condition is necessary. 

Next, if z(t) is constant in (0, #), we can write, by (1.05), 

dy(t) 
{ee 

(2.23) 

<Q) 

1 

F(z) = x(+ 0) + [ 
a0 

- Since the integral in the right hand member is holomorphie 
for |x| > 7, the condition is sufficient. 
TurorEM 18, Let 0 S7r<o,. Put @=(1-+7)" and 

x1 -+- 0) = x(1). As in Theorem 9, (0.02) is supposed to be 
valid a for 0 << 1. In order that the value z = —?r be a 
pole of F’, it is necessary and sufficient that = @ be an isolated 
int of inerement of x. 
Proor, First suppose r > 0, When 2 = —7 is a pole, the 

funet ton PB is holomorphie in the intervals (—7—e, 7) and 
te), i oe ts pee shaseoeh small, ae aie to 
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ma Te raeae 
16 = 6. a. Gy van Thor 

(6-4-0) —x(0—0) cP dy(t) ee eae Be ANAL CT NID i—t+& 
Ove, 

Since both integrals in the right hand member are holomorphic 

in the point z = —r, the remaining term must have a pole there. 

Hence x increases when t = 9, so the condition is necessary. The 
converse is trivial. 

For r = 0 the proof is similar. 
Turorem 14. Any pole of F(z) is of the first order with a 

positive residue. 
Proor. Let s = —-r be a pole of /; by Theorem 2 we have 

y = 0. If we put # = (1 -++ 7), the value t = # will be an isolated 
point of increment of y(t), by Theorem 13, Hence (2.24) holds, 
which proves that z =—r is a pole of the first order with a 
residue {7(0 +- 0) — 7(9 — 0)}0-, which is positive. 
TurorEM 15. In order that F(z) be meromorphic it is necessary 

and suffieient that the set of points of increment of y be denum- 

brable and have a single cluster point t= 0. The formula 

0, =(1+7,)+, r, =—2, determines a one-to-one corres- 
pondence between the poles z, of F and the points of increment 
@, of x. 

Proor. If F is meromorphic, F has an infinity of poles 

%, (m = 1, 2,...) on the half line zs 0, and the sequence {z,}° 
has the value x= o as a single cluster point. According to 
Theorem 18, a jump of y(¢) for the value t= 8, = (1 + 7,)7 
corresponds to the pole z, = —7r,, and the value ¢ = 0 is a single 

cluster point of the sequence {#,}?. According to Theorem 10, 
% inereases for no other values of ¢. Henee the condition is neces- 
sary. The converse is trivial. 

Turorem 16. Any function F that is meromorphie can be 
represented by the series 

=) “8, + 0) — x(8, — 0) fp Fiat) 422 
where the summation has to be extended over all poles %, = —r, 
of F, and where #, = (1 +7,)7, 7(1 +0) = (1). 

Proor. The theorem is an immediate consequence of Theorem 
15, and of the notion of Stieltjes integral. 

The series (2.25) converges absolutely and uniformly in any 
domain D of the zplane, if we exclude terms that have a pole 
in D, Kyidently the representation (2.25) also holds aphon, of as 
rational, Hanpe any rational selitige ol ae (e) iy segs 
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Let us first discuss the determinants 

(eon) DEP tr) 
= | Lei meee : fe 

(e.02) Da(e pr] 
2 

(8.03) D Ce 3 ae) us ats 

1 &; 

ly monotonlo Punotions, 

1—4+44, 1—t+tF; °” 

"1—44+46 1—%+4 6, °°" 

  

§ 3. Existence of a Solution: necessary Conditions. 

ae 
1 —ty Fb Fy 

  

’ 

(heel Sm) 

m 
1 

1—t,,+tné; 

  

(deh... 2m) 

of 
  =|), Ei, ellen eea, 

    
   

  

    
   

    
    

   
     

   

- (8.04) oe ae) haste 
ey ee 

= Gite = ay Gys 

The following formulae hold: 

Ben) Df) 
= & 

ay §, oes Ete A 

  
i dyn, (Ie) 

  

(oor) {firs Sna) 
Tere tin pa 

i 

1 —t, st te; 1 — bent te, iho Lhasa thinners 

Me b+ bE, i—e-+ tak,’ nea 

, 1 —triatterage Pe 

Syelaes Si i mp 22° Qm 

(8:08) D ie De ab eg 

Bedi. (h)|2, 8... ent, Ly Ey ov oy GHP}, mist 
“i : : Ltr tenrds 

  
' 

(Geel Mime ty 

ef 
1— ORB < ehl) 

ert 
I tbe hu a , 

éy | 

1 — bit tn we (feeds tm) : 

           v 

  

  dat) Ly fis vey GOH, 

,08) Delt feos) 
Lieut 

  

   

Ltr ttaage   "1 tia Ptniade (mdse,    

  

    
     
 



   

  

18 C. G. G. van Herk. 

where 0 <k <™, except in (8.07), where 0 [hk Sm +1, and 

where the expressions d,,(/), d,(k) are defined by 

  

  

' 

aa—ay* it I 4—h (6,08) d,,(k) = ("= ee 
| ; it ic aepag ee 

; A=14=1 

’ x m—1 A 

Pi (4) II 1 @=*, 
(8.10) dz,,(k) = (—)" Son 

TL LE ——% af t.&;) t=1 A=14-1 ty 

i, A=1 t=1 

I . m ASK i (1 — t,) k mil f,—t, 

(8.11) demi) = ("a emt teidq=iti a ay II Tla—t + 4§:) 
A=1 i=1 

; il ‘i lee i(1—t ‘ pas A tl il Ge 

  

(8.12) Boni) ai (ee kb 2m+1 

T Wa—sA+ &é) 
A=1 t=1 

: The proof will be given by induction; (3.05) is true when k=; 

i let (8.05) hold for an arbitrary value of k. By putting factors 

outside the determinants and by repeated substraction of columns 

we get 

1 2:9) 5 os) =z dy (K) 

I (1 — ter a trie) 
i=l 

| ko brett OG tesasis §(l1—tyat tey18i)s OE | grt st tesaSi)» 

jeaiareay| ey 

ty ces by 

   

   

  

ea — bp “te trrSi)s won smal that tnsaSe)s Sh 

L—tpya + tradi gee T— tyr + teaake va gmt 
t L—ty + binFs Want... 2m) i 1— tra + trade , 

Ls k 
= dy m(He)tprea(h bicsa) aly &,, ong fs, pyre ©) 20,89) Brae, é, 

tit —tyia tb tare) 
tal . 

     

    

   

     
    
     

      
    

    
      
    
   

    
   
   

     
    
   

A Class of completely monotonic Functions. 19 

jl 
E = Ya nl Bip a(t = brega)* Ly Ey oe oy ETE, tnta— tera 

: t 
: Hts Fen 41 Es) ae , Fa! 

Erte 

x , 

ae Ente + tops ce 

  

  

  

  

  

  

bin — nga j ge 

th, L by tyes emtecn) 

(Sant — tea tha 
Qn mo 

= t 
Ta as baat ng; brits) Aone 3 

| E 4h c ia Ly Ey... 6 t*, ———*+___, ,,., ———_*+#_____} 
ae . i—tee + ties - Tt, + 4 eslear ae 

! Eer1 Em-1 

ym (k +- 1) 15 Si. trey gare : peeing $ ’ 

1 —ipio + tered; L—ty tty §; \(tmt. 68m)   

hence (8.05) is true for any hk. The formulae (3.06)... (3.08) 
can be proved in a similar way. Giving k its maximum value 
m or m -- 1 we get 

(aay (>) 
     1, & ye ey age i= ba 

a= (—)" m 5 : saEm) I ga —_y I (4—t,), 

IL G—4 +48) °* Lind ae 
A=1 t=1 

(8.14) D* le a | 

   

  

    

Le oe 2m—1 i. m 
& [Us in 22 E™ |e... 20 Thea ay aE (t4—ty)s | m 2m a 

TI Il (l—t, + t,&;) =1 1sp<Asm 

Am1 t=1 ' 

Be, Rota ae os: 5) p(™ @m-bt 
oie) 

LAs Boy 9» FO loot. amet) TL at] —aye-1 TT (tatu )s Mb Lh meted 

, il Il (1—t, + &é,) Amt Ispu<ham+l 
Amt tet 
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Bh. th Met: (4y,.....%, ) be a permutation of the set (1, 2, . . 0), and 5 

met mm (ity .. ep) be equal to 1 or — 1, whenever the peli eeion D sgn(y..- ky) IL gee (1—t,, 

(ley, «++ Ky) is even or odd. The product (0) Aa1 

Te (%j—2) 
= [195 (1g), B21 (1G). GL) ane 

bi oe 
mare yi | 1su<d rad 

i 0 

<ASo ) eed [at g LG a" 

transf i is ransformed by the permutation (f,... to) > (i, 2b .) into 2 

IL (ti, — t,) = sgn (k,...k i) I Ge a 
= (—) #2 an Fe tf 1 lima... » Att (1 —y)" 

  

   
    

1sp<ASog oi su<dso a c 
; 

{gg—1) is aa Pe NG 

c,, Hence we have, by (8.13)... (3.16), ; ea Sac) the i ay ae 2 A in) 

BE. ; Hence, a ia ¢, 7) me to (m, 1,0), (m, 0,1), (7 +1, 0,0), 

(i: oy z 
(m, 1, 1) successively, we obtain 

nt 1 m 

f Hl (&,-—&) ; . x s n—}+1 qs = 
is Bs Cepek I +1 (1 —t, 1 (yentm—v TT ty Il (4—¢ 

=) son (ky. . n) oe Tl mts ee a (i—i,) (m) em ee i) —) A=1 So 4 ws 

. "i I (Lt Beye 1Sp<dsm si sien ae oe 

2 A=1i=1 2% sgn (hy. .- Km) i Ge ea y=(—) Ta—f) (ta —ty)s 

4 
(im) eh A=1 lsy<dam 

pa(: fen) Y son (ky... Iewsa) it a A+L (1—t,, 4 = (jane Tl (t4— ty)s 

Z iy * (wt) 1su<Asmt1 

Bale | on a (G.=<8 ) 
m—, "1 

= ng (+ en) asta Theta yt: Xsan (hy «++ Km) Tag ah a(n 0) 
qh a me) ‘s | 

Hs 1 i (l—& + 4§,)"" 1sp<dsm 4 and, by (8.17)... (8.20), we finally have the identities ] 

a 

| 

(a9) D( i fan ue 
(8.21) 2X ae ) 

| , i a (m) by, : } 

Rey eats 
Mee) 

7 Ble tl. ae) neal . | ae (.amierch _istesstm il ty Tl (t; —t 2, 

Ag (hy wars oe oa a Il ea 4 ll (iz—t fs ; Tt. Heth ep) Awd «eaten a 

_ i i (I—4+, jae =1 1s¢<ASm+i 
Aeli=l 

bs ay § 

ve: 
% Boe) oe Dt" Le 

(3,20) a 1+ Fy 7) ! fe, Vig “7 

evn «ty, 
II (§ ona §;) mn 

Dei) a = (—) nin) _tstsieie ___— [If (1—) _ il 
diss ck a Tet-4+4(14, Me U Tl Ta —m+4g) Awl lsy<Asm 

t—f,)), i 

Ti i (l—t,-+ ty; is ei ay) . fet teed 

Awl ted 
Zs , 4 

, 
¢ ( » dD aye) 8 samt) 

ermutation
, ee



mo tes se Lem 

= (—)Yemomen 1st¢<is2m41(8;— &:) a) OT 
Te Wis ee 1Su<dsm 
A=1 t=1 

From these identities it is easy to obtain a set of necessary 
conditions for the existence of a solution of problem (e). : 
_ Tunorum 17. Let N = N(x) denote the number of values, 
for which the corresponding function zy of F increases; hence 
N < wif and only if F(z) is rational. If N < 00, the set fe Ans 
of values t = t,, where y(t) inereases, is supposed to be decreasing: 
(8.25) ee Fhe SU an: De CO: 

Let §,>0 (i =1,2,...), & #& if i #43 put 

ec) F(&,) = a, 
27) 4G... fn) =(— 

PiP.28) 4*(E, ... £5.) =(—) 4m |1, , 
—) 

Yam(m+1) | L. E 

(8.29) 4(&...é m41)=( 

(8.80) "4" (8) ««- Samia) —=(—) 2" | 1, &,, 
If no ambiguity is to be feared, we shall write 

(8.81) 4, = A(é,...&,), 4* = A*(E,...&,). 
We then have the equalities 

_ I (S;—§,) pt 1 Tt, I (4+, 
(8,82) Ag = VStSIS2m lesa A=) 1Su</AEm 

m! 

Yom (m41) | ee 

o 9 TT WTa—t+4%é,) 
A=1 ¢=1 

eo _ 1sSt<is2m =1 1su<hsm 
am a = 

m! : 

I ee a II (4—t,)? 

‘ (l—t + 48:) 

a pe ete i e el 
Ne 'h wal TP avers 

A=14 

o o II Il (—&+4£,) 
Awl X= 

mm 

Tl t,(1—t are 
(c a Dy ig 

—1 i 

wey Gp 'y Ohgy Heb jy vey HEF Ee 
—1 

cssee  » Ogbes we> veey UEP legates 
m—1 

sees & 2 hey aE, seep age [eee lgattays 
Mm 2 

ves Fs HE, His, oes age lester 

2m) > 

«2m) 9 

m ee) oes dz (Em) 

2 Sa age dy(t)).. dx (tm), 

m 2m—1 ay(t,) Sin /a8: AX (Lin), 

and in particular 
oe 

(3.36) Agm=A3m=4om—1= emia = 9 if N(x) << ™, : 

(8.87) Aem=Aknss =9 if M(y) =m Tm = 0 

(3.88) At, —Ata=0 if Ny) =m a= 1s a 

(3.39) Axnti = 0 if N(x) =m+1, T mp =O Ty 
. amt 

Moreover, if 

(3.40) 
é; << Ey (a ae al 2, oe i 

we have the inequalities 

(8.41) A, 0p ALSO Wa ae Ds 

if . . (8.89). 
in all cases different from (8.86)... (3.8 

Base, By (1.05), (8.26), (8.27) and (3.31) we have 

; f dy (t;,) 
m—L —$————— 

Aan (ymin 1, Eye 2 093. Se 1—t,,ttr, : 

9 
+ dy(tin) . 1 dy (ti) gmt { tile) | » 

bl ee i ‘ I—ig,, +e, Fi Medes Bm) 
0 

where ky, - ++: tm can be any numbers. Hence 

+ dy (tig) i esa J 1 : 

6 

é , didtrs) see en [. Vitltnn) & | , 

4 14, +h,F: : L—Ejegy TF btegn $4 (Ged oo 1m) 
0 

ion i tations (Jt-+ +m) 
the summation is extended over all permu 

oie Eatiee (1... m). The right hand member can be written 

as an m-fold Stieltjes integral: 

Agm= 

{ein A 7 ao 3 |}. ste giant 

Bag (ons | deltth-« Wetn) 3 Toes 
0 9 

1 &; ae | ‘ 

Tt, Fike l—tgttyfe Lote t Ham Ss |(bd vsti) 

hence, by (8.01) and (8.21) we obtain (3.82), The proof of (8.88). ‘ 

(8.85) is similar 

4 
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are), if th e ing i ' ), so ieee integrands vanish for all combination 1490 bm) (T1204 %), where | : 
_ 2 * Tn) 2 Ti +++, are any values, dif- m Coon, en another or not, for which 7(¢) sat tonics tt ” 

v8 true, whether F is ration are. 
8 tr al or not. If N 

: ! ; <m 
oo of m values Tt must contain at least De han that equal, hence, owing to the factor IT (t,—1,,)?, these i ‘ vanish for all combinations ( aepdie Gass 
eo SAG ot ), which yields (3.36). al we uy ‘a se always possible combinations where the ues ent from one another. In thi it i 
es. : Is case, it is onl o eT factor It, or IT(1 —%&) that an integrand can varia E s 4 combination (z,,---7;,), and this requires that =e be lie to zero or unity. Evidently this leads to te oe OT)... (8.89). In all other cases (3.40) implies (3.41) ; 

, I S oe to the conditions (1.01) and F(w,) =a (n=1 »+++) OF problem (e), In the rest of this section the rota ; 
of The orem 1? will be used throughout. Let d a) be a solution 

(e), 1 let us put 

(8.42) D, (| F)=A(w, o,... ®,), DE (el F)—A*(a, ®...2,) (n=1, 2 ) 
. By (8.27)... (8.80) we can write 

( 43) D,,(o| E)=—P,(@)+0,(@) F(a), Dy (a|F)=P%(z)— 20*(e)F (w) 
V here the expressions mor 9 Oe de C ° - g E y 

(8.44) P,,,(~)=(—)%mimenya | 1% ++ a", 0, 0, ..., 0 

  

n m—1 
Li, Wig ee ay vs 9 By, AX. «, a,x; (f=1...2 s =1...21m) 

(8.45) Qa m(a) = (—) 4mm +1) 0,0, .. +> 0, Bs sls 1 @™ 

Gaara > Wes 9 Vy a, Bilis oo vy any ((€=1.,.2m) =1.,..2m 

om , 
(8.46) Pen w) = (—) Am(m41) L; Ds elalag a's 0, 0, eH 

’ 

1 Li, oo ey ay, az, A235 seg avy 

(8.47) Of,(@) = (—) Hinton Br ty xO She iy os a | 
Ate oles vi, a;2;, BPP nay ay t 

  

(i=1.,.2m) 

  

(AB) Pyyia(tr) = (—)hmimay| 1% --2",0, 0, ...,0, 
I Vis AS) ae, 4a,; a; Xs oa 84 ae; 

(HAD) igi y (a) (—) Amem—a) 1 WpOene0, 1, a... ., a 

1, Biss vey wr", By, Ay Vis oo os aya 

(8.60) Ph aai(e) w= (—) Yymn( met) ysis, 0) 0) . 0, 

    

  
  

I, a, ar aid 2 
He MP Ajay any, ..., auulent ' 

, 
nee «+ ae ama 

é ’ 
(4=1...2m) 

, ? 
(¢=1,..2m+41) 

’ 
(dowd. 2b) 

  

B51) (8.1 (a) sme (mee) mn td 
( ) Oamvn( ) ( ) 1, a, cea BM, OyWyy QO8, og ton ieet alent) 

(3.53 

(8.54) 

) (—)"{Pn-1(2n)—@nQn- (@,)}>9, (—)"{ P*_ (pn) —Gn®nQp-1(@n)} 

——————— 

A Chu of completely monotonio Punetions, a5 

ONO hay Oy) Li Me a” 

Tunornm 18. If F(w) is a non-degenerate solution of problem 

(e), we have, for any n > 0, 

(3.52) (—)D, (a/F) > 0, (—)*D¥(a| F) > 0, 

where either 2 < v,, k = 0, or ® <@ <= p44 (k= 1,000 WT) 

or a, <2, k=n. In particular we have, for any n > 1, 

0, 

If F(z) is a rational solution of problem (¢), the expressions 

D, and D* satisfy (3.52), the following cases exeepted: 

(x) ty >0, t, <1; then D, =0 forn >=2N and D* =0 for n 2 2N +h 

(B) ty =0, 7, <1; then D,=0 forn 22N —1 and D*=0 for n mm @Nj 

(vy) ty > 0, t =1; then D, =0 forn >2N and Dt =0 for n&2N— hh 

(8) ty =0, % —1; then D, =0 forn = 2N—1and D* =0forn S2N—%, 

A rational solution F(a) is unique; hence a degenerate problem 

(e) is always determined. 

Pnoor. If F(z) is not rational we have N( 

inequality (8.41) ean be applied to the expressions Ala, yy ++ «9 Bq) 

and A*(x, @,..+,@,) aS soon as the values 2, a, ..-;@, ave 80 

re-arranged as to form an increasing sequence, which can be 

effected by a permutation of the rows of the determinants 4 and 

A*, In this way (8.52), and (8.53) as a special case, can be ob- 

tained. 

The inequalities (8.41) can also be applied when F is rational, 

and hence (3.52) generally holds, except if we have to do with 

one of the cases (3.36)... (3.39), which yields (3.54). 

Now, by (1.08), the expressions D,(«, | F) and D*(a,| J) are 

independent of the choice of the solution /. Thus it follows from 

(3.52) and (3.54) that problem (e) cannot have both a rational 

ion. Moreover, two rational solutions 1"; 

7) = 0, hence the 

and a non-rational solut 

and F, would satisfy the equations Fy(en) = Fo(an) (n=1, 2, vay 

hence they would be identical. 

§ 4. Discussion of the Polynomials P,,-. +» Q*. Degenerate 

Solutions. 

A further analysis of problem (¢) requires a more detailed dis- 

cussion of the polynomials P,,.... Qh, defined by (B.44) .. (B51), 

_ ie :



     
   

    

  

(4.09) 
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We begin by supposing that the values w, are different from one 
another and different from zero, and that the values a,, are quite 
arbitrary. By elementary properties of determinants we have 

(4.01) P,(@) = a; O,(e) = 1, PT(@) = qe, Of(e) = 1, 

(4.02) P,(a,) = 4,0,(@,), P a (x) = 4,207 (a) (kh = 1, 2,. +”), 

and 

(4.08) hea = (—)"ay -- - @a{Pp alta) — 4,0 n-1(0,)}; 

Qn(0) = ("PE (@,)—2,2,08 (0,)} «(n> 1), 
TurorEM 19. 

VT: 

The following recurrence formulae hold for 

  

  

(4.04) Qy-s(0)P,(e) = Qn(0)P (0) + 2°) Pt ye), 
ps 

(4.05) Qn(0)0n(2) = Qn(O)Qus(0) + ="). ag ste) 
P* (0) Px0) 4, i P¥(2) = Pea * PF (4.08) 2 Pale) = Qn(0 Pale) + #9 pe sca, 
Be (0 Fe (407) =) O82) = Qu(0) ala) + #9) 8 

Hence the expressions P,(v),...Q*(e) are uniquely deter- 
mined by (4.01), (4.08), ... (4.07) if and only if 

(4.08) — PE(0) 40, Q,(0) 40 (k=1,2,...,n—1). 
Proor. Let the rows and the columns of an n-rowed dcter- 

minant A be successively denoted by the numbers 1, 2,...7 
Suppose n > 1, and let, for p <n, 

ieee ig << hg «e's 

Let if tas: ey be the subdeterminant obtained from A by leaving Mas 
out the rows yy+++ fly and the columns »,...%,, and let 
At le We hen: have the well-known identity 

AAtiN) <= Abd) Ald — Ale Age, 

a= w= 2m 1, = Me 1, ym 2am -- 1, and 

; Ta very a md i ni) oO “i ’ 
7 \ N.oah 

<% Sh, 1LSn4<=% <...<¥%S 0, 

  

oa 
= 5 
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A|l, 

   

  

    

sry Uy 

| i,... 

resp. by putting ja, = 1, 4g = 2m + 2,7, =m +1, 9%, =m + 2 and 
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Pt sme) 

Es a, eg a. 0, PENNS 0 

eas m— Was sa Goa Ay sO 
z t 

ae 1 
1B cee OS cee OF 

ce am Ty @isyn econ  Bi@iacs any OG 
& ¢ 

_ m— 
am Aly, sonny Ask; 

m—1 1 
” vse, 2 ALi, - 

a 

  

_m 
sey Ah; lien, cos 

=] m—1 
sngillg) a Chey ois vy Oy |cema...2m) 

(i= 1... 2m) 

    

hence, by (8.44)... (8.51), 

Qom1(0)Pam(#) = Qem(O)P2m—-(2) 5 

Next, if we put “4, = 1, fe = 2m + 2, ieee ve = m-+2, 

and 

tne 

am 
Pen -(@): 

1 teso gt B. 1). a5 0, | 

i, Diy eens we Bis AX ores any (t—1...9m+1 

> 

  
we obtain, by (4.09), 

Qm+1 0 

Qom(0)Ponia(®) = nmr (0) Pam(@) + a pt 
2m @), 

Tyee e Pamir 

hence (4.04) is right. In the same way (4.05) can be obtained, 

both for even and odd values of n, by putting 4 = 1, #, = 2m 1 

% = m+ 1, r= 2m +1 and 

On02 ts SOR La eae 
na am ? 1 ts oo 4 a Da etn GA, 

MG Zé (i=1...2m) 
A= 

  

  

ORO, on 25) 0S, Eb On eee 
m Ly Djs v= 05 Of, Aigy Up@jy s+ oy HR; 

The equalities (4.06) and (4.07) too can be obtained as par 

ticular cases of (4.09). ae they can also be deduced from 

‘the recurrence formulae for P,, and Q, by means of a transfor- 

‘mation, which will also be useful afterwards, Let y be a function 

‘of a,...a, (which may also depend of @,...@,), and put 

j Its 2 e oy hy Jy 2 © + Hn Gr yiccin Gani ‘ (4.10) ae Bata) sith af 

(t= 1... 2m+1) f 

  

a 

  

       
   

    
     

    

  

    

   

  

   
    

  

   

         
   

nP (dy ++ 9 An) = P(My +» +9 Anln)s 

_ We then have 

any [Lat aTap mays ae dl iit p A, . A oh, 

a “tae " ' a ca WV Bi 
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Now we have, as an immediate conse 
and both for even and odd values of 

(4.18) 

quence of (3.44) . . . (8.51), 
n: 

UT »P,(t) = O7(x), U,T)Qq(w) = P*(a), 
and hence, by (4.11), 

(414) U,T,PRe)=2,...0,0,(0), UsT,Q8(0) =0y...0,P,(2). 
eats a ee U,T,, on the equalities (4,04) 

-09), we thus obtain the recurrence f * 
The condition (4.08) is evident. aa 

. Turorem 20. Th i A 5 e foll ric U5) for n = is olowing equalities hold for n ~ 1 (and 

(4.15) PX 2@)Q,(e) — eP,(wQ*(e) = P*(0)Q,(0) (12), . 
x k=l 

D426) 0-02) P ala) — Py (0)0,(a) = OPT (—) a ¥ 
ne Ly bet iy 9 

q (4.17) Qn1(@)Py(z)—wP,,_,(2)
0*(w)=Q,,,(0)P*(0) 

Tr (—) 
n oy z . 

AB) Peal) On(a)—a Ge (2) P(e) P2_.(0)2,(0) TL (1 —2) 
oh 

k=1 x,/ 

NY PAO) O84) P22) =. 85 sn (00440) TL (1 é} n ey ty. rs 

“ : Preiser tot hou ; a a proved by induction. When n = 1 
nyse 3 . 0 hh i then have, by oy. aor en ” is replaced by n—1. We 

PR s()Qn-s(OMPR(@)O (0) — oP, (2)0%(a)} 
= PHO}OW(0)(1— =) (P_,(0)0, s(2)—eP, «(a)0t (0) 

‘ (1 —=}, » Ph_(0)Qn-1(0)P8(0)2, (0) Tl 
k=1 

Ph-1(0)0n-1(0) # 0, (4,15) holds for the gi ; e giv 1 
fa for any n that satisfies (4:08), Since. (atb) 

, en polynomials, which is true for arbi 

   
      

  

      

  

   
   

  

at satisfy (4.08), the equ   
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Qn-1(0){Qna1(t)P (2) ia P,,1(2)Qn(#)} 

P5(0) 

  

= (Peal) Onal@) — aP orto )es—a te} 

PR_4(0)P5(0) 
x 

nt toe) 
hence (4.16) is true if Q,4(0) # 9, and consequently if Q,,.(0)=9. 

The equalities (4.17)... (4.19) can be obtained in the same way. 

TuEoreM 21. Ifthereisaleastvaluen forwhich P*(0)0,(0) = 9, 

the expressions P¥(0) and Q,,(0) cannot both be zero. 

Proor. The theorem is true when x = 1; so let » > 1. First 

suppose P*(0) = 0. By (4.03) we then have 

(4.20) Py s(@) = AnQn-1(@n)s 

since the values 2, are all supposed to be different from zero. 

Now, according to our assumptions, P*_,(0)Q,,1(0) 40. Hence 

we have, by (4.15), 
n—1 i 

P*_4(2n)Qna(@a)—®nPrnal@n)Qn—1(@n) 
aos P*_,(0)Q,.(0) Tl (1 =| #9, 

k=1 Ry 

or, by (4.20), 

On-a(@n){Pa—1(@n) a Ani nQn—1(%n)} v 0, 

hence Q,(0) 40 by (4.08). If Q,(0) = 0 we obtain P*(9) 40 

in the same way. 

TusorEm 22. If, in addition to the assumptions made on 

the sequence {w,}; in the beginning of this section, the values 

By ++ Ly and a, are positive, and if 

(4.21) P*(0) > 0, Q,(0) > 0 (k= 2,8,.. om), 

the following properties hold: 

(a) The polynomials P(w), ... Q(x) are positive for wv = 0; 

the values dg,...@, are also positive. 

(b) The degrees of these polynomials are determined, for 

m = 2m resp. n = 2m + 1, by 

(4,22) jet =m—t1, [Oem] =m; [Penl=ms (Oe J=m—1, 

[Pamal=™ [Oomial=m [Pema (Q2mial = 

(0) ‘The zeros of these polynomials are simple and negative. 
invest £ Py Qu P* and Q* will be denoted
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; " The zeros of P,, as well as those of Q* are separated both 
t @ zeros of P; and by those of Q,; conversely, the zeros of 

rn ge well as those of Q,, are separated by the zeros of P, and 
of OF. Compared to P,, and Q*, the polynomials P* and Q ‘ é 
the zeros with the least absolute values: : oa 

* 
(4.28) he a < * t On, i ar, 7 < Ba 7 -S Gn gts 

mi SO < Bean Oa <= Pae < Br i-1 
) x r I hoor. By (4.01) the properties (a) and (b) hold when n = 1 

y induction they hold for any n, which is evident by (4.04) 
(4.07), (4.21) and (4.02), } 
i 1 the statements (c) and (d) are meaningless. If n = 2 

(¢) * true by fe) and (b), and (d) is also true, since there is : 
single zero of Py and of Q;, and no zero of P, or QF. Let us take 
” > 2 and assume that (c) and (d) hold for n — 1, By hypothesis 

t Ss ero « of P. 

COr ding to ( { 73 ; n-1,1 n—1> nd € he > c 

> eee 

sgn Pale d) =e 

henee, by (4.04) and (4.06), 

sgn P,,(ana,«) = (—)4, 
ag PEt, y= (yp OY +» (Peal). n—-1, 4% 

(4.24) 

" If n = 2m, we have Pom(0) > 0, P¥,(0) > 0 by (a), hence 
gm(@) changes Sign in at least m— 2 points, and P* (2) in at 

least m—1 points of the interval (ces. 0). Ifn = 
we obtain in tl 2 Ww. ; ie deve 1e game way that P.,.., changes sign in at least 
m—1 points, and Ps, in at least m points of (aX, ,,, 0). Sinee 
P,, and Py are positive if > 0, the coefficient of the hichest 
power of w of these polynomials must be positive. This sidlis 
- ® = 0 and | «| sufficiently large, and for even resp. odd nals 
OV Ny 

2 2) = (—_)a— <j a RA few Paul) =(—)", sgn P34(0) =(—)" 
sgn f ami(®))= (—)", sgn P3n+1(t)}=!(—)™. 

Comparing this result with (4.24) we obtain tk 
PY, change sign at least Ae in LS a. a oo ae 
Poni Changes sign at least once in (— ©, i). Fence if me 
denote the number of negative zeros of a polynomial / b v(f) 
we have, for even resp. for odd values of x, 

(Pam) eM — 1, ¥( Phy) we My (Pamyn) Be tty (Pear) mm 

| erry (422), all veros of P,, and P* will be simple and negative,     
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Now the recurrence formulae (4.04)... (4.07) are invariant, 

by (4.18) and (4.14), for the transformation U,,T,,. Moreover, 

by (4.10), (4.18) and (4.14), we have fork Sn: 

Ugl FP; (#) = Ape + Oply + Up Qe(2)s 

UnT ,Qx(@) = Aggy ess Aylpia ss w,P*(z), 

and since the values a, and 2, are all positive, the set of inequali- 

ties (4.21) is also invariant for the transformation U7). Hence 

the zeros of the polynomials 

U,Fy FP d®) = OF(a), UT Pa (@) = Byes 2,0 (2) 

are simple and negative, which completes the proof of (¢) for 

the value 7. 

Next we prove that the zeros of P,, and P* separate one another, 

and that («#%,, 0) contains no zeros of P,,. In the particular case 

n = 8, P; as welas Pf have a single zero, and, by (4.24), we have 

sen P,(a3,1) = 1, sgn P3(#3.1) = 

hence our statement is true. If n > 8 there is at least one zero 

of P,,,, and we have, in virtue of our hypothesis, 

son PF (4-144) = (—}h 

hence, by (4.04) and (4.06), 

(4.26) son Py(tya.)=(—)h sen PR.) = 
(2 iz 1, 2, sey sny: [Pn-1] ). 

If n = 2m, both P,,, and P3,, will change sign at least m— 1 

times in the interval (29,1, m1, 0); ifm = 2m + 1, both Pe mig 

and P3,,.1 will do so at least m —1 times in (gm, m1» 0). Com- 

paring (4.26) for n = 2m andi =m—1 with (4.25), we obtain 

that P*, changes sign at least once in (— %, % m1, m-1)3 the 

same holds for Pomj and P,,, with respect to the interval 

(— 00, Oam, ma): Now, by (4.22), we can infer that both the 

zeros of P, and of P* are separated by those of Pug: hence 

Fy 
(4.27) hn t,¢ On, SOnayey Sn-t,e S Ane Gy 4, 1-1 

Moreover, it follows from (4.24) and (4.25) that both the zeros 

of P,, and of P* are separated by those of P*_,, henee 

" es He % 5 1 ieee as ae 
ite dy teed > Sry t Sint, 1 Met Kn Ss Oned, dad? 

and by (4,27) 
” ne 

Bint S Mn, dS Fendt “S Ar, tots 

t. Applying the transformation Uy,    
 



— 
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to the polynomials P,, and P*, we get the result that the zeros 
of Q,, and Q* also separate one another, and that Q,, has the zero 
with the smallest absolute value. 
From (4.15) we get, by putting x = « 

Pilea NOena) > 0 (b= 1,8... (Pal), 
and since we have just shown 

sgn P2(a,,1) = (—)5 
we also have 

sgn Qn(,,2) = (—)* 
Since Q,, has at most one zero more than P,, the zeros of ies 

and Q,, separate one another, and evidently Q,, has the zero with 
the least absolute value. Applying the transformation U nln we 
get the corresponding property for the zeros of P* and Q*, which * 
completes the proof of (d) for the value n. 

l'rom now on it will again be supposed that (1.01) and (1.10) 
hold, which implies, by (4.01), 

  

(4.28) P,(v) = Qy(z) = PY(@) = Qa) = 1. 
Let us put 

Pe Pa (4.29) Re) = 0,,(a)’ R (a) = 20*(#) (= Tessin) 

hence, by (4.28), 

(4.80) Ria) =1, RPe) == 

and, by (4.02), 

(4.31) R (2) = RX (a,) = a (k = I, 2, Bye <2 n), 

in all cases where these expressions are not indeterminate. 
Tore 28. The following statements are consequences of 

(4,21); 
(a) &, and R* are positive for x > 0. 
(b) Putting « = 0 we have 

(4.82) (—)* {Ri(x) — R,,(z)} > 0 
for 2.<2<0,,, (k= 0,1,:.,2— 1), or @, <a, k= %, 
while 

(4,88) (—)"{Ry_1(@)—R4(@)} > 0, (—){Rq(@) — Rya(a)} > 0, 
for Uy SUS Myyy (le m= 0, 1, v4 4:7%— 2), OV Vy << ay 1h mm thm 

— R, and Re belong to the class {F}, in 
PR and RM, wy 

—
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Proor, 
Ad (a). According to Theorem (22a), the polynomials 

P,,.-.Q* are positive when 2 >0. Hence R, and R* are 
positive, by (4.29). 

Ad (b). We get (4.82) and (4.88) as immediate consequences 

of (4.15), (4.16), (4.19) and (4.21). 
Ad (c). According to Theorem 22(e), the zeros f,,; and fF , 

of Q, and Q* are simple and negative; according to Theorem 

22(d), P, and @, have no zeros in common, nor have P* and 

Q*. Hence the poles of R,, and R* are of the first order, and, except 
for a pole of R* in the origin, they coincide with the zeros of Q,, 
resp. of 0*. We thus obtain 

  
    
4s at 

R,(2) — SA +. G,(), Re) = 282 + EAB LEM), 
()2— Bn, & (4) 2 — Pat 

where G, and G* are polynomials, and where the residues 4,, ,, 

A% , must be positive, according to Theorem 22(d). If the degrees 

CEP yceheen Oo are taken into account, it is clear that G, and 

G* are constants. Let them be denoted by wu, and uz. This 
yields 

  
Alig A* At, 

(4.84) R,() = oy —— + Uns RA(z) =a oF x : % + wn» 
()? — Bae x ()%— Bn, ¢ 

hence 

(4.35) u, = lim R,(a), wX = lim R¥(a@). 
wT > 20 

According to (a), these limits are non-negative, so now it fol- 

lows from (4.84) that R, and R* can be represented by a 

Stieltjes integral of the form (1.05). Finally we have, by (4.81) 

and (1.10), 

R,(1) = RRQ) = 1, 

hence R, and R* belong to the class {F}. 

Ad (d). By (4.08), (4.04) and (4.05) we have 

a = Qh -1(@n)Prs(®) — Qn-a(®n) Pr—al@)s 
  

(—=)"Ona(O) 

HOOK (0) Q na (@) — OQ past (@y OR 4 (2)
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= = (—)"Q,-( 0)| 2, (v lp Patoyrga) 

{ Pp s(@) — Qy-a(@) Pt (a)} 

(®n)Ona(@) — 20 ,-1(@q)OR_(@)} 

P,1(#)Q,() — O,,1(#)P,,(x)} 

n—-@)P,(@) — PX_,(a)Q,(x)} 

  

1(@,) . 4 

= Pr (0){ 2 98 04) + 24(0)0,l05)} (1 —2), 
Ry Vyiy k=1 @, 

= nics 
(420) Ce) = = (—)* 9 PI_-1(0)0n (2) iT ( —+) ; 1 k=1 Ly 

Mh In the same way we obtain . 
ies: i 
(487) 20(o) Oh = yma. 2,0,-1(0)0%(2,) TT (1 ~2); k=1 ke 

which proves statement. 
Tumornm 24, The set of inequalities (4.21) is equivalent to 

the system 

fs. (a8) dy, = OR, s(0,) + OF RP_,(2,), 8,4 0% =1, 0<9,<1 
ay (k — 2; SS . n). 

__ Proor, First let (4. 21) hold. According to theorem a) the 
1omials P,,...,Q% are positive for k =2,8,...n and 

® & 0. We thus have, by (4.08), 

sgn {Ry 1 (@s) )—a,} = (—)*, sgn {Ri_,(@.) — a@,} = (—-)F, 
A a, is included in the strict sense between R,_,(a,) and 

(@), which yields (4.88). 
_ The converse can be proved by induction. If (4.88) holds, we 

, for h= 2, 

rhe ox 
‘ 

= D; ae a hima a, 
w l, since @ > 1 

+ 
a, eae 1 <= AyXo.    over we have, by (4.08) and (4.28), 

PHO) = = ayma( a as), Q2(0) = —1 + ayy, 

)hi ol ‘L, where 
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—) {RF 1(,) — R,_a(2,)} > 0, 
and, by an 

a, = 9,R, (a, ) +07 Re ,(2,), 0, + OF = 1,0<9,<1. 

Hence we have 

—)1{RF_,(«,) —a,} > 0, (—){R,-1(2,) — a} > 0, 
and, by (4.03), 

P#(0) > 0, Q,(0) > 0 
which completes the proof. 

The necessary conditions for the existence of a solution of pro- 
blem (e), which have been obtained in the preceding section, can 
now be expressed in a somewhat different way, and the explicit 
solution of a degenerate problem can be given. 
THrorem 25. If problem (e) has a solution, all values 

P#(0), Q,,(0) (m = 2,3,.. “) 

are positive, except for the following cases, where the problem 
1s degencrate: 

(a) ty > 0, | <1; then P¥(0) = 0 forn = 2N + 1, 0,(0) = Oforn 2 2N 4 2 

(8) ty = 0, %| <1; then P*(0) = 0 for n = 2N, Q,(0) = 0 for n =>2N + 1; 
(vy) ty > 0, t% = 1; then PZ(0) = 0 forn = 2N + 1, Q,(0) = 0 for n & 2N; 

. (6) ty = 0, t, = 1; then P*(0) = 0 forn = 2N, Q,(0) = 0 for n => 2N—1, 

Here the values NV, 1, and ty have the same meaning as in Theo- 
rem 17. 

Proor. By (3.43) and (4.08) we have, for any solution /* 1 
of problem (e), | 

PR(0)=(—)* 2, so 7 @n D,-1(2|,F), Q n(0)= (—)" Dp s@nl Py | 

Hence, by Theorem 18, the values P*(0) and Q,,(0) are positive, 4 
except for the cases (a)... (6). 

According to Theorem 16, any rational function of the class {/*} f 
can be represented by an expression of the form : i]      

(4.89) F (wv)
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tions K,(~) and R}(«): if these belong to {F}, they depend, by 
(4.22), of exactly nm positive parameters, 

THrorEM 26. If a rational function r,(@) of the class {F} 
satisfies the equalities i 

Tn (@p) = ay (6 = 1, By. «5 %), 

(4.38) holds for k= 2,8,..., and we have identically 

r_(@) = R,(2). 
Proor. First let n= 2m. Since r,(a) satisfies (1.08) for 

k= 1,2,...,, we can apply the preceding theorem, where 

N =m, ty <1, ty 0: 

Henee (4.21) holds, and, by Theorem 24, the inequalities 
(4.88) hold also. Moreover, by (3.48) and Theorem 18, we have 

Dy m(2?'g m) mar: Po m(X) oh Qe m(@)P2m(2) = 0, 

which proves the identity of r,,, and R,,,. If n = 2m +1, we 
have in the same way : i 

N=m-+1, 7 <1, ty = 0, 

which yields (4.21) and (4.88), whereas 

Do msa(2|?'om+1) = — Peo mia(@) + Ozmer(®)Tamia(@) = 0, 

which proves that rz,,,,; and Ry,,,; are identical. 
y . THrorem 27. Let a rational function 7*(m) of the class {F} 

satisfy the equalities 

ra()=a, (kb =1,2,...0). 

Then (4.38) holds for k = 2, 8,...,n, and r¥(@) = R¥(a). 
Proor. It is similar to the preceding one. . 

Tinorem 28. If problem (e) has a non-degenerate solution 
all values #, and 9*, defined by 

(4:40) @,=0,R,, s(n) +O, Re a(2,)8,+0%=1 (n=2,3,...), 
are positive. In the case of a degenerate problem we have 

%>0,07>0 (hk =2,3,...,n—1), 8,0* —0, 

for a definite value of n. According as #, — 0 or #* = 0, the 
solution of the problem is R¥ j(@) or R,_,(a). , 

Proor. If the problem is solvable and non-degenerate, all 
Ht ah 

values Pn (0), Q,, (0) are positive, by Theorem 25. Hence all 
values ?,, ® are positive, by Theorem 24. 

: If the problem is degenerate, we have, for a definite value o 

Oy Qp(O): > 0.(4 wD, Byvin yp Pere 1)y 7"        
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In particular we have, by Theorem 25, P*(0) = 0 if % <1, 

and Q,(0) = 0 if rt, = 1. Hence the solution of the problem can 

be represented by 7,(«) in the first case and by 7*(a) in the second 

one, where » has still to be determined. In both cases we have, 

by Theorem 24, 

et <1 ~h Haunt — 1h, 

henee, by Theorem 28, 

Ry-1(%n) a RE, (%n)- 

Thus we can always write 

a, = OR, a(@n) + OA RT 1(@.); 8, + or =1. 

Now by (4.03) we have 

(4 41) a rar (—)"OFay Sees @2Qn—r(tn){Rnalen) — Ri a(n)}s 

Q,(0) = (—)"8.0,O% 1(2n){ Raa (@n) a RFs (#n)}> 

hence #* = 0 or #,, = 0 according as P*(0) =0 or Q,(0) = 0. 

In other words: the degenerate problem (e) has either a solution 

r,(z) when 05 = 0, or a solution r*(~) when #, = 0. In both 

cases we have v <n, by Theorems 26 and 27, and, by the same 

theorems, the solution is equal to R,(a) resp. to R¥(v). On the 

contrary, the equations @,_, = R,(@p-1) TeSp. Aa = R¥ (@ nny) 

are incompatible, by Theorem 28, with O <3, << 1(k = 2, 8,.65 

n—1) and »<n—l. Hence y=n—1, which proves the 

theorem. 

TuEorEM 29. In order that problem (e) be degenerate it is 

necessary and sufficient that 

O<P 21 (KH 28,0. 9=1), 

and either 

Gray = Rynal@nvy) (» = 0,,1, 2, . +s) 

or 

Anty — Be G5) (v =0,1,2,.. +) 

for a definite number n > 1. In the first case the solution of the 

problem is 2, ;(@), while o* — 0; in the second case it is R"_, (a), 

while #, = 0. 

Proov, By Theorem 28 the conditions are necessary; by 

(481) and Theorems 28 and 24 they are sufficient, 

1 whall leave degenerate problems out of cone 

woforth a solution of problem (@) will always be 

i * - —_-—" : : ss i. 
7, i. a. 

   
  

From now on 
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§ 5. Existence of a Solution: sufficient Conditions. 

In Theorem 28 the conditions 

(5.01) ay, —— 0, Ry—«(@n) <tr ark, 4(e,)\ a, ae Oo = I, 0 < v,, < I 

; (n = 2, 8,...) 

shown to be necessary for the existence of a solution 
oO a lem (e). We shall now prove that these conditions are alsa 
sufficient. So in this section it will always be supposed that (5.01) 
i hence (4,41) is also true for any n > 1. 
ag 30. For any «> 0 the sequences {R*(x)}”_, and 

{Ky (x)},21 are monotonic and bounded; hence the limits 

(5.02) R(z) = lim R,,(z), R*(v) = lim R*(z) 
j n> I> oe e 

exist (for the present only for 7 > 0). Moreover we have 

(5.08) K(e,) = R*(a,) = a, (k = 1, 2,...) 

and 
* 

(5.04) | a > R¥ (x) =R(x)>R, (x) for ty <a <ay,,,n=2l, 

n(@)<R*(z) SR(e)<R,, (a) for toy41 <a <a, 9, n2U+1, 

A solution F(z) of problem (e) satisfies the inequalities 

(5.05) (—)HR*(a) — F(z)} 20, (—)4 F(x) —R(a)} =0 
" (% <a < 2,4, k= 0, 1, 2, ..), 

enee any solution is incl i ide’ toe = a included (in the wide; sense) between R 

Proor., According to (5.01) 2 ¢ and Theorem 24 the conditi 
of Theorem 23 hold for any ». We thus have ae 

" ae 
a > Kova v) > Raia(v) > R,(@) for ty <<a Cay, n = 2M, 
n®) < Bris(@) < Rag (e) < R,(@) for C41 ULM g14.9,NZ2I+1, 

pec ue sequences {R,,(#)},_, and {R*¥(x)}°_, are monotonic and 
he ed, which ie (5.02). In particular, when # is different 

2%, @,+.., there is always one se e increasing ¢ Mane quence increasing and the 

Moreover, (5.08) holds b tae y (4.381), and (5.04) by (4.83). Fi r 
(5.05) holds by (8.48), (8.52) and (4.29). Ge ae 
Tanonmm 81. For all complex values of 2, with the possible 
ee of a set of values on the half line z S 0, the functions 

(e) and R*(a) are holomorphic, while 
Ce eet Pyrite 

    

       

     
a} 
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holds uniformly in any domain G(¢, @), such as it has been defined 

in Lemma 1. 

Proor. By Theorems 1 and 23, the functions R, and R 

are uniformly bounded in any domain G(e, 9). Hence the theorem 

is an immediate consequence of (5.02) and of the Porter-Vitali 

theorem. 

By (5.03) the functions R and R* have the required value a, 

when 2 = #,, for every k 21. Hence, if we show that R and R* 

belong to {F}, we are sure that the conditions (5.01) are sufficient 

for the existence of a solution of problem (e), since there will 

be at least one solution indeed (R and R* may be identical). 

This will be done by means of Theorem 33. The real difficulty 

of this theorem, however, is how to prove (5.16). The formula 

(5.16) can be obtained in a very elegant way by means of a 

theorem of Helly [1], which has also served to overcome a similar 

difficulty in the theory of continued fractions °). Yet, the theorem 

of Helly is based on Zermelo’s axiom of choice, and the well- 

known objections can be raised against it. For this reason I shall 

proceed in another, though more complicated way. 

TurorEM 32. Let 7 be the corresponding function of F, and 

1 

(5.07) e(s) = J tdz(t). 
0 

We then have 

E peared Ht F(z\dz ' 
(5.08) ls) =a | G—a (0<a<1,a—Res>0), 

i aio 
> 

if we put 
wt [arg (l—a)| < 

along the path of integration. 

Proor. By the theory of residues we have 

, a+ico dz 

5.09 _—_—__________—. = 2ni Ostal 

ee) : i—ayto are) 
a—te 

for, if we shift the path of integration to the left, we only pass 

the pole s= 1—t-!. Moreover we have, along the path of ins 

toyration in (0,08), 
   

   
   

   

  

1—t+t| Bo. 
= sf hk ot, 

(Ot Ss 1), 2 
   

   
   



C. G. G. van Herk.    
    

        

a |exp [—(o+1+ir) {log | 1—2|+iéarg (1—2)]|} 
t—(¢+1) log |1—z|+7 arg (1—z)} S|1—2|-e teva iz, 

$=o-+ itr. Hence 

(ds 

(1—2)*41(1 —t+z) 

  

Soret (11 — stay 
8 

oO 
—1,%n|t ~g= oe 

<a~e Pye tdy = a 6 

B 

where the value o is independent of 1, By (5.09) we thus have 
t= 1 a7 8 dz 

: Qat a (1 —2)"4(1—¢+ az) + O16), 

uniformly for 0 <t <1. By (5.07) we obtain 
Pi ; e(s) TO 1 1 a+iB dz 

ee Pn] if (@—ay""(1—e 4a) * 016-*)| ant 
a—i8, 

Si c dy(t) be ai} = (ia | ita t OF), 
a—iB 0 

_ Which yields (5.08). 
Lemma 2. If 

- ; % 20, 6,20 (v=1, 2, i lise TRY 5 

| Ua = 4 <1, 4 j,= B St, max 4, $, =e, 
we Tie isvsn 

1 F i 2 ay, = ve 

t! ROOF. The lemma is true when n — 1, so let n > 1, 
Since G1, fy) (»=1,2,.. .n), we have OSe <1. 
2 =0 or i 1 the lemma is trivial. Hence we can take 

- € <1, which implies that at least one product o,f, is different 
ero, and that A and B are positive. 7‘     
    

%=p,= Vas, (»=1,2,...n), 
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hence we may confine ourselves to the case «, = 8, (v=1, 2,...7), 

which implies 4 = B. 
(c) Let the restrictions of (a) and (b) hold. Putting 

a= AE, (vy = 1, 2...00%), 

we have 
n 

a 
Da,=1, max «4 = As. 
i Lepsn 

Now 

2 a, Ss AtWVe 
1 

would yield 
ne n 

Le=ALa, SAVeS ve, 
1 1 

so if the lemma were true for the sct (a,,...0,), it would also 

be true for the set (a4, ...,,). Hence we may confine ourselves 

to the case A = 1. 
(d) So now we can put 

20 = T,o,...n)3 oe, 1; max of =e. 

1 isvsa 

This yields 

max a = Ve, 
isvsr 

hence 

which proves the lemma. 

It can easily be shown that in the preceding lemma the equality 

a OB = fe 

can hold only if «=n (n = 1,2,...). 

Lemma 8, Let y(w) be of limited variation in 0, 1). Let 

(5.11) 9(0) = 9(1) = 0, max | f “p(w)dee| =e 
ost '% 

and let the total variation of » be limited by 

1 J | dou) |S 2. 

a) | emer h fin 

UE A 
thet 

)
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| Proor. Without loss of generality we may suppose that the 
| range <0, 1) can so be divided into a finite number of subintervals 

© tay tay ss + bys that either ¢ 20 or g <0 within each i,, while 
; takes a different sign in every pair of eancecutive: intervals 

bys byte For, as easily can be shown, any function ®(u) of limited 
variation in <0, 1> is the limit of a sequence of functions ,(w) 
with the property just mentioned. . 

Let f, be the length of i,, and put 

. | J mleeydu | = 258, 1, 2). A). 

Hence a,f,, < 2e, by (5.11). Moreover we have ¥ , = 1. Ob- 
viously «, is equal to the maximum value of | | a i, at the 
utmost, and, since p(0) = (1) = 0, the expression 22, re equal 

f to the total variation of ~ in <0, 1) at most, hence, by (5.12), 
n 

x ig Se os 
vel 

Now it follows from Lemma 2: 

‘ 1 n —_ 

f | p(w) | du = % fy S Ve. ‘> 
0 

I 
i 

By (5.11) and (5.12) we have < ie Now put 

0,V2e when 0<u <9,V2e, 0 | 

y(u) =} —0,V2e when 0,V2e <u < (#, + 9) Ve 
a (—=)Fv2e when (OAPs +h)V2e<u< (H,+0,+k+I)V 26, 

I (k§=0,1,... [Fe -]- 
, ; V 26 V2 : 

where #, and #, are defined by 

Oy 8 =a lea 
; "1 V ae : LV 2e val 

and where » is defined, in'the remaining points of the segment 
(01), b S 

2 2. : B— = 2, 

  

o(U) = Holu + 0) + g(u—o)}. 
8 example shows that the coefficient 4/2 in (5.18 d 

| n ; . t 

iced by a smaller one, Vor, the integral _ aoe 

  

an 
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attains its maximum value 

V2e + 2e(0? + #2 — 9, — d,) 

when ¢ is the function just mentioned, and here the expression 

# + #2 — o,— 0, is bounded and negative (hence equality is 

only possible in (5.18) when ¢ = 0). I leave out the proof which 

is rather long. 

Of course Lemma 3 ean be given in a less restricted form, where 

the total variation of » has an arbitrary positive value. 

TuroreM 33. Let & > 0 fork =1,2,..., and let &, > & > 4 

for k > 00. Let the functions J’, all belong to the class {F}, and 

let the limits 

(5.14) lim F,,,(&,) = Ap 

exist for k = 1,2,... We then have 

(5.15) lim F(z) = F(z), 

uniformly in any domain G(s, 9) as defined in Lemma 1. The 

limit F belongs to {F}, while the corresponding function ¥ 

satisfies 

(5.16) lim "| x(t) —xq(t) | at = 0. 
Ree O 

(The theorem also holds when &, and & are arbitrary complex 

numbers, different from the values z = 0, but we need not use 

this generalization, which requires less elementary estimations 

in part (a) of the proof). 

Proor. ies 
(a) By Theorem 1, the functions F,, are uniformly bounded 

within a given domain G(e, @). Moreover, if 0 < &, which can 

always be supposed, the sequence {F a(Z)}n-1 converges in an 

infinite set of G. By the Porter-Vitali theorem (5.15) holds 

uniformly in G. 
(b) Putting 

(5.17) ens) = fr #dy,(t) (n=l, 5k o =0), 
0 

we have, by (2.04),
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hence, the limits (d) Now (5.16) remains to be proved. According to Burkill [1], 

: aye he transformation of Mellin can be applied to the integral (5.07), 
5.18) e(k) = nit) t : 
tere) ae) Ue alle) FNL) Ope a) which yields 

= ‘ 1 1 Otto ( s)\t- 

exist. According to the theory of the Hausdorff moment problem, (5.20) 1—x(t) = dy(u)= a | : ds. (o>0, O<t< 1), 

the Sequences {e,(k)}fuo are completely monotonic, Le. the oe 
inequalities 

x N If we replace dy(u) in this formula by udy(w), and next replace 

B (— (F) ene + &) 20 s by s—1, we obtain 
y= 

[ 
1 J+i ce 1s 

j hold for any N >0, & =O and n= 1. Hence, by (5.18), the (5.21) | udy(w) == —_ me lest, 0 Stay) 
sequence {c(k)};"_5 is also completely monotonic, which implies 
that the moment problem 

: i 

    

r } Since 

e(k) = t*dy(t) (ke = 0,15... e ; ; 
J ) I J xy =1—zx(t)— f udy (tu) 

7 has a uniquely determined non-decreasing solution yz. Since . ; ¢,(0) ae for any n = 1, we have also e(0) =1 and zy, Re haves by SeEnBRS (Ah) ant (Phy Now it follows from Theorem 4 and (5.18) that F(z) belongs : 1 pe see | i to the class {F}. f xeota =1 15 | (ey | _(¢) The expression (5.07) is bounded in the half plane « = 0, . ‘ Sete _ a) les ote) = 1; it is also holomorphic in the half plane hence, by (5.17), 
o > 0. The same holds for the expressions c,(s). M . 
i. p n(S). Moreover we can ; 1 pet! fe(s) —e,,(s)}0* 

7 {y(u) — x,(u)}du aa Ta es, : 2x s(s—1) 
; lim ¢,,(s) = e(s), 7 a 
iforml n> 0 (1,0 <a 

unifor i ae . ae sigan 0<aS¢ = dy {it | Sm For, let | Now the integrand in the right hand member is holomorphic 
eS et a e e sequence {FA (2); converges uniformly , for o > 0, with the exception of the pole s=1, Since e(s) — ¢,,(9) 

% = 4, we can assign to any ¢e > 0 a N(e) such that is bounded for o = 0, this integrand is O(r~*)as | t| > ©, unr 
(Pt) — Fey] <e formly ina strip } < o < 2. By a change of the path of integration 

| f we thus get 
for n > N and z= « + ty. Hence, by (5.08) and (5.10) i , BHe f6($)—e,(s)0-* 1 ae as 

| lee) —e(0)| =2-| (* Fe Fe) | { Ge) nll 5 =a a aoa or ‘ Yy— in (1h) 

" ee The integral round about the point s = 1 ean be evaluated, 
P “ean dy which yields 

= Qn é 1 OL [1—a| Att® fo(s)—c,,(8) }ii-* 
at 

M 1 BU VSO Se 1 Yuku (th (6.22) ["G¢(t) —zalto)}du = — | anny ett ell 
=i ( 1)        

      1 fai iw
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for $So 51, |[t| ST and n> Me, T). Hence 

1 y T etl — iF | | fxu) natu} oe ic {e(s) = en(s)}™ 
J $(s—1) 

a 1 VYy+in 

| all 

  

e(1)—e,(1) |S Olevt) + OT /t) + «     
og Ye HiT 

for e—0, Too and 0<t<1. Putting T =e we thus 
f obtain 

1 (5.28) | f° Gea) — za(we)} du | = 0) 
t 

for 0 <¢t= 1 and n > N(e, e1). Since the left hand member is 
a continuous for t= 0, (5.23) also holds for 0 <4<1, which 

/ yields 

: max if {x(u) — x, (u )}du|< Ag, 
Ostst 

; where A is a positive constant, and n > N(e, e+). Now 

x(0) —7,(0) = 4(1) — x,(1) = 0, 

while the total variation of 7(¢)— z,(¢) in <0, 1> is equal to 2 
at the utmost. Hence, by Lemma 3, 

| [12-2 | at s V2de, 
0 

me 80 (5.16) is true. 

Using the theorem of Helly, we would have obtained 

lim %,(¢) = x(t) 
N-> OD 

a _ for every ¢ where x is continuous. It can easily be shown that this 
a rosult is equivalent to (5.16), but I prefer the latter statement 

from the standpoint of intuistionistie mathematics. 
‘Tirorem 84, The functions R and R*, defined by (5.02), 

belong to the class {F}. 
a  Proor, All functions R, and R* belong to {7}. Hence the 
theorem is right, by (5.02), and Theerem 83, 

kum 85, The conditions (5.01) are sufficient for the 
n of | problem (e). 
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§ 6. Questions of Uniqueness. f 

In this section it will always be supposed that problem (¢) iv 

solvable, i.e. that (5.01) holds. If the solutions R and RY are 

identical, the problem is determined, by (5.05); if not, the ine 

determinacy of the problem is a tautology. Hence the question 

whether a problem (e) is determined or not comes to the question. 

whether R(x) — R*(x) is identically zero. 

I begin by replacing the polynomials P,,,... Q* of § 8 by 

other ones, which satisfy recurrence formulae that are somewhat t 

simpler. Let 

Pi_(0)P7(0) 
By oes #QOn1(0)Q (0) 

for n > 1, hence, by (4.41), 

Ee P2_1(0)Qna(@a ) 3 

®,0 ni (0 )Q-1 (4p a, 

The first factor in the right hand member is positive, and 

independent of #,,; hence 7, > 0.’'The converse also holds: to any 

set {1,,}% of positive values there is a corresponding set of values 
0, that satisfy 0 <?%, <1. Putting 

Pale) joy Onl) sya) — P&C) (a) 
(209) pale) = Fgy Male) = Diop MO) = Ray YH) — Fay 

(6.01) tn = 

(6.02) V= 

  

we have, by (4.28), 

(6.04) a(e) = w(@) = gf (2) = yy (@) = 1. 
Moreover, the recurrence formula —

 

Prk x)= Pn-l@)+NPaa(2), Pn ( (x)= Ona (@)+-(@ nn) AP na (a), 7 

E05) oe Pn-a(@) +9 ,eprs(2), yr(a)= Yn_1(2)-+( Bn) Wnt (@)s 

ean be obtained from (4.04)... (4.07) for any n > 1. By (4.15) . 
we have ‘ 

n 
w 7 

(6.06) P(e) n(@)—ap,(x)yn(@) = IL (1 — ~ 
1 ke 

while (4.20) yields 
| 160.0) )
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R* (x) — R,,(2) = ae 

By Theorem 31 ee now il —_— 

(6.08) R*(z) — R(z) = lim ae 
a ne 2Pn(Z)e (2) 
for all values of z, except the values z < 0. 
: Lemma 4. Let A, = B, = 1;let a, >0,b, > 0 forn=2, 8,. 

all et 

i> = 

A =4,4,+ a, Bras Bi, = By “E b, Ana: 

. We then have 
n n 

A,2=1+2a, B,2=14+ Db, (=e 
2 2 

(A confusion with the values a, = F(a,,) might be excluded). | 
Proor. The lemma is true for x = 1. Assuming the lemma | 

holds for » —1, we have 
n—1 n—-1 n 

po A, 21+ Ba, +a,(l + 2b) 21+ Bay 

as B,, 21450, +0014 Ea) 21+ 55, 

im uy Patra 5. Let the porapee ‘ the former renee hold; let 

E (a, + b,) = o. 

We then have 4,B, > 01 as n> 00, 
Proor. According to Lemma 4 we have 

By 2 (1+ Bay) (1+ Eds) > E (a + oy), 
kt ye nee A,B, inereases a as n—> 0. 

Tinorem 86, Tf the series 
oo 

= (n+ : ) 
Van 

        

rges, problem (e) is determined. 

According to our assumption, at least one of the series A a 

_ is divergent, hence 
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E (2, + : ) = 10 
2 Bn tn 

for a given positive value of #. Putting 

  

A,= Wrl®)s 3, = Yn (2), a, = Llp» b, = (@ata) > 

we have, by Lemma 5, 

Val@)pn le) > (n> ©). 

- 

| Moreover, if 2 + 0, the product 

iz) 
tends to a finite limit, which is either zero or different from zero. 

_ In both cases the right hand member in (6.08) will be zero for 

' g=2>0. 

Turorem 37. If 

(6.10) by 
1 

  

the problem (e) is determined. 

Proor. Since 

1 1 I 2 
+ = a - Vv @,, + —) = See ens 

a Lahn V8, m V te 

(6.10) implies the series (6.09) to be divergent. ; 

  
  

Since problem (e) is determined if (6.10) holds, it will so much 

the more be determined if 

(1.04) — = 0, . 
1 &,, 

This is a special case of a well-known result of Hausdorff and 

Feller, which has already been mentioned in the introduction. a 

Lemma 6. Let A, = B, = 1; let a, and b, be arbitrary com- 

plex numbers; let 

A,=4A,at 0,Br-» By = Bra + bi Ana 

for n = 2, a .. We then have 

j slutaalis Th | asl + | 2s) | Ba SHO+| evn
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[S14 val+le.B yaa] $+ fay) TE (+ [al + Jol) 11 (2+ lanl + fa), 
F and similarly for | B, |. 

Lemma 7. Let the assumptions of the former lemma hold. We 
then have 

Jn — An] STC +] ae| +] be) I+ | ag] + [Oo 

5 —5,,| sa + [ao] +]0[)—IMG + | a,| + |b) 

for m2n21. 
Proor. If m= the lemma holds; suppose it holds for | 

(m—1,n), where m—1 =n. According to the former lemma | 
we have . 

: | 4,,—A,,| =|Anat onBna—A,| =|A,41—A,| +[@nBms| 

Mma n m—1 

ee Sia +/0,| +[%.|)— (1+ fa, | +[bx|) + ]an| 1a +|as| + |x) l 

on SM + | ae] +| be )—H 0 +] an] + | bel) 

and similarly for | B,,— B,,|. 
Tumorem 38. If the series (6.09) converges, the sequences 

{mn(2)}a, --. {yi(z)}@_, are uniformly convergent within any 
circle | 2| sj go. The limits 

nO no Rr OD 

( id) w(e) oo Pn(2), G*(z)—lim py (2), p(s) = lim p,(z), y*(z) = lim px(z), 5 

are Pine, iis functions of z. 
Proor. Putting 

Ay, = Pnl2)s Bb, = Pa (2)s an = Na Dy =s (nt) 2s 

we have, by Lemma 7, 

| #ale)—9(2)| <I (itm+4 fe | 1) f(r + oe Jel) if. 

: | oh) — oh (z)| S i (t+ ++ |: LE fs ene ll) al, 
CMe Un+i Ey, 

rem > n. For|s| S @ the first factor in the right hand mem- 
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which proves the uniform convergence of the sequen 

and {Pi}. Ilence g and ¢* are entire functions. The sti 
concerning {y,} and {y=} can be obtained in the same— 

By (6.05) the functions o(x),..., y*(@) are increasing more 
rapidly than any polynomial of arbitrarily given degree, when 
aw —> 0; hence these functions are transcendental. 

Turorem 89. If the series (6.09) converges, the functions 

and R* are meromorphic and not identical. 
Proor. If the series (6.09) is convergent, we have, by Theo- 

rems 81 and 88, 

22) reeygy — HO) 
ple)’ ey*(2) 

for all z except the values z <= 0. By analytic continuation (6.12) 

holds for any z, so RK and R* must be meromorphic. Moreover 

we have, by (6.08), 

(6.12) Riz) =   

    

ii—=) | 1 ” 
(6.18) R*(z)— R(z) = aoe) ya) Fe) ‘ | 

Since j 

ay SA @ 1 4 
Bo < B= 5 4b (n+) <a, j 

the product 
2 z fi —2) | 
1 x 

is not identically zero, henee R and R* are not identical. 

Summarizing the results of Theorems 86 and 89 we can now say: 
TuroreM 40. In order that problem (e) be determined, a 

necessary and sufficient condition is 

a = 0. 
el RU 

oO 

E (n.+   

Some remarks on the indeterminate case may be inserted here. 

Evidently there is no criterion which, analogous to Theorem 
epends on the values e,, and which implies the indeter> 

em (e). Hor, whatever the values a, ee 
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which implies a determined problem, according to Theorem 40. 
By Theorem 40 it is also evident that both the determined and 

the indeterminate case of problem (e) can occur. Hence, if we 

change our problem by requiring that solutions only have to be 
completely monotonic, and thus leave the condition (1.05) out, 
this new problem ean still more be indeterminate. I do not know 

whether an example of this case is known, but at any rate an 

explicit example of an indeterminate problem (e) will be given 
in the next section. 
Turorem 41. The zeros of p(z),...y*(z) are simple and 

negative. The zeros of y, as well as those of y*, are separated both 
by the zeros of y* and by those of y, and conversely. Compared 

to p and y*, the functions ¢* and y have the zeros with the least 
absolute values. The functions ¢,...y* are of genus zero. 

Proor. By (6.03) the zeros of o,,... y= coincide with those 
of P,,...Q%*; they will be denoted as in Theorem 22. According 

to the proof of this theorem we have 

(6.14) 
Br, s < Basae < 0, oa < Buia <= 0. 

Hence the limits 

* # 
nt < %n1,2 0, Che Snes < O, 

a; = lim nis B; = lim Pats 

6.15 oe Tone i=1,2,... °° ye iim oh, oiling, 
nD : Neo , 

exist; they are all real and = 0, Moreover it is evident, by (6.14), 
that the values «,,...6* and the cluster points of the sets 
fu, ,},--+ {8%} are identical. Hence, by a well-known theorem 
of Hurwitz [1], the values «,,... 87 coincide with all zeros of 

Pivsati. 
Next we have, by (4.28) and (6.15), 

(6.16) Oy Soy Sy, %, SP; S% 1, Pp Sorses. Bs = B68; 4 

Now, by (6.12) and (6.13), 
‘ g (17) gh()p(=)—ap(e)w*te) = Ft (1 +), 
1 n 

and since the right hand member is different from zero for 2 S 0, 

the expressions g*(z)y(z) and 2@(2)y*(z) cannot be zero at the 
same time when 0, Hence (6.16) implies 

(O18) HS te <Ayaae <A <M Mat < Phy BPS Bes Bhs, 
yey i      that the ze    
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(6.18) proves that the statements about the separation of the zeros 

hold, and that ¢* and yp have the zeros with the least absolute 

value. Putting = 0 we have, by (6.17), 

p*(0)p(0) > 9, 

hence a* < 0 and £, < 0, hence all zeros of g, . . . y* are negative. 

We still have to discuss the genus of g,...y*. Take a > 0. 

By (6.14) we have | «,;| >| %es¢|+ hence 

w x @ @ 
pt ey eee 

Oni | Xnye | | %nqre | Onde 

which implies that the product 

$ x 
II (1 a 
t=1 hn i 

is an increasing function both of m and 7. Since 

; 3 x 
PC) jim ©) _ tim tim TT (.— ) 
(0) nse Pn(O) n->@ i+w t—1 ni 

we thus obtain 

x j 2 F j a 20 a 
pe) = lim lim II (1 2) =lim II (1 Se = If (1 _ 4), 

Pp joe ne i=l & ji-o 1 aK; 1 he 

where the infinite product in the right hand member is convergent. 

Hence 

  
  

n,t 

Sih IE 
x— < &, 

1 | a| 

and the function y must be of genus zero, For similar reasons ¥, 

p* and y* are of genus zero. 

We thus have, for any finite value of z, 

g(a) = 90) Il (: = v(z) = (0) if (: —7), 

(6.19) : : 
oo oo Rg 

me) — 940) fi (1-3), pre) = wron tl (1 Fe), 
where, by (6.04) and (6.05), 

(6,20) n(0)m14 ns PO)=1, V*(0)=1, (0) =A & (Hn) 

¢ problem (¢) remains indeterminate, if one of 
} a. ia left out, This len to thes 1   
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what becomes of an indeterminate problem, if a condition F(é)=«, 

where é is positive and different from all values z,, is added. I 
begin with 
Lemma 8. Let the polynomials , (x), D*(a), Y,(~) and W* (2) 

satisfy 

®,(x) = OF(a) = ¥,(a) = PP(v) = 1 
and 

®, a | ste A,Or Dr al Dry ofr Ht, 4, 

Dy V4 + Ree as ve = 4 + fle k wan 

for» > 1, where 2,, and y,, are arbitrary positive values. We then 
have: 

(a) the zeros of these polynomials are simple and negative; 
(b) the zeros of ©, as well as those of Y* are separated both 

by the zeros of ®* and by those of Y,,; conversely, the zeros of 

d* and WY, are separated by those of @, and ¥*; compared to 
the zeros of ®,, and Y*, the polynomials * and ¥,, have the 
zeros with the least absolute values. 

Proor. The proof is nearly the same as that of Theorem 22, 
which is only a particular case of the present lemma. 
Tunorem 42. Let the condition F(é) =a be added to an 

indeterminate problem of type (e), where & is positive and diffe- 

rent from all values a,. if « is included (in the strict sense) 
between R(é) and R*(£), the new problem will still be indeter- 
minate. If « is equal to R(&) or to R*(é), the new problem has a 

unique solution R(x) resp. R*(z). 
Proor. Since a is included in the strict sense between R(é) 

and R*(&), it will still more be included between R,(&) and 
R*(é), by Theorem 30, Hence the value 

(6.21) wi meee; Polf) ia eval) eG Vols) ; R,(€) aa 

Pn($) — #5 (F) Eye(&) Re(é) —« 
must be finite and positive. Now we can introduce a set of poly- 

nomials @,(v),...@*(@) by putting 

Pn = Pn + CWPa> Pn = Vat £@Yny 
(6,22) nk Fa =e Ps 

Py = Py iy (E04) 20x» Pn = Pn + CEE laren 

By (4.81) and (6.07) we have 

Py (Ce) = Pr (@y)     ma ty (hmm Ly 2) oe witt) 

    
   

   

A Class of completely monotonic Functions. 55 

Pa(E) _ @nE) 
a #(E) ERE) 

    = % 

<s ~
—
 

Hence, if we put 

in st p(w Dp: Pn (2) B,(a) = 22) ie) — 
P,(@) xp, () 

the functions R, and R* take the values required for the argu- 

ments @,,..-@, and & By (6.22) and Lemma 8 these functions 

belong to the class {F}. Now, if n —~ ©, f, tends to a positive 

value £, since both the numerator and the denominator in (6.21) 

tend to finite values different from zero. Thus the limits 

@(z) = lim G, (2) = (2) + Se* (2), ++» 

p(x) = limph(s) = v*(2) + (66) 7v@) 
Ten> OO 

exist for all values of s. Putting 
= ae 

a2), Tie) oe 
Pl) ap (2) 

we have R,(2) > R(#), R*(w) > R*(v) for any «> 0 and 

n-> 0. Hence, by Theorem 33, R and R* belong to {F}. The 

functions R and R* are solutions of the original problem (¢); 

by (6.28) they also satisfy the condition 

R(E) = R*(E) = 

Finally, R and R* cannot be identical, which is immediately 

evident by (6.06) and (6.22). Hence the first part of the theorem 

is true. 

As to the second part, we may suppose «= K(€) and ao, <F <Map 41 

in order to fix the ideas; the other cases can be treated in the same 

way. Now, if we add the condition F(&) = 4, the problem 

remains solvable, since F = R is a solution. By Theorem 80 any 

solution of the new problem will be included (in the wide sense) 

between two such solutions R(w) and R*(x), whether these be 

identical or not. Hence, by Theorem 30, 

R*(v) = Rw) = Rw), (ity <@ < &), 
R*(@) S R(x) S Ria) (§ << @ < My): 

Now 7 and 7* are solutions of the original problem too, Hence 

Rin) = Rio), Ra) ZR) (@y << Aaya 

  
  

  R(z) 

which yiole a its a) 

a 
ip    
   

(ey est 
WL
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Since R, R and R* are holomorphic for 2 > 0, these functions 

are identical, which proves the statement. 

Theorem 42 contains aslight improvement of Theorem 30. For 
we now have: 
THEOREM 48. Any solution #(w) of an indeterminate problem 

of type (ec), which is not identical with & or R*, is included (in 
the strict sense) between R(z) and A*(#), for any positive x 
different from the values a,,. 

The results of Theorem 42 can be extended without difficulty 

to the case where a finite number of conditions /(&,) = «, (v=1, 

2,...N) is added. Yet, the fact that there are special cases, 
where an indeterminate problem becomes determined if a single 

condition is added, only leaves room for generalizations of Theorem 
42 that are rather cumbrous. Perhaps it is useful to introduce a 
notion here which seems to be new. If a determined problem of 

type (e) can be made indeterminate by leaving out a certain set 

of N conditions F(a,) = a, (» = %, %,... %y), but not by leaving 

out less than N conditions, the number N will be called the degree 
of definiteness of the problem. 

Trhmorrem 44. Let a problem of degree 1 become indeterminate 

when the condition F(z,) = a, is left out. The problem will 
also become indeterminate when any condition F(a,) = a, is 

left out. 

Proor. In what follows any problem of type (e) will be 
denoted by P(w), where (a) is the set of the values w for which 

F(w) is given. Moreover, it will always be supposed that the 

sequence {x,}; belongs to (x); for the sake of concision the @, 
will be dropped in the notation. Thus, in the case of P(&, &) 
the values of F will be prescribed for «= a, @,..., &, &a 

whereas in the case of P these values are given for @ = a, &,... 
only. It will also be supposed that the arguments 2,, @s,..., 

&, &,... are all different and positive. Finally we shall put 

I(&,) = a, whenever the value F(é,) is given. 

Now let P(é,, é.) be determined, and let P(é,) be indeterminate. 
In order to prove the theorem it will suffice to show that P(&,) 

is indeterminate, Sinee P(&) is indeterminate, P will be still 

more so. fence all solutions of P will be included (in the wide 
sense) between two non-identical solutions R(w) and R*(w) of 

P, and in the same way all solutions of /(¢,) are ineluded between 

Rw) wand Rew), According to Theorem 42, a muxt be ineluded     
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in the striet sense between R(é,) and A*(£,). Henee R and R* 

eannot be identical with R and R*, so it follows from Theorem 

43 that R(g) and R*(é,) are included in the strict sense between 

R(&) and R*¥(é). Now P(&, §) is determined, while P(&) is 

indeterminate; henee, by Theorem 42, %. must be equal either 

to R(é,) or to R*(§,), so % is also included in the strict sense 

between R(é,) and R*(&). Now P(&,) must be indeterminate, 

again by Theorem 42, since P is indeterminate. 

THrorEM 45, A problem of degree N becomes indeterminate 

if N arbitrarily chosen conditions F(v,) = a, are left out. 

Proor. According to the former theorem the statement is 

true when N = 1; let it hold for any degree < N. Using our 

previous notation, we can suppose, without loss of generality, 

that P(&,..-&x) is of degree N, and that P(&,... &)) 18) = 

determinate. 

Let 1 <k <N. According to our assumptions and to the defi- 

nition of degree, P(é,-. +5 §y: €vinie++ +» Sey) 1S of depree 

N—k, hence P(&,..+> €25 €yantt+ ++ €en) 38 indeterminate 

(according to our hypothesis). Henee it remains to show that 

P(Eqia) ++ +» Sox) is indeterminate. 

Now P(&:.+«S:y-3) is of degree N—1 (according to the 

definition of degree), hence P(&, Eyia) -- + ey-1) 1S indeterminate 

(aceording to our hypothesis), while P(Eqs Ensas« « » Fay) 18 deter 

mined (according to the definition of degree), hence P(&y44)+++ 4a) 

is indeterminate (according to Theorem 44). 

Now it is natural to extend the notion of degree of definiteness 

to all problems of type (¢). According to this generalized notion 

of degree, indeterminate problems are of zero degree, while 

determined problems are either of (finite) positive or of infinite 

degree. An introduction of negative degrees is not to the purpose, 

since a further classification of the indeterminate problems of 

type (e) seems to be impossible. Any indeterminate problem ean 

be made determined by the addition of an arbitrary number, 

or even of an infinite number, of appropriate conditions 17(&,)%, 

which. is immediately evident by Theorem 42, 

In the ease of a positive degree N, the number N — 1 ean he 

interpreted, according to Theorem 45, as the number of supers 

flious equations of the system F(@,) = dy (mm 1, 86s .), whieh 

determines #, One might connect the notion of degree with the 

ey 0 te matrices, but this would give rive to questions 

1M weope of thin paper. 
2    
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Tutorem 46. The solution of a problem of type (e) of finite 
positive degree is meromorphic. 

Proor. Let N be the degree of the problem considered. First 
leave N —1 conditions F(x,) =a, out. By Theorem 45, this 
fives rise to a determined problem of unity degree, which has 

the same solution F as the original problem. Now this new problem 
heeomes indeterminate if one more condition is left out. This can 
only happen, by Theorem 42, if F is equal to one of the functions 

® or R* that correspond to the final indeterminate problem. Since 

the latter are meromorphic, / must be meromorphic too. 

Some questions concerning the notion of infinite degree must 
still be viewed here. 

Tirorem 47. If a problem of type (e) is of infinite degree, a 
denumbrable set of conditions 

F(a,) = a, (pie xa) 

can be left out, and still the problem remains determined. 

Proor. Let, in the original problem P, {w,}" be the sequence 
of abseissac @ for which the values F(#,) = a, are given. Since 
? is supposed to be determined, the inequality 

| Ry(w) — R¥(a)| <e 

will hold for any ¢ > 0, a = 1 and » = N(e), eae) is an appro- 
priate funetion of «, Put «= 2-1 and i, = N(2-1) +-1, and leave 
the condition /(a, ,) = 4, out, which gives rise to a new problem 
P,, Instead of the sequences {R,}; and {R*}? of functions that 
limit the solution of P, there will be two other sequences {R ms va 

and {R*}/ that correspond to P,. Evidently we have 

penta, ee Re = 1,2, ..45 &—21), 

| Ra1(@)— RR (@)|< 22 (2 S1, n[i,—1). 

According to our assumption, P, is determined. Hence the 
inequality 

| Ra (2) ST Rei (2) | <eé 

will hold for ¢ > 0, « =1and n= N,(«), if Ny(e) is appropriately 
chosen, Put ¢ = 2-8 and i, = N,(2-#) -- 1, and leave the con- 

dition F(a) = a), out. This gives rise to a problem Py with the 
Seercndine 3 astiacate {Ryo} and (R¥}?. We now have 

a Raa Ras Ra Rie (n -= Wd. anak —1), 

il al Ret (w) |. a (94 ae Do ai 
low tai 
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This process can be carried on. After having left out k con- 

ditions 

(6.24) F(a,) = a, 
where v = 1, 2,...k and 

i, = Ny (2) + 1, 

we obtain a problem P, with the corresponding sequences 

{Ry clear and {R*,}3-1, which satisfy 

Ben, Fear TE oe k-1? fecal = Re eat (n= I, 2, suey tp — 1); 

| Ry,.(@) — RE, (x) | < 2-* @21, 27 2t—. 

Let P,, be the problem that comes into being if we leave out 

the denumbrable set of conditions (6.24), where now y = 1, 2,. 

Evidently the solutions of P,, are included between the elements 

of equal order of the sequences {R,}), {R¥}", where 

R, = Bens RE = Dy (n = Ms 2, See ay re 1) 

for k =1,2,.... Hence P,, is determined, which proves the 

theorem. 

Next, the question must be put what becomes of a problem of 

infinite degree, when a denumbrable set of conditions /’(#,,) = @, 

is left out. The degree of the new problem may be zero, positive 

or infinite again. Evidently two cases can be distinguished here: 

either a problem of infinite degree may be transformed into 

another problem of positive degree by leaving out an appropriate 

denumbrable set of conditions, or this may be impossible. The 

problems of the first kind will be said to belong to the class A, 

while those of the second kind will belong to the class B. Neither 

of these two classes is empty; for, all problems that have a non» 
meromorphic solution belong to B, according to Theorem 46, 

whereas the problems that arise from an indeterminate problem 

by the addition of the conditions R(&,) = «, resp. R*(&,) = 
where y = 1, 2,..., all belong to the class A. One might conjec- 
ture that the set of problems of infinitive degree, which have a 
meromorphic solution, is identical with the elass A. However, | 
have not as yet solved this very interesting question. 

It has already been said in the introduction that completely 

monotonic funations can be represented by Newton series, If 
z 

inn 
i= - y s é i aoa 

me  
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holds, any function /, which is completely monotonic in (x, 0), 

where a@<2,, and which satisfies the conditions f(v,;) = a, 
(n = 1, 2,...), can be represented by the expression 

(6.25) ee gy.» Ay|(@ — #,)(@ — ay)... (@— 2,1), 

where the divided differences [a,,...4,| are defined by 

Pee) tata. ta <a = 

Since the functions F are completely monotonic, (6.25) will 
also represent F(a) if (1.04) holds, which implies that we have 

to do with a determined case of problem (e). The question can 
be put what becomes of the series (6.25) if we give up the con- 
dition (1.04). An answer is given by 
TutoreM 48. Let the problem F(z,) =a, (n= 1, 2,...) 

be solvable. The series 

(6.27) ae ++ @,)(2 — ®,)(2 — ay)... (2 — @,_4) 
n= 

will then be convergent in the half plane Re z > 0. In order 

that the series represents a function of the class {/*} it is necessary 
and sufficient that (1.04) hold (in which case the series represents 
the unique solution F). 

Proor. Let 
1 dylt (1.05) F(z) -(*", 
1-—t-- B&B 

9 

be a solution of the problem considered. We ean exclude the 
case where F is a constant; hence there will be at least one value 
of 1, different from zero, where x increases. For convenience put 

i —— br A. 

Moreover, let 

(6.28) Bla) = 2 [a + ++ &y](3—2y)(2-—Wg) . . . (2—@,_)+,(2).- 

Now we obtain from (1.05) and (6.26), by induction, 

dx(t) 
vQq) = (—)r aes ae [ay ++ 1 Ay] ) ] ita +0 

t 

giek 
jon   sali Abuser hae “rama 

| A a ) 
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‘ ett dy, (t) 
z D — Tl (1 ——— =) | n A , 

(6.29)  @,,(2) a Oi wie 

0 k=1 vy 

and here the integral in the right hand member converges in any 

domain G(e, @) as m > 0, as ean be easily seen (for the definition 

of G see Lemma 1). 

Now we must distinguish between the case where 

mt 
Ses (6.30) a 

diverges and the case where this series is convergent. 

(a) If (6.30) diverges, the product 

s B 
Il (1 — =) 

vy 1 

is divergent as n — oo, when Re z <0. When Re z > 0, this 

product converges and is equal to zero, hence 

o(2) = lim g,(z) = 0. 
n> 

The series (6.27) is then convergent and, by (6.28), it represents 

the unique solution F, 

(b) If (6.30) is convergent, we have 

: dy(t) 
Se mol Ss) Ieee (6.81) 0(2) Times : s a—r+eyit(s eo 

0 en Uy 

for any 2, if we exclude the values = < 0 (since (6.30) holds in 

any domain G). By (6.28), the series (6.27) will be convergent 

again, even in any domain G. Yet, as (2) cannot be identically 

zero now, the series (6.27) cannot represent the solution J", 

Now F(z) might be any solution of problem (e), hence (6.27) 

represents no solution whatever of this problem. 

We can replace (6.28) by 

Biba cs) a— i) (% — 24) — eye) me BR) 
het | 

      
Mh ywhere convergent in ens 

+ , a 
, rahe rn ton
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§ 7. Applications. =, =F. = ae = g, C= oot, ... a 

In this section different questions will be treated that are in Since the values ¢, are moments of Hausdorff, the sequeneo 
_ some way connected with our subject. I begin by giving some {e,\¢ must be completely monotonic. 
examples of functions that belong to {F}. ‘i 

If 0 <a <1, the function z-* provides such an example. For Taking « = } we obtain from (7.01) | 
we have, when | z—1| <1, 

    

  

  

  

  

  

du = 
© Ge as = tS a 

s-*={1+ (g—1)}-*= & (—)* eee i fe . (l—w-+ uz)V/uil—au) - — 
k=0 

while hence , 

1 e : 
Ps leyk—l) | TRH) _epre, gy atiter—) Wars { _ ea f a 

kl TPUk+1)P (a) ae Geet) Vi—-#+a2 J (Iu -uls)Vu(l—) 4 (10+ 02) Vali) 
_ Sin sex fe 14g, — yay = | where 0 <t <1 and where the square root in the left hand 

a J , member is to be taken positive when s > 0. This being so, the 

henee, by Theorem 4, integral ‘de 

a sin TU pT —t)-* d (7.03) F(z i i} ————— 

7.0L ee i ae eae : : __ 2\(] __ 2 2 re (OL) 2 : we (0<a<1) J i (L #)(1— #2 + at?) 

can be written in the sae 
Evidently this is a special case of well-known formulae in the 

theory of the Gamma-function. Integrating (7.01) we obtain Re = 2 e do * ya(v)do () = A, 
(re 1—?s (1—v- 08) V/o(2—9) (oy J 1—o--0H 

(7.02) [etm — ehecres “fate a (tal, 
= slog s L—i+t where 

a a 

oe heya ga eee [ (pg) 
ae e. ui 1 = t a aa V(I—#)(P—v) Prvol V(1—)(1—'?) “f 

a a t (1—#) SIN 7K i= Fae o= be . vo 0 

: if ; Poon tere) i | Hence F, belongs to {F} since F,(1) = 1. A more elegant way 
Hence the function (7.02) also belongs to {I}. According to E to obtain this result is as follows. If |z—1| <1, 7 cam he 7 

3 Th rem 4 it can be ee in a series expressed by a Taylor series j 
a , 

a es Ane 1 F,(z) = E (ree — 1)f, 
ae k=0 

for |2—1| <1. Hence we have 
’ [ep a 

® hug 
Eien s 2 dss (BK) ie 1)°=— k oR. ! 

aR oe a f+1 Fone os Now we have 
om pa  
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By (7.04) the problem will be determined if and only hr 

So ee 

rding to Theorem 40, a problem of type (e) will be deter- | 2 Vay , ._ 

if and only if 
; 

o 1 
In this ease we obviously haye 

mz (4,45) == ’ ote 

Ae dn ‘ 
Ria) = R*(«) = ie: 

On the other hand we have in the indeterminate case, by (7,06), 

) In=1.V0, (n=2,8,...). 

‘The case A, = 1 (n = 2, 8,...) is easy. By (6.05) we have ii(. m ye fi(\ Y= ae 
R(w) = ee GO) see 2p a(t) | ve F al) = alt) +7, 98(2) = 9eale) + A . its =) 2) fit.) 

vale) = vo-a(e) +2), yea) = yt fe) +E), | fi(.+ V2) + fii—Vz) 

vee 
iL 

  

ee none yey AT) 1 By 

and these solutions can also be characterized by 

hence, by (6.04), 

Pp (@ SFr) Va = Pr Sees ed) 

which yields )=yp,le), pre) =en(v) (wm =1,2..-) 

Yn (2) + Vap,(@)= (1+ V2 “Jy a) +Vapn.(t)}= i+ V2), R(a)R*(@) = 2, 

oli * : 
orp 

| ol oo (Vz )ir stevie aus fi), | Rea) —Rl@) = fi (1 + i “ a) 
as 

. 
. 

1 n ee n 

wae) = 5 -{ (1 +)2)-i (—)2)}. 
1 vy 1 Oy Now let us consider the particular case @ 

ve) — 3 {11 (1+ V2) +80—V2)]. 
Z=nt (n= 1,2,...) 

5» Rie) 0 

(a>) 

ee which corresponds to an indeterminate problem. Putting 

so the functions R, and R* can be expressed by the formulae 
ri p y - (7.07) s= a2 Gat iy pmot ay 

Ait — \=)-n — H(i a) 5) where s <> 0 will be taken when 2 > 0, we obtain 

| = 2 ( a sin @ 

y=) baal | 
| Bb Vt as 

R, (a) = 2 
  

_
 

@), 
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cos ep—sin cos sin, 5 
(7.08) = gee Laat (0 +2), ae Seeding = ts(e+2). 

66 C, G. G. van Herk. 

or | 

a 4n\k ~ 4a\k 

Ray a ee ie 
“x=0 (Ak -F 8)! k=0 (4h -+ 1)! 

ios) 4n,\b oo 4, \ ke eis Seer se) 
mE NNER EOE ae 

ro (4k-+1)1 °° eo (4h + 8)! 
It is immediately evident, by the last formulae, that R(z) and 

&*(z) are meromorphic functions. R is holomorphic in the origin, 
whereas i* has a pole of the first order there with a residue 

62°*. The other poles of R and R* are identical with the zeros 
of the functions 

8 35 (x4a)* 
r-0(4e +1)!" goo(4k +8)! 

According to Theorem 34 these must be simple and negative. 
By (7.07), these zeros correspond to the roots of the equations 

  

Il 

e®’—e*t 2sins =0, e’ —e*—2sins = 0, 

and, in order to compute the first, we thus can put s = (1 + Z)o, 
where po > 0, which yields 

cos o-+sin @ A 

If the increasing sequences of the positive roots of the equations 
(7.08) are denoted by {o,}7 and {o*}.", we evidently have 

cos ~—sin 0 

au * a 
On = 2 +o(1), 6, =ne+ i: + a(1), 

as m —> oo. Of course more accurate asymptotic formulae can be 
given. 

If F,, F, belong to {I}, other functions with the same property 
ean be obtained by a transformation. Some of these transfor- 
mations are trivial, e.g.: 

F(z) = Fy(e + «): Fl + «) (a > 0), 
Ei(g) = By (az) 3 F(a) (a > 0), 

F(z) = aF\(z) + (1—a) F(z) (0 <a <1). 
Less trivial is 
Tunormm 49, Let /, belong to {F}. Let 

(7,00) Fs) om wl F(a), 1 
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Proor. Let 

  

1 dyy(t) nin fate 
0 

Putting w = 1—1#, z(w) = 1— x(t), we get 

Beene i dy(u) 
> 

1l1—wu + uz 
0 

  

which proves the theorem. 

TneorEm 50. Let 

(7.10) F(s)Fy(271) = 1. 

When F, belongs to {F}, the same will hold for F. 

Proor. First let F,(z) be a rational function, which, if represen- 

ted by (4.89), contains positive parameters. According to the 

symbolism of § 4, F, can. be denoted either by r,(z), When F, is 

regular in the origin, or by 7*(z), when the origin is a pole. Let, 

{x,\” be an increasing sequence of arbitrary positive values; 

put F,(x,) =a, (k&=1,2,...m). According to Theorems 26 

and 27 the function F, will then be identical with &,(%) resp. 

with R*(z). 
By (7.10) we thus obtain the expressions 

One) OR) 
Piety sP*(e) 

for F; it must be shown that these belong to {F}. Let us consider 

the expressions 

Pe ace 0ne- ), Gem(8)=8" Py, (87), 

pe (2)=2"0am(Z 1), Gam(2)=8"*Pan(2")s 

Pa mer(2)=2"Camia(21)> Gamsa(2)=2" Pa myrl)s 

Pen(2)=2"Odmr(2 2), Brevi 8) =2"PEmgn(8)s 

which have the following properties. 

(a) pas... ge are polynomials of 2, which are positive for 

» —0. This is an immediate consequence of Theorem 22(a) and(b), 

(b) The degrees of p,,.-- q* are equal to those of P,,... on, 

since P,(0),...Q*(0) are positive and since 

[Pynlm (Of (P¥.]=(Oam]> [Pamix)=[Onmirle CPSman] = [Oma 

(u) The geros of p,,... gh are simple and negative, since these 

ane lv of the zeros of Py... . Q% (in another arrane 

  

(7.11) 
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zeros of p* and q,, and conversely. Compared to p, and 
qn» the polynomials py and q,, have the zeros with the least ab- 
solute: values. For, by Theorem 22(b) and (d), the following 

— couples of polynomials have zeros that separate one another: 

(Pam Pans (Pom Qem)s (Q3in> Pan)s (Qe Qom)s 

a (Pama Pots)» (Po mas Ooms)» (Oo Pole (OF nats Osa: 

In cach of these cases the polynomial that has the zero with the 
greatest absolute value has been underlined. We thus have, by 
(7.11), the following set of corresponding couples whose zeros 
separate one another: 

(ons Jam), (Gams Darr (Po m? Jom)» (Dom Dome 

(Gamity Bini) (Gamias Pamia)» (Pamasa> Pia)» (Pamerr Yama) 

where the underlined polynomials now have the zero with the least 
absolute value, which proves the statement (d). 

This being so, the expressions 

  
  Qam(3*) ee Pom (2) Qem(2—1) J& P2 (8) 

Ponl2) — 2am(2) BPR") Gam (B)" 
Qeamar(2*) = Pemta(2) Qrm+1 (2) ae Poms (2) 
    

Ps mia(2) r Goms1(#) 2 P3nga(2*) " 2G ama (2) 

must belong to {/*}, for similar reasons as have been used in the 
proof of Theorem 23(¢). Hence the theorem is true when Fy is 
rational. 

In order to prove the theorem when F, is non-rational, we can 

take xv, = nand a, = F;,(n). The corresponding problem (e) will 
be solvable, since it has the solution F,. Moreover it is deter- 
mined, since 

ed 
ae 1 2—= o. 

' 7 

Hence we have at any rate 

= 712) F,(z) = lim &,,(z) 
>on 

for 2 > 0. Let 

Sele ken Ge) 

As it has just been shown, S,(z) belongs to {/} for any n. 
Moreover, by (7.10) and (7.12), the limit 

en f(g a MONG gi 7 

) The zeros ol p, as well as those of g* are separated both = 

yf comp ol \ otont neti " inl tue OHO DOT PUPP DR 
of completely m UEDA : ARE - 

exists for 2 > 0. Hence F belongs to {7}, by Theorem 88, 

i 

The function 

  

  

a 1 dt __ loge 1 

@=\j-aae ae F 
0 

belongs to {F}. Hence 
2—1 

; at rere) ae 

also belongs to {F}, in accordance with (7.02). 

By Theorems 49 and 50 we also have the transformation 

(7.13) {F,(z)}* = 2F (2), 

which provides other couples of functions belonging to {F}. 

For the rest, (7.18) is substantially equivalent to a theorem of 

Kaluza [1]. Now F can be expanded, by Theorem 4, in a Taylor 

  

series 

F(z) = & (—)*¢n(2— 1)" 
n=0 

valid for |z—1|< 1. Hence we have, by (1.13), (2.06) and 7 

(7.18), 
7 a o -_ 3 

—— = — —)e, (g-—1)® = 1 — BD (—) "(Cnr On) 
FT At EME Mae Eero 1)" 

Putting 

(7.14) Fe 1—2ZA,(1 —3)* (ja —1]| <1) 
F(z) n=1 

we thus have, by (2.06), 

Ay = tytn = [etd — t)dz(t). 

u 
i 

Hence the sequence {4,}; is a set of moments of Hausdorff, 

which implies that it is completely monotonic. 

As an example, we can take for F, the elliptic integral (7,08), 

which belongs to {F}. Hence, if we replace z in (7.14) by 1% 

we get the development 

fat 

— t*)(1 — xi?) 
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5 

tonic, This is a generalization of a result of van Veen [1], who 
proved that these coefficients are positive and decreasing. 

i (7.10), we require ’ — Fi, we obtain the functional 

(7.15) F(2)F(z) =1, 
which is satisfied by 

F(z)=2% (0 Sa), 
It would be interesting to know whether there are other solu- 

tions F of (7.15), but as yet I have not solved this problem. 

| No use has been made, in the preceding investigation, of con- 
tinued fractions. Of course we could have done so, since the 

expressions R,(s) and R¥(z) are approximants of odd resp. of 
even order of the continued fraction 

  

which is an immediate consequence of (6.04), (6.05) and (6.07). 
If the corresponding problem (e) has a unique solution F, (7.16) 
obviously converges for any 3, different from the vehies 2 = 0; 
there will also be convergence within the open intervals of the 
half line x = 0, where F is holomorphic. 
_When the corresponding problem (e) is indeterminate, (7.16) 

diverges, except for the values z = #, (n = 1, 2,.. .). However 
by contraction of (7.16) we can obtain the continued fractions 

(7.17) A] oa
} na) 

lie (1-2) 

  

  

  

1+ % alae 

  

    

  
  

    

  

i eS tk 
Te | zr "3 

(2) VoNeo hay &sHy I 2 

nig) 2) 4. Bate &gn x pate he ge 

asap [oye | fi : 
1 taNa Ng @yNq 

which have the sequences of approximants {R,(z2)}?_, and     
het eae and thus converge for every », the 

hank vm ee ' , Kvidently (7. 
W 
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determined. These continued fractions can also be obtained 

as an immediate consequence of the recurrence formulae 

  pole) = (1+ 1) a8) — (1 — = )pu-al) 

  
  = ly, ale) | 

n-1L 

"wn Mn ( 
a(@) = (L + ——]¥ a i La vale) (.+24)y i) 1 — = 

T.19 4 
z 
    ot-a(6) 

ned 

* pian =) x 1 nar ( 
= {1 -- —— _3(8) ——— |— 

cain ( Taig 18) as 

  */.) — ee * Be 2 oe # tas 

vite) = (a + 2) vt te) Pe — doh ale 

which in their turn follow from (6.05). Properly speaking, (7.17) 

and (7.18) are only another way of writing the system (7.19). 

Conversely, for any increasing sequence {v,};, Where 2 = 

and #,, > 0 as n-> 00, and for any positive sequence {nate » the 

continued fractions (7.17) and (7.18) represent a function F, 

and so does (7.16) if it is convergent. Since there are always 

determined problems (e) that have an arbitrarily given function 

F as a unique solution, the following theorem holds: 

TyreorEM 51. Any function F(z) can be represented for any 

z, save perhaps for the values 2 = 0, and even in an infinity of 

ways, by continued fractions of the types (7.16), ... (7.18), 

If F(z) is given along a line Res = « (0 <a < 1), we can state 

an explicit formula for z, thus solving the problem of the inver= 

sion of (1.05) in a stricter sense than it had be done in Theorem 8 

and (2.17). For, combining (5.08) and (5.20) we have © 

1 poring | putio F(z) og he 
(7.20) x(t) 14+, f —ds | qa (o>0, 0<a<1), 

ain a—in 

for 0 <t< 1. I have not succeeded in finding an expression for 

y that contained only one integration, . 

Le 

Next, some remarks concerning the limit 

(7.21) u= lim F(@) .        Orhshe
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occurs. Besides, all solutions F of a problem of type (e) have the 

same limit value wu, since 

u = lim a,,. 
m—>-[90 

For any value of « there are corresponding problems (e) that 

are determined. On the other hand, we have shown by an example 

that an indeterminate problem can correspond to u = 0. Now 
it is clear by the transformation 

Fy(v) + 
ae 

(a > 0) 

_ that at least one indeterminate problem (e) corresponds to any 

given u. Hence the question whether a problem of type (e) has 
a unique solution, has nothing to do with the value of w. 

While stating problem (e) in the beginning of this paper, we 

have used the sequences {a} and {a,}}. Now it is possible, 
by the transformations (6.02) and (7.05), to express the same 

problem in terms of the sequences {a,}" and {A,}¢, and we 
can ask what becomes of the condition wu = 0 in this new for- 

mulation. The answer is contained in the following theorem: 
Turorem 52. Let 

(7.22) Tae == Ages Marya = Ages 

In order that a problem of type (ec) he determined, it is necessary 
and sufficient that 

  s nt Hn! = © 

2 Va, 

In order that its solutions tend to zero as a —> 00, it is necessary 
and sufficient that 

(7.28) D (samy... Hy)? %_Va, = 00. 
2 

Proor. Evidently the first statement is only a transcription 

of (7.04). In order to prove the second part of the theorem, we 
need an expression for the limits w, and u* defined by (4.35). 
By (4.22) we have 

— 4) a 
Ugm = Vom, = 0, 

Oo Mie on Us of hth 

] 
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Pm =Poma+NamP?am—1 Pam = (em Yam)" Pamet 

Pom = omVam—> Vim =P2n—1 + (Pam 2am) Vanes 

Coma NemeiPam YSmei=Pom + (amirMamen) Paras 

(®2m1% 241) Vame 

(7.24) 

te fay 
YVom+1= Vom + NometY2m> Y2mi1= 

Hence, by (6.07), 

    

  
  

‘ 2 a 
1 Yomi4 L Yom it Vom Nam Yam=1 

es a ==— —— <r oy 

(7.25) Uomia  Pamtr Yam YomiiPom Cem Nami  P2m-1 
; * Ba 

1 Pom ; Pom—1 
She + Vom Nom : 
Ugm Pam Usm—1 m1 

Sinee all values in these formulae are positive, we have 

Ulam > Ulam > Uamsa (m = 1, 2,..+) 

whereas it is obvious that 

(7.26) UW = LIM Ug 3 = lim ug, 
mM > Dn Man 

Using the notations (7.05) and (7.22), we have, by (7.24), 

  

* 2 os 2 1k * 
Yomtt 25 mN2mY! 2m AemPom—1 = Hf a8 Wom 

vs 2 ma = MQmFomp1— 9 
Ponti Cama 2m41"2in—1 2m+1P2m—-1 Pam 

hence, by (6.04), 

Yo, 1 (7.27) LER’ = (stgty.. +» Temsi)* 
Pama 

By (7.05), (7.22), (7.25) and (7.27) we have 

      

  
  

2 * 
1 1 VomYom\ Pom—1 

= a &3 mM2m + 
Uomia  Uam—-1 Ne mi! PIm-1 

* 1 — ——.y 2 m—1 
= Ab (Sty nV tne, + Ppa Camis) 

Uom—-1 lm-1 

  ] — 

= ——— +} (sigitg.. Team) Pays V Bom + (0g7ty- ++ Tam) amp V @amsas 

  

Usm—1 

or 

2an+L oe 

(7.28) =1+ = (ceygty « + » Tey) V ays 
Wom 

since % © 1, Now, by (7.26) and (7.28), the eonditiag wom     
sctiuioeh statement 2) are obviously



= 
' r ' ‘ - fase) i 

oman fangs] Sp < ras | > 0, it is necessary ; Now, for #>1 and for ean = “VE a 
fi 

— [ae [ tl en ey 
Since both Saal in an right ae cemban can be- : 

arbitrarily small by an appropriate choice of # and w, the ‘left. 

— as ; 
= 0), Next 

yd x 
hand integral tends to zero as @ > ®. Hence dy = ae > 

) do= (+9), d, = ( pe £"(1—t)"dy(t) (n=1, 2,...). Ze hire, by (729) 

c | adz(t) 1 

Proor. First let the moments (7. pe be finite, and (7.81) hold. (7.85) d, = poe ra ee n | 1—t-+ te 
+0 

i oe re ce = faut t tt 
(7.82) Fe) = faa 0 + fit +g J t am 

1 8 0 : 
" +0 3 . vee 5 0 

Be ets i e integrand is positive we get, for any e > 0, 
f we have Since th er Pp 

n n 1 1— 1 dx(t) 
no ie) — 2 = Fe) — Eo lim a- aoe le w= | A Say 

" (es 1 € 
i t(1—t+ tm) 3k "peo 

&€ 

s 1 m 
; 

= ees) ee. hence, as e > 0, 

ie (1—*#)* lice yy ani 4 

me tee ge +0 | "| pane and by (7.85) 
» hence t . x(t) lin Ya Te Mares y(t). 

; nd (L—1)" | ao oe » | ere Mires) v{r@)—24}—(» f eS ay , 0 ' 
0 3 i"(1 —t -- iz) Since the limit in the mete eo member is non-negative, i 

Now, in any domain |argz| Se <a cither Imz—> © or obtain 
> «© as |z|— oo; hence the integral in the right hand 
uber is smaller than 

ne ri 4" Now, let do, dj: -+-d, be expressed by (7.81). Hence (1 
il k| rai grt ar x), ‘ holds, and consequently we have 

* dy : a 
where k only depends on y. By (7.80) the expression (7.84) is @axa= lim wet ra) — 3 a ey bath g J vl 

: hey it ede to zero as | z| > 0, and thus our conditions are ao 9 
. 

aM ()) , 7  
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Since the integrand in the right hand m ea 
get, for any @ > 0, : eee 

en 1 Tt} “(1—t)” 

t af =| pt A S(—) "bags 
é 

henee, as ¢ + 0, 

      

lim 
oon ti" 

& 

    

  

  

1 - J 1-11 — 1)" dy(t) S (—)" days 
D0 

  

‘and by (7.86) — 

  

   

  

, 

n So ose J HL — t+ ta) 
ms 

+0 

Since the limit in the right hand member is non-negative, we get 

dz (t). 

      

1 ° 

(daa = { t"-1(1 —1)" dy(t). 
+0 

Mence the conditions (7.30) and (7.31) are necessary. 

  

     
    Kvidently one part of Theorem 53, where the conditions are 

said to be sufficient, is a transcription of a result of Stieltjes ) 
As to the other part, this is closely related to a theorem of Hain: 
burger) and R. Nevanlinna (2), if and only if 

(ae 

    

   

        

+0 
for else the transformation (1.08) does not apply to F. 

rom (7.29) we obtain, by the transformation (1.08), the 
asymptotic development of Stieltjes 

Oday 

Fe) —x(+ 0) = [ ae) 1 4 Till 

          

  

    

  

  

0 

where the moments c,, are finite: 
; 

      

     
   

1 cd 

oy = (—Jdy = | (41) ay) = [wn ae) < co. 
+0 0 

THROREM 54. Let {&}, be an increasing sequence. Let & = 1 
and &,—» co as ¢—> c. Furthermore, let 

m= 1 Ome <1 (¢ = 2,,8,...); lime, = 0. 
wn 
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There are functions F that satisfy a 

F(é,) > %; (t= 2, Bre 8) lim F'(a@) = 0. 
oo 

Proor. The proof is based on the construction of a problem 

of type (ec), which is characterized by two sequences {ea}. and 

fa,}*, defined for the purpose; so in particular we must put 

av, = a, = 1. The functions R, (7) and R*(a) will have the same 

meaning as before, while @,, will be included. in the strict sense 

and for any > 1, between R,,4(7,) and R* ,(w,). Thus Ry, 

and R* belong to {F} for any n, and our problem (e) is solvable, 

In order to avoid the necessity of distinguishing at every turn 

even and odd values of , I shall write (R,, ,) instead of 

(R,, R*), where &, (a) is the function of the couple (R,,, R*) that 

tends to zero, while R,,(x) is the one that tends to a positive value 

as a—> 0. If we have, for a certain value of n, 

oe R,(E:) (i = 2,8,.. db 

our theorem is obviously true. Henceforth this case will be ex. 

cluded. 

Next, an increasing sequence {j(n)};_, of indices will be defined, 

where j(1) = 1, while we shall take &, = & ,). Hence a, ~ 1, 

whereas the sequence {v,}; is increasing, and 7, > © as 2 —» ®, 

as it is required. Moreover the following conditions, where n > 1, 

ean be fulfilled: 

a
 
a
 

a
 

| 
ant

i 
Mi 

a
s
 

hy << dy <2; for i = 4(n), 

(7.37) a; < min {R,(&;), R,(E,)} for 1 <t <j(m), 

a,< RE) 
for i> a(n). 

Evidently (7.37) can be satisfied if m = 2. For, if we assign, 

to a and #, any provisional values (provided a > 1 and 

0 < %, <1), and if we put, as before, 1 

dg = OR, (@2) + oF Ri (xz), d+ % =1, 

there can only be a finite set of values «, such that «; > RY (é;) = 

R,(é,). Now, by Theorem 23(d), R* is an increasing funetion of 

a,, and hence of %. Thus by an appropriate choice of My (while 

a, remains fixed, though arbitrary), the inequalities 

            

ance 
’ ) = 

(7.88) ays Ry(é,) (i =m 2, Bia i) : = 

will hold, On the other hand, there must be an i at 
¥ ‘ a 

1 tha &, re 
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same time there is an index i = 7(2) among the latter set that 

satisfies 

Ay0) < Ko(Eica)) < orjeay- 

Since § 9) = w, we have Ro(E 2) ) = a, so our statement is true. 
Now let (7.87) hold for an arbitrary value of n. The argument 

is the same as in the case » = 2. For any provisional couple of 
values (v.15, %,,4,) there is a finite set of indices ¢ > 7(m) such 
that «;, > R,.,(é;), whereas there is an infinite set of these in- 

dices such that «, > R,(§;). Hence, by an appropriate choice 

of #,,, (while z,., remains constant, though it still has an ar- 

bitrary value > z,,), we can obtain «; < R,,,,(&,) for all i > j(n), 
whercas there is a particular index 7 = 7(m +1) such that 
RE) < &; < Ray lé,) < 2«,. In this way (7.37) can be satisfied , 

for » + 1, and hence for any value of n. 

By (7.87) we have «, < R(é,) for 1 <i <j (n) (since R is 
included in the strict sense between R, and R,,), ie. we have 
a; < R(é;) for any value of 7. Now R(w) tends to zero as @ —> co, 
since «,-> 0 as i > co, hence the theorem is true. 

Tt was the aim of this paper to get some information about 

completely monotonic functions that decrease arbitrarily slow 

as @ —> oo. The results, as seen from this point of view, are rather 

scanty, and no doubt much work on this subject remains to 
be done. 
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SAMENVATTING. 

In dit proefschrift werden functies F(z) onderzocht, die buiten 

de coupure z < 0 voorgesteld kunnen worden door cen integraal 
van de gedaante (1.05), welke gedaante een uitbreiding is van 
een door Stieltjes onderzochte integraal. 

Er werden eerst enkele algemene cigenschappen van deze 

functies afgeleid. Voor x > 0 is iedere # volledig monotoon. 
De afgeleiden in het punt z = 1 konden met behulp van een rij 

momenten van Hausdorff worden uitgedrukt. De inversie van 

de integraal (1.05) voerde tot een uitbreiding van uitkomsten 
van Stieltjes en Hilbert. Het geval waarbij F’ op de coupure 

s = 0 holomorf is op geisoleerde singulariteiten na werd onder- 

zocht. Er werd aangetoond dat de gevallen, waarin een F' een 
asymptotische ontwikkeling toelaat, nauw samenhangen met het 

momentenprobleem van Stieltjes. Onderzocht werden nog voor- 
stellingen van een # door cen reeks van Newton en door een 
kettingbreuk. 

Daarnaast werd het probleem behandeld, de functies F’ te 

bepalen waarvan de waarde in een onbepaald aangrociende rij 
positieve argumenten is vastgelegd. Een noodzakelijke en vol- 

doende voorwaarde voor de oplosbaarheid van dit probleem 
werd gegeven, evenals een noodzakelijke en yvoldoende voor- 

waarde voor de bepaaldheid ervan. In het geval van een oplosbaar, 

maar onbepaald probleem konden alle oplossingen tussen twee 

meromorfe oplossingen worden ingesloten. Er werd cen indeling 
yan de oplosbare problemen gemaakt met behulp van het begrip 

»graad van bepaaldheid”, waaronder verstaan werd het kleinste 

aantal voorwaarden F(z,,) = a,, dat, weggelaten, het beschouwde 

probleem onbepaald maakt. Naast de onbepaalde problemen 

(van de graad nul) konden problemen van positieve graad en van 
de graad oneindig worden onderscheiden. De laatsten vallen in 
twee niet-lege klassen uiteen. 

Knige aandacht werd besteed aan een correcte formulering 
in intuitionistische zin. Hoewel hier niet consequent naar werd 

gestreefd, werd b.v. toch van het bekende theorema van Helly 

geen gebruik gemaakt. 

Enkele toepassingen werden aan het slot behandeld, doch de 

meeste van deze uitkomsten waren reeds in de litteratuur bekend. 

STELLINGIN, 

I, 

Zolang men onder wiskunde geen complex vain Welensehappen 

wil verstaan, moet wiskunde opgeval worden aly ondersoek yan 

het aftelbaar oneindige. Aan de heuristivehe waanle yan let 

bekijken van aanschouwelijke continua doet dee wionawijwe ween 

afbreuk. De continua kunnen dan echter niet ale pihyeriie 

lingen worden beschouwd. 

ET: 

De studie van de wiskunde herinnert de mens ulldrulleelijly 

aan zijn nietigheid, overtuigt hem van de ondoorgrondelijlheid 

van het oneindige, en bezit daardoor religieuse waarde, 

Iv. 

De bewijzen die op cen descente infinite (Fermat) berusten 

kunnen in negatievrije vorm worden geleverd. 

E. Lanvav, Vorl. iiber Zahlentheorie, 1927, I p.122, [11 p, 407, 

G. F. C. Griss, Proce. Ac. A’dam, diverse mededelingen In iy 

laatste jaren. 

LY. 

Het dertigtallig stelsel verdient de voorkeur boven het tien: 

tallige. Goed herkenbare cijfertekens zouden verkregen worden 

door in de cijfers van de cerste decade een laag- resp. hooggeplantste 

horizontale streep aan te brengen. 

Vv. 

Het verdient aanbeveling de afgeleide van de orde « van /(i”) 

te definiéren door 

1 @ 

O(n) = coal Af) \) dl, pte) — an sil 1% fm — +t) dt 
0 

ei + vo alle redle wv, de integraal in het reelter lid
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bestaat en 0 < @ <1. Voor bepaalde onderklassen van de aldus 

gedefinicerde klasse {f} kan hieruit {\(a) voor andere waarden 

van « door analytische voortzetting worden afgelcid, Het streven 

_ {® voor cen zeer uitgebreide klasse van functies te definiéren 

moet als ondoelmatig worden beschouwd. 

VI. 

Waarschijnlijk is het mogelijk stelsels integraalvergelijkingen 

van de eerste soort, van het type (a) uit dit proefschrift, en met 

kernen van een veel algemenere gedaante dan in de tot nu toe 

behandelde gevallen optraden, op te lossen volgens de methode, 

die Stieltjes al heeft toegepast, waarbij van de complexe functie- 

theorie slechts cen bijkomstig gebruik wordt gemaakt. 

VII. 

Het in dit proefschrift behandelde interpolaticprobleem kan 

worden uitgebreid door de functiewaarde voor te schrijven voor 

de argumenten 
Qaqr 

Aggy — Uy S2P — 
P 

__waarbij: p geheel en constant; q=0,1,...p —1l¥=1,2,--53 

0<2, <a <...; a,~> © voor »+> «©. Nieuwe gezichts- 

punten levert een dergelijke uitbreiding feitelijk niet op; met 

‘name gelukt het niet, het mogelijke optreden van cen onbepaald 

geval door cen geschikte keuze van p uit te sluiten. 

VIII. 

a Door Grommer zijn noodzakelijke en voldoende voorwaarden 

 flangegeven voor de realiteit van de nulpunten van cen gehele 

 funetie van het geslacht nul. Waarschijnlijk kunnen deze voor- 

rden ook zonder van de kettingbreuktheorie gebruik te maken 

worden afgeleid. Voor wat betreft de realiteit van het absoluut 

 kleinste nulpunt is dit zeker. 

i J. Gromer, Ganze transzendente Funktionen mit lauter 

bh ied yeellen Nullstellen, J.f.d.ruca. Math, 144, 

   

  

   

   
   

   

    

    

  

    
   

    

    

   

   

  

    

    

         
    

    

   

     

  

    

    

    
    
   

definitie van een cenduidig gemiddeld 

yan het keuzepostulaat of van de twee 

is. 
S. Banace, Théorie des Opératlor 

x. & 

Zij f(t) voldoend vaak differenticerbaar voor L ( 

n ( 1 

} 

1 = a 
ex(@) = — J (f(t) de, = lim sup cya) (he 

0 

Voor het geval tevens {(0) = /'(0) = 0 heeft men * 
ah 

est(e) < 4 ey(t) cole), a 
en het is niet mogelijk de constante 4 door een kleinere rt 

vangen. Voor iedere tweemaal continu differentieerbare funetie / 

volet. hieruit ‘inal 

62 SA Cy Ca, ae 

doch volgens een in ’89 geleverd (niet-gepubliceerd?) bewijs van 

Carleman heeft men : 

ey? S Cy Cy. “ 

Waarschijnlijk is de variaticrekening een ongeschikt hulpmiddel 

om deze laatste betrekking te bewijzen. / 

Harpy-Lirriewoop-roLya, Inequalities (1984), p. 178, Wh 7 

XI. 

   

   

    

: 
i 

Indien de grootheden ¢g en ¢, uit de vorige stelling etd any fl 

geldt dit ook voor de grootheden ¢, voor 0< k<n, Stelt men 

Cz = lim ¢,(@) wl 
rn 

dan kan gevraagd worden wanneer de existentic Van @y,) «++ Mpy 

die van ¢, voor iedere willekeurige (ook niet-gehele) / ten g . 

heeft. Vermoedelijk is hiervoor nodig en voldoende 
gereduceerde momentenprobleem 
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aa a 

material voldoet aan de eisen die voor een periodenonderzoek 
moeten worden gesteld. Zonnevlekken vormen voor een dergelijk 
onderzoek geen geschikt object, en tegenover de uitkomsten die 

op dit gebied zijn verkregen is cen grote mate van reserve ge- 
oorloofd, 

XVITI. 

Uit de waarnemingen bij spectroscopische dubbelsterren volgt: 
niet, dat de snelheid van het licht constant is en onafhankelijk 
van de snelheid van de lichtbron. 

W. pvr Srtrmr, Proc. Ac. A’dam 15 (1918) p. 1297, 
16 (1918) p. 895. 

XIX. 

Bij de interpretatie van waarnemingsresultaten is het juister, 
met alle effecten rekening te houden waarvan het bestaan rede- 

lijkerwijs kan worden vermoed, en liever te veel onbekende 

parameters in te yoeren dan te weinig. Het principe van de 

economie van het denken, dat in zulke gevallen gewoonlijk een 
woordje meespreekt, heeft in dit opzicht een hoogst betrekkelijke 

waarde. 

XX. 

De wiskundige ingewikkeldheid van de natuurverschijnselen, — 
die de ingewikkeldheid van de gangbare natuurkundige voor- 

stellingen verre overtreft —, maakt de inductieve methode tot 

een inadequaat middel voor het beschrijven van toestanden en 

het formuleren van natuurwetten. De wijsgerige conclusies, die 

op grond van inductief onderzoek werden getrokken, zijn alleen 
daarom al onyoldoende gefundeerd. 

Tn overeenstemming hiermee dient de theoretische natuurkunde 

als cen deductieve wetenschap te worden behandeld, die, ten 
nhauwste verwant aan de Huclidische meetkunde, uitgaat van 

duidelijke primitieve begrippen en evidente axioma’s. De meeste 
van deze axioma’s zijn een uitvloeisel van het verzamelings- 

theoretische bekijken van de natuur, d.w.z. ze hangen samen 
met ons inzicht in de ,natuurkunde van het oneindige’’, De 

Kheden van deze opzet komen vrijwel alleen door het te 
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axiomatische behandeling nauwelijks betekenis, maar is wel van 

beslissende waarde voor het achteraf toctsen van eventuele 

theoretische resultaten. 

Zonder enig verder model kunnen de volgende uitkomsten 

worden verkregen: 

(a) Ken besehrijving van de natuur is mogelijk door aan ieder 

ruimtetijdstip ecn constant aantal onafhankelijke scalaire veld: 
grootheden toe te voegen; deze zijn analytische funeties yan de 

(klassieke) coérdinaten; het genoemde aantal hangt nauw samen 

met de structuur van het heelal. 

(b) Het aantal onafhankelijke veldgrootheden bedraagt ten 

minste 5, en vermoedelijk ten minste 6. 

(c) Er geldt een analogon van de quasi-ergodenhypothese vary 

Ehrenfest. Men behoeft hiertoe slechts de punten van een fiser- 

baan, die cen fasenruimte overal dicht vult, te vervangen door 

toestanden in bollen met gelijke straal (of in andere gebieden), 

waarvan cen vierdimensionale variéteit een abstracte constellaties 

ruimte overal dicht vult. 

(da) De veldgrootheden voldoen aan zekere niet-linenire 

differentiaalvergelijkingen die, wat hun ingewikkeldheid hetreft, 

met geen van de uit de empirie geabstraheerde vergelijkingen 

kunnen worden vergeleken; deze laatste dienen dan ook te worden 

beschouwd als sterk geschematiseerde uitkomsten, die alleen in 

speciale situaties bij benadering gelden. Van iedere veldverges 

liking kunnen ongeveer 5000 termen exact worden nangegevens ie 

daarnaast zijn er ten minste evenveel termen, waarvan de strc 

tuur nog moet worden opgehelderd. 

Men mag niet verwachten dat het verloop der verschijnselen, 

ook afgezien van triviale normeringen, door de axioma’s volledijy 

zal zijn bepaald. Met name werd geen enkel axioma gevonden 

waarin de richting van het tijdverloop optreedt, zodat de riehting 

waarin de verschijnselen zich afspelen volgens deze voorstellingen 

nog gehee! onbepaald is. 

C.G. G. v. Hern, Proc. Ac. A’dam 82 (1029), p. 1400; 08 (LON0) 

p. 98, 295. 
Id., Proc. Xth Int. Congress of Philosophy, p. 8d0-—A71, 

XXI. 

   Het opwekken van wisselstroom yan seer lange frequention kan 
wrsehijnlijk het best geschieden door de borstely van een 
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gelijkstroomdynamo met de gewenste frequentie te laten roteren, 

en de gang van de aandrijvende motor automatisch te regelen. 

XXII. 

Iedere theorie van het gehoor, die de verschijnselen in de eerste 

plaats zoekt te verklaren uit de eigenschappen van het oor zelf, 

dient uit te gaan van een beschouwing over infinitesimale tril- 

ingen in een schematisch slakkenhuis. Waarschijnlijk is de invloed 

van wervelbewegingen dan verwaarloosbaar klein, wat nood- 

zakelijk tot een variant van de resonantietheorie van Helmholtz 

zou voeren. 

XXII. 

Vermoedelijk kan door een statistisch onderzoek van de tijd- 

stippen, waarop ,,spikes” optreden in het electrencephalogram 

van sommige epileptici, een bovenste grens worden verkregen 

yoor het aantal onafhankelijke ,,centra”, van waaruit de spikes 

worden opgewckt. 

XXIV. 

Zeer waarschijnlijk heeft de kennismaking met de getijden 

aan de mond van de Euphraat een beslissende invloed gehad 

op de ontwikkeling van de godsdienst in Babylonié. Deze 

hypothese verklaart het geloof in de correspondentie tussen 

hemelse en aardse verschijnselen, de betekenis van de maangod 

en het feit dat de maanverering juist in Ur cen centrum had. 

XXV. 

Vermoedelijk is Pred. 1:5—11 door Babylonische denk- 

beelden geinspireerd. Het is echter niet nodig de voorstelling 

over de kringloop van het water in vs. 6 aan Oosterse invloed 

toe te schrijven, zoals blijkbaar door Renan werd gedaan. 

Intas @ 196. 

ji, Renan, L'Ecclésiaste, p. 98. 

XXVI. 

Het kan betwijfeld worden of het individualisme van de 

Prediker cen goed argument is om zijn geschrift in Hellenis- 

tisehe tijd te dateren. 
Tn, CG, Views, Nw, ‘Rheol, Tijdschr. 1 (1040) p. 06,  


