
Safety Margins 

for Geometrical Uncertainties 

in Radiotherapy 



Dl1Ik: Optima Rotterdam 



Safety Margins 

for Geometrical Uncertainties 

in Radiotherapy 

Veiligheidsmarges voor Geometrische Onzekerheden in de Radiotherapie 

PROEF8CHRIFT 

Ter verkrijging van de graad van doctor 

aan de Erasmus Universiteit Rotterdam 
op gezag van de rector magnificus 

Prof. dr. P.W.C. Akkennans M.A. 

en vol gens het besillit van het College voor Promoties. 

De open bare verdediging zal plaatsvinden op 

donderdag 18 mei 2000 om 16°0 uur 

door 

Joseph Charles 8troom 

geboren te Amsterdam 



Promotiecommissie 

Promotor: Prof. dr. P.C Levendag 

Overige Leden: Dr. BJ.M. Heijmen (tevens co-promotor) 

Prof. dr. II'. C.J. Snijders 

Prof. dr. B. Lowenberg 

Prof. dr. II'. J.J.W. Lagendijk 

This thesis has been prepared at the Division of Clinical Physics, Department of 

Radiotherapy, Daniel den Hoed Cancer Center, University Hospital Rotterdam, 

The Netherlands. 

The work in this thesis was made possible by a grant (DDHK 92-86) of the Dutch 

Cancer Society ("Nederlandse Kanker Bestrijding") and of the Revolving Fund of 

the Erasmus University (AZR 95-20). The Dutch Cancer Society also contributed 

to the publication of the thesis. 

Address for cOITespondence: 
J .C. Stroom, University Hospital Rotterdam, Daniel den Hoed Cancer Center, Department 

of Radiotherapy, Division ofClinicul Physics, Groene Hilledijk 301, 3075 EA Rotterdam, 

The Netherlands. Phone: +31104391801. Fax: +31104391012. E-mail: stroom@kfih.azr.nl 



Friedrich Nietzsche: Vie! Freude habell 

Wer vie! Freude hat, IIlllfJ eill gllter Mensch seill: 

aber vielleicht ist er nicht der klagste, obwohl er gerade das erreicht, 

was der KIagste mit aller seiner K!ugheit erstrebt, 

Aan Mieke, Charles, Jasper en Sandra 





CONTENTS 

Chapter I. General introduction ................................................................................ I 
I. Treatnlenl of cancer ... " .......... "." ........... ,,, ............ ,,.,, .............................. , .......... " .... 1 
II. Radiotherapy ............................................................................................................. 1 
III, Geometrical uncertainties ill radiotherapy ... ,,, .......... ,.,, ............ ,, ........................ ", .. 4 
IV. SUl1l1nal)1 of the thesis ............ ,,", ...................................... " ... , ........... , ........... ,,, ......... 5 

Chapter 2. Automatic calculation of three-dimensional margins around treatment 
volumes in radiotherapy planning ............................................................................. 9 

1. Abstract ......................... "" ........................... " ........................................................... 9 
Ii Introduction .......... ,'" .............. ,"" .......... " .... .............................................................. 9 
III. Method .................................................................. ............................................ " ..... 11 
IV, Results ..................................................................................................................... 16 
V: Discussion ,.", ......... ",." ............. ",." .......... "." .......... , .. " .......................................... 19 
VI. Conclusions ............................................................................................................. 21 
VII. ACh710lvledgenlents ........................................................................ .......................... 21 

Chapter 3. Multiple 2-dimensional versus 3-dimensional PTV definition in 
treatment planning for conformal radiotherapy ................................ "" .................. 23 

I. Ab.l'tract ............................................................. ...................................................... 23 
If. 1IItrodllctioll .................................................... ......................................................... 24 
III. iHethods and matel'ials ............................................................. ............................... 25 
IV. Resliits ..................................................................................................................... 27 
V: Discussion ............................................................................................................... 29 
VI. AC/alolvledgelllenls .................................................................................................. 31 

Chapter 4. Inclusion of geometrical uncertainties in radiotherapy treatment 
planning by means of coverage probability .................... "" .......... " ........................ 33 

1. Abstract ................................................................ ................................................... 33 
If. Introductioll ......................................... " ............... ................................................... 34 
Ill. Alethods and 111aterials ....................... " ................................................................... 36 
IV, Rewlts .............................................................................. " ..................................... 46 
V. Discussioll ............................................................................................................... 55 
VI. COllclusioll ............................... " ............................ .................................................. 59 
VII. Ackno}1'ledgelllell(s .. " .................................................................. " .......................... 59 

Chapter 5. Internal organ motion in prostate cancer patients treated in prone and 
supine treatment position ......................... " ........ " ............ " .... " ......... " ........ " .......... 61 

I. Abstract ............................................................ ................... "'"'''''''''''''''''''''''''' ..... 61 
fl. Il1troduction .................................................................. " ......................................... 62 
1lJ. Materials and lIIetltods ............................................................ ................................ 64 



ii COl/tel/ts 

IV Resllits ..................................................................................................................... 69 
V. Discussion " .. ,"", .. ,"", .. " .. , .. ,', ................................................................................. 78 
VI Appel/dices .............................................................................................................. 82 
VII. Ackl/owledgemenls .................................................................................................. 85 

Chapter 6. On-line set-up corrections during radiotherapy of patients with 
gynecological tumors .............................................................................................. 87 

I Abslracl ............................................................. .................................................... 87 
If. Inlrodncliol/ ............................................................................................................. 88 
III. Alethods and materials ............................................................................................ 89 
IV. Resllits ..................................................................................................................... 96 
V. Discussion ............................................................................................................... 98 
VI. Cone/llsiol/ ............................................................................................................. 101 
VII. 11C/..71olvledgenlents ................................................................. , ..... . , ...... , ................ 101 

Chapter 7. Detection ofintemal organ movement in prostate cancer patients using 
portal images ......................................................................................................... 103 

I. Abslracl .............................................................................. ................................... 103 
fl. Inlrodllclion ............................... ........................................................................... 104 
fll. Melhods and 1II0Ieriols .......................................................................................... 106 
IV Resllils ................................................................................................................... I I 4 
V. Discussioll ..................... , ................................... .............................. , ... , ........... " .... 118 
VI. Acknolvledgnzents ............................. , .................................................................... 122 

Chapter 8. General discussion ............................................................................... 123 
I. ICRU 50 voillmes ............................................................................. ..................... 123 
If. Automatic 3D expansion of the CTV to gellerate a PTV ....................................... 123 
III. Calculation alld verification of 3D margins based on patient data ...................... 124 
IV Inlernol Targel Volllllle (lTV) ................................................................................ 125 
V. On-line corrections ............................................................................................... J 27 
VI. Future directions ................................................................................................ ".128 

References ............................................................................................................. 133 

List of publications ............................................................................................... 143 

Samenvatting ......................................................................................................... 145 
Inleiding ........................................................................................................................ 145 
Automatische 3D e.\pansie van eell CTVtot eell PTV .............. "." .... ",,, .... ,,,,,, .. ,, ......... 146 
Berekenillg en verificatie vall PTV-marges aan de hand van patient data .................... 147 
On-line corrigerell vall geometrische ollllauwkellrigheden, ........................... " ............ 148 

Nawoord ................................................................................................................ 149 

Curriculum vitae ................................................................................................... 151 



CHAPTER 1. GENERAL INTRODUCTION 

I. Treatment of cancel' 

Cancer is the unrestricted growth of cells in an organism, which can eventually 

destroy organs that are needed for survival of the organism. Throughout human 

history, cancer has been one of the major medical causes of death. At the moment, 

there are about 840.000 cancer fatalities in Europe per year. It is estimated that in the 
westem world approximately I in 3 people will develop some kind of tumor during 

their lifetime, and more than I in 5 will die of it. Although significant progress has 

been achieved in the fight against cancer in the last decades, still about half of the 

cancers cannot be cured. 

CUlTently, the three main therapies for cancer are surgery (removing the tumor), 

radiotherapy (killing the tumor cells with radiation), and chemotherapy (the use of 

anti-cancer mugs). The first two are especially used for tumors that are well localized. 

Surgety is straightforward but catmot always be applied, for instance when the tumor 

is localized in or close to a vital organ. Futthermore, invisible, microscopic extensions 
of the tumor might be trtissed. In radiotherapy, those tumor extensions can be treated 

more easily. Moreover, this therapy may be less demanding on the patient and 

hospitalization is usually not necessaty. When microscopic tumor cells have spread 
from the primary tumor site to different parts of the body, chemotherapy can be 

applied. The blood circulation is used to transpoti the drugs are transported through 

the body. In many cases, the difterent therapies are combined to improve the treat­

ment outcome. 

II. Radiotherapy 

Radiotherapy is used for about half of all cancer patients. With radiotherapy, ionizing 

radiation in the fotm of high energy photons, electrons or protons is aimed at the 

tumor. These particles deposit some of their energy in the tumor cells, which can 

cause ionization of DNA or surrounding molecules. This can induce irreparable 

genetic damages in the tumor cells that either kill the cell directly or result in the so­

called apoptosis, i.e. cellular suicide. However, since radiation may kill healthy cells 



2 Chapter 1 

as well, one has to be careful to deliver the radiation dose in the right place. Basically, 

there are two ways the radiation can be delivered: by brachytherapy or by external 

beam radiotherapy. 

In brachytherapy, small radioactive sources are placed in or close to the tumor, 

either by permanent implants or by inselting catheters that temporarily hold the 

sources. The sources must be spread evenly in the tumor to ensure a homogeneous 

dose distribution, so that all tumor cells are killed. Because the reach of the sources is 

limited, the dose can be delivered closely COnfOl1ll the tumor and healthy tissues can 

be spared quite well. Due to the invasiveness of the procedure, brachytherapy is 

especially used for some smaller tumors, or for boosting only a part of a tumor. 

linear 
accelerator 

F---,-"";-'-j 

Figure /-/ Schematic side and frontal view oj e.rtemal radiotherapy, A linear 
accelerator produces ionizing radiation which is aimed at the palient lying on the 
table. To make the treatment more e.Dective, the gan!!)' of the accelerator can be 
rotated to treat the patient from different directions (1,11,111). Also indicated is the 
electronic portal imaging device (EPID), which uses radiation Ihat is 1/0/ absorbed ill 
the patient to make a digital radiograph oj the trealmenf. Ideally, the patient should 
be in the exact same positioll during each fi-action of the multiple-day treatment. 

External radiotherapy is applied more often than brachytherapy. With external 

radiotherapy the dose is usually delivered by a linear accelerator, which can produce 

radiation beams from different angles by rotating the accelerator "ann" (i.e. the 

gantry). The patient is normally laid down on the treatment table in such a manner that 

the tumor is in or close to the rotation axis of the gantry (see Fig. I-I). A linear 

accelerator can deliver a radiation beam as large as 40x40 cm2
. However, the extenml 
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delivery of the tumor dose will inevitably cause irradiation of sWTounding healthy 

tissues as well. In order to optimize protection of these normal tissues while obtaining 
a homogeneous tumor dose, several strategies are applied in clinical practice. 

First, the prescribed total tumor dose is nonnally delivered in multiple parts by 

consecutive inadiation fi'om different gantry angles (Fig. I-I). This creates a "hot 

spot" at the crossing point of the beams, which is where the tumor should be posi­

tioned. The sUlTounding healthy tissues get a smaller dose because they are not 

covered by all beams. Angles which would ilTadiate especially sensitive stmctures are 

avoided as much as possible. Second, the ilTadiation fields usually closely encompass 

the tumor outline, i.e. the normal tissues are blocked out by thick layers of radiation 

absorbing material (like e.g. tungsten) in the beam. Third, the radiation intensity 

within a treatment field can be vmied. In this maImer healthy tissues may be spared 

and one can compensate for local variations in, for instance, patient contour. Fourth, 
the energy and type of ilTadiation can be varied. Each beam type has its own typical 

dose distribution in the patient for each energy. For instance, tumors close to the skin 

are nOllnally ilTadiated with low energy beams that do not penetrate so deeply, 

whereas deeper lying tumors require higher energies. And finally, the total dose is not 

applied in one time but in multiple fractions, n0n11ally on subsequent days. If the right 

dose per fi'action is used, the normal tissue will recover better in between the fractions 

than the tumor. As a consequence, a radiation treatment can consist of over 30 

fractions and can last 2 months. 

In most cases a computer is used to simulate and plan the treatment before the 

actual external radiation treatment stmis. This so-called treatment planning system 

uses beam characteristics of the accelerator, such as the dose distIibution in water. 

FUlihermore, the patient anatomy is available, often in three dimensions (3D) in the 

form of a series of successive 2D images of transversal patient slices. These images 

are normally obtained by computed tomography (CT). The CT images should 

represent the patient anatomy during treatment and are used to outline the intended 
tumor region and critical organs. Finally, the geomelIy of the total treatment silI13tion 

(patient and accelerator) is incorporated in the planning system as well. A dose 

calculation algorithm can then be used to determine an adequate treatment plan, i.e. 

the beam angles, field shapes, etc. are selected to yield the prescribed lIunor dose 

while sparing the healthy organs. However, due to geomelIical uncertainties, the 

position of the tumor with respect to the treatment beams in the simulation, can 

deviate from the situation during the many fractions of the actual treatment. This has 

to be accounted for in the planning ofthe lI·eatment. 
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Figure 1~2 Schematic illustrations oj the h1!O types of geometrical variation using an 
imaginary transversal patient slice. Indicated are a prostate (ulllor (P), a rectum (R), 
and the leg bones (L). The solid lines and the beams (B) represent the intended 
treatmellt geometlY. 011 the left, set-up errors are illustrated; the whole patient has 
moved (dashed lines) with respect to the planned treatment beam. On the right, internal 
organ motion is depicted; due to the increased rectum volume (dashed), the prostate 
has moved upward with l-e.'>])ecl to the intended positiOn. II is clear that in both cases 
measures are needed to ensure adequate (umor coverage. 

III. Geometrical uncertainties in radiotherapy 

For practical reasons, the main tumor movements with respect to the treatment beams 

are normally separated in two types (see Fig. 1-2); the movement of the patient as a 

whole (the external set-up variation), and the movement of the tumor within the 

patient (internal vatiation). The set-up variations result from the daily positioning of 

the patient on the treatment table. Nonnally, external reference points on the patient 

skin, marked with pen or tattoo, must be aligned with fixed (laser) lines indicating the 

center of the treatment beams. Furthermore, several tools like ann- and leg supports 

can be attached to the treatment table to ensure a reproducible and stable patient 

position. Despite these precautions, the set-up might deviate fi"Om the platmed position 

Therefore, special equipment has been developed to measure the patient position with 

respect to the beams. Especially the use of electronic portal imaging devices (EPIDs) 

that can actually image the patient during treatment has been greatly increased in 

recent years. POlial imaging is based on the fact that the clinical photon beams that are 

often used for treatment, are not completely absorbed in the patient (see Fig. I-I). 

Only a small part ofthe exit radiation is needed to display the patient anatomy, similar 

to a nonnal x-ray photo. The position of the patient during treaonent as indicated by 



Genera! introduction 5 

the bony structures in the images, can then be compared to the intended position, 

possibly even before the bulk of the fraction dose is delivered. 

The intemal variations are the tumor motions with respect to the extemal 

reference marks and bony anatomy. For prostate cancer patients for instance, the 

variations in rectum and bladder volumes affect the position of the prostate, which is 

located in between these organs. Since the tumor itself is nonnally not visible in portal 

images, other techniques to detenlline intemal organ movement are under develop­

ment. It is for instance possible to implant radio;opaque markers in the tumor to allow 

tumor movement detection with an EPID. Moreover, other imaging modalities like 

ultrasound, CT or magnetic resonance imaging (MRI) can be applied without these 

markers. A disadvantage of CT and MRI is that the necessary equipment is nOllnally 

not present in the treatment room. Studies on the extent and frequency of possible 

tumor movement can be performed with these machines, but cOlTection of the tumor 

position prior to delivery of each treatment fraction would be very complicated. 

Whatever measures are taken to minimize the organ motions and set-up varia­

tions, there will always be some llllcertainty left. Therefore, safety margins must be 

applied arolllld the tumor during treatment planning. The intended tumor region (i.e. 

the visible tumor plus microscopic spread) as delineated in the CT slices is nomJally 

called the clinical target volume (CTY). The CTV extended with the safety margins 
for geometrical uncertainties is called the planning target volume (PTV). The treat­

ment is then planned in such a manner that the PTV receives the required tumor dose. 

In this thesis, the way to calculate these CTV-to-PTV margins, and some ways to 

minimize them, have been investigated. 

IV. Summary of the thesis 

a. Automatic 3D expansion of the CTV to generate a PTV 

In Chapter 2 is described how a required CTV -to-PTV margin can be applied. The 

CTV, which is delineated in multiple axial CT slices by the radiation oncologist, is a 
3D volume. Since geometrical variations can occur in all directions, the safety 

margins also have to be applied in 3D. Because it is impossible to accurately draw a 

3D margin in multiple-2D CT slices manually, an algorithm has been developed for 

automatic 3D extension of the CTV with a prescribed CTV-to-PTV margin. The CTV 

contours delineated in the CT slices are used to fill a 3D calculation grid (matrix); 
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volume elements (voxels) that are part of the CTV are designated I, others O. All CTV 

voxels are subsequently extended with an ellipsoid with diameters equal to the 

margins required in the three orthogonal directions, which yields the PTV. From this 

PTV, 20 contours are extracted and placed back in the CT slices. This automatic 

procedure significantly increases the accuracy and the speed of the PTV delineation. 

In Chapter 3 the clinical benefit of the 3D CTV-to-PTV expansion algorithm is 

studied. Since manual 3D margin drawing is impossible, the third dimension (perpen­

dicular to the CT slices) is often ignored in clinical practice; margins are applied slice­

by-slice and within the slices only (Le., multiple 20). For ten patients with prostate 

cancer, the en-ors made by tlus procedure were quantified. Depending on the shape of 

the CTV, it appeared that the multiple-2D approach could lead to margins being 

underestimated locally by more than I cm, which in turn could yield serious under­

dosages and a decrease in the expected probability of tumor control of 15%. 

b. Automatic calculation and verification of 3D margins based on patient data 

A more complete malmer of margin calculation is proposed in Chapter 4. The size and 

shape of the margins for a pmiicular patient is based on the actual kuowledge of the 

geometrical unceliainties of a representative patient group. The CTV matrix men­

tioned above is convolved with the distributions of the kuown uncel1ainties, for 

translations as lVell as rotations, yielding a so-called coverage probability matrix. This 

matrix has voxel values between 0 and I that indicate the probability that a voxel is 

covered by the CTV. Specific "iso-probability" volumes are then chosen as the PTV. 

Once the dose distribution has been plmmed around the PTV, the same coverage 

probability matrices can be used to quickly calculate the expected dose distribution in 
the CTV, taking in consideration all types of uncertainties. In case of deviations from 

the intended dose distribution, the PTV can be adjusted by choosing a different iso­

probability volume. For three different tumor sites, it appeared that the "systematic 

variations" (i.e., deviations from the planning situation that occur every treatment 

fraction) are about tln·ee times more impor1ant for the CTV-to-PTV margin than the 

"random variations" (Le., deviations that vary from fraction to fraction). 

In Chapter 5 two treatment positions for patients with prostate cancer were 

compared with respect to the required CTV-to-PTV margins. One half of a group of 

30 patients was treated in prone treatment position, the other half in supine position. 

Internal as lVell as extemal geometrical uncertainties were measured. Internal varia-
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tions were determined by making 4 CT scans of the patients during the 7 week 

treatment period. The delineated CTVs were subsequently registered using a fully 

automatic 3D matching technique, which yielded the translations and rotations of the 

CTV. External set-up vmiations were measured from portal images and combined 

with the internal variations to determine the CTV-to-PTV margins. Although at first 

glance the prone position seemed superior, adequate separation of systematic and 

random variations resulted in about equal CTV-to-PTV margins for both groups. 

c. Oil-line correction of geometrical uncertainties 

In Chapter 6 the feasibility of on-line cOlTections of external set-up deviations was 

investigated for a group of 14 patients with gynecological tumors. These patients are 

prone to relatively large set-up errors, even when a (routine) off-line correction 

protocol is applied. Off-line cOlYections reduce the systematic deviation of a patient by 

determination of the average deviation for the first Ibctions, followed by con'ections 

for all subsequent fractions. With on-line corrections, the patient position during each 

fraction is assessed from a portal image acquired using only a small part of the total 

fraction dose. If necessary, cOlTections are applied before the bulk of the fraction dose 

is given. In this manner systematic as well as ralldom deviations are minimized. It 

appeared that at the cost of some extra treatment time, the set-up deviations for 

gynecological patients could be reduced to very low values. Application of on-line 

cOlTections would therefore justifY a significant CTV -to-PTV margin reduction. 

The possibility of detecting internal organ motion with routine portal images is 

examined in Chapter 7. Apart from bony stmctures, gas pockets in the rectum are also 

clearly visible in pOlial images of patients ilTadiated in the pelvic region. The idea is 

that gas pockets visible in the lateral images, can be used to determine the anterior 

rechnn wall and, since the prostate rests on the rechlln, the prostate position. The CT 

data sets for the 15 supine patients from Chapter 5 were used to simulate tlus. Portal 

images were digitally reconstmcted liOln the CT data sets and the movement of the 
rectal wall was estimated from the ventral edge of gas pockets in the images. These 

movements were COlTelated with the "real" rectal wall shifts, as obtained fi'om 
delineations in the CT scans, and with the prostate movements detemuned from 3D 

matching. Especially the rectum wall shifts could be accurately derived limn the 

portal images, which nught therefore be used for online adjustment of the treatment 

geometry. 





CHAPTER 2. AUTOMATIC CALCULATION OF THREE-DIMENSIONAL 

MARGINS AROUND TREATMENT VOLUMES IN RADIOTHERAPY 

PLANNING 

J.C. Stroom and P.R.M. Storchi 

Phys. Med. BioI. 42, 745-755,1997 

I. Abstract 

Following the publication of the ICRU-50 report, the concepts of GTV (gross tumor 

volume), CTV (clinical target volume) and PTV (platming target volume) are being 

used in radiotherapy planning with increasing frequency. In 3D plarming, the GTV (or 

CTV) is normally outlined by the clinician in CT- or MRI-slices. The PTV is deter­

mined by adding margins to these volumes. Since manual drawing of an accurate 3D 

margin in a set of 2D slices is extremely time consuming, software has been devel­

oped to automate this step in the planning. The target volume is represented in a 3D 

matrix grid with voxel values I inside and 0 outside the target volume. It is expanded 

by centering an ellipsoid at every matrix element within the volume. The shape of the 

ellipsoid reflects the size of the margins in the three main orthogonal directions. 

Finally, the PTV contours are determined from the 50% iso-value lines of the 

expanded volume. The software tool has been in clinical use since the end of 1994 and 

has mostly been applied to the platming of prostate itTadiations. The accuracy is better 

than can be achieved manually and the workload has been reduced considerably (from 

4 hours manually to ca. I minute automatically). 

II. Introduction 

Radiotherapeutic treatment of cancer is most effective if a high and homogeneous 

dose is given to the tumor while sUlTounding normal tissues are maximally spared. In 
conformal radiotherapy the radiation beams are shaped conform to the target volume. 

Accurate determination of the (smallest possible) volume to be illadiated is therefore 

essential. To avoid ambiguity in the definition of the radiotherapy target volumes, the 
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International Commission on Radiation Units and Measurements (ICRU) has defined 

a number of treatment volumes for use in radiotherapy planning [54]. The gross tumor 

volume (GTV) is the gross palpable or visible malignant growth, which is nonnally 

outlined by hand in CT- or MRI-slices. The clinical target volume (CTV) is the GTV 
plus a volume containing subclinical malignant disease, and the planning target 

volume (PTV) is the CTV plus a margin taking into consideration all possible 

geometrical variations of the CTV during treatment, such as internal organ motion and 

patient positioning enms dming subsequent fractions. 

Many authors have described altematives ways of incOlporating geometrical 

inaccuracies in RT planning [38,43,63,67,74,98,107] and/or have discussed the 

required size of the margins [7,13,25,42,69,114,119]. However, to our knowledge the 

problem of actually implementing margins, once their size has been established, has 

not yet been discussed in detail. Although the ICRU concepts are clear, their applica­

tion can cause some problems. In most cases the PTV is also outlined manually by 

adding a margin in three dimensions around the GTV (or CTV). It is however all but 

impossible to accmately draw 3D margins in 2D slices, especially if the shape of the 

GTV varies significantly from slice to slice. It would even be difficult to draw 2D 

margins in a slice if the margin in the lateral direction must be different from that in 

the ventra-dorsal direction. 

A frequently applied method to avoid the drawing of 3D margins is by using 

beams eye view (BEV) projections which are available in most commercial planning 
systems nowadays. The 2D beam shape is directly detennined fi'Oln the back projec­

tion of the GTV to the accelerator head, with margins added for subclinical disease, 

geometrical inaccuracies and beam penumbra. However, this is not so obvious in case 
of anisotropic margins and oblique fields. In addition, the BEV procedme does not 

define a 3D PTV. It will then be difficult to evaluate and compare dose distributions 

using dose volume histograms. It is therefore more convenient to use all ICRU 

planning volumes and detennine the 3D PTV from GTV andlor CTV and use it for 

subsequent plmming. 

Hence, a computer program has been written to increase the accuracy and speed 

of this step in radiotherapy planning. The program, which has been called CTV2PTV, 
is able to expand 3D target volumes in three dimensions. Different margins can be 

added in the three main directions (lateral, crania-caudal and ventra-dorsal), generally 

within one minute. 
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III. Method 

The program can be divided into four steps. (i) The input volume to be expanded 

(GTV or CTY) is originally represented as a set of slices with contour points which 

are obtained from the planning system. For each slice a rectangular 2D coverage 

matrix is determined with values equal to the fraction (0 to I) of the pixel area that is 

inside the input contour. The 2D coverage matrices are then combined to yield a 3D 

manix representation of the selected volume. (ii) The margins are represented by an 

ellipsoid which is also imbedded in a 3D calculation grid. Voxel values are I if the 

voxel center is inside the ellipsoid. If not, voxel values decrease to 0 with increasing 

distance of the voxel center to the ellipsoid. The shape of the ellipsoid is determined 

by the size of the margins in the three main directions. (iii) A margin is added to the 

input volume by scanning the ellipsoid within the 3D coverage mamx. If an input 

voxel value is larger than 0, it is expanded by the ellipsoid centered at that voxel. 

Hence a 3D margin is added and an output coverage matrix (PTy), also containing 

values II'00n 0 to I, is created. The method will be referred to as the ellipsoid expan­

sion algoritlnn. (iv) The output contours are obtained from the output matrix by 

applying a 0.5 isovalue search algoritlnn to all slices. The resulting contour points are 

transmitted to the plmming system. 

In the following paragraphs the operation of the program will be explained in 

more detail. 

a. The calclilation of a 3D coverage lIIatrix 

For each slice containing an input contour, a 2D nXlI/ coverage matrix M is determined 
with values equal to the fi'action of the pixel that is inside the contour. The pixel size 

of M is equal to the CT-pixel size 0, x Oy. The slice distance is defined as liz. M is 

calculated by combining two intersection matrices, Ax and Ay, which represent the 

intersection points of the (closed) contour with the horizontal and vel1icalmatrix grid 

lines. The dimensions of Ax and Ay are nX(III+ I) and (1/+1 )XIIl respectively. The 

algoritlml for the detennination of A, is given in a Nassi-Shneidennan diagram [82] in 

figure 2-1. First all horizontal matrix lines are scanned for intersection points with all 

segments of the contour (see figure 2-2). Line by line the sorted intersection points on 

the current line are used to fill the intersection matrix Ax. The first intersection pixel 

on a line is given a value equal to the distance in pixel units of the intersection point to 

the grid line (i.e. between 0 and I). Subsequent pixels on the line are filled with values 
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Initialise: Ax = 0 

iy= 1, n+1 

i sean a!lsegments ofcontour'craiicT lefeiTnTne ,- - ~ ~ ~ ~ 
I intersection points with grid line: y = (Iy -nl2 -1) '0 

: s: array with Intersection points 
I nk: number of points in s 
:- ~~rt-i;t;r;ect~~ ;ojn~ [n·~ jn-i;;~;sing ~rd~~ -.~ - - ~.-

r-----------------------------·. 
I k=1,nk 

I r----------------------------' 
I I is1 = INT (s(k)IS + nl2 + 1) 
I ~-- ____ ----.-----------------_ 
I I True\ k odd IFalse 
I ~- .• ----- .• ,-----.r---------------
: I A.(is1 ,iy) = (x(is1 )-s(k» 10 I Ix = isO, Is1-1 I I ... ______ ,._c._,. __ 
: I I I A.(ix,ly) = ° 
I I ~~_L .. ,~.~,~~~_~~~¥~v.~, 

I : I A.(is1,ly) = (s(k)-x(ls1-1»/ii I r-------------L--------------
I I IsO = isi + 1 

Figure 2-1 A Nassi-Slmeiderman diagram of the 
algorithm llsed for the determination of the 
intersection matrix A.," ill a 2D plane. A1atrix A)' is 
computed in a similar way. A Nassiw Sll1Ieiderman 
(or bml.) diagram is a graphical design tool to 
represent computer algorithms in a clear and well 
defined manlier. 

I until another edge pixel is 

encountered. This is repeated 
until all intersection points 

on the line are done. Neces­

sarily there must be an even 

number of intersection points 

per line because the contour 

must fit completely within 

the calculation grid. Inter­

section matrix Ay is cal­

culated similarly. 

The intersection matri­

ces are subsequently used to 

determine the coverage 
matrix Jyf. For each surface 

element MU' the area covered 
by the contour can be calcu­

lated fi'om the intersection 

values of its four sides. The 

element may be covered in 

several ways, three of which 
are shown in figure 2-2. It is clear that a contour line right through the middle of a 

pixel results in a pixel value of 0.5, so a 0.5 isovalue search algorithm applied to the 

20 coverage matrix will closely regenerate the original contour line. A 3D mattix of 

the input volume is obtained by stacking the 20 coverage matrices in the COlTect 

order. The voxel size of the matrix is then equal to the slice distance 0, times the CT 

pixel size. The matrix size depends on the size of the input volume and of the margins 

to bc applied. 

b. The calclIlatioll (!f a 3D ellipsoid lIlatrix 

The ellipsoid which represents the margins in the three main directions (/II" /II" /II,) is 

contained in a 3D calculation matrix E with a voxel size equal to that of matrix M. 

The voxels are also I inside and a outside the ellipsoid. The edge values are however 

not equal to the coverage but depend on the minimal distance D", of a matrix grid 
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point to the ellipsoid. D", can be determined by minimization of the following 

function: 

2 2 2 
<I>(Xe,Ye,ze,1-.)=(x-xe)2+(y- Ye)2+(Z-Ze)2+1-.( xe

2 
+ Ye

2 
+ ze

2 
-I) 2-1 

fIlx my 11lz 

where (x-x,)' + (y-y,)' + (z-z,)' is the square distance of a grid point (x,y,z) outside the 

ellipsoid to a point (x,JV,) on the ellipsoid and 

2 2 2 

~+~+~=1 
2 2 2 

2-2 
11Ix my 111z 

is the equation for an ellipsoid. 1-. is the so-called Lagrange parameter. Minimizing the 

11 

10 

9 

8 
IS,/ 

~ 

II 
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< 

II '" A,(10,5) = 0.28 

S'/ s, 

\.. J 
10 ~ DI ... ··f' 

rl 1\(11,4) 
• 1 M . o. 

= 0.71 

/ 
"- 1M,., 1= 0. r5 -' 

A,(10A) = 0 
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Figure 2-2 I1ll1stration of a closed contollr on a 10xl0 coverage matrix Ai The 
values oj the elements A11} are assigned to the center oj the swlace elements. The 
intersection points (S/, ... ,8,,) 011 one horizontal grid line (y = 60) ill matrix Ax are 
shown by circles. Furthermore three of the possible cases the algorithm considers, 
when filling a sUllace element intersected by a contollr line, are showlI. The 
shadowed regions show the parI of the element that is inside the contollr. One of the 
elements is magnified to indicate how the intersection matrices Ax and A}. are used to 
determine the coverage, which is ill this case A1/O.4 = 0.5 . A.llO,5) . A/10,4). Note 
that the calculated area is a little too small because oj the presellce of a cOlltollr 
point ill this elemellt, 

=0 
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cost function (numerically) for 'Ie < ° yields the closest point on the ellipsoid (x"y"z,) 
and hence D mi,. The value of Dn" is used to fill the matrixE for evelY element e~"y,z) 

as follows: 

if e is inside the ellipsoid: £( e) = I 

if Dmin(e) < Onorm: £(e) = (1- F) .(1- D~nin(e)) + F· 
nann 

if Dmin(e)~Onoml :£(e)=O 

I_Dmin(e) 

Ooonn 
2-3 

with O",nn being the grid size nonnalized along the line through the grid point (x,y,z) 
and the ellipsoid center (0,0,0) 

Ononn = 2-4 
.2 ,2 2 

--'---- + -)- + ~ 
2 2 2 Ox Oy Oz 

Equation 2-3 and the F-factor (0 ~ F ~ I) in that equation have been determined by 

trial and en'Ol' to give the most accurate results in the ellipsoid expansion and output 

contour acquisition (see next section). If only the linear tel111 in equation 2-3 is used (F 
= 0), the calculated margins are on average slightly too small while just the square 

root ten11 (F = I) results in too large margins. 

c. The 3D ellipsoid expansion algorithm 

The ellipsoid matrix £ is combined with the input volume matrix Mm to yield an 

output matrix Mn", which contains the input matrix plus a 3D margin. The method is 

similar to a convolution. Firstly, all voxels in the output matrix are given the value O. 

Secondly, for all voxels in the input volume larger than 0, the ellipsoid matrix is 

multiplied by the input voxel value and centered at the position of that voxel. If an 

ellipsoid voxel value at a celiain position is higher than the current local voxel value at 

that position in the output volume, the ellipsoid value replaces the value in the output 

voxeC i.e. 

FOREACH v: MOIl/(v) = 0 

FOREACHv: 

IF Mill(V) > 0: 

FOREACH e: MOIlt<v+ e) = MAX (MoU/(v + e),Mill(V) ·E(e)) 

2-5 
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with v and e being the three-dimensional indices for volume- and ellipsoid voxels 

respectively. The result is an expansion of the input volume with a 3D margin. The 

output matrix also consists of values I inside the new volume, 0 outside, and values 

between 0 and I at the boundary. 

d. Calculation of output cOlltours 

The contour points of the output volume are obtained by applying a standard search 

algorithm, for 0.5 isovalue curves, to all 2D slices of the 3D output matrix. The 

algorithm is similar to those used in the determination of isodose contours from 2D 

dose matrices and is able to handle more complicated situations as contours consisting 

of multiple segments or contours crossing the borders of the matrix. The intersection 

points of the isovalue curves with the horizontal and vertical grid lines are determined 

by linear interpolation. Usually the number of output contour points is much larger 

than the number of input points. To avoid problems with the storage of the contours, a 

number of points may be deleted by a reduction algorithm. 

e. Extra options of the model 

The representation of volumes and margins in 3D mahices allows for handling of 

more complicated problems as well. If the GTV (or CTV) consists of several separate 

targets, separate coverage matrices are calculated for each target. They are combined 
into one 3D input mahix and the program continues with steps (ii) to (iv) to generate 

one PTV. In addition, it is possible to vary margins by altering the shape of the 

ellipsoid. Different margins for positive and negative directions can be entered and 
each octant of the ellipsoid is then created separately. The use of an aSYlmnetrical 

ellipsoid with, for instance, different size in positive and negative y-direction, will 

yield output volumes with different margins in cOlTesponding venh'al and dorsal 

directions. Asymmetrical margins can also be acquired by a translation of an output 

volume calculated with symmetrical margins. A translation might actually reflect the 

clinical reason for the asynunetry; in case of organ motion for instance, asynnnetrical 

margins are required if the organ position during planning CT scan is on average 

systematically shifted from the position during treatment. Furthelmore, the margin can 

be adjusted locally, for instance in the neighborhood of a critical organ. The organ can 

also be represented in a 3D matrix and a second ellipsoid can be generated for 
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margins close to it. During the volume expansion the appropriate ellipsoid can be 

selected depending on whether a voxel in the input volume is inside or outside the 

organ at risk. Finally, margins can be subtracted if the voxels in the input volume are 

inverted before the ellipsoid expansion, i.e. M",,,,,(xJ',z) = I - M"'old~q',z). After the 

expansion of the input volume, the output volume should also be inverted to get the 

final result. 

IV. Results 

In figure 2-3 results of two dimensional calculations are shown to illustrate the 

accuracy of the program. An irregular shape has been contoured with and without the 

addition of a margin. The 2D margin was 8 nun in the horizontal and 4 nun in the 

vertical direction. The program is accurate in all situations, except at sharp comers; if 

a pixel in the coverage matrix contains a contour edge point, the calculation of the 

area tends to yield values which are too small (or too large) because of a rounding of 

the corner (see also figure 2-

2). The zero-margin 

clearly shows this 

which will generally 

curve 

effect 

yield 

margins which are too small. 

However, in clinical practice 
this is not a significant 

problem because anatomical 

organs with sharp edges do 

not exist. 

There are a couple of 

other inaccuracies in the 

ellipsoid expansion algo­

rithm. Firstly, the CT slice 

distance is often significantly 

larger (5 - 10 nun) than the 

pixel size (ca. 2 nun), so the 

voxels will be stretched. 

Despite the use of the 

nonnalization factor Ononn in 

c 
32 0 

:e 
<f) 

0 24 a. 
(ij 
() 16 
t 
<lJ 
> 8 

0 
0 8 16 24 32 40 48 56 64 

horizontal position (mm) 

Figure 2-3 Illustration of a 2D mmgill, 8 111m 
horizontally ami 4 111m vertically, applied /0 a simple 
geometrical shape (inlier thick contour). The zel'O­
margin contour is also calculated and shown by the 
inner thin COl/IouI'. Note the rOllnding at the edges oj 
the zero-colltollr by the approximation shown in 
figure 2. For clarity three ellipsoids are shown. 
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equation 2-3, the accmacy in the cranio-caudal direction is smaller than the accuracy 

within the slices. The problem can be circumvented by decreasing the slice distance of 

the input volume; extra slices can be generated by interpolation. Secondly, as de­

scribed in the method-section, the ellipsoid expansion algorithm is not exact, but has 

been detenllined semi-empirically. The position of the edge after the addition of the 

margin and determination of the 0.5 isovalue curves can differ a little from what 

would be expected. By changing the F-factor in equation 2-3, the shape of the 

ellipsoid is somewhat changed and hence the outcome of the expansion. From one­

dimensional computer simulations for 10,000 different combinations of edge position 

and margin size, the best value for F appeared to be 0.5. This yielded an average error 

0[0.00 ± 0.12 pixel (I SD). 

Figure 2-4 illustrates 

the problems with the 
determination of a 3D 

margin in a nonllal clinical 

situation. A sagittal cut 

through a 3D geometrical 

volume is shown. The 

margin added by the 

program was 6 nllll in all 

directions. Also indicated 

is the margin added in the 

transversal slices only, that 

is in 2D. The latter 

situation is how one tends 

to add a 6 nllll margin 

manually, i.e. slice by slice 

and without taking into 

account neighboring slices. 

However, if input contours 

in neighboring slices vmy 

in size or shape, one slice 
will influence the margin in 

the other. Ignoring this will 

result in margins that are 

too narrow. They appear 
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Figure 2-4 IlIlIstration oj a logical error made when 
drawing margins manually without taking the 3D aspect 
of the problem into account. A sagittal cut through a 3D 
geometrical shape is shown. lv/argins of 6 mm in all 
directions are required. Visible are the 3D margin as 
ealclilated by the program (solid line) and the margin as 
would likely be drawn by hand in 2D slices (dolted line). 
The manually determined margins are 100 small in tlte 
diagonal sections and too large at tlte cranial and 
caudal edges of the volume. 
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conect within a slice but are too small pelpendicular to the sm-face of the 3D input 

object. This is clearly visible in the diagonal sections of the object in figure 2-4. 
Fmihenllore, when drawing margins manually in transversal slices one is inclined to 

forget the natural rounding at the cranial and caudal edges of the object; to get a 

crania-caudal margin the outer slices with input contour are simply copied fmiher 

outward. This generally yields excessive contours in the outermost slices. 

In figm-e 2-5 clinical results are shown for a prostate planning. A 3D margin of I 

cm is applied to the GTV which has been determined manually by the clinician. In 

figure 2-5 (a, b and c) transversal slices through the prostate at different cranial-caudal 
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Figure 2-5 Illustration of a clinical example of the program. 
A 3D margin is applied to a prostate GTV which is ShOH'1l in 
Iilree transversal slices (a, b, and c) and a sagi//al slice (d). 
The transversal slices are respectively a caudal, central, and 
cranial slice. Tile GTV (wilile), bladder (black), and recilim 
(black) are drawn by Iile clinician, Iile PTV (dasiled) is 
calculated by the program. Note the apparently too large 
margin in (a) and (c). 

z-positions are shown. 

The GTV, bladder, and 

rectum are drawn by a 

clinician, while the PTV 

is calculated by the 

algorithm. The pixel size 

is 2 mm and the slice 

distance 5 nun. It is 

clearly visible that the 

margin is always equal 

to or larger than I em. 

The large deviation from 

I cm at the ventral side 

of the GTV in figure 2-

5c is caused by the 

completely different 

shape of the prostate in 

neighboring slices (5b) 
to that of the vesiculae 

in this slice. This makes 

it sometimes difficult to 

interpret the results in 

2D slices; margins may 

be judged to be unac­

ceptably large but are 

really a result of taking 
into account the third 
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dimension. Figure 2-5d shows a 

sagittal cut through the middle of 

the prostate which indicates that 

the margin is equal to I cm in all 

dimensions. 

Finally, in figure 2-6 a 3D 

representation of a more complex 

cervix CTY with a I cm margin is 

depicted. The CTY consists of the 

primary tumor region, the iliacal 

nodes, and the para aortic nodes. 

The pixel size was ca. 2 nUll and 

the slice distance originally I cm 

In the calculations, the resolution 

in the cranio-caudal direction has 

been doubled by use of extra 

intetpolated slices. The fib'llre 
clearly shows the 3D effect of the 

tool; the margin is constant in all 
directions all around the vmious 

parts of the CTY. 

Y. Discussion 

Figure 2-6 Representation of a cervix erv with 
a 1 CIlI margin in 3 dimensions. The err 
consists a/the primmy tUII/or region (dark grey), 
the Uiacal nodes (grey), alld the para aortic 
nodes (light grey). The margin (black) is 
COllstant all around the Crv. 

The largest benefit of the program is a decrease in time necessmy for patient plmming. 

A completely manual outlining of a prostate PTY by adding 3D margins to the GTY 

took on average four hours. Using CTY2PTY, this step is petfol1ned within one 

minute for standard prostate targets on a HP 90001715 Unix work station. An appar­

ently more complex problem does not necessarily require more time; the calculation 

of the cervix PTY as shown in figure 2-6 was almost as fast as the prostate PTY in 

figure 2-5. The computation time depends mainly on the actual expanding of the 

volume (formula 2-5). CT-scans for prostate patients are nOl1nally acquired with a 5 

mm slice distance and ca. 2 nun pixel size. To apply a 1 cm margin, the size of 

volume matrices in CTY2PTV are typically 60x60x25 (in- and output matrix) and 

15x15x7 (ellipsoid matrix), so about 1.4·\08 voxels have to be scanned in fOllnula 2-5. 

Time may be gained by excluding the voxels in the bulk of the input volume from the 
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calculations and only computing the voxels near the edge. Bulk voxels can for 

instance be marked during calculation of the coverage matrix. 

Two other important advantages of the program are the accuracy, which is 

generally within half a pixel, and the reproducibility of the results. These cannot be 

attained manually for a 3D margin. Even in 2D (within one transversal slice), already 

considerable effOli would be demanded to draw a margin which is different in the 

horizontal and vertical directions. See for instance figure 2-3; especially in the region 

of the diagonal, drawing the transition from horizontal to vertical margin would be 

rather complicated. As mentioned before, it is difficult to assess the accuracy of the 
calculations by analyzing the results in 2D slices; apparently excessive margins can 

appear. It gets even more complicated if variable margins in combination with critical 

organs are calculated. In those cases sagittal and frontal reconstl1lctions, beams eye 
view plots or 3D displayed volumes are necessary to judge the outcome of 

CTV2PTV. 

Until now it has been assumed that the margins are required in directions along 

the main axes of the CT coordinate system. The studies to determine those margins 

are normally perfonned using either the CT coordinate system (in case of multiple CT 

scans to detennine organ motion) or AP and lateral simulation photo's (in case of 

portal imaging to determine set-up eITors). Although the CT coordinate system is the 

most convenient} margins in an arbitrmy direction might incidentally be necessary in 
the future, for instance in case of margins for set-up deviations detenllined fi'om portal 
images made under oblique gantry angles. The CtuTently described algoritlml will 

have to be extended slightly to enable this possibility. The obvious way is by a 

straightforward coordinate transformation of the input volume M,,, to the required 

coordinate system. The required margin can then be added in the normal way. The 

output volume M,,,,must be transformed back to the original coordinate system before 

the output contours are obtained. 

In our institute 3D confonnal radiotherapy is increasingly being used, especially 

since the Racetrack Microtron MM-50 was commissioned at the begilllling of 1994. 

The demand for accurate 3D plmming and planning volumes increased likewise. The 

program CTV2PTV has been in clinical use for the last two years, mainly for the 

planning of prostate patients. To account for subclinical disease and geometrical 

unceliainties a constant 1.5 cm margin has been applied to the GTV in all three 

dimensions. In practice the input to CTV2PTV has been half a CT -pixel larger (1.6 

cm) because the clinicians wanted at all costs to avoid smaller margins, which might 
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occur due to rounding enors near the corner points of the contour. At the moment the 

program is beginning to be applied more frequently, for instance in the case of 

gynecological tumors. 

The program intert:,ce is especially designed for the CadPlan planning system.' 

A simplified version of the algorithm (without the extra options described in the 

method section) has been incorporated in the latest version of the system. In principle 

the software will be made available as shareware. It has been set up in a modular way 

so it should be relatively easy to modify for other planning systems. For infonnation, 

the authors can be reached at their E-mail or regular address. 

VI. Conclusions 

A computer program has been developed to automatically add margins in tln'ee 

dimensions to treatment volumes. The input volumes are represented in 3D calcula­

tion matrices and expanded by centering an ellipsoid at every voxel in the volume. 

The program has proven to be a useful tool in our institute. The accuracy is a fraction 

of a CT -pixel which is generally more than sufficient and better than can be achieved 

manually. Apat1 fi'om straightforward 3D margins around a simple volume, also more 

complicated cases with multiple input volumes and valiable margins can be handled. 

The tool has been in clinical use for two years now, mainly to calculate prostate PTV's 

from GTV's. The workload for the planning tec1micians has been reduced enor­

mously; fi'om several hours manual contouring to one minute automatically. 
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CHAPTER 3. MULTIPLE 2-DIMENSIONAL VERSUS 3-DIMENSIONAL 

PTV DEFINITION IN TREATMENT PLANNING FOR CONFORMAL 

RADIOTHERAPY 

lC. Stroom, G.A. Korevaar, P.C.M. Koper, A.G. Visser, B.J.M. Heijmen 

Radiother. Oncol. 47,297-302,1998 

I. Abstract 

Plllpose: To demonstrate the need for a fully 3-dimensional (3D), computerized 

expansion of the gross tumor volume (GTV) or clinical target volume (CTV), as 

delineated by the radiation oncologist on CT -slices, to obtain the proper plmming 

target volume (PTV) for treatment planning according to the ICRU-SO reCOlmnen­
dations. Methods and materials: For ten prostate cancer patients two PTVs have been 

detennined by expansion of the GTV with a I.S cm margin, a 3D PTV and a multiple 

2D PTV. The fonner was obtained by automatically adding the margin while ac­
counting in 3D for GTV contour differences in neighboring slices. The latter was 

generated by automatically adding the I.S cm margin to the GTV in each CT -slice 
separately; the resulting PTV is a computer simulation of the PTV that a radiation 

oncologist would obtain with (the still common) manual contouring in CT -slices. For 

each patient, the two PTVs were compared to assess the deviations of the multiple 2D 

PTV from the 3D PTV. For both PTVs conformal plans were designed using a tlu'ee 

field technique with fixed block margins. For each patient, dose volume histograms 

and tumor control probabilities (TCPs) of the (correct) 3D PTV were calculated, both 

for the plan designed for this PTV and for the treatment plan based on the (deviating) 

2D PTV. Results: Depending on the shape of the GTV, multiple 2D PTV generation 

could locally result in a I cm underestimation of the GTV-to-PTV margin. The devi­

ations occurred predominantly in the cranio-caudal direction at locations where the 

GTV contour shape varies significantly from slice to slice. This could lead to selious 

underdosage and to a TCP decrease of up to IS%. Conclusions: A full 3D GTV -to­

PTV expansion should be applied in conformal radiotherapy to avoid underdosage. 



24 Chapter 3 

II. Introduction 

To ensure a COlTect dose delivery to the tumor in radiotherapy treatment, the ICRU 
has suggested a scheme for the determination of the planning target volume (PTV) 

that should be used for treatment planning [54]. Initially, the gross tumor volume 
(GTV), which is the visible and! or palpable volume of malignant growth, should be 

outlined in the diagnostic images. This volume is then extended to the clinical target 

volume (CTV) which contains GTV plus areas of suspected subclinical microscopic 

disease. Finally a margin is added to take into account geometrical uncetiainties like 

patient and organ movement, resulting in the PTV. 

Although the ICRU concepts for definition of a PTV are clear, their application 

can be problematic. The nature of the problem is demonstrated in figure 3-1. In figure 

3-1 a, a transversal CT slice through a prostate GTV is depicted. An isotropic 1.5 cm 

margin has been added in 2D around the GTV contour to get the PTV. The same has 

been done in all other slices, i.e. a "multiple 2D" PTV has been generated which 
reflects a normal manual outlining procedure. However, due to GTV contour differ­

ences in neighboring slices this would yield too small margins in the cranial direction, 

as is indicated in a sagittal CT reconstntction through the prostate (figure 3-lb). In 

Figure 3-1 Illustration 
of the problem discllssed 
in this paper. Alultiple 
2D margins (dotted 
cW11es) around 
prostate GTV (solid 
curves) ill a transversal 
CT slice (a) lIIay yield 
too narrow margins in 
the cranio~c(wdal direc­
tions as shown ill a 
sagittal reconstruction 
(b). Tlte 3D lIIargins 
(dashed cllrve~) may 
appear 100 large in a ..-. 
transversal CT slice (c) § 
bUI are actually correct .......... 
(eI). The arrows ill the 
sagittal reconstrllctions 
indicate the position oj 
the transversal CT slice. -6 o 

(em) 
6 -6 o 

(em) 
6 
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figure 3-lc, the COlTect 3D PTV has been generated by automatic expansion in all 

three dimensions. In the anterior patt of the PTV the margin is clearly larger than 1.5 

cm but the sagittal reconstruction (figure 3-ld) shows that this margin is COlTect. It is 

obviously all but impossible to accurately draw a 3D margin in 2D CT slices without 

the aid of software tools. Consequently, several groups have pointed out the import­

ance of automatic 3D margin delineation [5,15, I 06]. 

In this paper we want to explore the geometrical and dosimetrical consequences 

of the still common but incorrect multiple 20 PTV generation, by comparison with 

the correct 3D PTV calculation for a group of prostate cancer patients. In the follow­

ing "3D PTV" will stand for the full 3D PTV and "2D PTV" will refer to the multiple 

2DPTV. 

III. Methods and materials 

Ten prostate cancer patients were selected for this study. Three of the patients had 

stage T I tumors, the others had T2 tumors for whom the vesiculae seminalis were pmt 

of the GTV. All patients were routinely CT-scanned in the supine treatment position 

with 5 mm slice distance. The GTV was outlined in all relevant slices by a radiation 

oncologist. The position of the apex of the prostate was verified by the use of sagittal 

reconstl1lctions through the prostate. The GTV-to-PTV margin for subclinical disease 

and geometricalunceltainties was at the time of the study taken to be 1.5 cm. For all 

patients 3D and 20 PTVs were automatically determined. 

The algorithm for automatic margin generation has been described in a separate 

paper [106] and roughly works as follows. The GTV is represented in a 3D matrix 

grid with voxel values equal to the fraction of the voxel volume that is inside the GTV 

contours (i.e. in between 0 and I). It is expanded in three dimensions by centering an 

ellipsoid at every matrix element within the volume. The shape of the ellipsoid 

reflects the size of the margins in the three main directions. The PTV is subsequently 

obtained by extracting the 0.5 iso-value surface from the expanded volume. Depend­

ing on margin and volume size, the whole operation is generally performed within one 

minute. 

The 3D PTV was generated by applying an isotropic margin to the GTV in all 

tlu'ee dimensions, i.e. the ellipsoid in the expansion algorithm actually was a sphere 

with 1.5 cm radius. The 2D PTV was calculated by expanding each GTV voxel by a 

circle with 1.5 cm radius and orientation parallel to the CT slices. This procedure 
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simulates the manual slice-by-slice contoming of the PTV (without taking the GTV 

shape in neighboring slices into account). For the 2D PTV, the GTV extension in 

cranial and caudal directions was obtained by copying the PTV contours at both ends 

of the GTV to the next three slices without GTV. The geometrical differences 

between the 3D PTV and corresponding 2D PTV were assessed from sagittal and 

frontal CT reconstructions tbrough the PTV and by comparison of the volumes. 

For each patient our standard isocentric tbree-field treatment plan with confonnal 

blocks was designed for both PTVs. It consisted of one anterior-posterior beam and 

two lateral-oblique beams. The lateral beams were partly delivered with a 60° degrees 

motor wedge and were slightly tilted posteriorly in order to minimize rectum irradi­

ation. Beam weights were such that each field contributes equally to the dose ~t 

isocenter. For all plans, the otientation dependent block margins between the beam's­

eye-view (BEV) PTV -projection and confonnal blocks were at the time of the study: 

5 mm in the lateral direction of the AP fields, 9 nnn in the ventra-dorsal direction of 

the lateral fields, and 151111n in the cranial caudal-direction of all fields [32]. All plans 

were made for the 25 MV photon beam of a Racetrack Microtron MM50 (Scandi­

tronix) and complied with the ICRU recommendation for dose homogeneity in the 

PTV, i.e. the variation of the dose in the PTV is kept within +7% and -5% of the 
prescribed dose [54]. 

To analyse the consequences of the use of the 2D PTV in treatment plmming, the 
dose distribution as resulting fram the beam shapes determined for that PTV was 

assumed to have been delivered to the (CotTect) 3D PTV. Differences in dose volume 

histograms (DVHs) and tumor control probabilities (TCPs) with the treatment plan 

that was desigued for the 3D PTV were calculated. The model that was used for TCP 

calculations is described by Munzenrider et al. [81]. The parameters for the TCP 

calculations were TCP66 = 70% (based on data of our own institute), YpoP = I, and Yind 

= 8 [70]. Since the TCP values are mainly determined by the average dose, all plans 

were normalized so that the average dose in the original PTV became 66 Gy. 

All treatment plmming was perfonned on HP 9000/7xx work stations using the 

CadPlan planning system (Varian-Dosetek). The software for 3D extension of 

planning volumes delineated in CT slices was developed to nUl with CadPlan and is 

now routinely used for most patients that are 3D plarmed. Part of the software has 

been integrated in the latest CadPlan version (2.7.7). 
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IV. Results 

In figures 3-2a and 3-2b sagittal and frontal reconstructions through the center of the 

prostate in a plane near the isocenter are shown for all patients, and the GTV, 2D 
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Figure 3-2 Sagittal (AJ (lndfrontal (B) reconstructions through the centre a/the prostate 
{or len patients. The GTVs are indicated by the black curves, the 2D PTVs by the grey 
curves, and the 3D PTVs by the dashed black CW11es. Large differences between 2D and 
3D PTVs occur ill areas with large GTV contour di!lerences between neighbouring CT­
slices. 
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PTV, and 3D PTV are depicted. As expected, the 2D PTV generally follows the GTV 

at exactly 1.5 cm in lateral and ventra-dorsal directions. The seemingly larger margins 

that sometimes occur (especially near the seminal vesicles) are due to the data being 

presented as reconstrnctions in 2D planes; celiain parts of the GTV responsible for a 

GTV -to-PTV extension as seen in the reconstruction may in itself be invisible in that 

reconstruction. However, figures 3-2a and 3-2b clearly show that for some patients the 

multiple 2D extension of the GTV results in extremely nanow margins between GTV 

and 2D PTV in the crania-caudal direction, see for example patients 4, 7, and lOin 

figure 3-2a. These deviations occur in areas with large GTV contour differences in 

neighbOling slices. The 3D PTV does not suffer at all fi'Om this problem due to the 

full 3D extension of the GTV. The spikes that are visible in the cranial part of some of 

the contours (see for instance figure 3-2a, patient 7) are due to a graphical artifact of 

the planning system. If the volume of interest divides into more than one branch (like 

the vesiculae), the planning system requires that the separate GTV contours that are 

delineated in one slice are cOlmected with a line. These lines can appear as spikes in 

sagittal or frontal reconstmctions but contain no volume and are subsequently ignored. 

The average volume of 

the 3D PTV is 519 ± 59 (I 

SD) cc whereas the average 

2D PTV is 456 ± 54 (1 SD) 

cc, i.e. there is a mean differ­

ence of 62 ± 10 (1 SD) cc 

(see Table 3-1). This implies 

that on average at least 12% 

of the 3D PTV volume is not 

included in the 2D PTV. 

Actually this percentage is 

slightly larger because the 

copying of the outer PTV 

slices of the 2D PTV some­

what overestimates the mar­

gin, and hence the volume, at 

the crania-caudal edges. 

In figme 3-3 two BEV 

plots of the 3D PTV of 

patient 4 are shown together 

patient 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Mean(SD) 

stage 

T2 

TI 

TI 

Tl 

T2 

T2 

T2 

T2 

T2 

T2 

i1V(cc) 

68 

55 

72 

68 

81 

57 

56 

58 

50 

67 

62(10) 

i1Tep (%) 

4 

II 

13 

15 

13 

8 

10 

4 

3 

7 

9(4) 

Table 3-1 Vollime and rep reductioll Jor the ten 
prostate patients described ill this study. L1V is the 
volume difference between the 3D PTV and the 2D 
PTV. dTCP is defined as the TCP Jar the 3D PTV 
resulting ,li'om the plan designed Jar the 3D prr~ 
minlls the Tep Jar the 3D PTV resulting from the 
plan designedJor the 2D PTV. 
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Figllre 3-3 AP (A) alld lateral (B) beam's eye view plols of Ihe 3D PTV (dashed lines) 
wilh conformal blocks desiglled for Ihe 2D PTV for palielll 4. The solid lines are the BEV 
pl'Ojeclioli of the GTV. Over large areas the block margins are too narrow 10 account for 
the beam penumbra. In some areas 'he blocks even overlap the PTV. 

with the conformal blocks designed for irradiation of the 2D PTV. In large areas the 

blocks overlap or fit too tight around the 3D PTV, leaving too little room to account 

for the beam penumbra. Applying these blocks will therefore result in underdosage of 

the 3D PTV. This is flUther illustrated in figure 3-4 by the average DVHs for the 3D 

PTV resulting from the treatment plans designed for the 2D and 3D PTV respectively. 

The average minimum dose in the 3D PTV decreases from about 62 Gy for the plan 

designed for the 3D PTV to about 51 Gy for the plan designed for the 2D PTV. The 

average Tep difference between the correct plan and the plan designed for irradiation 

of the 2D PTV was 9 ± 4 (1 SD)% (see Table 3-1). 

V. Discllssion 

The magnitude of the observed Tep reduction when the PTV margins were assumed 

to be two-dimensional, depended mainly on the shape of the GTV. There appeared to 

be a relation with the tumor stage; all patients with stage Tl tumors had Tep reduc­

tions of over 10% whereas only one of seven T2 tumors showed this phenomenon. 

One would expect large variations in GTV delineation especially with T2 tumors, 
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Figure 3-4 Cumulative DVHs for the 3D PTV, 
averaged over the ten patients. The dashed curve 
represents the averaged DVH of the plans designed 
(or the 2D prY, the solid CU11'e is the averaged D VB 
designed for the 3D PTV, There is a systematic 
Imderdosage of the 3D PTV when planned with the 
beams designed for the 2D PTV, 

where the seminal vesicles 

are part of the GTV. How­
ever, also in all T I cases the 

most cranial GTV contolU'S 

were significantly smaller 

than the ones in neighboring 

slices. 

Obviously, the TCP 

reductions depend on the 

dose distribution and hence 

on the treatment technique. 

The more conform the 95% 

isodose volume encloses the 

PTVs, the larger the errors 

will be when 20 PTVs are 

used instead of 3D PTVs. 

The difference between our 

three-field teclmique and, for instance, a four-field technique with similar block types 

will therefore be small. However, if rectangular fields would have been used instead 
of confonnally shaped fields, the multiple 20 procedure would not result in ,mder­

dosage. The rectangular field size is normally detennined by the outermost tumor 

extensions and these are the same for the 20 PTV and the 3D PTV. If the beams 

would have been shaped by multi-leaf collimators, the block margins around the PTV 

would on average be larger than for confonnal blocks and hence the errors due to 20 

PTV determination would be smaller. 

A possible 20 altemative for treatment plmming based on a 30 PTV is beam's 

eye view planning [87). Using this technique, the PTV - and block margins around the 

BEV projection of the GTV are automatically calculated in 20 in the BEV plane. 

Consequently, the BEV teclmique does not result in a 30 PTV. Straightforward 
evaluation of the dose disu'ibution in the PTV, as recommended by the ICRU [54), is 

therefore not possible. Moreover, the projection of the GTV volume to one plane may 
yield over- or underestimation of the margin if the outelmost extensions of the GTV 

are not at the level of the BEV plane, as is demonstrated in figure 3-5 for a hypotheti­

cal tumor. Due to the divergence of the treatment beams, the magnitude of the 

required 3D margins is altered when projected to the BEV plane. This effect is not 

taken into account by the BEV method. In normal clinical situations (with the BEV 
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Figure 3-5 Illustration of a drawback oj focus 
2D BEV planning (based all a BEV h 

projection of tlte crv; compared to / \ 
planning based on a full 3D PTV, The (too large) ,1 \\ 
GTV-to-PTV margins are illdicated by 20 BEV margin /! \." (too small) 

~~~e:~:~;~:,:l1t~et~:.o~~:~;~l ~~dt/~a~;~ ,,/, .. '.l \.',\\20 BEV margin 
plane of the GTV and 3D PTV respec-
tive/y. Due to the divergence of the I . 

I .: 
beam, fwo~dimensional extension of tlte ---f[;AJ'7L=:-:--~'-i:(]},;"::":::.c...== 
GTV in the BEV plane may yield 100 

large (AJ 01' 100 small (BJ margills 
compared to the (correct) margins that 
resllllji'Olll projections oflhe 3D PTV. 

, , , 
full 3D margin 

plane through the GTV, a GTV "diameter" of about 10 cm, and a focus-BEY plane 
distance of about 100 cm) the enol'S are relatively small (maximally I mm). A final 

objection to the BEV method is that it is quite impractical in case of anisotropic 

margins and/or oblique fields, especially when the direction of the margins is not 

perpendicular to the field. 

In conclusion, for ten prostate cancer patients we have shown that multiple 2D 

calculation of PTV margins instead of full 3D calculations can lead to serious 

underdosage and TCP reductions of up to 15%. The same conclusion holds, of course, 
for other than prostate tumors. Delineated GTV - or CTV contours normally vary from 

slice to slice and hence Ihll 3D PTV margin calculation is required when conformal 

radiotherapy is used. 

VI. Acknowledgements 

The authors want to thank the Dutch Cancer Society (NKB-project 92-86) and the 

Revolving Flmd of the University Hospital Rotterdam for sponsoring the research 

described in this paper. FUlihennore, the support of John van Samsen de Koste during 

the various treatment planning sessions and the useful suggestions of Filicity Yorke 

during the writing of the paper are greatly appreciated. 
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I. Abstract 

Plllpase: Following the ICRU-50 recommendations, geometrical uncertainties in 

tumor position during radiotherapy treatments are generally included in the treatment 

planning by adding a margin to the clinical target volume (CTV) to yield the planning 

target volume (PTV). We have developed a method for automatic calculation of this 

margin. Methods alld lIIaterials: Geometrical unceliainties of a specific patient group 

can nOl1nally be characterized by the standard deviation of the distribution of system­

atic deviations in the patient group (E) and by the average standard deviation of the 

distribution of random deviations (0). The CTV of a patient to be plarllled can be 

represented in a 3D matrix in the treatment room coordinate system with voxel values 

one inside and zero outside the CTV. Convolution of this matrix with the appropriate 

probability distributions for translations and rotations yields a matrix with coverage 

probabilities (CPs) which is defined as the probability for each point to be covered by 

the CTV. The PTV can then be chosen as a volume corresponding to a celiain iso­

probability level. Separate calculations are perfonned for systematic and random 

deviations. Iso-probability volumes are selected in such a way that a high percentage 

of the CTV volume (on average> 99%) receives a high dose (> 95%). The conse­

quences of systematic deviations on the dose distribution in the CTV can be estimated 

by calculation of dose histograms of the CP matrix for systematic deviations, resulting 

in a so-called dose probability histogram (DPH). A DPH represents the average dose 

volume histogram for all systematic deviations in the patient group. The consequences 

of random deviations can be calculated by convolution of the dose distribution with 

the probability distributions for random deviations. Using the convolved dose matrix 

in the DPH-calculation yields full infonnation about the influence of geometrical 
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uncertainties on the dose in the CTV. Results: The model is demonstrated to be fast 

and accurate for a prostate, cervix, and lung cancer Case. A CTV-to-PTV margin size 

which ensures at least 95% dose to (on average) 99% of the CTV, appears to be equal 

to about 2E+O.7a for three all cases. Because rotational deviations are included the 

resulting margins can be anisotropic, as shown for the prostate cancer case. Conclu­
sion: A method has been developed for calculation ofCTV-to-PTV margins based on 

the assumption that the CTV should be adequately itTadiated with a high probability. 

II. Introduction 

Geomettical uncertainties in radiotherapy treatments cause differences between 

intended and actually delivered dose distribution in the clinical target volume (CTV), 

as defined by the ICRU [54]. The unce11ainties primarily consist of external set-up 

deviations and internal organ movement. Both deviations consist of a systematic 
component, i.e. the same for each fraction of the treatment, as well as a random 

component, i.e. vatying from day to day. The size of the patient set-up deviations can 

be assessed by compatison of images acquired during the treatment (with megavolt­
age portal films or electronic portal imaging devices) with those of the intended 

treatment (simulator radiographs or digitally reconstmcted radiographs generated by 

the planning system). By imaging several patients of a specific patient group regu­

larly, the typical size of the systematic and the random positioning deviations for that 
group can be detennined [11,25], which may indirectly lead to improved set-up 

techniques and/or equipment. In principle, systematic deviations of an individual 

patient can be estimated during the first few fractions and couch corrections can be 

applied for subsequent irradiations [12,14,126]. This so-called "off-line protocol" 

reduces systematic deviations while random deviations remain unchanged. Both 

systematic and random set-up deviations can be reduced to negligible values if on-line 

cOlTections are applied [31,105]. In this case, the patient position is verified at each 

fraction using a small number of monitor units. If necessary, the couch position is 

adjusted before the remaining dose is given. At the moment however, on-line COlTec­

tion procedures are too time consuming to be routinely used in clinical practice. 

Intemal organ motion is the movement of an organ relative to the bony struc­

tures. For instance, the prostate can move due to variations in bladder- and rectum 

filling. These movements can not be assessed directly by portal imaging since the 

tumor is generally not visible. By implantation of radio-opaque markers itl or near the 
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CTV the internal organ motion can be visualized which enables on-lioe positioning 

corrections [7,28]. In other clinical studies repeated CT -scans have been acquired to 

get an iodication of internal prostate movements [95,119). Intra-fraction movement of 

the tumor will add to the random deviation. Due to breathiog and cardiac motion a 

tumor in thorax or abdomen can vmy significantly in position in a matter of seconds 

[97]. Complex techniques like real-time couch movement, respiration gated irradia­

tion or breathiog control might limit the consequences of this variation [62,79,124]. 

Whatever is done to minimize the geometIical unceliainties, to some extent 

inaccuracies are unavoidable. Once the typical values for a specific group of patients 

are known they should be included in the treatment planning for individual patients 

from that group. Patient set-up deviations not only affect the dose in the tumor region, 

but in neighboring, possibly critical, organs as well. For random deviations, the effect 

of this deviation can be simulated by a convolution of the dose distributions with the 

distribution of movements in three dimensions. Several groups have implemented this 

for translational deviations [52,98). Systematic deviations are more of a problem since 

they are a priori not known for a specific patient and only the distribution of system­

atic deviations for the patient group can be determined. The effect of systematic 

deviations on the dose distribution is more significant than that of random deviations, 

hence relatively small systematic deviations should not be ignored. One possible way 
to deal with systematic deviations has been proposed by Goitein (43). He suggested 

three parallel planning calculations, one with nominal set-up deviations and the others 

with extreme values, and allow only those plans for which all three dose distributions 

are acceptable in ternlS of tumor coverage and critical organ sparing. Recently this 

idea has been fmiher developed by Mageras and colleagues, especially to include 

internal organ motion in radiotherapy planning [74]. Killoran and colleagues simulate 

systematic and random unceliainties simultaneously by multiple Monte Carlo 

simulations which result in multiple dose volume histograms (DVHs) that are used for 

evaluation of the treatment plan (60). 

The above techniques operate directly on the CTV and are more sophisticated 

than the conventional approach as proposed by the ICRU [54), i.e. using a plmming 

target volume (PTV) which is defined as the CTV plus margins for all geometrical 

unceliainties. However, the practical application of the concept of PTV is not always 

clear. First of all, it is rather cumbersome to manually draw margins in three dimen­

sions around an irregularly shaped tumor volume [104]. Therefore several groups 

have developed algoritlnlls for automatic margin calculation, either multiple 2D (5) or 

fully 3D [15,106]. Flllihermore, the geometrical uncertainties can originate from 
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rotations as well as translations. Rotational deviations will yield anisotropic margins, 

i.e. the size of the margin will V31Y depending on the position with respect to the axis 
of rotation. None of the aforementioned algorithms have incorporated this. Finally the 

exact margin size necessmy to ascertain adequate coverage of the CTV depends on 
the kind of deviation (systematic or random) and on the dose distribution. How this 

must be taken into account has up till now not been specified. 

We have developed a model that calculates the CTV -to-PTV margins step by 

step, based on clinically measured CTV position deviations and on the requirement 

that the dose distribution delivered to the CTV will satisfY the ICRU recommenda­

tions for dose homogeneity with a high probability. Intemal organ motion as well as 

extemal set-up deviations, translations as well as rotations, and systematic as well as 

random deviations are included in the model. Once the dose distribution has been 

pl31med around the resulting PTV, the same algorithms can be used to calculate the 

influence of all geometrical uncertainties on the dose in the CTV and hence to verify 
the planned dose distribution. The use of the model will be demonstrated for a 

prostate, cervix, and lung canCer planning. 

III. Methods and materials 

a. Parameters required 

Since the geometrical unceliainties of an individual patient which is to be pl31med are 

not known, measured data of a group of similar patients must be used. Clinical studies 

performed in our depmiment and elsewhere have shown that translational deviations 
in patient positioning of a specific group can be approximated by normal disttibutions 

of systematic and random deviations in the tlu'ee main directions, e.g. [11,25]. For 

each patient in the study the average set-up deviation and the standard deviation (SD) 

of the distribution around that average is determined. The random variation (J 

characterizing a celiain patient group is then defined as the SD of the day-to-day set­

up positions, averaged over all patients in the group. The systematic variation L is 

defined as the SD of the distribution of average set-up deviations per patient in the 

group of patients. The overall mean deviation M is the average value over all fractions 

and all patients. If the reference set-up (during simulation) can be considered as a 

sample from the random distribution, M will be close to zero and L will be close to (J. 

Rotational deviations around the three main axes can in principle be described 
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similarly. The study of internal organ motion can yield random and systematic 

deviations for translations and rotations as well. Hence a set of twelve (xlylz * 
rot/trans * int/ext) standard deviations l: and a and six rotation axes are necessary to 

describe all geometrical unceltainties of a specific patient group. These values are the 

input parameters of our method and do not only depend on the tumor sites, but also on 

set-up teclmiques and treatment protocols (and possibly even on more specific 

variables like tumor stage, patient weight, accelerator etc.). 

The parameters are used to calculate margins around a CTV which is initially 

represented by a set of input contours as outlined in 2D CT-slices. The contour data 

points are used to determine a 3D volume in a cubic calculation grid in the treatment 
room (i.e. CT) coordinate system. The algoritlnn has been described before [106] and 

can be sUll'unarized as follows. For each slice, intersection points of contour lines with 

2D grid lines are calculated to fill a 2D matrix with values equal to the fraction of the 

grid element that is enclosed by the contour. The slices are stacked with increasing 

slice position so that a 3D matrix Mcn{x,y,z) is created with values I inside the 

volume and 0 outside the volume (and between 0 and 1 at the edge). This matrix is 

used for subsequent calculations. 

b. Coverage probability calculation using can vall/lions 

Two separate, equivalent methods have been developed to calculate a matrix with 

coverage probabilities (CPs) which is defined as the probability for each point to be 

covered by the CTV and which will be used for PTV margin determination. They will 
be designated as the convolution method and the Monte Carlo method. The convolu­

tion method uses a straightfonvard convolution of the CTV matrix with normal 

distributions describing the geometrical uncel1ainties. The effect of translational and 

rotational deviations is calculated separately. The normal distribution of mutually 

independent deviations in translations is given by: 

N(x,y,z) 

2 2 2 

_~.«--"--) +(L) +(--"--) ) 
e 2 sdx sd y sdz 

';81[3 sd x . sd y . sd z 
4-1 
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with scix> sdy, and sd, the standard deviations of the distributions in the three main 

directions. The input matrix Mcn-(x,y,z) is convolved numerically with the prob­

ability distribution: 

M cp(x,y,z) = 2.:: 2.:: 2.:: M CTV (x',y', z') N(x - x',y - y',z - z') Ar ~y & 4-2 
x' y' z' 

with />,xAy~z the voxel size. In the output matrix Mcp(x,y,z) the original contents of 

the voxels is spread out according to the distribution of translations. The value in each 

voxel of this "coverage probability" matrix represents the probability of the voxel 

being covered by the CTV. 

Inclusion of rotational positioning deviations is cumbersome in the Olihogonal 

coordinate system. To be able to handle rotations around axes in the three main direc­

tions, an input matrix MGT/(x,y,z) is transformed to cylindrical coordinates Mcn{r,B,a) 
using bilinear interpolations, where a is x, y or z for rotations about X-, Y-, or z-axis 
respectively. The center of the new matrix (r = 0) is taken to be at the (user-defmed) 

position of the rotation axis. A one-dimensional distribution matrix N(B) is defined 

similar to N(x,y,z) and the convolution is performed: 

M cp(r,B,a) = 2.:: M CTV (r,B',a) N(B- B') M} 4-3 
o· 

with ~B the bin size. Subsequently the output matrix Mcp(r,a,a) is transformed back to 

Olihogonal coordinates Mcp(x,y,z). The transfOlmation to a different coordinate system 

and back, on a discrete grid, will already smooth the CTV mattix, even without 

convolutions. To limit this effect, the pixel size in the cylindrical coordinate system is 

kept four times smaller than in the original. To minimize the number of cylindrical 

matrix elements and keep the element size approximately equal for all values of r, the 

number of angles a increases with r, i.e. the (I',a)-calculation grid is not rectangular 

but rather triangular in shape. 

In case more than one rotational deviation is present, the above procedure is per­

fanned again using the output matrix of the first calculation as input for the second, 

etc. The order is arbitrary for disttibutions that are mutually independent and for the 

small rotational deviations « 10°) that are usual in patient set-up and organ move-
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ment (as will be justified later on, see figme 4-4). In case both rotational and transla­

tional deviations must be considered, the rotations should be performed first. 

e. Coverage probability calculation using a Monte Carlo approach 

The Monte Carlo method simulates the fractionated radiotherapy treatment more 

directly by sampling the translations (,., Ip Iz and rotations r,lJ J"p rz from their respective 
distributions. Subsequently all points in the CTV matrix (x,)',z) are moved to a new 

position «y~z') according to: 

x' ~ x + t, + x,.y (cos(l'y) -I) + x,., (cos(I',) -I) - y", sin(1' ,) + Z"y sin(l'y) 

y' ~ y + t y + Y,., (cos(r,) -I) + y".x (cos(rx) -I) - z"x sin(rJ + x,.' sin(r,) 4-4 

z' ~ z +t, + z,·,x (cos(r,) -I) + z,.y (cos(ry) -I) - x,.y sin(l'y) + Y"x sin(r,) 

where x,.y ~ (x-R"y), x", ~ (x-Rx,,), etc. the coordinates of the matrix point with respect 

to the x-, yo, and z-axes of rotation, respectively (Rp,R",), (R.",.,R"y), (Rx"R)",). The 
input value at point (x,y,z) can be assigned to the eight grid points nearest to (x~y',z~ 

using trilinear intelPolations or assigned completely to the one nearest point which is 

faster but less accurate. Hence a new matrix M,,(x,y,z) is calculated with n being the 
sample number. The procedure is repeated many times (> 1000) and the resulting 

matrices M,,(x,y,z) are averaged over the number of samples to yield the final result 
Mel,x,y,z). 

A difference between Monte Carlo and convolution method is the way in which 

rotational deviations are incorporated. The Monte Carlo method handles all rotations 
at once. The voxel displacement resulting from each rotation is calculated assuming 

the same starting position for all rotations, i.e. the input voxel position for the second 

rotation is not the output fi'om the first. The computation of translations is similar for 

both methods; all three directions are handled simultaneously. Comparison of the 

methods will give an indication of their accuracy. 

d. Interpretation of coverage probability 

As mentioned before, the elements in the CP matrix Mep (of which the values vary 

from 0 to I) represent the probability of a fixed point in space to be actually covered 
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by the CTV. For sufficiently large volumes (larger in diameter than about 2 SD of the 

distribution of deviations), the CP value of a certain voxel also represents the prob­

ability that the volume border lies outside that voxel; i.e. if a point is covered by some 

part of the CTV, the CTV border must lie outside of that point (or exactly on it). Iso­

coverage probability volumes are therefore logical candidates to defme the PTV. 

Considering translational deviati'ons in one dimension and given a selected coverage 
probability CP, smaller than 0.5, the probability (P,) that any point of the CTV 

volume is outside the PTV will then be equal to 2 CP,. For translations in more 

dimensions and for rotations the relationship between CP, or the margin size and P, 

becomes less straightforward. A special case may however serve as an estimate for the 
general case. 

That special case is a spherical CTV with an isotropic margin 11/ to represent the 

PTV. The probability P, that any point of a CTV with normally distributed transla­

tional deviations sd in all three dimensions will be outside the PTV can be calculated 

analytically: 

2 f 2 ->1") Po=-- J' e 2 dl' 
51C r>mlsd 

4-5 

with r being equal to .J(x' + y' + z'). The integral can be solved using patiial integra­

tion. For deviations in two dimensions a similar expression can be derived. In figure 
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Figul'e 4-1 Theoretical cun'es 
(or a spherical CTV with 
variations in translatiolls with 

standard deviations sd. 
Rotational variatiolls are 
zero. Illdicated is the 
probability that the eTV is 
partly olltside the PTV (p,J 
(01' variations ill one, two, and 
three dimen.\'iollS with vmying 
CTV~(o-PTV margill size in 
units of sd. The corresponding 

selected iso-probability values 
(ep J are indicated on the 
upper horizontal axis. 
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4-1 Po is displayed as a function of the margin in units of sd, far the one-, two-, and 

three-dimensional case. The coverage probability values CP, that should be selected 

to obtain a margin m(sdJ are displayed along the upper horizontal axis. The relation 

between CP, and m(sdJ is nonllally independent of CTV shape as long as the volume 

is sufficiently large (> 2 sd, as indicated before). For 3D translational deviations, the 

probability of the CTV being partly outside the PTV is considerably higher than for 

ID deviations. For instance, a PTV margin of 1 sd (or CP,. ~ 16%) has a Po-value of 

32% for deviations in one dimension as opposed to 80% when deviations in all tluee 

dimensions are considered. However, not only the probability of CTV miss but also 

the extent of that miss is imp01iant. Even for large Po-values, the fraction of the CTV 

outside the PTV is small and the dosimetrical consequences are limited. 

e. Inf/uence of systelllatic deviations on the crv dose: dose probability histograllls 

To investigate the effect of the geometrical unceliainties on the dose distribution in 

the CTV, different approaches for systematic and random deviations are required. 

Systematic geometrical misses will cause wlderdosage of the same pari of the CTV 

for evelY fraction of the h·eatment, whereas random deviations will cause underdosage 
in different parts of the CTV for each fraction. For systematic deviations, the CP 

matrix can be used to estimate the influence of systematic deviations on the DVH of 

the CTV. A n01111al cumulative DVH is constmcted by summation of all CTV voxels 

that receive more than a certain dose, for all dose values D: 

V(D} ~ I SD(D'(J'}}!J.V ~!J.V I SD(D'(J'}}McTV(J') 
YEcn' 

with SD(D'(J'}} 
!for D'(I');o, D 

o far D'(i:} < D 

4-6 

with D'( /.} the dose value at position /', !J.V the voxel volume, and Mm( /.} the 

previously defined CTV matrix. /. E CTV and /. E R3 are those positions which are 

member of the CTV and the whole 3D space, respectively. At the time of planning the 

systematical deviations in CTV position are unknown for a specific patient but the 

probability of the CTV being systematically at a different position is determined by 

the systematic variations E of translations and rotations for the patient group. The 
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average OVH, taking all systematic deviations of the CTV position with respect to the 

dose distribution into account, can then be determined to be: 

(V(D)) = I'lV 2: Nel) 2: SD(D'(r))Mi(Cn,)(r) 
fE9\1 FE')h 

4-7 

= I'lV 2: SD(D'(i')) M Cp (1') 
rE91) 

with i being a transformation (translations and rotations), NO) the probability for a 

eel1ain transformation i (see Eq. 1), and Ml (CTV) the transfonned CTV. In the last 

step of the derivation Eq. 2 is used. Hence instead of counting voxels receiving a dose 

<:.D, as for a nonnal OVH, the average of the OVH for all systematic deviations of the 

CTV is obtained by summation of the coverage probability values for each dose <:. D. 

Therefore the results of those calculations will be denoted as dose probability histo­

grams (OPBs). It should be emphasized that the CP matrix Mep in Eq. 7 is calculated 

using the systematic variations I. A dose histogram of a CP matrix for random (day­

to-day) variations of one patient has no physical meaning since OVBs of different 

fractions should not be added; information about the position of the dose, which is 

essential when adding dose distributions of different days, is lost in a OVH. 

In fignre 4-2 a clinical example of OPH calculations is shown. For an arbitrary 

prostate cancer patient planned according to the ICRU dose specification mles (i.e. 

block margins are such that the 95% isodose volume encloses the PTV), OPHs of 

CTV have been calculated for six different 3D translational variations I. Naturally, 

the probability of CTV underdosage increases with increasing variations. Since the 

ICRU suggested a maximal tumor underdosage of 5% [54], an additional dashed line 

is drawn to indicate the 95% dose. The OPH curves for the CTV now immediately 

indicate that the 95% isodose will enclose on average a large part of the CTV (> about 

99%) as long as the CTV-PTV margin is at least 21:. This implies a high probability of 

the 95% isodose enclosing the whole ofthe PTV. For smaller margins there will be an 

increasing probability of underdosage of the CTV. The OPH as an average of the 

OVHs for all systematic deviations seems therefore a reliable tool to determine the 

margin size required to cover for these deviations for a specific treatment plan. Also 

indicated in figure 4-2 are similar curves for variation in rectum position. The same 
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Figure 4-2 Example of dose probability histograms Jor six d(!lerenl systematic variations 
ill translation (E) for a prostate case planned to conform to ICRU recommendations with 
a 1.5 em erV-Iv-PTV margin. With increasing variation ill erv position there will be a 
higher probability 0/ ul/derdosage. The rectum will 01/ average also receive less dose as 
the variations increase, although the ma:rimu11I dose increases. On the right the CTV 
curves near the 95% dose are magnified. 

variations are assumed without any change in rectum shape. As expected) the maxi­

mum dose of the DPH increases as the variations increase; the probability that the 

rectum will be patt of the higher dose regions will be higher. At the same time 

however, the lower dose volumes decrease with increasing variations. This is due to 

the fact that for isotropic movements in all directions, the probability of the rectum 

moving toward the higher dose regions is lower than for moving away from them. 

f lI!I/lIel/ce of random deviatiol/s on the CTV dose 

The random deviations displace the CTV with respect to the dose distribution 

differently for each fi'action of the treatment. This can be simulated by convolution of 

the dose distribution maltix with the probability distributions, as has been described 

before [13,52,98,107]. The same algOlithms as for the CP calculations can be applied. 

If the input file in Eq. 2 (MCTV) is a dose distribution instead of the CTV, the output 

will be a dose distribution which is spread out locally as a result of random deviations. 

This distribution is the best estimate of the acltIally delivered distribution during the 

radiotherapy treatment. In general the higher iso-dose regions will decrease in size, 
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while the lower iso-dose regions will increase. The extent of shrinkage of the 95% iso­

dose volumes should give an indication for the size of the required margin [13]. If 

only the random set-lip deviations are considered, one calculation will be sufficient to 

determine its effect on CTV and critical organs simultaneously. If the internal random 

deviations of the eli tical organs are different for different organs, separate convolu­

tions of the combined distributions of random set-up and organ movement should be 

perfonned with the local dose matrix surrounding each organ. Compared to CP 

calculations, dose modifications are more accurate because gradients in dose matrices 
are considerably flatter than those in CTV matrices. 

g. PTV margin determillatioll 

The goal of a PTV is to create a volume around which the 95% dose can be planned 

so that the CTV is adequately irradiated, which can be verified using DPHs (see next 

section). In principle one might find the COlTect PTV by trial and ell'Ol' but CP 

calculations can also be used to calculate a good PTV to start with. Because of the 

different effect of the systematic and random deviations on the CTV dose (L and a 
cannot be added), the PTV is calculated in two steps. 

For systematic geometrical uncertainties a high irradiation probability is obtained 

by choosing the margin according to a low iso-probability volume. From figure 4-2 a 

margin equal to about 2L would seem reasonable and from the upper horizontal axis 

in figure 4-1 can be deduced that this cOlTesponds to iso-probability curves of about 

2.5%. Hence the first step in the PTV calculation (PTV I) is the determination of the 

2.5% iso-probability volume of the CTV (i.e. the volume bounded by voxels having a 

CP equal to 2.5%), using the systematic variations L as input to the model. From 

figure 4-1 this implies that for a spherically synnnetric situation and deviations in all 

directions, there still is at least a 28% chance ofthe a part of the CTV is outside PTV 1 

for all fractions. In other words, there is maximally a 72% probability of complete 

enclosure of the CTV by the PTV 1 during the radiotherapy treatment. However, the 

DPH curves of the example in figure 4-2 indicate that the 95% isodose will enclose 

the CTV in practically all cases. The intemal and extemal deviations can be handled 

simultaneously by adding the respective standard deviations in quadrahlre. 

To cover for the remaining random deviations only a moderate increase in the 
margin will be necessary. The total random vmiation equals the quadratic sum of in­
and extemal random variations. The procedure is similar to that for the systematic 
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deviations, this time using PTV I instead of the CTV as input volume. The difference 

is that random deviations do not affect the dose distribution in the tumor as much as 

systematic deviations. Therefore the margins can be smaller and the selected iso­

probability volume can be higher. Bel et al. studied the dosimetJic consequences of 

random translational variations a for their prostate patients and concluded that a O.7a 

margin would be sufficient to keep the minimal CTV dose above 95% [13]. Based on 

those results we considered the 25% iso-probability volume appropriate for random 

deviations. This means that PTV I will be partly outside the PTV in over 90% of the 

fractions (see figure 4-1). Once this final margin is added to PTVI, the calculation of 

the PTV is complete. Naturally, the choice of the iso-probability volume for either 

PTV I or PTV margins is to some extent arbitr31Y and can be varied according to the 

individual preferences of the clinician. Eventually it should be based on quantitative 

models for the hllnor control probability. 

h. PTV margin verification 

Normally, the patient will be pl31111ed with certain block margins around the PTV to 

account for the penumbra of the beam. The concepts described can be applied to 

evaluate and judge the effect of geometrical unceriainties on the dose distribution in 

the CTV. Firstly, to calculate the expected dose distribution achmlly delivered dming 

the treatment series, the dose matrix is convolved with the distribution of random 

deviations. The 95% isodose volume will shrink but should still enclose the PTVI 

volume. Secondly the systematic deviations are used to determine the DPH of the 

CTV (and possibly critical organs), using the dose modified for random deviations. 

This DPH indicates whether the dose distribution is adequate to inadiate the CTV, 

given the systematic and random deviations. If the patient has been planned correctly, 

the average CTV volume receiving> 95% dose must be high (e.g. > 99%). In case the 

probability of under dosage is too high, the 95% isodose volume is too tight around the 

CTV and either the PTV margin or the block margin is too small. The plan can be 

recalculated using lower iso-probability contours as PTV margin or larger block 

margins. In case the DPH is practically equal to the original DVH (Le. systematic 

deviations have no influence on the dose in the CTV), the PTV margins might be too 

large and the plan should be recalculated using higher iso-probability values as PTV 

margins (or smaller block margins). In this iterative manner the size of the block-to­

CTV margins is directly optimized for inadiation of a specific CTV and DPHs of 

CTV instead ofDVHs of PTV are used to evaluate the planning. 
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i. Hardware 

The method has been implemented using the C programming language on a HP 

90001712 (100 MHz) workstation. It runs as a separate application next to the 

CadPlan planning system2 and hence uses CadPlan contour and dose files as input. 

The results are written back to CadPlan files for visualization and finiher planning. At 

the moment, the voxel sizes in the calculations are equal to those used in the planning 

system, which vmy in practice l;-OIn about 2 nnn for CT pixel size to maximally 10 

nnn for the slice distances. The dose matrices nonnally have a resolution of 2.5 or 5 

mm. Geometrical uncertainties smaller than about I nun (I SD) are consequently not 

reflected in the calculations. 

IV. Results 

a. Accuracy of the methods 

To get an indication of the accmacy of the convolution and Monte Carlo method, 

results of the two methods are compared for a schematic example. Figure 4-3a depicts 

a 2D geometrical object which represents a target volume. The simulated random 

translational variations are different in horizontal and vertical direction and the 

coverage probabilities are calculated for both methods. The number of lUns in the 

Monte Carlo method was 1500. The iso-probability con toms of the different methods 

coincide well, only the 1% iso-probability curves deviate slightly. In figure 4-3b an 

additional variation in rotation is simulated. As expected, the area within the higher 

probability curves decreases while that in the lower increases. Dne to the rotations the 

distance from one curve to the next becomes anisotropic. Near the upper right part of 

the object the lower iso-probability curves actually shrink compared to the curves in 

figure 4-3a; because of the rotations there is a lower probability that voxels in that area 

are enclosed by the object. The differences between the two methods become slightly 

larger, especially near the low probability curves. Tins is attributed to the limited 

number of runs of the Monte Carlo method which yields poor statistics in those 

regions. 

2 Varian-Dosetek 
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b) 

-12 -6 o 6 12 -12 -6 o 6 12 

horizontal position (em) 

Figure 4-3 Comparison of convolution and Alonte Carlo method. Tile schematic 2D 
CTV is the object outlined by the thick solid conlollr, the pixel size is 2 by 2 111m. A) A 
1I0rizontai J 2 111m (1 SD) and vertical 8 mm variation in translation has been 
simulated. The i, 5, 20, 50, 70, 95, and 99% iso-probability curves of both methods 
are shown: the thin black lines represent the reslllt of the Alonle Carlo method (/500 
runs), the thick grey dashes the cOllvolulion method. B) A 5 degrees (I SD) variatioll 
ill rotation is added. The rotation axis is at the lower left corner of the figure (-12, -12 
em), The iso-probability curves of the two methods still coincide well. 

The largest differences between the two CP calculation methods are expected for 

coverage probability calculations with large rotational deviations. Hence an exagger­

ated (and IUlrealistic) variation in rotations around the three ot1hogonal axes through a 

point in the lower left and cranial corner of the input matrix is calculated for a lung 

tumor CTV in the upper thorax. Figure 4-4 shows the 5% iso-probability curves for 

both methods in a transversal, sagittal, and frontal slice near the center of the CTV. 

The two contours do not overlap in all areas but the differences are small: maximally 

2 nUll (I CT pixel) while the margin is on average 2 cm. In slices near the edges of the 

volume the maximum differences that are found are 4 nUll which is adequate consid­

ering the irregularity ofthe Monte Carlo contours. The difference between the two 5% 

iso-probability volumes is 4 cc (I %). In clinical practice rotational deviations of 

extreme values are rare and the occurrence of more than one deviation sinlUltaneously 
is unlikely. Consequently, this close agreement may serve as assurance that the 

calculation of rotational deviations is reliable for both methods. 
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Figure 4-4 Comparison of the two methods Jar an extreme case of rotational 
deviations. A bmg CTV (thick black lines) has been modified with rotational devia­
tiOIlS oj 10, 8, and 6 degrees (l SD) around the three major axes ill a point about 8 
em left, cranial, alld below the crv center. l1w 5% iso-probability CllITes for the 
cOllvolution (thick grey dashe.~) alld klollte Carlo method (thin black 1i1le~) are 
displayed ill a trallsversal (a), sagittal (b), alld FOlltal ellt (c) throllgh the crv. 
Although Ihe two methods handle the ejJec! oj rotational deviations d(fJerently, the 
results are quite similar. 

Although Eq. 5 was derived for a spherically symmetric case, the results are a 

reasonable approximation for more general clinical situations. For translational 

deviations} computer simulations for a prostate CTV indicate that} even if the margins 

become anisotropic, the deviations from the values in figure 4-1 are small « 5%). A 

restriction is that the CTV volume should be devoid of sharp edges, which is usually 

satisfied. Another limitation is that rotational deviations are not included in the 

calculations, hence Eq. 5 underestimates the Po-value if rotations are present. 

b. Clillical examples 

In three clinical examples the stepwise PTV calculation and the verification procedure 

will be illustrated. The values for the geometrical unceliainties are taken from 

literature or have been measured in our institute. In all cases it is assumed that the 

application of an off-line protocol (as mentioned in the introduction) halves the 

systematic translational set-up deviations [12]. The values used are sununarized in 

Table 4-1. All calculations are done with the convolution method and all rotation axes 

are t1uough the center of the CTV unless specifically stated otherwise. CT slice 

distances are 5 nun and CT pixel size are about 2 x 2 nun. The grid size of the dose 

matrices is in all cases 2.5 nun in the plane of the CT slices and equal to the CT slice 
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distance in the direction 

perpendicular to the CT 

planes. All three patients 

were planned with multi­

leaf collimators. Block 

margins were such that the 

95% isodose closely fitted 

the PTV and the dose 

homogeneity in the PTV 

satisfied the ICRU 50 

recommendations (i.e. dose 

variation of maximally 95% 

- 107%). 

C, Prostate cancer case 

Due to variations in rechllll 

and bladder filling, the 

range of the internal pros­

tate movements is consider­
able. The values that are 

used in our calculations 

have been estimated from 
several studies available in 
the literature [7,28,119]. 

The lateral rotation axis was 
taken to be near the apex of 

variation translation rotation 

(1111n, I SD) (degrees, I SD)/axis 

direction LR CC AP LR CC AP 
Prostate 

2.0 2.0 2.0 

1.2 1.2 1.4 

1 2 2 4' 2 

2 2 4' 2 

Cervix 

3.5 4.0 3.5 3 1.5 2 

2.0 2.5 2.0 2 

Lung 

3.0 3.0 3.0 2 2 2 

2.0 2.0 2.0 1 I 

4 5 5 2 2 2 

2 3 3 

Table 4-1: Overview of geometrical uncertainties used 
as input for the model for three different tumor sites. 
Syslematkal (L) and random (a) variations are indicated 
/01' translations as 'well as rolaHons and illfemal organ 
movement (int) as well as external set-up deviations 
(ext). All rotation axes are assumed to be at the center of 
the CTV except for those indicated by * which are as­
sumed to be at the caudal apex oflhe CTV. 

the prostate as suggested by van Herk et al. [119]. The values for external set-up 

deviations are taken Jim11 routine portal imaging data of 228 patients treated at our 

clinic. The final PTV is const11lcted in several steps as shown in transversal and 

sagittal slices through the tumor (figure 4-5). The CTV has been outlined manually by 

a radiation oncologist. This volume is expanded with a margin to cover all systematic 

deviations; a CP maltix is calculated using the quadratically summed intemal and 
external systematic variations (Table 4-1). PTV 1 is taken to be the volume enclosed 

by the 2.5% iso-probability contolll's. To get the final PTV a subsequent margin is 

added to PTV I from the calculated 25% iso-probability volume with the quadratically 
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summed random variations as input for the CP calculations. The random deviations 

add only an extra I - 2 nun (which is close to the pixel size). In total, the margin 

around the CTV varies from minimally 6 in the caudal to maximally 13 nun in the 

cranial region of the PTV. The anisotropy is due to the significant rotation around the 
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apex cfthe prostate. 

The interpretation 

of the contours in the 

two-dimensional slices 

is sometimes misleading 

due to the 3D aspect of 

the margins; they may 

appear too large in one 

slice due to the influence 

of a differently shaped 

tumor contour in the 

next slice as, is espe­

cially apparent in t.he 

(cranial) h'ansversal 

slice. This effect is also 

visible in the celvix and 

lung cancer case that 

-6 o 6 -6 o 6 follow. 
position (em) 

Figure 4-5 Prostate planning example of the stepwise PTV 
calculation in a cranial transversal slice (a), an isacen/ric 
slice (b), a caudal slice (c), and a sagittal reconstruction 
(d). The geometrical uncertainties are fi'olll Table 4-1. The 
erv (grey cun/e) is extended with a margin to cover/or the 
systematic deviations by selection oj the 2.5% Iso­
probability volulIle oflhe CP malrix (PTVI, dashed ell/ve). 
Tlte final PTV (white cW11e) results fi'om the 25% Iso­
probability volume of the CP matrix oj random deviations 
applied to the PTV]. Especially in the sagittal slice the 
inj7ueuce of the rotatiolls around the apex is clear; the PTV 
margin ;1/ the caudal part ;s significantly smaller than that 
in the cranial part of the prostate. The critical organs 
(bladder and rectum) are depicted by the thill black curves. 

A three field 

technique was applied to 

plan the patient. To 

verifY the dose distribu­

tion in CTV, rectum, 

and bladder, DVHs have 

been calculated for each 

volume and are shown 

in figure 4-6. Subse­

quently, the dose dish'i-

butions around the 

volumes of interest have 

been convolved with the 
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Figure 4-6 DVHs and DPHs Jar the prostate cancer 
paliellt ill jigllre 4-5. The original DVHs of CTV, 
bladder and rectum are indicated by tile thin black 
lines. DVHs Jar the dose distributions adjusted for 
random deviations are represented by the dashed grey 
curves. The effect oj random deviations on the erv 
dose is negligible, 'whereas the bladder and rectum 
high dose vollimes decrease. The DPHs (dotted curves) 
for the systematic deviations have been determined 
/Ising the dose distributions modified for random 
uncertainties. There is only a noticeable effect 011 the 
erv but the curve does not intersect the 95% dose line 
(dashed) so the probability ofllllderdosage of the CTr 
is negligible. 

distributions of random 

deviations. For the CTY the 

values are directly obtained 

from Table 4-1, for bladder 

and rectum the internal 

random motion was esti­

mated to be equal to that of 

the prostate without the 

rotation. Bladder and 

rectmn volumes were 
assumed to be constant. 

Resulting DYHs show that 

the effect of random 

deviations on the CTY dose 

is negligible, whereas the 

bladder and rectum high 

dose volumes are somewhat 

reduced. Finally, the DPHs 

for the systematic devia­

tions have been determined 

using the dose distributions 

modified for random 

uncertainties. Standard de-

viations are taken from 

Table 4-1 similar to the random deviations. The DPH of the CTY is different from the 

original DYH but the DPI-I-curve does not quite intersect the 95% dose line, i.e. the 

probability of underdosage of the CTY is negligible. The DPI-Is for the critical organs 

do not deviate from the DYI-Is. 

d. een/I'x cancer case 

Compared to prostate cancer patients, external set-up deviations playa major role in 

the platming of (post-operative) gynecological cancer patients. Positioning accuracies 

of cervix cancer patients are also determined by studies in our own institute, one of 

which is described by Creutzberg el al. [25]. Also in contrast with the prostate case, 

the intemal organ movement is expected to be relatively small considering the 



involved anatomy. In figure 4-7 four slices through the initially drawn CTY are 
depicted. The PTY I margins due to systematic deviations are calculated similar to the 

prostate case and Vaty from 6 to 9 nUll. They are mainly caused by the external 

deviations. The addition of a margin for random deviations completes the PTY 

calculation. The final CTY -to-PTY margin is then about I cm. An additional feature 
of margin calculation using coverage probabilities is the smootlmess of the PTY 

surface. This especially manifests itself in the sagittal view in figure 4-7d; the 

inconsistencies in the CTY delineation disappear in the PTY. 

The patient was planned in prone position with a three field technique. The 

relatively large random positioning deviations are solely responsible for the random 
deviations. DVHs and DPHs for CTV, small bowel, and rectum have been calculated 

similar to the prostate case. The results are shown in figure 4-8. The effect of the 

random unce11ainties on the rectum and small bowel is again a noticeable reduction of 
the high dose volume. The original DVH of the CTV indicates a less homogeneous 

dose distribution than for the prostate case. It is however hardly influenced by the 

systematic or random deviations and the final DPH proves that adequate margins have 

been applied. 
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e. Lung callcer case 

A last example is a 3-field lung booster plan 
designed to spare the right lung (figure 4-9). Due 

to breathing and cardiac motion there is consider-

Figure 4-8 Dose distribution 
verification for the gynecologi­
cal cancel' patient ill figure 4-7. 
DVHs and DPHs for CTV, 
small bowel, and rectum have 
been calculated similar (0 the 
prostale case a/figure 4-6. The 
eflect 0/ the random Ullcertain­
ties on lite rectum and slIlall 
bowel (dashed grey curve) is 
again a significant reduction oj 
the high dose voilime compared 
10 Ihe original D VH (Ihin black 
curve). The DPH curves 
(dolled) indica Ie Ihal Ihe CTV is 
hardly influenced by the 
systematic 01' random devia­
tions. 

able internal tumor movement the magnitude of which has been estimated from 

previously published values [97]. Values for extemal set-up deviations are based on 

the preliminary results of a lung cancer patient positioning study recently conducted in 

our own institute. The manually outlined CTV is expanded with a 6 - 9 nnn margin to 

cover intcmui and external systematic deviations. The random deviations require an 

additional 3 - 5 mm margin for the final PTV and the total margin becomes 10 - 13 
I1U11. 

Variations in position of the lungs and the spinal cord are assumed to consist 

only of set-up deviations. In the DVHs of CTV and left hmg the random-deviation­

adjusted dose distributions display similar differences with the original as the celvix 

cancer case (figure 4-10). However, the spinal cord is an exception. Since the beams 

in the three field plan are positioned (too) close to the spinal cord, there is a strong 

dose gradient just next to it causing an increase of spinal cord dose in the random­

deviation-adjusted plan. To a lesser degree the same holds for the light lung. The 

DPHs for the critical organs are again practically equal to the DVHs, except for the 

spinal cord; due to the position of the beams the systematic movements of the spinal 

cord cause a (slight) increase in average spinal cord volume receiving high dose. The 

DPH of the CTV is different from the DVHs but the high probability of sufficient 

dose homogeneity indicates that the PTV and block margins were adequate. 
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a) b) 
Figure 4-9 Example oj 
the PTV calculation 
for a ltmg cancer plan. 5 
The geometrical 
uncertainties are from 0 
Table 3-1. The same 
procedure and line 
styles JOI' the -5 as 
prostate case are lIsed E 
(figure 4-5). Two ~ 

c 
transversal (a,b), a 0 

:p 
sagittal (c), and a ·iii 
(I·ollial elll (d) Ihrollgh ~5 
the PTV are shown. 
The overall CTV-Io- 0 
PTV margin becomes 
about lO~13 111m. The 
critical organs are the -5 
(H'O lungs and Ihe 
spina/ cord. 

-5 0 5 -5 0 5 
position (em) 

f COlllplltel' peljol'lIlance 

The calculation speed depends on the selected method and input. The margin and 

DPH calculations normally take about 1-2 minutes with the convolution method. Gen­

erally the Monte Carlo method is about tin·ee to six times slower since a large number 

(> 1000) of samples have to be taken to obtain sufficient accuracy in the low prob­

ability regions. Therefore tile Monte-Carlo method is only used for verification in case 

of questionable results. For both methods the computation time increases linearly with 

the size of the input and convolution matrices. Since the dose matrices are currently 

fixed to the standard CadPlan format (160 x 112 x number of slices), dose modifica­

tions are slower. (In principle only that part of the dose matrix that surrounds the 

volume of interest needs to be included in the calculations). Besides, almost all 

elements of the dose matrix are non-zero whereas volume mah"ices contain a substan­
tial pari of zero elements that are ignored in the calculations. The normal time 

required for dose modifications with the convolution method varies from two (without 

rotations) to about ten minutes which is a fraction of the time needed for volumetric 
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dose calculations. Hence the 

method is sufficiently fast to 

be used in the iterative 

planning process. 

V. Discussion 

a. Margin calculatiolls 

The methods proposed in this 

paper will be particularly 

usef,,1 for designing PTV 

margins in case of new 

conformal therapy studies. 

Based on knowledge (or 

intelligent guesses) of a set of 

standard deviations describing 

all possible geometrical 

uncertainties of the CTV 

position, the CP values will 

give an indication where the 

.~. 
'. " ..... 

00 20 40 60 80 
dose (%) 
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Figure 4-10 DPHs alld DVHs oj a plan whicll .spares 
the right lungjor the lllng cancer patient fi-om figure 4-
9. The effect of the random IIncer/ail/lies (dashed grey 
curve) on the CTV and left lung is similar to the 
prostate and cen'ix case. Howevel~ for spinal cord and 
right lung the effect of random deviations is a slight 
increase in the high dose volume. The DPH clIn'es 
(dolled) indicale IIIalllle dose disiriblliioll ill Ille erv 
is it{lluellced by the systematic deviations but the 95% 
isodose is still adequately placed aroulld the PTV, 

CTV of an individual patient will be positioned over the course of h·eatment. How­

ever, repeated calculations within a specific patient group will nonllally yield equal 
margins for all patients independent of the shape of the CTV. For nonnally distributed 

deviations and in absence of significant rotational deviations, mIT choice of iso­

probability volumes, which is based on the assumption that on average a high percen­

tage of the CTV volume (> 99%) should receive a high dose (> 95%), yields margins 

of about 2~ + 0.70. Consequently, the margins might also be applied directly to the 

CTV by straightforward CTV expansion algorithms [5,15,106), without having to 

perform the CP calculations each time. 

One difference between tigid margin addition and the CP method might reveal 

itself at shml' edges. If no smoothing is pelformed, the former method willllOl'mally 

closely follow all inegularities in the CTV surface so all random deviations in the 
delineation of the CTV will be present in the PTV as well. The latter method will in 

itself tend to smooth the surface and can yield a slightly smaller PTV due to rounding 

of the comers as has been shown in figure 4-3 and figure 4-7d. Another difference 
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will occur at small volumes or near small extensions of a volume. For volumes with 

diameters less than about 2 SO of the distribution of deviations, a CP value will no 

longer represent the probability that the volume will be partly outside of it. The actual 

probability will be larger. Therefore, choosing an iso-probability volume as new PTY 

will yield too small margins. Rigid margin addition is insensitive to the size of the 

input volume. 

In clinical practice one might prefer a tighter CTY-to-PTY margin near a dose­

limiting stmcture. In the model described in this paper, nearby ctitical organs are 

currently ignored in the PTY calculation. However, a critical organ might also be 

represented by a 3D volume matrix which can then be used to modify the CTY -to­

PTY margins locally, as has been described in a previous paper about straightforward 

margin calculation [106]. The dose probability histograms can of course still be used 

and the influence of the local margin changes on the average dose volume histogram 

can immediately be visualized. 

The described method assumes that all probability distributions of translations 

and rotations are mutually independent and of a gaussian nature. The mutual inde­

pendence is however not always an accurate description of reality; for example, for 

internal prostate movement a relation between rotations and translations has been 

found [119]. This might more easily be incorporated in the Monte Carlo method than 

in the convolutionl11ethod. Instead of sampling from normal distributions, translations 

and rotations should be simultaneously obtained from a data base of prostate move­

ments for a large group of patients [74]. This "bmte force" method will require a large 

data base and many samples and will therefore be time consuming. The gaussian 

nature of the distributions has been verified repeatedly by studies on set-up position 

verification. At present too few studies have been perfonned to establish whether this 

is the case for internal organ movement as well or if differently shaped probability 

distributions might be more appropriate. The algorithm does however not depend on 

the type of probability distribution. Instead of using normal distributions for the 

convolutions, other dish'ibutions can be implemented as well. The output of the 

calculations will still be a 3D matrix with coverage probabilities which will still 

represent the probability that the CTY lies patily outside the cOl1'esponding voxel. 

Hence the same methods can be applied to obtain the PTY margins. 
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b. Dose modifications 

Dose modifications that account for random deviations cause a shift of high dose to 
the lower dose regions. Consequently, the critical organs that receive a high dose in 

the Oliginal plan, like the rectum and bladder in the clinical examples, will receive less 
dose in the modified plan. Fruihennore, from figure 4-2 is clear that the average DVH 

curve for systematic deviations (i.e. the DPH) can also be lower than the original, 

although the effect is limited for the clinical examples. This implies that the standard 

DVHs of the planning CT slightly overestimate the dose in those organs. For the 

critical organs that receive relatively low doses in the planning CT situation, the 

reverse is true. In the example for the lung cancer patient the organs that have 

specially been spared (i.e. the spinal cord and the right lung) will on average receive a 

somewhat higher dose due to the geometrical uncertainties. 

A consequence of the application rurming outside the plarming system is that 

dose inhomogeneity corrections are not included when calculating the dose distribu­
tion corrected for random deviations. The effect might be less significant for calcula­

tions in the pelvic area but the accuracy of planning in the thorax or neck region will 

probably be affected. A further simplification of the model is that the position of the 

beam with respect to the direction of the deviations is of no consequence. In reality the 

change in dose of a volume moving in the direction of the beam is detennined by the 
inverse square law and the slope of the depth-dose curve, which is not incorporated in 

the algorithm. The errors will be relatively small [13], but, ideally, dose modifications 
should be perfonned for each beam separately which would be a time consuming 

procedure. In a multiple beam plan the elTors are less prolninent. Nonetheless, the 

effect of the set-up deviations might be slightly over estimated. 

The application can also be utilized for a check of the delivered dose after the 

irradiation series have been completed. Once all fractions have been delivered and 

portal imaging has been applied, systematic and random set-up deviations can be 

calculated and used as input to the application to evaluate the actually delivered dose 

distribution. Thus it can be assessed whether the treatment has been performed 

con'ectly and if complications or a different local control probability lnight be 

expected. The same procedure can also be applied before the end of the treatment 

series to verify the situation at that moment and possibly alter the course of the 

treatment, e.g. change the PTV margin [126]. Even the actual set-up deviations for 

evelY fraction might be entered separately and the consequences of the treatment on 

the dose can be computed more precisely. 
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c. Dose probability histograms 

The concept of DPH is especially useful to detennine whether the calculated dose 

distribution guarantees adequate CTV inadiation despite systematical uncer1ainties. 

Since the dose has been planned confonTI the CTV, every variation in CTV position 

will deteriorate the dose distribution in the CTV. Hence the spread in DVH curves due 

to systematic deviations will be reflected in the average curve. The mean DVH will 

therefore directly indicate the probability of CTV underdosage and hence the good­

ness of the plan in this respect. For cIitical organs however, positioning deviation in 

one direction might improve the DVH, movement in the opposite direction worsen the 

DVH, and the average will be equal to the original. Hence instead of the average 

DVH for all systematical deviations, the spread of the DVH curves would be more 

interesting [60,74). This cannot directly be calculated using DPHs but it is possible to 

extend the critical organ with a margin for systematical deviations so that an indica­

tion of possible dose values in the organ is obtained. This might for instance deterio­

rate the lung plan because extension of the spinal cord volume might yield a signifi­

cant probability of higher spinal cord dose than indicated in figure 4-10. 

At first sight, there appears to be a discrepancy between figure 4-1 and the DPH 

calculations in this paper. Figure 4-1 predicts that our choice of the 2.5% iso­

probability contour as PTV will for deviations in 3D result in the CTV being partly 

outside the PTV in at least 28% of all patients. The average DVHs (or DPHs) in the 

clinical examples indicate however that the probability of underdosage of the CTV 

(dose < 95%) is at most about a few percent. This is because the extent of CTV 

volume outside the PTV is small. Using a formula similar to Eq. 5, it can be calcu­

lated that the average distance that the CTV border will exceed the PTV border will 

be about 0.5 L for those 28% of patients. Since clinical L-values range from about 2 to 

4 nnll, a I to 2 mm thick slice of the CTV will be systematically outside the PTV for 

those patients. This is about equal to the size of one CT pixel and since the 95% 

isodose volume does normally not enclose the PTV exactly, the probability of 

underdosage is significantly smaller than the probability of the CTV being outside the 

PTV. 

Since the tightness of the 95% isodose around the PTV will be dependent on the 

treatment technique used (and on the beam characteristics), the required PTV margins 

to guarantee a high probability of sufficient dose in the CTV despite systematical 

deviations will be tecllllique dependent as well. For instance, for confonnal teclmiques 
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slightly larger PTV s are required than for conventional techniques using rectangular 

fields to obtain the same DPHs. The same holds for the margin for random deviations. 

If that margin is based on the shrinkage of the 95% isodose, this will also be technique 

dependent. For patients groups with standard treatment techniques, the PTV and block 

margins can be optimized using the DPRs of the dose distribution modified for 

random deviations. Once the margins are standardized, the iteration process to obtain 

optimal PTV margins will be superfluous for each patient separately. 

VI. Conclusion 

A model has been developed which allows for the inclusion of geometrical uncertain­

ties in the radiotherapy planning process. Required parameters are a set of twelve 

standard deviations describing the various uncertainties. The model calculates PTV 

margins based on the requirement that on average a large p31i of the CTV (> 99%) is 

irradiated with a high dose (> 95%). The size of adequate margins appears to be 

approximately equal to 2L+O.7a. Since rotational deviations are included, the margins 

can well be anisotropic. Once the patient is planned, the influence of the systematical 

deviations on the dose disllibution in the CTV is determined by the average DVH for 

all systematic deviations, using so-called dose probability histograms. The influence 

of random deviations is determined by convolution of the dose distribution with the 

probability functions. In an iterative process of pl31111ing and verification of the CTV 

coverage, the CTV -to-PTV and block margins can be optimized for each patient 

separately. For standard planning techniques of specific patient groups, the margins 

can be standardized and the iterations omitted. 
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CHAPTER 5. INTERNAL ORGAN MOTION IN PROSTATE CANCER 

PATIENTS TREATED IN PRONE AND SUPINE TREATMENT POSITION 

lC. Stroom, P.C.M. Koper, G.A. Korevaar, M. van Os, M. Janssen, RC.J. de Boer, 

P.c. Levendag, B.lM. Heijmen 

Radiothe!'. Oncol. 51,237-248,1999 

1. Abstmct 

Background and Plllpose: To compare supine and prone treatment positions for 

prostate cancer patients with respect to internal prostate motion and the required 

treatment planning margins. Materials and Methods: Fifteen patients were treated in 

supine and fifteen in prone position. For each patient, a planning CT scan was used for 

treatment plamling. Three repeat CT scans were made in weeks 2, 4, and 6 of the 

radiotherapy treatment. Only for the planning CT scan, laxation was used to minimize 

the rectal content. For all patients, the clinical target volume (CTV) consisted of 

prostate and seminal vesicles. Variations in the position of the CTV relative to the 
bony anatomy in the four CT-scans of each patient were assessed using 3D chamfer 

matching. The overall variations were separated into variations in the mean CTV 

position per patient (i.e. the systematic component) and the average "day-to-day" 

variation (i.e. the randolll component). Required planning margins to account for the 

systematic and random vatiations in internal organ position and patient set-up were 

estimated retrospectively using coverage probability matrices. Results: The observed 

overall variation in the internal CTV position was larger for the patients treated in 

supine position. For the supine and prone treatment positions, the random components 

of the variation along the anterior-posterior axis (i.e. towards the rectnm) were 2.4 and 

1.5 mill (I standard deviation, (I SD», respectively; the random rotations around the 

left-right axis were 3.0 and 2.9 degrees (I SD). The systematic components of these 

motions (I SD) were larger: 2.6 and 3.3 mlll, and 3.7 and 5.6 degrees, respectively. 

The set-up variations were similar for both treatment positions. Despite the smaller 
overall variations in CTV position for the patients in prone position, the required 

planning margin is equal for both groups (about I Clll except for 0.5 Clll in lateral 
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direction) due to the larger impact of the systematic variations. However, significant 

time trends cause a systematic ventral-superior shift of the CTV in supine position 

only. COIlc/usiolls: For internal prostate movement, it is impOliant to distinguish 

systematic from random variations. Compared to patients in supine position, patients 

in prone position had smaller random but somewhat larger systematic variations in the 

most important coordinates of the intemal CTV position. The estimated planning 

margins to account for the geometrical unceliainties were therefore similar for the two 

treatment positions. 

II. In tl'oduction 

In order to optimally gain /i'om confonnal radiotherapy, the plmming target volume 

(PTV [54]) should be as small as possible. Since the PTV consists of the clinical 

target volume (CTV [54]) plus a margin for geometrical uncetiainties in the treatment, 

these uncertainties, mainly caused by variations in the CTV-position relative to the 

h'eatment portals, should be minimized. For prostate cancer patients, deviations of the 

actual CTV -position from the planned reference position can be separated into errors 

in the set-up of the patient relative to the isocenter (using markers on the patient's 

skin), and elTors due to variations in the position of the CTV relative to the bony 

anatomy (i.e. internal organ motion). RepOlis in the literature indicate that internal 

organ motion [3,7,9,75,99,119,122] can be of the same magnitude as the set-up 

variations [14,45,49,101,112]. The difficulty in defining the CTV borders might be 

considered as another selious cause of geometrical uncertainty in the treatment of 

prostate cancer patients [24,37,94], but this paper is concerned with the actual CTV 

movements only. 

Patient set-up variations are nonnally measured by matching the bony structures 

in portal images with cOlTesponding structures in a digitally reconsh11cted radiograph 

or a simulator image. Since the CTV is not visible in pOlial images, more complicated 

procedures have to be followed to assess the intemal organ motion. A possibility is to 

implant radio-opaque markers in the CTV so that pOlial images can still be used 

[3,7,122]. A disadvantage of this method is that it involves an invasive procedure. 

Furthermore, the CTV-position is measured indirectly (markers may move within the 

prostate) and incompletely (only a few markers in the whole prostate and no markers 

in the seminal vesicles). Recently, Kroonwijk et al. [61] have demonstrated that 

intemal prostate motion due to large gas pockets in the rectum of patients can be 

detected with an electronic portal imaging device (EPID), but this method still needs 



Internalorgall motion in prostate cancer patients 63 

quantitative validation. Internal organ motion can also be assessed with repeat CT 

scans [9,75,99,119]; CTVs are outlined in all scans and manual or automatic matching 

procedures are applied to determine the prostate positions relative to the bony 

stmctures. A drawback of this method is its cumbersomeness in clinical practice; in all 

reported studies only a few CT scans per patient were made and they were not 

acquired just prior to a treatment fraction. Therefore, the data could not be used for 

daily adjustments of the treatment according to the actual position ofthe CTV. 

Recently, Zelefsky el al. reported that treatment in prone position reduces dose 

delivery to the rectum, compared to the supine treatment position [129]. However, 

their analyses were based on equal PTV margins for both set-up techniques, assuming 

equal patient set-up uncertainties and internal prostate motion. Most of the studies on 

intelnal prostate motion deal with patients treated in supine position 
[3,7,9,99,119,122]. Only Melian el al. [75] have described prostate movement in 
prone position. Quantitative comparison of the pelfonned studies is often very 
difficult due to differences in applied protocols to control the rectum and/or bladder 

filling and due to differences in the applied measuremeut- and analysis techniques. 

Moreover, observed intemal organ motion is sometimes reported in telnlS of rotations 
and translations and sometimes in tenns of translations only. 

In this paper we repmi on a systematic investigation based on repeat CT -scans, 
comparing the prone and the supine treatment position with respect to intelllal organ 

motion. Apart from the treatment position, all parameters for acquisition of the CT­

scans and for the analyses were kept constant. The variations in intelllal organ 

position can be systematic, i.e. the same for each measm-ement, as well as random, i.e. 
varying per measurement. Systematic deviations in the intel1lal CTV position, which 

are due to a non-representative planning CT scan, have a larger impact on the required 

PTV -margin than random deviations. This is because a selious systematic deviation 

will cause a shift of the dose distribution with respect to the planned distribution, i.e. 

the tumor will be underdosed for all fractions of the treahnent; random variations will 

only cause a smearing of the planned dose distribution [102]. Therefore, we have 

separated the systematic from the random component in the observed intel1lal prostate 

movements in the CT -scans. Time trends in intel1lal prostate positiou, e.g. due to 

radiation induced proctitis and/or cystitis, were also investigated. 
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III. Materials and methods 

a. CT-scalls and patient treatment 

Thirty T3 prostate cancer patients participated in this study. Fifteen patients were 

treated in supine position and fifteen in prone position. In supine position, which has 

been our standard treahnent position until this study, only a knee-roll and home-made 

foot and ann supp0l1s were used to position the patient on the treatment table. In 

prone position a home-made bellyboard in combination with a prone pillow was used. 

The bellyboard was expected to improve inuuobilization (especially by minimizing 

rotational variations), but a positive side effect might be a displacement of the (small) 

bowel in superior direction and hence a reduction in bowel exposure (not studied in 

this paper). 

For all patients, a plmming CT scan was used to design the 3D treatment plan. 

Following suggestions in the literature [87,109], the patients were asked to take mild 

laxative suppositories four hours prior to acquisition of the plamllng CT scan in order 
to nlinimize the rectal content. To study the intemal CTY motion, three repeat CT 

scans in treatment position were made in weeks 2, 4, and 6 of the treatment. For all 

CT-scans the CT pixel size was 2 nml and the slice distance was 5 nuu (for most 

scans) or 3 mm. To avoid large variations in bladder volume, the patients were asked 

to empty the bladder and to subsequently drink half a liter of water one hour prior to 

all CT scans and treahuent sessions. hI all CT-scans, the outlines of the CTY (prostate 

+ senllnal vesicles), rectum, and bladder were manually contoured by the radiation 

oncologist (PK). The length of the delineated rectum was equal to the superior-inferior 

field length (i.e. the length ofthe CTY plus margins). 

The variability in the outlining of the CTY has been nllnimized by visual 
comparison and, if necessary, conection of the outlines in the four CT scans per 

patient, before the start of the registration procedure. In this way, all CTYs of one 

patient had sinlllar shapes; possible errors that were made in the delineation were 

made in all scans of one patient and hence had linllted effect on the calculated 

movements. This is not a realistic situation in clinical practice, but, as mentioned 

before, the subject of this paper is to calculate the prostate movements; the variability 

in the CTY delineation is a different subject [24,37,94]. 

To design the treatment plan, a recently developed algoritluu [104,106] was used 

for a full 3D expansion of the outlined CTY in the planning CT -scan with 1 cm, 

yielding the planning target volume (PTY). All patients were treated with an isocen-
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tric technique using an anterior field and two laterally oblique fields; beam intensity 

modulation was used to minimize the superior-inferior field length [32]. The patients 

were treated to a total isocenter dose of 66 Gy, delivered in 2 Gy fi"actions. For all 

patients, the minimum PTV dose was 95% of the prescribed isocenter dose; the 

maximum PTV-dose was always less than 107% [54]. 

b. Measurement o/intema! CTV Illation 

Differences in CTV position relative to the bony anatomy between two CT data sets 

of a patient (i.e. intemal organ movements), were detennined by subsequent, 3D 

chamfer matches of the two CTV s and of the two bony anatomies, followed by a 

subtraction of the translational and rotational displacements in the bone match from 

those in the CTV match. For the relatively small rotations that will occur, this method 

gives a good approximation of the Htme" intemai CTV movement. Details of the 
application of chamfer matching for 3D registration of volumes in two different CT 

data sets have been given elsewhere [119]. Therefore, in this paper the explanation of 

the method is limited to the following summary that uses the match of two CTVs as 

an example. In one CT data set, the CTV is represented by a 3D set of contour points 

while the other data set (the reference) is used to calculate a 3D distance matrix. The 

voxel values in this matrix represent the distance from the voxel to the nearest CTV 
outline. Projection of the contour points of the first CTV in this distance matrix and 

averaging of the distance values under the points, yields the average distance of these 

points to the CTV contour of the second (reference) scan. This difference indicates the 

goodness of the match and the similarity of the two matched volumes, and is called 

the cost function. The contour points are translated and rotated in three dimensions 

and a simplex search algorithm is applied to find the minimal cost nmction. The bone 

matches are similar except that automatically extracted bone edges instead of deline­

ated CTV contours are used. The final result is a set of six parameters, three transla­

tions and three rotations, which describe the relative positions of the two CTV s. 

In our analyses, the scaling parameters in the chamfer matches were kept 

constant because the CT pixel size was equal for all scans (2 mm). The three perpen­

dicular rotation axes always intersected in the center-of-mass (CM) of the delineated 

CTV, both for the bone and the CTV matches. 
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c. Variations ill CTV position 

In each CT -scan, the position of the CTV relative to the bony anatomy is described by 

six parameters: the CM-coordinates along the left-right- (LR), the antelior-posterior­

(AP), and the superior-inferior (SI) patient axes, and the rotation angles around these 

axes. In Appendix I, a detailed description is given of the method to accurately 

determine for each CT-scan of a patient the six coordinates, describing the CTV­

position relative to the average CTV-position in the [om available scans per patient. 

The four positions in all IS patients were pooled to calculate standard deviations 

describing the overall variations (i.e. no 

separation in systematic and randOlll 
variations) for the six coordinates (see 

Appendix II). 

The same relative CTV -positions 

were also used to calculate the ralldom 

and the systematic components of the 

observed position variations (see Figure 

5-1). For each patient the standard 

deviations in the six CTV coordinates 

during the three repeat scans were 

calculated. For each coordinate, the 

random variation (0) for a patient 

group was then detennilled as the 

square root of the average of the 

variances for all patients. Per patient, 

the difference between prostate position 

in planning CT and the average position 

in the three follow-up CTs was calcu­

lated as well. The mean-ofmealls (M) 
was then defined as the mean of the 

average movement for all patients; the 

systematic variation (E) was determined 

as the standard deviation in these 

average movements. The intemal organ 

movement for each set-up technique 

was thus characterized by M-, :& and (J-

y 

" 

Figure 5-1 Schematic 2D oven/few of the 
separation of the variation of CTV 
coordinates in a group of jOllr (imagil1a1J~ 
patients into a systematic alld random 
componenl. Indicated are observations 
(.\,,)'l for several fractions. For each 
patient i the reference CTV position (i.e. 
the position ill the planning CT) is situated 
in the origin. The average position in the 
repeat CT scans are indicated by mi. and 
the standard deviation sd j describes the 
variation around this average. A patient 
group is then characterized by the mean oj 
the averages, M, the standard deviation oj 
the averages, E, and the sqllare 1'001 of Ihe 
average variance, cr. 
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values for the three translations and three rotations. A more analytical description of 

these parameters is given in Appendix II. 

The difference between supine and prone treatment position was established by 

testing the equality of the values for M, X, (J', and overall variations, using the Stu­

dent's t-test for the equality of means and a standard deviation test described by Hoe!. 

[47] for the equality of standard deviations. The same tests were used to verify 

whether M-values were significantly different /i'om zero and whether X and (J'-values 

were equal within one group. 

d. Tillie Irends and correialions 

Without time trends, corrections, or specific differences in patient protocols and 
geometrical accuracy between CT and accelerator, theoretically M should be zero and 

X should be equal to (J' (see Appendix If). Therefore, special attention was given to the 

effect ofthe rectum laxation, which was given during the plmming CT scan only, on 

the CTV -position. The intention was that minimization of the rectum volume would 

cause the prostate to be in its most dorsal position [87,109]. The prostate position 
during acquisition of the planning CT scan would then not be a random sample /i'om 

the "normal" distribution dudng treatment, but from a smaller distribution (around a 

more extreme position). The overall mean motion M would then deviate from zero, 

but the systematic variation X might decrease (and become smaller than the random 

variation). This might justify significant reduction in PTV margins (see the PTV 

margins section). On the other hand, the radiation treatment might cause a proctitis or 

cystitis which could reduce variations in bladder and rectum volume, and conse­

quently in prostate position at the end of the treatment. In this case, the random 

variations might become smaller than the systematic variations. Time trends in CTV­

positions were investigated by establishing whether the average positions of the 15 

patients in weeks 2, 4, and 6 were significantly different from the plarming situation. 

In order to assess the influence of bladder and rectum volume changes on the 

intemal prostate position, mutual correlations were determined. Combinations of 
bladder and rectum changes were also considered. In order to obtain the same 

dimension for rectum and bladder change as for the CTV translations and in order to 

obtain optimal cOIYelations, rectum and bladder were represented by a diameter. The 

rectum volume in those slices that also contained CTV (V,) was assumed to be 

cylindrical with length equal to the superior-inferior length (I) of the CTV; conse-
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quently the rectum diameter was taken to be 2.(v,/(1t1))1I2. The bladder volume (Vb) 
was approximated by a sphere with diameter 2·(3 Vt!(41t)) 113. COlTelations between 

bladder and rectum diameters in the planning CT scan and systematic prostate 

movements were calculated to investigate whether these diameters can be used to 

predict the average prostate position dmlng treatment, as suggested by Lebesque et al. 

[66]. 

e. Patient set-up accuracy 

Retrospective calculation of required treatment planning margins to account for 

geometrical uncertainties also implies knowledge of systematic and random patient 

set-up elTors. For all patients in this study the set-up accuracy was assessed using an 

EPID. Portal images were re!,,,,larly acquired for each patient and observed deviations 

from the intended position, as indicated in a digitized simulator film, were measured. 

The deviations were used in an off-line set-up cOlTection protocol to minimize the 

systematic variations [12]. In this protocol the average set-up deviation in several 

fractions is compared with an action level that shrinks with the square root of the 

number of measured fi"actions. When the action level is exceeded, a set-up correction 

is applied in the following ti"actions and the protocol is restarted. For the patients in 

this study, the action level shrank from 8 to 4.6 mm in three fractions. After tlu'ee 

successive measurements without corrections, images were acquired weekly; the 

action level remained 4.6 mm and was applied to the sliding average of the last three 

measurements. For the three main translations the final set-up accuracy in both groups 
of fifteen patients was again characterized by a mean-of-means M, a systematic 

variation L, and a random variation a. (For definitions see previous section and 

Appendix II). From previous experience in our institute, rotations were estimated to be 

relatively small and are therefore not explicitly considered in the analyses. 

f PTV lIIargins 

PTV margins can be detenuined using coverage probability matrices, which have 

been introduced in a previous publication [lO2]. In shOlt, for each patient separately, a 

3D coverage probability matrix can be calculated by convolution of the CTV with the 

distribution of geometrical unceliainties due to intemal organ 1110tion and uncertain­
ties in patient set-up. The distributions can either be sampled from actually measmed 
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CTV movements, or normal distributions characterized by standard deviations 1: or (J 

can be used. Advantage of the fonner method is that mutual cOlTelations between the 

different movements are included as well [74]. The voxel values in a coverage 
probability manix indicate the probability of the voxel being covered by the CTV (i.e. 

they vary from 0 to 1). For objects without sharp edges (which is usually the case for 

CTVs), a voxel value also indicates the probability that the CTV lies outside of that 

voxe!. PTVs are chosen as iso-probability volumes in such a way that on average a 

large part of the CTV (e.g. > 99%) is adequately covered. Previous research has 

indicated that adequate iso-probability values are 2.5% for systematic- and 25% for 

random deviations [102]. In the absence of rotations and with the uncertainties 

described by nonnal distributions, this conesponds to a margin equal to about 2Et" + 
0.7(it", with 1:,,, and (it" the quadratically summed contributions of translational set-up 
uncertainty and intemal organ motion. This means that the systematic variations are 

about three times more important than the random vaJiations. In case of significaJlt 

rotations with non-spherical targets the required margins may become position 

dependent. The overall mean deviation M is a constant factor (i.e. not an uncertainty) 

and does not influence the size of the margins. However, in case of M-values signifi­

cantly different from zero, the calculated PTV should be shifted as a whole accord­

ingly. 

IV. Results 

a. Overall CTV 1Il0tiOll and measurement accuracy 

Per treatment position group, 240 CTV movements have been detennined (i.e. 16 per 

patient, see Appendix I). There was no significant difference in the chamfer match 

accuracy between the two groups. For both treatment positions, the average minimal 

cost function for the bone match was about 1.9 ± 0.3 (l SD) mm and for the contour 

match 2.8 ± 0.4 nnll. This is adequate considering a pixel size of 2 111111 and a slice 

distance of 3 or 5 mm. The minimal cost function also gives an indication of the 

similarity in shape of the two matched volumes. The cost function for the bone 

matches was lower than for the contour matches due to the random inegularities in the 

manual delineation of the prostate. 

As described in Appendix J, four separate measurements of the internal prostate 

position in each CT scan of a patient were used to assess the internal CTV mobility 

for the two involved patient set-up techniques. For the CTV coordinates along the 
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Position variation Supine Prone 

LR translation 0.6 (-1.0-1.1) 0.5 (-0.9 - 1.2) 

AP translation 2.8 (-8.9 - 4.2) ;"t, (-6.9 - 4.9) 

SI translation 2.8 (-6.8 -7.2) !1 (-3.6 - 2.6) 

Rotation LR-axis 3.4 (-6.8 - 6.2) 3.9 (-10.1 - 6.1) 

Rotation AP-axis 0.9 (-2.0- 1.6) 0.9 (-1.5 - 2.7) 

Rotation SI-axis 1.6 (-3.9 - 4.0) 1.3 (-3.0 - 2.8) 

Table 5-1 Overall variations in the six coordinates de­
scribing Ilze illlel'llai CTV posilion (1 SD) Jor Ilze supine 
and prone set-up position in 111m and degrees. Standard 
deviations tllat are significantly different between the two 
patient groups are shown underlined (p < 0.05). The 
range of the observed CTV coordinates is indicated 
between brackets. 

main axes and for the 

rotation angles around 

these axes, the observed 

average standard devia­

tions in the four 111eas­
urements, which also 
gives an indication of the 

accuracy of the registra­

tion procedure (see 

Appendix I), were about 

0.5 nnn and 0.9 degrees, 

respectively. The uncer­

tainty in SI coordinate and 

lateral rotation angles 

were the largest because 

of the slice distance being larger than the CT pixel size. The standard deviations 
describing the overall variations in internal CTV position, as calculated with equation 

3 in Appendix 11, are presented in Table 5-1. Overall internal prostate motion was 

significantly smaller in prone than supine position for translations in the SI (p = 0.04) 

and AP (p = 0.0002) directions. The important rotation around the LR-axis was 

slightly larger (not significant) in prone position. 

b. Correlations 

Con-elations ofCTV movements with rectum and bladder diameter changes are given 

in Table 5-2. Both the con-elation of intemal CTV displacements with bladder and 

rectum diameter changes separately, and correlations of CTV motion with the 

combined effect of changes in the rectum and the bladder are indicated. Mutual 

con-elations between different CTV movements are shown as well. In supine h'eat­

ment position, the intemal prostate position is only affected by rechull diameter 

changes; cOlTelations with bladder variations are not significant. For patients treated in 

prone position, bladder and rechnn diameter changes con-elate with AP CTV transla­
tions equally well although the slope for rectum con-elations is twice as steep as for 

bladder cOlTelations; an increase in rectum diameter of e.g. I cm, has roughly the 
same effect on prostate position variation as a 0.5 cm decrease in bladder diameter. 

Since there is no conelation between rectum and bladder variations, a combination of 
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Observation pair Supine Prone 

r s r s 

AP translation! rectum diameter -0.76 -0.36 0.51 0.22 

SI translation/ rectum diameter -0.47 0.20 

Rotation LR axis/ rectum diameter -0.61 -0.34 0.65 0.5 

AP translationl bladder diameter -0.51 -0. II 

AP translation/ r&b diameter -0.76 -0.36 0.67 0.19 

SI translation! r&b diameter 0.52 0.20 

Rotation LR-axis/ r&b diameter -0.65 -0.34 0.71 0.52 

AP translation/ rotation LR axis 0.56 0.57 

AP translation/ SI translation -0.69 -0.76 0.55 0.64 

Table 5-2 Significant correlations (n = 45, p < 0.001) oj internal prostate position 
variations with rectum and bladder diameter challges ill supine and pralle treatment 
position, Indicated are the correlalioll coefliciellls r and the slopes s (in nun/nul1 01' 

degrees/llull). The selected combination of rectum and bladder diameters (indicated 
by "r&b diameter') was that combination that correlated best with the d{fferellt CTV 
cOOl'dinales. 
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the two diameter changes actually improves the correlations with AP translations in 

prone position. The optimal combination was equal to the rectum diameter change 

minus halve the bladder change. Looking at the slopes of the correlations, a 1 mm 

change in rectum diameter induces an AP prostate movement of about 0.2 (prone) and 

0.4 (supine) mm, i.e. diameter changes and prostate displacements are not equal. For 

both set-up techniques, a correlation was fOlmd between AP and SI translations. This 

implies that the prostate tended to move in an oblique direction. In prone position 

there was also a strong correlation (p < 0.001) between AP translation and rotation 

around the LR-axis. In supine position this conelation was far less significant (1' = 
0.029, r = 0.325). 

Rectum and bladder volumes, diameters, and diameter variations are presented in 
Table 5-3. Both the inter-patient variation and the intra-patient variation are for the 
rectum similar in both patient groups and are hence not the cause of the observed 

differences in prostale movement. Since prostate movement is not cOiTelated to 

bladder diameter in supine position (Table 5-2), the difference between the two set-up 

techniques in inter-patient bladder diameter variations does in itself not explain the 

smaller prostate movements in prone position (Table 5-1). There are also differences 
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in average diame­
ters. The reason 

for the average 

rectum diameter 

being larger in 

prone position 

might be ex-

plained by the dif­

ferences in anat­

omy; in supine 

position the blad­

der and prostate 

weigh down on 

Chapter 5 

organ Supine Prone 

Mdia ~fil' (Jdla V Mdia Ldla CJdia V 

rectum 35 3 6 123 40 5 5 166 

bladder 74 17 9 252 71 11 8 207 

Table 5-3 Average rectum and bladder diameters (MdiaJ ((lid 
diameter variations in 111m for supine and prone patients. The 
variations have been split into inter-patient variation (LdiJ and 
intra-patient variations (crdi;J similar to prostate movements (see 
equation 5 in Appendix II) except that the mean alld standard 
deviation per patient were taken/rom the/our absolute diameters 
instead of the three differences 'with the reference scan (see equa­
tion 4 in Appendix II). Mean volumes V (in cc) are also indicated. 

the rectum whereas in prone position the rectum may be able to sag more freely. The 

reason for the difference in average bladder volume between supine and prone posi­

tion may be explained by the time trends as described in the next section. The average 

CTV volumes were about 90 cc in both patient groups. The average intra-patient 

variation was about 4 cc (1 SD) for both groups, i.e. the CTV delineations were 

sufficiently similar in the different scans of one patient, as was also indicated by the 

final cost ftmctions of the chamfer matches. 

c. Time trends 

In Figure 5-2 average organ motions and bladder and rectum variations relative to the 

platming CT scan are shown as a function of the CT scan number for the 15 supine 

and 15 prone patients. In supille position, there are obvious time trends in rectum 

diameter and prostate translations. The mean AP position in week 2 and the mean SI 

positions in weeks 2 and 4 are significantly different (p < 0.05) from their respective 

values during the planning CT scan. Due to the laxation for the planning CT scan, the 

rectum was relatively empty and the prostate was in a dorsal and inferior position. 

Since no laxation was applied in subsequent scans, the rectum diameter in weeks 2 

and 4 was on average significantly larger (p < 0.05). Consequently, the prostate is 

moved in a superior and ventral direction. By week 6, the average rectum diameter 

and prostate position returned to the planning CT situation, which may have been 

caused by a proctitis resulting ft'om the irradiation [87]. The significant (p < 0.05) 

change in the angle around the LR axis in week 6 cannot be correlated with diameter 



InterJlal organ motion ill prostate callcer patients 73 

variations and is as yet not understood. The bladder diameter is never significantly 

different from its average value. 

prone 

o 3 0 2 3 
CT scan 

Figure 5-2 Time trends for the average values (of J 5 patients) of prostate position and 
of rectum {(nd bladder diameters, in prone and supine treatment position. Illdicated 
are the average values alld standard errors (i.e, SD/Vi5) for the planning CT (scan 0) 
and the situation in the repeat CT scalls (1, 2, and 3). For presentation purposes the 
averages ill week 0 are taken to be zero, If the average values or the standard errors 
in the repeat CT scans are sign(ficantly different from the planning situation (p < 
0.05), they are shown in gray type, For the rotation around the LR axis, ventral means 
that the rotatioll causes the vesicles to move ill ventral direction, /n supine positioll a 
significant change ill average prostate position and rectum diameter with time is 
visible, In prone position there are no significant time trends ill prostate location, 
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In prolle position, there was no time trend in AP and SI prostate coordinates. The 

relatively stable prostate position, especially in the first three scans, might be ex­

plained by similar but counteractive trends in bladder and rectum diameters in the first 

three scans (although there is no significant correlation between the two); full 

bladders, which would push the prostate in dorsal direction, seemed to go hand in 

hand with full rectums, which would push the prostate in ventral direction. The 

average angle arowld the LR axis displays a zigzag behavior that cOlTesponds to 

rectum diameter variations but they are not significantly different from the planning 

situation. The trends in rectum and bladder diameter clearly differ from those for 

supine patients which is possibly explained best by differences in dose delivery to 

rectum and bladder [129], which in turn might cause differences in the occurrence of 

proctitis and cystitis. An increased bladder exposure in prone position could also 

explain the gradual decrease of the bladder diameter in the course of treatment (in 

week 6 significantly less than in week 0, p = 0.03) and hence the smaller average 

volume as shown in Table 5-3. 

d. Systematic and random CTV position variation 

The results of the 

separation of the overall 

CTV position vatiations 

in systematic and 
random variations are 

shown in Table 5-4. In 

contrast to the prone 

position, the time trends 

in supine position result 
in a mean-of-means 111 
that is significantly 

different from zero for 

SI translations (p 

0.02). The 1.1 nUll 

overall Inean shift in 
ventral direction is not 
significant. On the other 

hand, in prone position 

Variation Supine Prone 

M 1: cr M 1: cr 

LR translation 0.4 0.5 0.6 0.1 0.4 0.5 

AP translation -1.1 2.5 2.8 0.4 3.3 1.7 

SI translation 2.1 2.7 2.5 0.6 2.2 1.5 

rotation LR axis 1.0 3.6 3.3 0.5 5.5 3.4 

rotation AP axis -0.1 0.8 0.9 -0.1 l.l 0.8 

rotation SI axis 0.7 1.7 1.5 0.0 0.8 1.4 

Table 5-4 erv coordinate variations split into overall 
means (M), systematic variations (1:), and random varia­
tions (aJ. in mm and degrees, for patiellts treated ill supine 
and prone position. Overall mean values that are signifi­
cantly diflerent from zero, systematic variations Ihal are 
significantly different from the corresponding random 
variations, alld random variations that are significantly 
differenl between the two patient groups are shown under­
lined (p < 0.05). 
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the systematic variations are significantly larger than the corresponding random 

variations, i.e. the variation of the average position in the follow-up scan with respect 

to the planning situation is larger than the v31iation within the follow-up scans. The 

prostate movement in prone position appears to decrease somewhat in the second half 

ofthe treatment, possibly due to inflammations of bladder and rectum. At the moment 

of the plmming CT scan, the variations are larger which is indicated by the error bars 

in Figure 5-2; in prone position, the standard enOf of the average values at the 

plmming CT scan are generally larger than the standard errors at the follow-up scans. 

In supine position they are about equal, so the gain of the laxation might actually be 

that in supine position the variation at the planning CT scans has been reduced to 

average values. 
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Figure 5-3 Illustration of the effect of the laxative 
suppositories taken before the planning CT scans 
only. The average CTV movements in AP 
direction for the 15 patients treated in supine 
position are plolted as a junction of rectum 
diameter at the time of the plal/lling CT scan. One 
would expect only ventral movements because the 
suppositories are supposed fa empty the recttlm 
and calise the CTV to be ill a maximum dorsal 
position. However, 5 of tlte 15 patients display on 
average a dorsal trans/alioll. 

In both treahnent positions 

there was no con'e1ation between 

absolute rectum and bladder 

diameters dming planning CT 

scan and subsequent systematic 
prostate position deviations, Le. 

it was not possible to predict the 

average prostate position during 
treatment based on the situation 

during the planing CT scan (see 

Figure 5-3 for conelations with 

rectal diameter of the patients 

treated in supine position). It 

appeared that there was too much 

variation between the individual 

patients, even though all average 

the laxation resulted in a small 

rechun diameter (see Figure 5-2) 

and in a mean position of all 

patients during the plal1l1ing CT 

(i.e. M) in cranial-posterior 

direction li-mn the average 

position (see Table 5-4). Figure 5-3 also shows that five out of the fifteen patients had 

a systematic translation in the repeat CT scans in the dorsal direction despite the use 

of laxative suppositories. 
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e, Set-up variatioll 

In Table 5-5 the patient set-up variations for the three main translations are given for 

the supine and prone treatment positions, The systematic set-up variations are smaller 
than the systematic internal organ movements, which is partly due to the applied 

correction protocoL In supine and prone position on average 9 and 10 fractions per 

patient were analyzed, respectively, The number of set-up corrections was different 

between the groups: 6 for supine and 20 for prone treatments, The (retrospectively 

calculated) uncorrected set- Variation Supine Prone 
up accW'acy was clearly 

worse in prone than in 

supine position (as reflected 

by the random variations), 

which is possibly due to the 
difference in experience 

with the two teclmiques; the 

supine set-up technique has 

been in use for many years 

whereas the prone technique 

with the bellyboard was 

first used on the fifteen 
patients described in this 

paper. However, the larger 

number of corrections for 

M 1: a M 1: a 

LR translation 0.4 1.3 1.6 -0.4 0,8 2,7 

AP translation -1.0 1.5 2,2 -0,1 0,8 2.4 

SI translation -1.0 1.4 1.5 -0,6 0,8 2.4 

Table 5-5 Set-up variation data (in mm) lor patients 
treated in supine and prone position. Just as for inter-
1Ial organ motion (Table 5-4), overall mean vailies that 
are significantly different from zero, systematic varia­
tions that are significantly different from the corre­
sponding random variations, and random variations 
that are significantly d{lfel'elll between the two patient 
gl'Oups are shown underlined (p < 0.05). The small 
systematic variatiolls are due 10 the lise of a set-up 
correction protocol. 

the patients in prone position effectively reduced the systematic deviations such that 

the final systematic variations were even smaller than in supine position (this is 

inherent in the protocol), There is no satisfying explanation for the mean-of-means in 

AP and SI direction in supine position being significantly different from zero, 

.r PTV margills 

Combination of observed variations for internal organ motion and patient set-up, and 

application of the 21:+0,7 a-l1Ile for the PTV margin [102], yields, for translational 

deviations only, the margins as shown in Table 5-6, In supine position the whole PTV 

should be shifted 2 nnll in ventral and I 111m in superior direction to con'ect for the 
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direction Supine Prone 

Lea-right 4.0 3.7 

Anterior-posterior 8.3 8.8 

Superior-inferior 8.2 6.6 

Table 5-6 CTV-/o-PTV margills (ill mm) 
required for internal organ molion and 
set-up deviations and ignoring the rota­
tions, for patients treated ill supine and 
prone position. 

luean-of-mean intemal organ nlotions and 

set-up deviations (the I mm AP transla­
tion for organ motion was included 

although it was not significant). Due to 

the larger impact of the systematic 

variations, the differences between 

margins in supine and prone treatment 

position are small despite the observed 

differences in random variations. 

Fmihermore, in both positions the margin 

in LR direction is significantly smaller 

than in the AP and SI directions, due to the negligible organ motion in the LR 

direction. 

In order to take the significant rotations into account as well, coverage probabil­

ity calculations have been applied to calculate the margins needed in supine and prone 

h·eatment position, for intemal organ motions only. The actually measured prostate 

displacements were used in the calculations, for both the random (45 obselvations per 

group) and the systematic deviations (only 15 obselvations per group). A 2.5% iso­

probability level was selected for the systematic variations, and 25% for the random 

deviations. An indication of the resulting margins is shown in Figure 5-4. Quantitative 

conclusions should be drawn from this figure with some caution since only 15 
obselvations were used to the detennine the main pari of the margins (systematic 

variations are 3 times more significant than random variations); the 2.5% iso­

probability volume is for 15 measurements actually equal to the enveloping volume of 

all 15 CTV positions, which gives extreme positions a relatively great weight. 

Neveliheless, especially in the sagittal slice some differences between supine and 

prone margins become visible. The supine margin in the SI direction is larger than the 

prone margin and is also shifted in superior direction. The effect of the rotations is, as 

expected, larger for the prone margin; at the superior CTV end the margin can become 

twice as large as at the inferior end. In the transversal slice, the PTV is very close to 

the CTV in the lateral direction. This is due to the very small variation in lateral 
direction (see Table 5-4) and the discrete voxel size (2 nun in LR and AP, and 3 nun 

in SI direction). 
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Figul'e 5~4 CTV (thin solid lines) with PTV margins as 
determined by coverage probability calculations [22J 
(01' the prolle (thick dashed lilies) alld supille (thick 
gray lines) internal organ motions. Systematic and 
ralldom variations are ineluded. The 15 systematic 
molions were the mean CTV positions with respect to 
the planning situation (as determined fi'om equation 4 
ill Appendix II), the 45 random variations were the 
individual positions of the prostate in the repeat CT 
scans relative to the corresponding planning CT 
scans. Especially in the sagittal slice, the differences 
and agreements between the two margins are obvious. 

V. Discussion 

a. COlliparison with other 

stlldies 

In most other studies on 

intemal prostate motion 

[7,75,99,119,122], overall 

standard deviations of 

prostate movements in AP 

and SI directions are in the 

order of 3 to 4 mm, and in 
LR direction about 1 mm. 

Only Althof et al. [3], who 

used implanted 1251 seeds 

and multiple simulator 

images, appear to have 

significantly smaller values: 

standard deviations of 1.1 

mm in AP and SI direction. 

They were however the only 

group who conducted the study about (on average) two years after the irradiation 

treatment had been given. The prostate movement might have been less due to smaller 

rectum variations or due to a radiation-induced fibrosis that could have restricted the 

prostate movement. The values in the other studies compare reasonably well to our 

own values as showed in Table 5-1. It should be noticed however, that in Table 5-1 

standard deviations of prostate positions are given, To obtain the standard deviations 

of the movements (i.e. the differences in position) which are calculated in most other 

studies [3,7,75,99,122], our values should be llluitiplied by "2. In none of the previ­

ously published studies an attempt was made to separate systematic Jimn random 

prostate motions. 

Regarding the supine h'eatment pOSitIOn, the Shldy most alike our own was 

performed by van Herk et al. [119] analyzing multiple CT data of eleven patients with 

chamfer matching, In contrast to om study, femurs were excluded in the bone match 

in order to minimize the cost function and reduce the uncertainty in the match results. 

But considering that the whole of the pelvic bone is used in the match, misalignment 
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of the relatively small leg bones is less significant. Furthermore, they used a slightly 

different cost function for the CTV matches and instead of subtracting the bone match 

from the CTV match, they acquired the CTV movement by matching the CTV s using 

the bone match as starting point. They also treated with a full bladder but did nothing 

to influence the rectum filling. The overall prostate movement, volume variations, and 

conelations are very similar to our supine data. Our position variation in SI direction 

was larger than theirs (1.7 nilll) \"hich might be due to their smaller CT slice distances 

(3 n11n in the prostate region for all patients), differences in the registration procedure, 

or to our laxation for the planning CT scan. Their AP position variation (2.7 mm) was 

similar and the rotational variations (4.0, 1.3,2.1 degrees arOlmd LR, AP and SI axes, 

respectively) were slightly smaller in our institute which might be due to the data 

averaging that we performed to decrease the measurement elTors (see Appendix 1). 

To our knowledge, only Melian et al. have perfonned a study on internal prostate 

movement in prone treatment position [75]. They also used multiple CT data and 

found, for 13 patients, overall standard deviations for translations in LR, AP, and SI 

directions of 1.2, 4.0 and 3.1 111m respectively. This is larger than our values (even 

taking into account the ~2 conection factor). There were however several differences 

with the study described in this paper: they did not use laxation, they treated some 

patients with empty bladders, they could not perform automatic 3D matches, they 

used translational coordinates to determine rotations, and they made one of the three 

follow-up scans with an artificially expanded rectum. In agreement with our data, they 

also found cone lations between prostate movements and bladder and rectum volume 

variations. 

b. Systematic and !'andom variations, tillle trends, and margins 

Compared to the aforementioned studies, which did not consider time trends, the most 

remarkable finding of this study were the differences between systematic vmiations I 

and random variations cr. It appeared that the planning CT situation was not just a 

random sample of the distribution of situations that occur during the rest of the 

treahnent. In prone position, the prostate position vadation at the planning situation 

was significantly larger than the variation in the course of treatment (see Table 5-4), 

despite the rechun laxation (if all patients have indeed taken their laxative supposito­

ries, there is no reason to believe that the laxation might actually be the cause of an 

increase of the v31iation in prone position). Since the uncertainty in prostate position 

at the planning CT scan determines the systematic variation I, which in tum is largely 
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responsible for the CTV-to-PTV margins, our currently applied margins of I cm 

carmot be decreased. One might even argue that they are too small in the superior 

region of the CTV (near the vesicles). To get the same coverage there as in the rest of 

the PTV, the margins should be increased to 1.5 cm or more as indicated in Figure 5-

4. There is however some discussion on the relevance of a small underdosage in part 

ofthe vesicles (see for instance Pisansky et al. [89). 

Another notew0l1hy result of this study is the significant time trend in CTV 

position for the patients treated in supine position (see Figure 5-2). Near the end of the 

treahnent the average rectum diameter seems to decrease and retum to the (laxated) 

rectum diameter of the planning CT. The CTV position in AP and SI follow this h·end. 

At the moment, PTV margins are based on measured systematic and random vatia­

tions. In theory, one could go further and adjust the PTV margins on a weekly basis; 

the average prostate location changed from ventral to dorsal in the course of treatment 

and the standard deviations, which are responsible for the size ofthe margins, changed 

as well. As with all CT based studies however, the number of measurements per 

patient in this study is rather low, in our case due the limited availability of the CT 

SCaIllier for research purposes. If more patients and more CT scans per patient can be 

measlll'ed, the trends, and therefore time-dependent PTV margins, can be determined 

with a better accuracy. 

The small number of CT scans per patient is not fully representative for a 

prostate treatment of 33 fractions. Therefore only large differences in the measure­

ment data are also statistically significant, like e.g. the difference between systematic 

and random variations for the intemal organ motion in patients treated in prone 

treatment position (see Table 5-4). Based on the results of tlus study however, there is 

no reason to prefer one positioning teclmique above the other; Table 5-6 shows there 

is hardly any difference in plarming margins for the translational variations. The 

differences as shown in the 1110re "qualitative" Figure 5-4, which include the rotational 

variations, also do not clearly favor one technique; in prone position the rotations 
appear to necessitate a larger margin in posterior direction (near the rectum), whereas 

in supine position the cranial margin is larger. Therefore, considering the equality of 

the PTV margins, the decision to treat in prone or supine position might actually be 

decided by planning studies. Zelefsky et al. [129) concluded that prone position was 

to be prefelTed over supine position, but since the results may depend on hospital 

specific issues like protocols for rectum and bladder filling, we are currently con­

ducting our own planning study. 
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c. Patiellt data bases alld protocols 

In both treatment positions, mutual correlations of the different CTY movements 

make independent margin detellnination in the different directions less accurate. The 

measurements showed that the prostate tends to move obliquely from dorsal-inferior 

to ventral-superior direction, as also observed by van Herk et al. [119]. FUlthermore, 

Figure 5-4 indicates that the axis of rotation is not at the center of mass of the prostate 

but more likely at the inferior apex, as has been reported before [119]. The simple rule 

for independent margins in LR, AP, and S1 direction is then only a first order ap­

proximation. Mageras el al. [74] suggested generation of a large database of prostate 

movements, which can be sampled at the time of plmllling so the expected treatment 

can be simulated. The question is whether this database could be used universally or if 

every institute should create its own, considering the complexity of the movement and 

the dependency on institute specific treatment protocols. Although the overall 

variations from separate instihltes may appear similar, as indicated in a previous 

section, detailed study of, for instance, systematic and random variations might yield 

significant differences. 

Considering the variation of rectum filling at the plmllling CT scan (see Figure 5-

3), one might ask if the laxative suppositories used in this study were effective 

enough. Patients were asked to take them four hours before the CT scan but the 

application and its effect might be too variable for individual patients. To be really 

sure that the rectum is empty and the prostate at its most dorsal position, other laxation 

methods like a rectal enema might be a more reliable (but more cumbersome) solution 

[87]. Fmthennore, the time of day on which the patients are treated might be impor­

tant. Due to the aforementioned limited availability of the CT scanner, all CT scans in 

this study were made early in the morning. This is however not always representative 

for the irradiation sessions of prostate cancer patients which can be carried out at all 

times during the day. Assuming regular bowel movements, pmticularly in the 

beginning of the treatment, ideally all treatments, simulations, and acquisitions of the 

CT scans should be can'ied out at the same time of day. 
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d. COllclusioll 

The more elaborate analysis of our prostate movement data yielded significant 

differences with previously published studies. Although at first glance the overall 

prostate movement appeared to be less in prone than in supine position, separation of 

systematic and random vatiations showed that this was predominantly because of the 

smaller random variations. The systematic variations are about equal for both treat­

ment positions. Since systematic variations are largely responsible for the PTV 

margins, a margin reduction cannot be justified by treating the patient in prone instead 

of supine position. More measurements should be pelfonned to further confirm this 

conclusion and obtain more certainty in the observed time trends for patients in supine 

position. 

VI. Appendices 

a. Appendix I: Data and error reduction 

Assuming that the CTV of a patient is basically a rigid body, its position relative to 

the bony anatomy is fully described by six coordinates: the CM-coordinates along the 

AP-, LR-, and the SI axes, and the rotation angles around these axes (the three axes 

intersect in the CM of the prostate). As explained in the Methods and lIIaterials 

section, internal CTV movement was established by subtraction of 3D chamfer match 

results for bony anatomy from the results of the corresponding CTV match. 

Due to (small) differences in delineated CTVs in the different CT-scans of a 
patient and due to the inability of the applied search algorithm to always find exactly 

the same optimum match, there is some uncertainty in the results. Moreover, the two 

CT -data sets in a matching procedure are used in rather different ways; the reference 

CT -scan is used to calculate a distance transfonn matrix while the other data set is 

used to construct a 3D set of contour points (see Methods and materials section). In 

this appendix, a description is given of the method that was used to calculate for each 

CT scan of a patient the CTV -coordinates relative to the average CTV -coordinates of 

the patient. With this method the effects of the above mentioned unceliainties can be 

minimized. 

The method is based on the results of 4x4 matches per patient; all CT -scans are 

subsequently used as the reference scan I' and matched with the three other scans and 

with itself, yielding four sets of CTV displacements, each calculated with a different 
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CT-scan as the reference scan. Application ofEq. 5-1 given below, yields for each CT 

scan k ofa patient foW' estimates P~:'k (one for each 1') of the CTV position relative 

to the average CTV position. (For convenience, no patient- and CTV coordinate labels 

are used in the fonnulas; the formulas are to be applied separately for every patient 

and for each of the six CTV -coordinates). 

3 
(,) _ _ I '" 

Pm',k - Pr,k - Pr,aI' - Pr,k -"4 L.,;Pr,k 
,,,,0 

5-1 

with P,.k the position in scan k relative to the reference l' (i.e. the result of one bone 

match for scans l' and k subtracted from the corresponding CTV match), and P,.",' the 

average CTV-position relative to the CTV-position in the reference scan 1'. The foW' 

estimates of the CTV-position in scan k relative to the average position are finally 

averaged 

3 
_ I '" (,) 

P k - "4' L; P aV,k 
r=O 

5-2 

Hence, Pk (or p~ if the labels for coordinate i and patient j are denoted as well) is the 

CTV position for an individual scan k with respect to the average CTV position of that 

patient (i.e. L!=o Pk ~ 0). In this manner, the 16 measured prostate movements per 

patient are reduced to 4 prostate positions (one for each CT scan). 

An estimate of the measurement accuracy is given by the standard deviation of 

the foW' measurements, multiplied by a factor Y( 4/3) because the four measmements 

contain the same average and are therefore not fully independent. It should be noted 

that the effect of uncertainty in CTV delineation is not included in tIus standard 

deviation; the same outlines were used for the different matches. The delineation 

accuracy has been optinuzed by visual comparison and correction of the CTV outlines 

in the different scans of one patient, as explained in the methods alld materials 
section. 

h. Appelldix II: Overall, systematic, alld ralldom POSitiOIl variatiolls 

The coordinates p~, as derived in Appelldix I, were used to calculate parameters 

describing the overall CTV position variations and the random and systematic 



84 Chapte/' 5 

components. For both patient groups, the ove/'all variations in the six CTV­

coordinates were quantified using: 

15 J 

SD'= ~I,~I,(pf)2 
15 j=i 3 h=-O 

5-3 

with sD' the standard deviations for CTV-coordinate i (e.g. the CM-position along 

one of the axes) for all patients} and all scans k, describing the overall variation ofthis 

coordinate. Again the normal standard deviation is conected by a factor "(4/3) 

because the four measurements of each patient contain the same average. 

The CTV position variations p~ were also used to calculate, for each patient} 

and coordinate i, the average deviation lIIij of the three repeat CT scans (k = 1,2,3) with 

respect to the planning CT scan (k=O) and to detennine the variation uP within the 

three repeat CT scans: 

J .. I" ij ij mlJ=-LJPk-Po 
3 h:l 

5-4 and sdij = 

Both patient groups were then characterized by their mean-of-means M, the system­

atic variation 1.; and the random variation a for each coordinate i, according to: 

and 
1 15 .. 2 

- I, (sd") 
15 j=i 

5-5 

For the random variation a, the square root of the average of the variances is taken. 

This value gives a better estimate of the population's distribution than the average 

standard deviation. In Figure 5-1 the Occlmence of systematic and random variations 

is explained in a graphical m3lmer. Since the systematic deviation per patient (lIIij) was 

detennined by only three observations, a relatively large enor equal to scll/"3 was 

made. This will also manifest itself in the systematic variation J:, which was therefore 

conected according to: 

5-6 

As a first approximation, one can assume equal distributions of possible prostate 

positions during planning CT scan and during treatment. If it is then assumed that all 

patients have about the same variations in prostate position, the prostate position 
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during the planning CT scan, which will determine the average deviation 11/, can be 

considered as just one sample of the distribution of prostate positions during the 

treatment, which will determine the variation sd. The standard deviation of the 
average deviations (i.e. E) should then be equal to the average of the variations sd (i.e. 

u) and M should theoretically be zero. 
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I. Abstract 

PUlpose: Positioning of patients with gynecologic tumors for radiotherapy has proven 

to be relatively inaccurate. To improve the accuracy and reduce the margins iiOln 

clinical target volume (CTV) to plalllling target volume (PTV), on-line set-up 

corrections were investigated. Methods alld Materials: Antetior-postetior portal 

images of 14 patients were acquired using the first six monitor units (MU) of each 

irradiation fraction. The set-up deviation was established by matching three user­

defined landmarks in portal and simulator image. If the two-dimensional deviation 

exceeded 4 mm, the table position was corrected. A second pOlial image was acquired 

using 30 MU of the remaining dose. This image was analyzed off-line using a senu­

automatic contour match to obtain the final set-up accuracy. To verify the landmark 

match accuracy, the contour match was retrospectively performed on the six MU 

images as well. Results: The standard deviation (SD) of the distribution of systematic 

set-up deviations after correction was < 1 ml11 in left-right and cranio-caudal direc­

tions. The average random deviation was < 2 ll11n in these directions (l SD). Before 

correction, all standard deviations were 2 to 3 mm. The landmark match procedure 

was sufficiently accurate and added on average 3 minutes to the treatment time. The 

application of on-line cOlTections justifies a CTV-to-PTV margin reduction to about 5 

nun. COllclusions: On-line set-up corrections significantly improve the positioning 

accuracy. The procedure increases treatment time but might be used effectively in 
combination with off-line corrections. 
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II. Introduction 

a. Geometric ul/certainties il/ radiotherapy 

Conformal radiotherapy aims at limiting toxicity of critical organs while maximizing 

the tumor dose. This goal can be partly achieved by minimizing the treatment field 

size. The treatment field size is mainly detennined by the size of the tumor including 

subclinical disease and by the margins applied to compensate for geometric uncer­

tainties that occur during radiotherapy. Following the nomenclature proposed by the 

International COllnnission on Radiation Units and Measurements (ICRU), the gross 

tumor volume plus subclinical disease is called clinical target volume (CTV), and the 

CTV plus safety margins is called planning target volume (PTV) [54]. Minimization 

of these so-called CTV-to-PTV margins, i.e. restraining internal tumor movement and 

maximizing patient the set-up accuracy, will therefore benefit conformal radiotherapy. 

b. Set-lip accllracy a/patients with gynecologic tlllllors 

Patients with gynecologic tumors seem somehow more difficult to position accurately 

on the treatment couch than patients with prostate cancer [14], which is treated in the 

same pelvic region. Rather large set-up deviations have been repOlted in the literature 

[25,77,117]. In recent years, several set-up techniques have been investigated in our 

institute as well [25,90]. However, they all yielded more or less the same distributions 

of random (day-to-day) set-up variations; the average standard deviations (0') were 

about 3-4 nll11 in each of the three main directions. Since the simulator film which is 

used as reference image can be considered as one sample from those distributions, it is 

plausible that the standard deviation of the distribution of systematic (evelyday) set-up 

deviations for the whole patient group (L) initially had similar values [17]. 

c. OfFline set-lip corrections 

The only significant improvement of the set-up accuracy was obtained by application 

of an off-line set-up verification and con'ection protocol [12,14,17]. The set-up 

deviations of subsequent fractions are averaged and compared with an action level 

that decreases with the square root of the number of measurements. If the average 

deviation exceeds the action level, a table correction will be applied to the following 

fractions and the protocol is restarted. The procedure stops if a specific number of 
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measmements is pelfonlled without con·ection. Using such a protocol with about ten 

measurements per patient, the systematic variations for patients with gynecologic 

tumors were reduced by a factor two [90], as for patients with prostate cancer [14]. 

Random variations are not affected by the off-line protocol. 

d. CTV-to-PTV margins 

In our institute, the CTV -to-PTV margin for patients with gynecologic hnnors is 

mainly detelmined by the set-up deviations; the internal CTV movement is considered 

to be relatively small (although this is the subject of an on-going study). Using the off­

line protocol, a margin of I cm can be applied. This is based on previous research 

which concluded that the margin should be equal to at least 22:+0.70 to guarantee an 

adequate tumor dose [102]. Inserting 2: = 2 nnn and 0 = 4 mm in this formula, results 

in margins of only 7 mm. However, this value is rounded up to I cm because of other 

geometric inaccuracies such as delineation ullceliainty and internal organ motion. 

e. On-line set-up corrections 

To increase the cure rate, we are currently considering to raise the tumor dose for 

some patients with gynecologic tumors to 60 Gy. In the literature, it has been repor1ed 

that maximally 30% of the small bowel volume should receive a dose of over 55 Gy 

[34,81]. With the current CTV-to-PTV margins, it is not always possible to fulfil this 

criterion for tumor doses higher than 55 Gy. Reduction of margins might be justified 

if an on-line instead of an off-line set-up protocol is applied. With on-line corrections, 

the set-up deviation is determined and conected before the (bulk of the) daily treat­

ment dose is given. Other groups have repor1ed superior set-up accuracies at the cost 

of increased treatment time [7,30,31,35,39,71,116,117]. In this paper, we will discuss 

whether on-line set-up corrections are beneficial and clinically feasible in our institute. 

III. Methods and materials 

a. Treatment plallning and immobilization 

Fom1een patients with gynecologic tumors were included in the study. The patients 

were irradiated with a four-field box techniqne if the CTV could be restricted to the 
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pIimmy tumor region, the proximal two-third of the vagina, the paramenia, and the 

obnlrator and iliac lymph nodes. If the CTY included para-aOliic lymph nodes, 

anterior-posteriorlposterior-anterior (APIPA) fields were used. The CTY-to-PTV 

margin was I cm. The APIP A patients were treated with a source-to-skin distance of 

100 cm, whereas the box technique was isocentric. The total dose varied from 46 to 

48.6 Oy and the number of fractions fi'om 23 to 27. All patients were treated in supine 

position at the same accelerator' with 25 MY photons and a multileaf collimator. 

For patient positioning, long lateral, sagittal and transversal laser lines were 

marked on the patient. The intersection points of these lines were tattooed, together 

with the caudal field border. A knee roll was used to decrease the pelvic rotations and 

a homemade foot support fill1her secured foot and leg position. The legs were slightly 

exorotated to ensure decreased muscle tension in the legs and the buttocks. The arms 

were positioned above the head by a conunercially available arm support'. In case of 

discrepancy between the skin marks in longitudinal direction, the caudal field border 

tattoo was the decisive parameter for set-up [25,90). For isocentric treatments, the 

isocenter-to-table distances were used for table height position. The focus-to-skin 

distance was measured before each fraction. 

h. Oll-Iille correction protocol 

To determine the deviations in patient set-up, the position of bony stnlctures in AP 

p0l1al images were compared with cOlTesponding positions in a reference image. The 
pOl1al images were acquired with a conunercially available electronic pOl1al imaging 

device (EPID)'. The teclmical characteristics of this system were descIibed in 

previous publications [2,123]. An on-line set-up cOllection procedure was developed 

using the high-level script language designed to operate the EPID system automati­

cally. The procedure can be separated in four steps: 

1. Before treatment, the operator selects a maximum of three anatomical landmarks 

in a digitized simulator radiograph (Le. the reference image), which is displayed on a 

3 MM50 Racetrack Microtroll, Scanditronix Medical AB, Uppsala, Sweden 

4 Sinmcd BV, Reeuwijk, The Netherlands 

5 SRI~100, Electa Oncology, Crawley, Great Britain 
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monitor. For all treatment fractions, these landmarks will reappear automatically in 

the reference image. Useful landmarks for AP pelvic images are the pubic symphysis 

and the intersections of hOlizontaI and veliical tangents to the pelvic rim [117), as 

indicated in Fig. 6-Ia. 

a) simulator image b) 6 MU MV image 

c) on-line match results d) 30 MU MV image 

Figure 6-/ The on~lille set-up correction procedure. III (a) the digitized simulator 
image is shown ill which 3 reference landmarks mllst be defined (crosses, x). Then (b) a 
6 A1V EPID image is obtained in which the same landmarks IlIl1sl be selected (moll­
hered pluses, +). The lalldmarks are matched (c) and table translatiolls are shown. A 
correction mllst be pel/ormed if/he 2D vector is larger than 4 mm. Finally (d) a 30 MU 
EPID image is acquired of the filial sel-up position ill which the reference landmarks 
are shown to verifY the correction, 
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2. The patient is positioned on the treatment couch and a portal image is obtained 

using the first 6 monitor units (MU) of the treatment dose, after which the irradiation 

is automatically interrupted. The image quality is improved by automatic adjustment 

of the display contrast. Landmarks similar to those in the reference image must be 

defined in the pOl1al image. The image quality of a 6 MU image is usually sufficient 

to discriminate most of the bony stmctures, as is shown in Fig. 6-1 b; however, in 

some cases the pubic symphysis can be less pronounced. In case of extreme set-up 

deviations, the pelvic rim can partially disappear behind the field defining blocks. 

However, nonnally at least two landmarks can be indicated to enable image regish'a­

tion. 

3. The patient position is determined by calculation of the difference between the 

center-of-mass of the landmarks in the portal and the reference image. If the two­

dimensional (2D) set-up deviation is larger than 4 mm (i.e. about equal to one 

standard deviation of the expected variations), the patient couch is translated as 

indicated (Fig. 6-1c). Rotations can generally not be determined and cOll'ected in a fast 

and reliable manner; in case of rotations, the selected landmarks are matched as well 

as possible by translations only. Since two landmarks are placed near the top of the 

pelvic rim and one at the pubic symphysis, the position of the top largely determines 

the outcome of the match. Once the match has been performed, the set-up position is 

inunediately obtained; a separate field edge match is superfluous because the stiff 

mechanical structure of the EPID box ensures a reproducible and known isocenter 

position in the images. 

4. With the remaining dose a 30 MU image is made, which is used for off-line 

detennination of the final set-up position (see contollr match section). To enable 

instant verification of applied cOll'ections, the 30 MU image is displayed on the moni­

tor with the reference landmarks, which should be in the correct position (Fig. 6-1 d). 

To be effective, the on-line procedure must be nlll at each fraction of the 

treatment. To estimate the extra workload involved with the on-line protocol, the time 

required for landmark match and table correction was monitored for some patients 

treated toward the end of the study. At that time, the start-up problems had been 

solved and the technicians were familiar with the procedure. Since lateral itnages were 

available for a limited number of patients and since the largest variations were 

expected to occur in the cranio-caudal direction [25,90], only AP fields were used for 

on-line corrections. 
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c. Contour match 

To determine the accuracy of the on-line landmark match, all 6 MU images were 

retrospectively analyzed by contour matching as well. Contour matching was impos­

sible with the EPID software, but is judged to be more reliable than landmark 

matching because a larger fraction of the anatomical stmcture to be matched is 

actually used in the calculation. To detennine the accuracy of the final treatment set­

up, the 30 MU images were analyzed with the contour match as well. 

The contour match procedure was developed using specialized visualization soft­

ware". It semi-automatically registers two images, in tllis case an EPID image with the 

corresponding digitized simulator radiograph (Fig. 6-2). For both images, the image 

quality can be improved using display equalization, which locally optinlizes the 

display contrast [80]. In both images, the features to be matched must be outlined 

manually. The contours are subsequently converted to black-and-white binary images, 

the contoms being white on a black background. The cross-correlation function of the 

two binary images is calculated using Fast Fourier Transforms. The position of the 

maximum of this fhnction gives the translation between the two images. Jones and 

Boyer [57] used this method to detennine the shift between two original megavoltage 

images directly. Since in our approach binary images are used instead of megavolt age 

images, the position of the maximum is more shmply defined and less dependent on 

gray scale vaIiations. However, in case of rotations the delineated stmctures in the two 

images may differ in shape, which nlight cause a (padial) nlismatch of the delineated 

structmes if the contours are too thin. Therefore, the line thickness of the contours in 

the binary images can be increased and is usually about ten pixels (5 - 8 nun). The 

value of the maximum (between 0 and I) can be considered a correlation coefficient 

reflecting the adequacy of the match. Values larger than 0.7 nOlmally indicate 

sufficiently con'ect matches (accuracy < lImn). To obtain an estimate of the in-plane 

rotations, the rotation with the maximum cOlTelation is deternlined for a range of 

rotations around the image center, using the translated images as stading point. The 

calculation of translations took about 20 seconds on a UNIX workstation', the 

rotations added another 10 seconds. 

" A VS, Advanced Visual Systems, Waltham, MA 

, HP715175, Hewle~ Packard, Palo Alto, CA 
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The structures in the MY images used for matching the AP images are also 

indicated in Fig. 6-2. The superior part of the. pelvic rim is judged to be the best 

indicator of the target volume position, because it is visible in all images and near the 

center of the field. The inferior pelvis and symphysis are not included because they 

contour match 30 MU image 

Figure 6-2 Illustratioll of the developed contour match procedure. III the upper left 
image the reference image is shown with a manually drawn cOlltollr (gray ill tlds black­
and-'while image). III the upper right image a 30 MU EPID image is shown ill which a 
similar strue/w'e is contoured (black). The fwo small images in the middle depict the 
binwy images that are used for the cross correlation match, The match result is 
visualized ill the lower right image; were the black and gray contour overlap the 
contollrs become light gray. Resulting translation values and patient data are shmvn 011 
'he lefl. 
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are pmticularly sensitive to out-of-plane rotations around the lateral axis. The contours 

thus defined have a center-of-mass similar to that of the landmarks used to detennine 

the on-line cOlTections. The two match methods will therefore treat (out-of-plane) 

rotations similarly. To detennine the accuracy of the on-line landmark match, all 6 

MU images were also analyzed aftenvards using contour matching. Contour matching 

is judged to be more reliable than fiducial landmark matching because a larger 

fraction of the anatomical structure to be matched is actually used in the calculation. 

To determine the accuracy of the final treatment set-up, the 30 MU images were 

analyzed with the contour match as well. For contour matching the images had to be 

transpOlted to a UNIX workstation and were analyzed oft~line. Because of the data 

transport between EPID PC and Unix system, the contour matching procedure was 

not used for on-line corrections. 

d. Statistical analysis 

For each patient i the mean set-up deviation (III,) and the standard deviation (SO) of 

the variation around that mean (sdJ were detennined in the left-right and cranio­
caudal directions. Next, the mean-of-means M (= MEAN III,), the variation-of-means 

L (= SD lJI,), the mean-of-variations a (= MEAN sdi), and the variation-of-variations V 

(= SO sd,) were calculated for both patient groups. M is normally close to zero; there 

should be no systematic difference between average set-up on the simulator and on 

the accelerator for a large group of patients. In that case, E gives an indication of the 

size of systematic deviations for the individual patients; therefore, E is called the 

systematic variation. Since (j represents an estimate of the average random variation, 
it is called the I'Ondolll variation. Finally, V indicates the degree of variation in random 

deviations per patient, i.e. it is a measure of the homogeneity of the mobility in the 

patient group. 

Statistically significant differences of these four variables between the cOlTected 

and uncOlTected group were investigated using the student's T-test for the mean 

values and an SO test as described by Hoel [47] for the standard deviations. Further­

more, a possible conelation between (uncorrected) set-up variation and patient 

diameter (in AP and lateral direction) was investigated. For patients treated with 

APIP A fields, patient diameters were only available in the AP direction. 



IV. Results 

a. Oll-lille set-up correctioll procedure 

The total number of on-line set-up measurements for the [4 patients in the study was 

254 (varying Ii-OIu 9 to 23 per patient). In 32 measurements (13%), only two instead 

of three landmarks could be identified, mostly due to insufficient visibility of the 

pubic symphysis. In 57% of cases the initial 2D set-up deviation exceeded the 4 nll11 

action level and a COl1'Oction was applied. Set-up deviations as calculated by the 

contour match for all patients and all fractions before and after corrections are shown 

in Fig. 6-3. The 202 measurements for which the contour match results before and 

after cOITection were both available are indicated. The mean values per patient are 

also indicated. Both systematic and random variations are clearly reduced after the 

corrections. This is confirmed by the results of the statistical analysis as shown in 

Table 6-1. Systematic variations (L) and random variations (cr) which were 2 to 3 nll11 

before corrections significantly decreased (p < 0.01) to < I mm and < 2 mm (I SD) 

after cOlTections, respectively. 

E 15 

5 
c 
o 
~ 
.~ 

"0 
a. 
:J 

is 
<f) 

o 

before on-line corrections 

'. . 
~-15~-r~~~~~-'~~~ 

after on-line corrections 

~ 
crania-caudal set-up deviation (mm) 

Figure 6-3 Scatter plots oj set-up deviatiolls for each jhlction be/ore and after the 011-

line corrections. The gray square dols are the patient means, the black dols the individ­
ual measurements for each Faction. The reduction of systematic as well as random set­
up position variation after Oil-line corrections is obviolls. 

h. Rotations and correiatiolls 

The contour match yielded rather small values for in-plane rotations. The overall 
standard deviations were smaller than I degree with extremes less than 4 degrees in 

all cases. Although there was a relation between the patient diameter in AP direction 
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and the standard devia­

tions of lateral set-up 

inaccuracies, the correla­
tions were not significant 

(p = 0.09, r = 0.47). 

Other correlations be­

tween diameters and set­

up deviations were even 

less significant. 

M L " v 

t,x (before corrections) 0.9 2.0 2.3 0.7 

t,y -0.2 2.8 3.0 1.3 

~x (after corrections) -0.2 0.7 1.6 0.5 

t,y -0.5 0.6 1.8 0.3 

Table 6-1: The set-up accuracies as determined by the 
contollr match of 14 patients/or the pre- and post Oll­
line correction images in left-right (Li\) alld cranio­
caudal (.1)~ direction ill 111m. For the e>.p/analion oj At/, 
L, 0; alld V see the methods section. 

c. Comparisoll of match methods 

For 210 measurements, both the landmark match and the contom match results of the 

set-up before correction were available. The same teclmicians (SQ and MS) per­

fanned all contour matches, whereas the on-line landmark matches were done by any 

teclmician present at the accelerator (under supervision of SQ and MS). Scatter plots 

of contour match versus landmark match results are shown in Fig. 6-4. The average 

difference between the two match procedures was 0.3 +/- l.l mm (1 SD) in the lateral 
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Figure 6-4 Scatter plots of the set-up deviatiolls as measured with the contollr match 
vers/{s the landmark match for left-right (a) and erallio-caudal direction (b). The 4-mm 
lines are shown to indicate the fractions that have certainly been corrected (the 2D 
action level was 4 mm). The variation around the ideal olle-to-one line immediately 
indicate that there is some difference between the ("va match methods. 



98 Chapter 6 

direction, and 0.4 +/- 1.8 mm (I SO) in the cranio-caudal direction. Both average 

values are significantly different from zero (p < 0.01), which implies that there is a 

small systematic difference between the two methods; this might be caused by the 

center-of-mass of the three landmarks, which can be slightly different from that of the 

contours. The variation in the lateral direction is appropriate, considering that the 

reproducibility of each method separately is about 0.5 - I 111m (I SO). The larger 

variation in the cranio-caudal direction is probably due to the larger pixel size in that 

direction (0.8 nll11 cranio-caudal vs. 0.5 nll111ateral at isocenter), and due to the out-of­

plane rotations around the left-right axis. Consequently, the match accuracy of the on­

line match significantly conttibutes to the final set-up variation in this direction. 

d. Treatment time 

The extra treatment time for the on-line procedure per It'eatment fraction varied from 

1-2 minutes if no table translation was required, to 3-5 minutes if a table COllection 

was necessmy. Considering a standard It'eatment time per patient of 10 minutes, this 

cotTesponds to an increase in time of 10-20% without and 30-50% with correction. 

The vmiation is due to differences in image quality and user experience. The extra 

treatment time was required for determination of the set-up position (I min), restart of 

the accelerator (30 s), and the table correction procedure (2.5 min). 

V. Discussion 

a. Comparison with previous studies 

The measured set-up variation before correction is largest in crania-caudal direction, 
which is consistent with previous in-house studies [25,90). However, pmticularly the 

systematic variation in the cranio-caudal direction was already significantly lower (p = 

0.02) than for the patients in the previously reported mattress study [90), even though 

set-up technique and accelerator were identical. The average patient obesity was also 

similar. The exlt'a attention the patients received due to the protocol might already 

result in better set-up accuracy before COllection, especially because only one 

accelerator and a limited number of teclmicians were involved in the study. Further­

more, the match technique, e.g. the anatomical structures used for matching, has 

altered slightly in the course of time. III this study, extra attention has been given to 
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consequent delineation of the same match structures, which is essential in case of out­

of-plane rotations. 

Although a significant correlation between patient diameter in AP direction and 

lateral set-up accuracy has been rep0l1ed before [117], the low correlation in this study 

make this diameter a rather weak predictor for set-up accuracy. II is therefore impos­

sible to individualize set-up protocols and PTV margins according to patient diameter. 

b. Bellefit ~r oll-lille set-lip correction procedllre 

As expected, patient set-up was significantly improved using the on-line verification 

and cOlrection procedure. The 4 nUll action level resulted in random variations after 

correction of 1.5 - 2 mm. Since the systematic vmiations are reduced to < I n1l11 and 

the margin to cover for geometric variation of the CTV with respect to the beam 

portals can be approxi­

mated by n+0.7a [102], 
a CTV-to-PTV margin for 

extelllal set-up accuracies 

of 3 mm will suffice. An 

even better set-up accu­

racy can be obtained by 

decreasing 

level. In 

the action 

principle, the 

maximum accuracy is 
limited by the accuracy of 

matching software and 

treatment equipment. This 

will off course yield more 

corrections and an in­
crease in average treat­

ment time. 

Fig. 6-5 shows the 

dose volume histograms 

of a patient with a gyneco­

logic tumor planned to a 

dose of over 60 Gy with 
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Figul'e 6-5 Dose volume histograms of a gynecological 
palient, 'which sllOlv a reduction in small bowel dosage 
when smaller CTV-Io-PTV margins are applied. Until 48.6 
Gy the CTV consists of primal)' tumor region pIllS electi~'e 
para-aortic lymph nodes, the boost is given all the primm)1 
tumor region ollly. Use of 5 mm CTV-to-PTV margins (in 
gray), which is justified if on-line correction are per­
(ormer!, illstear! q( the ellrrelltly applied 1 em (ill black), 
reduces the small bowel volume that receives 55 Gy or 
more to less than 20%. 
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two different CTV-to-PTV margins: the current clinical margin of I cm and a 5 nnn 

margin for on-line cOlTected patients (the 3 mm is rounded up to include other 

uncertainties than set-up deviations). With a margin of 5 mm instead of I cm, the 

volume receiving a small bowel dose larger than 55 Gy is reduced from the critical 

30% to an acceptable 15%. 

c. Extra treatment time 

In case of a cOlTection, the extra treatment time was 3 to 5 minutes. During the study, 

new table settings had to be entered at the treatment console and the patient couch had 

to be moved accordingly by a technician in the treahnent room. However, further 

automation of the accelerator after the study has enabled uIlly automatic table 

corrections within I minute. This reduces the overall extra time in case of correction 

to about 2.5 minutes. Since about half the number of fields had to be corrected, the 

average extra time per fraction per analyzed field is now about 2 minutes. Because it 
takes two images to determine the 3D patient set-up, a total of 4 minutes per fraction 

are maximally needed, which is comparable to most other studies [30,31,39,71,116] 

and to the routinely used off-line protocol in our institute. FUlthermore, elaborate set­

up equipment such as mattresses and foot and ann supports also require extra time. 

One might argue that in most cases the patient set-up technique can be fast and basic 

as long as on-line corrections can be applied. 

d. Recellt andjiltllre developments 

Since we expect that on-line correction of patient set-up (and possibly tumor position) 

will become an important tool for conformal radiotherapy in the ulture, we have 

developed a new pOital imaging device especially equipped for on-line applications 8. 

The device obtains better quality images with I MU than the "old" EPID system with 

6 MU. Furthennore, fully automated and fast contom matching will be implemented 

in the software, which is expected to reduce the total time for on-line corrections to 
about 1 minute per field. Finally, the image resolution of the new system is signifi­

cantly improved as well; radioopaque markers can now be visualized, which might be 

8 Cablon Medical, Leusden, The Netherlands 
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used to measure and possibly correct the internal CTV position in patients with 
gynecologic tumors on-line. 

e. Combination of offline and on-lille set-lip correction protocol 

To minimize the current treatment time at the accelerator, a combination of an off­

line and on-line protocol is applied for routine patient set-up. Table I and previous 

studies show that the inter-patient variation (v) was rather large for patients with 
gynecologic tumors. Therefore, initially all patients are treated using the off-line 

procedure. Only those patients with large random variations, and hence with 

repeated corrections in the off-line protocol, are entered in the on-line correction 

protocol. Furthennore, systematic variations can be detennined during the course 

of treatment with the on-line protocol as well; instead of identical corrections each 

day after 6 MU, table corrections can be applied beforehand (similar to the off-line 

protocol), which nuiher decreases the treatment time. 

VI. Conclusioll 

The all-line patient set-up correction protocol resulted ill a significant improvement of 

set-up accuracy. This allows for the use of smaller PTVs, which might in tum allow 

dose escalation while maintaining acceptable complication probabilities for the small 

bowel. Since we believe that in the nrture on-line set-up con'ections will be used on a 

more routine basis, the speed and accuracy of the procedure are being improved. Until 

this has been achieved, a combination of off- and on-line set-up correction protocols 

will yield optimal set-up accuracy with a minimal workload. 
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CHAPTER 7. DETECTION OF INTERNAL ORGAN MOVEMENT IN 

PROSTATE CANCER PATIENTS USING PORTAL IMAGES 
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I. Abstract 

Previous research has indicated that the appearance of large gas pockets in pOltal 

images of prostate cancer patients might imply intemal prostate motion. This was 

verified with simulations based on multiple computed tomography (CT) data for 15 

patients treated in supine position. Apatt from the planning CT scan, three extra scans 

were made during treatment. The clinical target volume (CTY) and the rectum were 

outlined in all scans. Lateral portal images were simulated from the CT data and 

difference images were calculated for all possible combinations of CT scans; per 

patient, all scans were used both as reference and repeat scan but gas pockets in the 

reference scan were removed. Gas pockets in a repeat CT scan then show up as black 

areas in a difference image. Due to gravity, they normally appear in the ventral part of 

the rectum. The distances between the ventral edge of a gas pocket in a difference 

image and the projection of the delineated ventral rectum wall in the reference scan 

were calculated. These distances were correlated with the "tme" rechllll waH shifts 

(determined fi'om direct comparison of the rectum delineations in reference and repeat 

scan) and with CTY movements determined by three-dimensional chamfer matching. 

Gas pockets OCCUlTed in 23% of cases. Neveltheless, about 50% of rectum wall shifts 

larger than 5 nUll could be detected because they were associated with gas pockets 

with a large lateral diameter (> 2 cm). Rectum wall shifts with gas pockets in the 

repeat scan could be accurately detected by the ventral gas pocket edge in the differ­

ence images (I' = 0.97). The shift of the rectum wall as detected from gas pockets also 

con-elated significantly with the anterior-posterior shift of the center-of-mass of the 

CTY (I' = 0.88). In conclusion, lateral pelvic images contain more information than the 

bony stmctures that are normally used for setup verification. If large gas pockets 
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appear in those images, a quantitative estimate of the position of prostate and rectum 

wall can be obtained by dete11nination ofthe ventral edge ofthe gas pocket. 

II. Introductiou 

a. Geometrical uncertaillties 

In order to optimally use the advantages of conformal radiation therapy, the geometri­

cal uncertainties during treatment should be known (to apply adequate safety margins) 

and minimized where possible (to reduce the size of the safety margins). The geomet­

rical uncertainties consist for a large part of setup errors and internal organ motion. 
Setup deviations can be derived from portal images acquired during the radiation 

session. The gray shades in those images reflect the irradiated radiological thicknesses 

and bony stmctures are therefore highly visible. Calculation of the position of the 

bony anatomy relative to the reference situation yields the setup deviation. In the last 

two decades several electronic pOital imaging (EPID) systems have been developed 

for computerized acquisition and analysis of 1'01 tal images [2,20,123]. Either off-line 

[12,14] (before the next treahnent session) or on-line [31,105] (while the patient is 

still on the treatment couch) setup correction protocols can then be used to minimize 

the sehlp e11'OrS. On-line corrections yield better accuracies than off-line corrections 

but generally take more time. Tn recent years, the focus of the research has been 

shifting toward determination of intemal organ movement, especially for prostate 

cancer patients. 

b. Measllring prostate movement 

Several methods for measuring intemal prostate movement have been reported in the 

literature. One possibility is to make a number of computed tomography (CT) scans 

for each patient in the study [29,65,75,103,112,119,128]. Tn all scans the prostate is 

delineated, and manual or (semi)automatic registration techniques are used to 

determine the prostate movement between the different scans. An advantage of this 

method is that the whole volume is used in the match and that accurate three­

dimensional (3D) rotations can be measured. A disadvantage is its cumbersomeness 

which at the moment restricts the use of on-line analysis and cOlTection. Some groups 

are trying to overcome this problem by integrating CT and accelerator [65,72]. 
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Instead of CT, other imaging techniques can be used to visualize the position of 

the prostate. For instance, ultrasound imaging can be a safe and quick alternative. 

However, the normal transrectal placement of the ultrasound probe is too uncomfort­

able to be used for all or many sessions of the radiotherapy treatment. Therefore 

Troccaz et al. decided to place the probe on the belly of the patients at the cost of 

reduced prostate visibility [113]. They claim however that the image quality is still 

adequate enough to make on-line cOtTections of the prostate possible. A clinical study 

comparing CT and suprapubic ultrasound images has recently been pelfonned with a 

commercial ultrasound system for prostate localization [64]. 

A third method to detect internal prostate motion makes use of the aforemen­

tioned pOtial imaging. Since the prostate itself has a similar density as its surround­

ings, it is not visible in those images. Therefore radio-opaque markel~ can be im­

planted in the target volume [7,122]. If the markers can be distinguished in the 

images, rapid analysis of the prostate position and possible on-line conection can be 

pelformed similar to setup cOtTections. A disadvantage of this invasive procedure is 

the extra burden for the patient. Fmihennore, markers might migrate and since they 

can only be implanted in the base of the prostate, not all parts of the target volume 

(like, e.g., the vesicles) can be imaged. Instead of putting radio-opaque markers in the 

prostate itself, they can also be placed in an urethral catheter [16]. However, side 

effects of the inadiation inhibit the use of bladder catheters after a few fractions of the 

irradiation; at the moment this method can only be used for the first few fractions. 

c. Illdirect detectioll {)fprostate movemellt 

Since the prostate is located directly ventral to the rectum, many authors have been 

able to demonstrate the relation between rectulil volume and prostate position [29,65, 

75,103,112,119]. The correlation coefficients are rather low because other factors like 
bladder volume are also involved. However, with pOtial imaging the position of the 

velltralrectulI1 wall might be determined. In routine portal images of pelvic fields, the 
most visible objects besides bony structures are gas pockets in the rectum. These gas 

pockets might indicate the position of the ventral rectum wall, which is expected to 

have a better cOtTelation with the prostate position than the rectum volume. In Fig. 7-1 
the rationale behind this conelation is visualized. The beams-eye-view contours of the 

plarmed rectum and clinical target volume (CTV) of a prostate cancer patient are 

superimposed on a lateral portal image that was used for setup verification. The portal 

image clearly shows a dark spot indicating a gas pocket that extends outside the rec-
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Figure 7~1 The rationale of the lise of lateral portal 
images and naturally occurring gas pockets in the 
rectum of prostate cancer patients 10 determine 
internal rectum and prostate movement relative to the 
plmmhlg CT scan. The beams-eye-vie'rv contours of the 
rectlllll (thick gray lille) alld CTV (thill white lille) ill 
the planning CT scan of a prostate patiellt are 
superimposed on a clinical lateral portal image. The 
dark spot ill Ihe image, indicating a gas pocket, clearly 
extends outside the delineated rectum. This implies that 
during trealment the rectum wall, and probably the 
prostate, were moved in a ventral directioll. 

III. Methods and materials 

a. Study outline 

tum as delineated in the plan­

ning CT scan. This implies 

that the local rectum wall, and 

probably the prostate, has 

moved in a ventral direction. 

The use of gas pockets to 

detect intemai organ move­
ment would not increase the 

treatment time because pOlial 

images are already routinely 

acquired for setup verifica­

tion. Furthenllore, it would be 

a non-invasive technique 
since rectum gas occurs 
naturally in prostate cancer 

patients. Kroonwijk et at. 
already pointed out that gas 

[lockets in pOlial images can 
reveal intelnal organ motion 
[61]. They did not however 

specify how this could be 
used in practice. In this paper, 

a method for using gas 

pockets in the rectum for 

quantitative determination of 

the rectum wall and prostate 
position is proposed. 

In order to verify whether gas pockets in clinical pOlial images can be used to predict 

the amount of rectum wall and prostate movement, simulations have been perfonlled 

using previously obtained data of 15 prostate cancer patients of which multiple CT 
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scans were acquired during treatment [103]. In Fig. 7-2 a schematic outline of the 

study setup is depicted. First, the four CT data sets per patient were matched and 

resliced in 3D to remove the setup deviations. Second, portal images for the left lateral 

beams were simulated from the resliced data sets. In order to automatically detect gas 

pockets, difference images between two scans were created for all combinations per 

patient. The gas pocket edges visible in the difference images were subsequently used 

to estimate the local rectum wall shifts between two scans. Third, the "tlUe" rectum 

wall shifts between two scans were measured by comparing rectum delineations in 

reference and repeat CT scan. Corresponding prostate 1110vements were detennined 

from 3D matching. Finally, the rectum wall shifts as determined in the portal images 

were correlated with the hue rectum wall shifts and with the prostate movements. 

15 patients 
4 CT scans each 

I 
3D match and reslice 

repeat CT scans 
to planning scans 

I 

calculate 60 
portal images 

obtain 180 CTV 
get gas pockets movements from 

from 180 difference 3D matching 
portal images and 

obtain rectal wall 180 rectal wall shifts 

shifts from gas from delineations 

pocket edges .. , 

I Determine 
correlations 

Figure 7-2 Schematic olltline 

of the setup of the study. A 
mUltiple CT data set is used to 
determine the rectum wall 
shift from gas pockets ill 
simulated porIa I images. To 
verifjl whether this can be 
used to predict the trlle 

rectum wall movement and 
the prostate movement, the 
same data set is IIsed to 
calculate these movements 
from delineations and by 3D 
matching, and a correlation 
analysis is pel/armed. For 
more detailed in/ormation see 
the sectioll f11. 

In the following paragraphs, the setup of the study will be explained in more 

detail. 

b. Patient dolo 

In a previous study, the differences in prostate movement between 15 patients treated 

in supine and 15 in prone Jlosition were investigated [103]. The data of the 15 patients 
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treated in supine position were also used in the CUlTent study. For each patient, four 

CT scans in the supine treatment position were acquired: one platming CT and three 

repeat CT scans in week two, four, and six of the treatment. Before the platming CT 

only, mild laxative suppositories were applied to minimize rectum volume. The 

patients were asked to empty the bladder and subsequently drink half a liter of water 

before all CT scans (and therapy sessions). Tn all scans the CTV (Le., prostate and 

seminal vesicles), rectum, and bladder were manually contoured by the radiation 

oncologist. All patients were treated with an isocentric technique using an anterior 

field and two partly wedged laterally oblique fields; beam intensity modulation was 

used to minimize the superior-inferior (ST) field length [32]. The patients were treated 

to a total isocenter dose of 66 Gy, delivercd in 2 Gy fractions. 

Since we were only interested in the intel1lal organ motion between the different 

CT scans, the setup differences between the scans of each patient were conected. 3D 

chamfer matching was used to match the bony anatomy in the repeat CT scans to their 

respective planning CT scans. The four CT sets per patient were subsequently aligned 

to the coordinate system of the plamling scan by reslicing of the repeat CT scans. 

Details of the 3D chamfer matching algorithm and application can be found elsewhere 

[103,119]. The CT slice distance was 5 mm in most scans and 3 nun in some, the 

pixel size within the slices was 2 nun in all scans. 

c. Radiological thickness images (RTfs) 

POlial images for the aligned CT scans were simulated by calculation of radiological 

thickness images (RTIs). RTIs are a simplified form of digitally reconstructed 

radiographs, the difference being that a pixel value in a RTI is simply the sum of the 

electron densities in CT voxels along a ray line. Consequently the unity of the pixel 

values is easily interpretable: cm radiological thickness. In this study, only the RTls of 

the left lateral prostate fields were used because the prostate movements of interest 

occur predominantly in the sagittal plane; the lateral translation of the prostate is 

negligible and the rotation around the lateral left-right axis is by far the most signifi­

cant [29,65,75,103,112,119,128]. The lateral RTIs were obtained for all 60 CT scans 

with pixel size equal to the CT pixel size (2 l111n) at isocenter. 

Automatic detection of gas pockets in lateral RTIs appeared to be handicapped 

by the presence of other pixel gradients in these images due to variation in body 

contour and due to bony structures. In patiicular, the femoral heads were frequently in 
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the region where the gas pockets appear. To diminish the effect of these gradients, 

difference RTIs (dRTIs) were calculated; the pixel values in a reference RTI were 

subtracted from those in the repeat RTIs. The relatively flat background in the dRTIs 

made the gas pockets in a repeat CT scan appear as distinctive dark spots. Only the 

gas pockets in the repeat CT scan are useful since they give information about a 

possible change limn the reference situation. To avoid that a gas pocket in the repeat 

CT scan is neutralized by a similar gas pocket in the reference CT scan, the rectum in 

the referellce scan was automatically filled with water-equivalent CT values before 

calculation of the reference RTI (Le., gas pockets were removed). In order to study as 

many internal organ movements as possible, all scans were used both as reference and 

repeat scan. This yielded 12 dRTIs per patient, i.e., 180 in total. Since every CT scan 

had two RTIs (one normal and one without gas pockets that was always used as 

reference), inversion of two CT scans did not automatically yield exactly inverted 

dRTIs. 

d. Rectum wall shijl determillation /Ising gas pockets ill dRTIs 

The gas pockets were automatically detennined by searching for the dark spots in a 

specific region in the dRTIs. Since there was some a priori knowledge about the 

location of the gas pockets and because there were some practical restrictions, this 

region was limited in several ways. All dRTIs were overlaid with the beams eye view 

(BEV) projections of the corresponding reference prostate and reference rectum. The 

search region was then composed as follows: (I) The prostate projection was ex­

panded with a two-dimensional (20) margin of 1.5 cm because that was the usual 

margin from the CTV to the field borders in our institute. (2) The resuiting region was 

limited in the ventro-dorsal direction because of the known limitations in prostate 

movement, which is seldom more than 1.5 cm [103]. Therefore, the search region 

extended maximally 2 cm from the ventral rectum wall projection. (3) In the cranio­

caudal direction the search region was limited by the cranial and caudal ends of the 

prostate; the gas pockets showing up outside that region (Le. frequently in or near 

sigmoid or anus) did not have an effect on the prostate motion. An example of the 

resulting search area is shown in Fig. 7-3a. 

Within the search area the minimum pixel value in the dRTI was determined. If 

the minimum exceeded a celiain (thickness) threshold, a gas pocket might have been 

detected. The extensions of the gas pocket were then determined by searching for all 

neighboring pixels with values below the threshold, using the position of the 
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Figure 7~3 Determination of the rectum wall 
shifl III a dRTI. III (a) the cOllstructioll of the 
search area (dashed conlow~ llsed to find 
gas pockets in the dRT! fi'om the reference 
prostate (gray COlltOltl~ and rectum (}vhite 
cOlllow~ BEV projections is indicated. The 
search area is limited to the cralliO~Calldal 

lenglh of the plVstate, and extends 1.5 em 
(l'om the dorsal prostate edge and 2, a em 
(rom the ventral rectum edge. In (b) the gas 
pocket defection ill the same dRT! is 
illustrated. If the maximum radiological 
thickness difference ill the search area 
exceeds a user-defined threshold, the 
position of that maximum is used to start the 
search for connecting pixel values that also 
exceed the threshold. III (c) the autolllati-

a) 

b) 

1] 
cally detected gas pocket Is IlIdlcated by the c 

~ lightly dashed contollr. The rectum }vall shift ~ 

is estimated as the average AP shift along -0 

the cranio-caudal length of the gas pocket, 
as indicated by the arrows. 

minimum as a starting point (see Fig. 7-
3b). Hence a selected t1n'eshold can be 

considered as the minimal required 

lateral dimension of a gas pocket. If the 

gas pocket in the dRTI was positioned 

in the outermost cranio-caudal centi­

meter of the search area and if its size 

was smaller than about 0.5 cm', the 

pocket was discarded because there was 

a high probability that it was an artifact 
resulting from e.g. an imperfect 

alignment of bony structures. The 

applied radiological thickness threshold 

was varied to find an optimum value; 

too small thresholds resulted in picking 

c) 
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up too many atiifacts in the dRTIs, too large values resulted in the miss of genuine gas 

pockets. In Fig. 7-3c the detected gas pocket edge, using a tlu'eshold of 2 cm, is 

depicted. 

Also indicated in Fig. 7-3c is the method to estimate the local rectum wall shift 

from the detected gas pocket. Due to gravity, the gas pockets normally appear in the 

ventral part of the rectum for patients treated in supine position. The ventral edge of 

the detected gas pocket was therefore expected to con'elate with the position of the 

ventral rectum wall in the repeat CT scan. Consequently, the local rectum wall shift 

was obtained by calculation of the anterior-posterior (AP) position of the ventral gas 

pocket wall with respect to the rectum wall position in the reference CT, as is indi­

cated by its BEV projection. To get as much infonnation as possible, average shifts 

along the horizontal pixel lines in the cranio-caudal reach of the gas pocket were 

calculated (see Fig. 7-3c). Only the shifts in AP direction were considered because 

that was the clinically most relevant direction. 

e. RectulII wall shift validation 

To validate whether the local rectum wall shifts as measured from gas pocket edges in 

dRTls, they were cOlTelated with the "tme" local rectum wall shifts. The h'ue local 

rectum wall shifts could be detennined from the position of the rectum projection in 
the repeat CT scan relative to the rectum projection in the reference CT scan. Again 

the shifts were averaged over all horizontal pixel lines in the cranio-caudal extent of 
the gas ]locket. Con'elation coefficients, statistical significance, and the slope of the fit 

were detennined for the relation between rectum wall shifts estimated from gas pocket 

edges in dRTIs and tme rechn11 wall shifts. 

Since all 12 possible dRTls per patient were used in the cOlTelation, it might 

seem that some data are counted double, which would falsely improve the statistical 

significance. However, the dRTls are determined from subh'action of two images, and 
since the reference image (A') in this subtraction is different from the original (A) 

because the gas pockets have been removed, the subtraction image A-B' is not 

directly correlated to B-A'. Similarly, C-A' is not a simple combination of C-B' and 

B-A'. The reference image is only equal to the repeat image when there are no gas 

pockets in the rectum but in that case they are not counted in the correlation anyway. 
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f Prostate shift predictiol/ 

Since the prostate normally rests on the rectum and is at the base actually physically 

connected to it, a measured shift of the ventral rectum edge could well be a predictor 

of prostate shifts. Therefore the rectum wall shifts derived fi'om gas pockets in dRTls 

were also correlated with the AP translations of the center-of-mass (c.m.) of the CTV 

that were determined in a previous study with chamfer matches [103]. hI Sh011, 

differences in CTV position relative to the bony anatomy between two (not aligned) 

CT data sets of a patient, were determined by subsequent, 3D chamfer matches of the 

two CTVs and of the two bony anatomies, followed by a subtraction of the transla­

tional and rotational displacements in the bone match from those in the CTV match. 

Each scan was used as a reference to calculate the prostate position in the three other 

scans of a patient, which yielded a total of 180 3D prostate translations and rotations, 

identical to the number of dRTls. Correlations of the rectum wall shift with the other 

significant prostate movements (Le., c,m. translations in crania-caudal direction and 
rotations around the lateral axis) and with combinations of those movements were also 

a) b) 

R 

a=b 

AP 

Figure 7-4 A geometrical correction jactor Jor transforming detected rectum wall 
shifts ill AP directioll (TRlJiJ into prostate C.IlI. shifts in the AP direction (TAP), 
Schematic iI/ustrations o/recltml (R), gas pocket (G), and prostate (P) are depicted 
ill a situation without (a) and with correctioll (b). Dotted and dashed lines indicate 
the reference rectum and pl'Oslate, respectively; solid lines represent the repeal 
situation, Since it is assumed 'hat the prostate is physically connected to the rectllm, 
a correction equal to coi(aj is needed if/here is an angle (aj between rectllm wall 
and the vertical Sf axis. 
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investigated. Since they yielded far less significant results, they are not considered any 

further in this paper. 

In order to use the estimated rectum lVall shifts as a predictor for AP prostate 

c.m. movements, two corrections were applied. First, gas pocket edges never exactly 

coincide with the olltel' rectum wall edges since the rectum lVall itself is not taken into 

account. Moreover, the choice of the threshold also influenced the exact position 

where the gas pocket edge was detected; higher threshold values resulted in smaller 

detected gas pocket cross sections, with ventral gas pocket edges that moved in dorsal 

direction (see the slope of the gas pocket in Fig. 7-3b). Therefore the differences 

between gas pocket edges in the dRTI and tme rectum edges in the repeat scans were 

averaged for all data for a specific threshold, and a threshold-dependent cOlTection 

was applied on the estimated rectum wall shift. Second, in case of an angle a between 

the reference rectum wall and the SI axis, the rectum wall shift as derived from gas 

pockets was multiplied by a factor cos'( a) to predict the AP shift of the prostate c.m. 

(see Fig. 7-4). Angles larger than 45° were found, yielding cOlTection factors smaller 

than 0.5. 

g. Elficacy of the method 

An obvious drawback of the described method to determine prostate shifts is that it 
relies on naturally occurring gas pockets; there may be rectum wall and prostate shifts 

from the reference position without a noticeable gas pocket in the dRTI (i.e., false 
negatives). The efficacy of the method was therefore investigated by answering the 

following questions. (I) How often did gas pockets occur? For all 60 scans a sagittal 
CT reconstruction through the rectum and the center of the prostate was calculated. 

The number of potentially useful CT scans (of the 60 scans present) was determined 

by automatic and visual inspection of the presence of gas pockets in the relevant patt 
of the rectum. (2) How many of the occuning gas pockets were actually detected with 

the described method? Each occuning gas pocket should have been measured in three 

dRTIs because each repeat scan was combined with three different reference scans. 

(3) How many and what type of prostate movements could be detected by the 

method? This was the main question because ultimately the method should detect 

organ movements. If there is no significant change from the reference situation, there 

is no need for detection. Therefore, the percentage of prostate movements that was 

detected by the gas pockets was detennined as a nmction of the size and direction of 

the prostate translation. 
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IV. Results 

a. Example 

Tn Fig. 7-5 an example of a significant prostate shift between two CT scaus of the 

same patient, due to the appearance of a gas pocket, and its effect on the RTIs is 

demonsu·ated. In this figure six images are shown, two nonnal RTIs (a and b), two 
RTIs without gas pockets that are used as reference (c and d), and the two dRTIs of 

these images (e and I). Fwihellllore the BEV projection ofthe respective prostates and 

Figure 7-5 Demollstration of the correlation oj ventral rectum wall shift, gas pocket 
appearance, and prostate movement, as measured in radiological thickness images 
obtained jiWJl multiple CT data. For h1'O CT scallS, tlte normal RTls (a, b). the reference 
RTfs 'with the gas pockets removed (e, d), and (he dRTIs are indicated. Figure (e) is the 
difference beMeell (a) and (d), jigure (0 is the difference between (b) and (c). BEV 
projections a/rectums are indicated by solid lilies, prostales by dashed lilles. III the dRTls 

the reference organs are indicated by thick gray lines, the repeat organs by thill white 
lines. There is a good correlation between gas pocket wall, rectullI wall alld prostate 
position/or both the ventral and the dorsal shift. 
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rectums are indicated. In scan 2 the rectum is clearly larger than in scan I. In the 

difference image with scan 1 as reference and scan 2 as repeat scan (I), a rather large 

gas pocket is visible, the ventral edge of which cOITesponds nicely to the rectum wall 

in scan 2. Hence the edge of the gas pocket gives in this case a good estimate of the 

position of the rectum wall. Moreover, comparing the two prostate projections yields a 

clear ventral shift of the prostate which in tum cOlTesponds to the rectum wall shift. In 

the difference image with scan 2 as reference and scan 1 as repeat scali (e), a small 

gas pocket can be discerned. The edge of this pocket also aligns nicely with the 

cOITesponding repeat rectum edge of scan I. So even though the rectum wall and the 

prostate have moved dorsally, it could be detected by a gas pocket. This example also 

shows why the gas pockets are removed for calculation of the reference RTIs; if the 

large gas pocket in scan 2 had not been removed, the small gas pocket from scan I 

would not have been detected in the dRTI. 

Also visible in the difference images (e and I) are some black and white shadows 

that indicate the legs. Although the bony stmctures in the two CT images were aligned 

before the generation of the 

RTIs, it is impossible to 

align every bone if the legs 

have moved with respect to 

the pelvic rim. Hence there 

are some black areas that 

might be mistaken for gas 

pockets if a too low thresh­

old has been selected. 

b. Loca! rectlllll wall sh(1i 

In Fig. 7-6 it is verified 

whether the relation be­

tween the gas pocket edge 

and rectulll wall is always 
as straightforward as ap­

peared from the example 

showll in Fig. 7-5. The 

rectum wall shift as de-
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Figul'e 7-6 The correlation between (rile local rectum 
'wall shifts and rectum wall shifts detected using gas 
pockets in dRTls. Ventral shifts are positive and dorsal 
shifts negative, 
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rived from gas pockets in dRTIs is plotted against the true rectum wall shift (see 

section IIle). The thickness threshold that was used for gas pocket detection was 

equal to the optimal value of 2 cm. Lower values generated too many false positive 

gas pockets (Le., artifacts), which were mostly due to imperfect alignment of the bony 

sh·uctures. Another reason for the occunence of false positives is that the smaller gas 

pockets are not always positioned at the ventral border of the rechnll but can be found 

anywhere in the rectum. Threshold values larger than 2 cm reduced the number of 

detected gas pockets, i.e., increased the number of t:1lse negatives, and hence de­

creased the efficacy of the method. Fig. 7-6 shows an excellent conelation between 

tme and estimated rechlm wall shift, r = 0.97. This implies that if a gas pocket is 

detected in a lateral potlal image, one is able to predict the position of the local rechllll 

wall with great celiainly. The offset of the straight fit from zero is due to the fact that 

the gas pocket edge is always more dorsal than the true rechUll wall due to the 

thickness of the wall itself and due to the tlu'eshold that is used to detect the gas 

pocket (see section III}). For a 2 cm threshold, the combination of these two factors 

yields an offset of about 7.5 mm. The slope of the fit (0.88) is somewhat smaller than 

the expected value of 1. The number of data points is 41 out of a possible 180, which 

will be discussed in section III.d. 

c. AP prostate cellter-ofmass movemellts 

The remaining question is whether a rechllll wall shift that has been detected with a 

gas pocket can also predict prostate c.m. movements. In Fig. 7-7 the measured AP 

Figure 7-7 The correlatioll E 15 
between AP movements oj the .S-

r = 0.88 •• p < 0.001 
c.m. of the prostate, as '" 10 s = 0.68 
measured with 3D chamfer :c 

n = 41 (f) 

matching, and rectum wall :;: 
5 • 

shifts detected from 0 • • I • gas U . . 
pockets ill the dRTfs. The 

~ 
• • o oo~ 

0 
applied rectum wall shifts • • 0 • 
were corrected for tile slope ~ .. • 

0. -5 • • 
of the rectum wall lIear the 0.. • • 
gas pockets and the threshofd- « 
dependent distance behveen -10 

the true rectum 'wall and the -15 -10 -5 0 5 10 15 20 
gas pocket edge. Corrected AP rectum wall shift detected with GP (mm) 
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rectum wall shifts (with threshold equal to 2 cm) that were corrected for offsets and 

tilted rectum walls (see section JIlj), are plotted versus the cOlTesponding AP 

translations of the c.m. of the prostate that were measured with 3D chamfer matching. 

The correlation coefficient of 0.88 is highly significant, the slope of the fit equals 

0.68. One possible explanation for the correlation and the slope not being equal to 1 is 

that the translation of the prostate celltel' 0/ mass has been plotted against a local 

rectum wall shift, and for instance prostatic rotations have not been taken into 

account. FmihemlOre, especially near the cranial part of the prostate (where most gas 

pockets are observed), there can be a relatively wide separation between prostate and 

rectum, i.e., the rectum may shift locally without moving the prostate with it. Tllis can 

cause an overestimation of the expected prostate h'anslations and consequently a 
decrease of the slope in Fig. 7-7. The offSet of the linear fit through the data points 

actually becomes zero, which implies that the threshold dependent correction was 

adequate. 

d. Efficacy a/the method 

As shown in Figs. 7-6 and 7-7, the number ofintelllal organ motions detected by gas 

pockets was 41, i.e., 23% from a possible total of 180 internal motions. At maximum, 

51 rectum wall shifts might have been detected because visual inspection indicated 

that 17 of the 60 CT scans contained a gas pocket in the relevant part of the rectum, 

and each gas pocket should be visible in 3 dRTls. This implies that the method found 

80% of the occuning gas pockets. In Fig. 7-8 the percentage of detected AP prostate 

movements is plotted as a fimction of the minimal size of the movement (i.e., data 

with absolute prostate translations smaller than the nlinimum are discarded). If all 180 

prostate shifts are considered, the previously mentioned 23 percent can be detected. 

With increasing minimum AP shift, the detection probability increases to about 50%. 

When only the ventral prostate shifts are considered, 40% (4 of 10) larger than 5 nlln 

was accompanied by a detected gas pocket, and all shifts (3) larger than 7 mm were 

detected. This trend is due to the fact that large ventral shifts imply a large increase in 

rectum volume which are more likely to be accompanied by gas pockets. For the same 

reason, dorsal prostate movements are far less likely to be detected (although they can, 

see the example in Fig. 7-5). This also explains the asymmetrical shape of Fig. 7-7. 

In clinical practice one nlight be pmiicularly interested in ventral shifts because 

those imply movement of the rectum, which is the most critical stl1lcture for prostate 

treahnents, into the treatment field. In our institute, the ventral shifts donlinate because 
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Figure 7-8 EjJectiveness of the method described ill 
this paper, The percentage of prostate movements 
aclllally deleclable by gas pockels is plOl/ed as a 
(ullction of the minimum AP prostate Irans/ation, 
cOllsiderillg 1) all dala, 2) ollly Illose dala wilh sllifls ill 
the ventral direction, 3) only those data with shifts in 
dorsal direction, and 4) 01l/Y those data with the 
original planning CT as reference. For the latter 
(clinical) ca/ego!J', about 50% of translatiollS larger 
than 5 111m was detected. 

rectum laxation is used 

before acquisition of the 

plmming CT scan. The 

detection probability for the 

45 shifts with respect to the 

clinical planning CTs only, 

con finn this: 50% (3 of 6) 

of shifts larger than or equal 

to 5 n11n is detected. 

V. Discussion 

a. Clinical porlal illwges 

In order to use clinically 

acquired portal images to 

quantify intemal organ 

movement, the "repeat" 

pOllal image as acquired 

with e.g. an EPIO should be 

comparable to the reference 

image as acquired from the 

CT data. This implies that 

the clinical portal dose 

image should be converted 

to a reference RTI, or vice 

versa. Pasma el al. have indicated that RTIs can be derived jiOln portal images 

obtained with a charge·coupled device camera based fluoroscopic EPIO [84,86]. In 

shOlt, a transmission image can be obtained from the ratio of a pOital image acquired 

with the patient in the beam and a portal image acquired without the patient in the 

beam. The raw EPIO images are only cOlTected for the nonlinear response of the 

system [85]. The radiological thicknesses are then determined from the primary 

component of the transmission, which is obtained by correcting the transmission 

image for scatter from the patient onto the EPIO. 

The clinical images will generally be noisier than the simulated RTIs used in this 

study, which might make the smaller gas pockets invisible. Furthennore, small 
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allifacts due to e.g. misalignment of bony stmctures might occur more frequently in 

clinical images since matching of bony shllctmes will nOllllally be done in 2D, instead 

of 3D as in this study. If too many artifacts appear, the threshold for gas pocket 

detection might have to be increased. This would decrease the number of detected gas 

pockets, but the largest and most significant ones would still be caught. 

Figure 7-9 Simulaliall of a dRTf by 
subtraction of two clinical portal 
images. A reference portal image 
witflollt significant gas pockets has been 
subtracted fi'om the portal image that 
'was shown in Fig. 6-1. The difference 
image makes the edge of the gas pocket 
more pronounced, 'which enables 
accurate automatic detection of the edge 
of Ihe gas packel (dashed lille). The bOIlY 
structures oj the images were matched 
before the subtraction (as is demoll­
strated by the black and while edges at 
Ihe field border'), 10 be able 10 foclls all 

the internal organ motion only. 

Fig. 7-9 sholVs that the basic principle of the method, detennination of a rectum 

wall in a difference image of two pOlial images, also works for clinicalmegavoltage 

images. The gas pocket clearly shows up as a dark spot in an overall relatively flat 
difference image which enables automatic detection. This indication is further 

supported by clinical portal images that were available for 9 of the 15 patients in this 
shldy. The 2 patients who showed the most variation in the clinical images due to 

appearance and disappearance of gas pockets, also had on average the largest gas 

pocket size in the CT data, and vice versa. 

b. Clinica! application of the method 

The main result of this Shldy is that the position of venh'al gas pocket edges as 

observed in dRTIs (i.e., portal images) with respect to the reference rectum edge, 

cOlTelates highly significantly with rectum wall shifts (Fig. 7-6) and AP prostate 

movements (Fig. 7-7). An impOllant advantage of the proposed method for internal 

organ motion detection over other methods is that it is noninvasive and no extra work 
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during treatment is required; portal images are already routinely made for setup 

verification in our institute. In clinical practice, the method seems mainly useful for 

oil-line con-ections of internal organ positions. In this case the images are acquired 

using only a small fraction of the total inadiation, which is subsequently intenupted, 

and the setup deviation is determined by matching the bony structures in the portal 

image with the reference image. The portal image is then aligned with the reference 

image and a dRTI is calculated after conversion of the pOltal dose image into a RTI 

(see section V.a). If a rectum wall shift from the reference situation is found in the 

dRTI, two different strategies may be followed before the rest of the fraction is given. 

The first strategy is aimed at sparing the rectum. Especially the local rectum wall 

position can be predicted accurately with the described method (see Fig. 7-6). At 

some (boost) stage of the prostate treatment, sparing of the rectum volume might get a 

higher priority than adequate ilTadiation of the tumor [130). Hence, in case the ventral 

gas pocket wall in the dRTI indicates that a significant part of the rectum wall has 

moved into the treatment field, a cOlTection of the table position or the lateral treat­

ment field can be applied so that the rectum wall is better shielded. If the fields are 

shaped with multileaf collimators, improved local shielding of the rectum might be 

obtained by moving only some of the leaves. 

The second strategy primarily aims at an accurate irradiation of the prostate. If a 

rectum wall shift is observed, the fit in Fig. 7-7 can be used to detennine the probable 

prostate movement. The isocenter of the lateral beams can then be moved accordingly 

before the rest of the fraction dose is applied. The prostate position is less accurately 

predicted than the rectum wall position, but if action is undertaken only in case of 

larger prostate shifts (e.g., > 5 mm), the benefits will be greater than the damages. 

Even if only a limited percentage of prostate movements is correctable (i.e., accompa­

nied by gas pockets), the size of the safety margins and treatment portals might be 

decreased. For instance, the overall standard deviation of the AP prostate c.m. 

movements for the 45 shifts from the planning CT scans in this study was 3.8 mm. If 
the detected gas pockets would have been used to COlTect the prostate position (in II 
cases), this standard deviation would reduce to 2.8 mm. If we assume the planning 

margin equal to about 2 times this overall standard deviation [102) (and if we neglect 

other sources of uncertainties), a significant margin reduction of 2 nun would be 

justified. 
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c. Possible improvement andjiltllre developments 

Half of the AP translations of the CTV from the planning CT scan situation larger 

than or equal to 5 nun were detected with the described method (Fig. 7-8). The 

laxation before the planning CT scan causes the rectum to be on average relatively 

empty, so larger shifts will occur if the rectum is full in the repeat situation. Because 

gas pockets are more likely to be found in fuller rectums, laxation results in a rela­

tively high detection probability of large shifts. In theory there is ample room to 

improve the detection probability but different treatment protocols or patient instmc­

tions which might establish this seem not so realistic. For instance, possible injection 

of air in the rectum before the inadiation session will seriously complicate the 

otherwise so simple and quick method. FUl1hermore it can probably only be consid­

ered for a prostate boost at the beginning of the treatment [16], because radiation­

induced proctitis may hampcr it at the end. 

To increase conection accuracy, the con'elation of rectum wall shifts with 

prostate translations might be improved. To tty this, additional information from the 

dRTIs, like size, position, and the extreme pixel values in the gas pockets in dRTls, 

was added to the regression analysis but it appeared that at least three variables were 

needed to really improve the correlation, which prevents a clear physical understand­

ing of what is going on. Altematively, from sagittal CT reconstructions the gap 

between prostate and rectum in the cranial part of the prostate in the reference 

situation can be measured (see section IV,c). In the BEY projections of rectum and 

prostate this is normally not visible because of the frequent overlap of the prostate and 

rectum. If such a gap exists, a rectum movement in the ventral direction might have a 

reduced effect on the prostate which may be conected for. This correction can not 

however be applied for the inverse (dorsal) rectum wall motions because in clinical 

practice it seems not possible to predict fi'om one planning CT scan if a gap between 

rectum and prostate will develop or not. 

Before preparing a possible clinical introduction of the method, available clinical 

portal images will be checked for gas pockets to verify whether they appear as 

frequent as in the 60 CT scans used in this study (28%). There might for instance be 

time trends in the gas pocket formation which were not detectable in the limited 

amount of data points available in this CT based study. Treatment fractions from 

which multiple portal images have been acquired can be used to determine the 

likelihood of intratreatment motion. F1II1hennore, a clinical test of the method should 

be done by comparing CTV movement as measured by gas pockets with CTY 
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movement as measured from the same images using radio-opaque markers. Such a 

study is clm-enlly being perfonned. 

d. Conclusion 

A quick and noninvasive method has been proposed for determination of intemal 

organ motion in prostate cancer patients with an EPID. A study based on multiple CT 

data indicated that gas pockets in nonnal portal unages (i.e., without radio-opaque 

markers, etc.) might be used to detect the ventral rectum wall and the prostate c.m. 

position. Since not all portal images display gas pockets not all movements can be 

detected, but the method is especially sensitive for the larger movements; half of the 

AP shifts larger than or equal to 5 1111n and all shifts larger than 7 111111 were detected. 

The accuracy of the method to quantify the AP movement of the prostate and espe­

cially the local rectum wall is more than adequate. Hence clinical pOlial images which 

were until now only used for setup conection, might also be used to correct field 

shapes for internal organ motions. 
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CHAPTER 8. GENERAL DISCUSSION 

I. ICRU 50 volumes 

This thesis deals with the determination and minimization of safety margins for 

geometrical inaccuracies that occur dming radiotherapy of cancer patients. With the 

rapidly increasing technological possibilities to closely shape the high dose volume to 

the tumor, and the increasing interest in dose escalation, taking into account the 

geometrical uncertainties has become cmcial. The Intemational Commission on 

Radiation Units and Measurements recognized this by publication ofICRU report 50 

in which volumes are defined which should be used in the platming of a radiation 
treatment [54]. The first volume is the gross tumor volume (GTV), which contains the 

palpable and/or visible tumor. Around the GTV, a margin should be taken for 

invisible microscopic extension of the tumor, yielding the clinical target volume 

(CTV). Finally, extra margins should be applied to account for geometrical uncertain­

ties during treatment, yielding a planning target volume (PTV), which should be 

planned with the prescribed tumor dose in order to ensure an adeguate dose coverage 
of the CTV. 

II. Automatic 3D expansion of the CTV to generate a PTV 

The ICRU 50 report did however not explain how a given margin can be constmcted 
around a 3D volume. In clinical practice, anatomical stmctures of interest in the 3D 

CT data sets have always been delineated manually and slice-by-slice. However, to 

manually draw a 3D margin around an already existing 3D volume is an impossible 

task. Therefore an algorithm have been developed to perfonn this task accurately and 

generally within minutes (see Chapter 2). The algorithm is now used routinely in our 

institute and implemented in at least one commercial planning system (CadPlan, 

Varian-Dosetek). Almost simultaneously another group published a different method 

for 3D margin calculations [15], followed by another algorithm one year later [10]. 

An algorithm published earlier perfonned automatic multi-2D margin calculations [5]; 

slice-by-slice a 2D margin was applied, ignoring the third dimension (perpendicular to 

the slices), and simulating manual 2D extension of a 3D volume. That the lllulti-2D 

approach can lead to serious elTors has been shown in Chapter 3; tumor cono'ol 



124 Chapter 8 

probabilities can decrease with 15%. Similar results were found in a comparable study 

published in the same year [59]. Nevertheless, still not all planning systems are 
equipped with an algorithm for automatic margin calculation in three dimensions. 

III. Calculation and verification of 3D margins based on patient data 

How large the CTV-to-PTV margins must actually be was another issue untouched by 

the ICRU repOli. To answer this question the typical geometrical uncertainties 

associated with certain ilTadiation treatments should be known (see Chapter 5). 

Therefore many hospitals have investigated the extemal set-up variations for various 

tumor sites [11,14,18,22,23,25,26,27,30,31,35,36,39,44,46,50,51 ,53,78,91,96,10 1, 

108,121]. Lately, intemal organ movements have also been examined, especially for 

prostate cancer patients [3,7,9,75,97,99,119,122]. However, complete geometrical 

uncertainty data of other tumor sites than the prostate (and lung) tumors are rare and 

should be still acquired. The question is also whether data from different institutes can 

be shared or if each institute must detelmine their own database due to large inter­

institute differences in patient treatment (see Chapter 5.V.c). 

Most of the geomellical unceliainties are repOlied as standard deviations. 

Different strategies are applied to obtain margin sizes from these standard deviations. 

In Chapter 4 such a strategy has been developed by investigation of the effect of 

geometrical unceliainties on the dose in the CTV for each individual patient. This 

resulted in margin sizes equal to about 2 times the systematic deviation plus 0.7 times 
the random deviation, i.e., systematic "every-day" deviations are far 1110re impOltant 

than random "day-to-day" deviations. Many authors do not really make this distinc­
tion. FUlihermore, the margins are ol1en based on the probability of the CTV lying 

outside the PTV (see Fig. 4-1), which ignores the effect of the uncertainties on the 

dose dislIibution in the CTV. Consequently they arrive at different margins 
[4,56, Ill]. One group that does recognize the difference between systematic and 

random deviations has recently come to similar recollllnendations for margin sizes as 
described in this thesis [118]. They developed a model that calculates PTV-margins 

based on so-called dose population histograms, which are comparable to the dose 

probability histograms described in Chapter 4. However, their model is still purely 

theoretical since it can only be applied for spherically synnnehical CTVs (which 

implies also that rotations are not taken into account) and with perfectly homogeneous 
dose distlibutions. 



Genera! discussion 125 

The dose probability histograms as presented in Chapter 4, show the average 

dose volume histogram of the CTV of a particular patient for all possible systematic 

deviations that can occur in the patient group. To include random deviations the dose 

distribution as calculated by the plalllling system is convolved with the appropriate 
uncertainty distributions. An adequate itTadiation is only obtained when the final dose 

probability histogram shows a high uniformity of the CTV dose; i.e., on average a 

high percentage of the CTV volume (e.g. > 99%) must receive a high dose (e.g. > 
95%). There are also groups which calculate the average treatment situation simply by 

monte-carlo simulations, i.e., multiple sampling fi'om all possible CTV movements 

using a large data base of measured set-up deviations and intemal organ movements 

[60,73,74]. The advantage is that motion of ctitical organs and the mutual dependency 

of different movements can more easily be taken into account. However, monte-carlo 
simulations are more time consuming than the more analytical solutions (like in 

Chapter 4), which makes them rather tedious to use in clinical practice. Furthermore, 

the authors did not present simple margin presctiptions based on their simulations. 

IV. Intel'llal Target Volume (lTV) 

The ICRU has not yet addressed the two problems mentioned in the previous two 

paragraphs. However, in a new report that is presented as supplement to ICRU 50, the 

lCRU 50 nomenclature has been extended with the introduction of the intel'llal target 
I'oltlllle (lTV) to separate set-up etTors from internal organ motion [55]. Tins concept 
has originally been proposed by the Nordic Association of Clinical Physicists (NACP) 

[I]. In their repOli, the lTV is equal to the CTV plus margins for internal organ 

motions and delineation uncertainty. The effect of patient and beam set-up deviations 

is overcome by use of a Settlp Margin; for each separate beam, margins should be 

added in the beams-eye-view to ensure that the prescribed dose is delivered to the 
lTV. The reason of the NACP to distinguish between organ motion and set-up 

deviation is that two kinds of reference points are used in clinical practice: Extel'llal 
Reference Points (skin markings, etc.) for patient set-up and Internal Reference Points 
(bony stmctures) for deternnnation of internal organ motion. Another advantage of the 

lTV would be its closer resemblance to the CTV, i.e., the planned lTV dose gives a 

better indication of the CTV dose than the plalllled PTV dose. However, there are 

some remarks to be made about the use of an lTV as proposed by the NACP. 

First, the practical implementation is not fully clear. The use of Setup Margins 

for vatiations in the bealll set-tip, due to uncertainty in field shape for instance, 
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appears a logical idea. However, the largest setup variations are due to 3D patient set­

lip deviations, especially since the beam setup is almost fully automated in these days. 

I! seems rather cumbersome to adjust the 2D field sizes for 3D motions, instead of 

applying a 3D margin around the CTV. Tn order to obtain applicable (simple) Setup 

Margin sizes, the set-up deviations must be perpendicular to the beams. Since the 

deviations are usually measured in the three main Olihogonal directions, coordinate 

transformations would be required when gantry angles differ fi'om 0° or 90°. This is 

not always trivial in case of oblique beams, and even more so when the deviations 

also contain (out of plane) rotations. According to the NACP, the size of the Setup 

Margins should ideally be determined iteratively, in such a way that the cumulative 

dose distribution, Le., corrected for set-up deviations, still encloses the TTV with the 

prescribed isodose. (The dose distribution in the lTV only makes sense when the 

distribution has been cOlTected for the deviations). This might be accomplished 

similar to how margins for random uncertainties are calculated in Chapter 4 and by 

Bel et al. [13]; the dose distribution is convolved with the distribution of uncertainties, 

and the shrinking of the prescribed isodose volume determines the required margin. 

Second, there is no need to separate internal organ Illotions and set up variations 
completely. If the treatment room coordinate system is taken as the reference, one can 

consider both geometrical variations as movements of the tumor within the fixed dose 

distribution delivered by the accelerator in the 3D space. Apart from the second order 

approximations mentioned in Chapter 4.V.b, the effect of set-up errors on the tumor 

dose equals the effect of intemal organ motions with the same standard deviation. 

Since the two types of variations are generally independent, their respective standard 

deviations should be added in quadrature to detennine the overall deviations (and 

hence the margin). If they are added linearly, as suggested by the NACP, the final 

margin will become too large. The NACP claims that the extra margin is needed to 

"ensure a save patient set-up using the extel'llal r~rerence points". But, although 

extel'llal reference points are nOlmally used for set-up, both organ motion and set up 

movements are analyzed with respect to the same internal reference points, Le., bony 

stmctures, so that quadratic summation ofthe standard deviations seems legitimate. 

Third, of major concem in the NACP proposal (and also in the new ICRU report) 

is that no distinction is made between systematic and random deviations. In Chapter 4 

was shown that this distinction is crucial for margin calculations. In the NACP report 

is suggested that systematic deviations should be corrected by portal imaging, but this 

is generally only possible for set-up deviations. Fut1hennore, unless on-line every-day 

corrections are applied (which will also reduce random deviations), there will always 
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be some residual systematic deviation left. The NACP also suggests to add the 

standard deviations of systematic and random deviations in quadrature. As an 

example, they mention a margin to accolmt for intemal organ motion equal to about 

0.6 times this total standard deviation. The mUltiplication factor (0.6) is approximately 
equal to what was found to be adequate for random deviations (see Chapter 4 and Bel 

et al. [13]), but it is too small to account for systematic deviations, which require a 

mUltiplication factor of about 2 (see Chapter 4). 

As pointed out before, an advantage of the lTV over the PTV is that the lTV 

dose is closer to the real CTV dose than the PTV dose because the set-up deviations 

are accounted for in the expected cumulative dose distribution. This makes it a better 

predictor of the treatment outcome. However, the effects of intemal organ motion and 

systematic deviations are not yet included. To get a full picture of the expected CTV 

dose, it might be better to use the dose probability histograms (DPHs) of the CTV as 

recommended in Chapter 4; the effect of all types of uncertainties on the dose 

distribution in the CTV is visualized in one graph. If the DPHs are used to adjust the 

treatment fields iteratively, the PTV becomes just a tool to guide the treatment plarmer 
in defining conect field sizes, but the dose in the PTV itself becomes superfluous; the 

DPHs of the CTV will then be used for prescribing, recording, and reporting radiation 

treatments. With the clinical introduction of automatic inverse treatment planning, one 

might even leave out the PTV completely; instead of optimizing the dose distribution 

in the PTV, the randol1l-deviatioll-corrected dose (i.e., convolved with the dish'ibution 

of random deviations) in the coverage probability volllllle oj the CTV Jar systematic 
deviatiolls could be optimized. In this matmer, the effects of all geometrical uncer­

tainties might be incorporated during the optimization. This is subject of further study. 

V. On-line cOl'l'ections 

The logical solution to avoid complicated margin calculation is to reduce the geomet­

rical lmceliainties to negligible values. The obvious way to achieve that is by on-line 

con'ections, i.e., by correcting the tumor position each day before the full irradiation 

dose is given. For set-up variations, the use of electronic portal imaging for this 

purpose has been investigated several times, as is described in Chapter 6 and in 
previous publications [7,30,31,35,39,71,116,117]. The accuracy that can be obtained 

by this method is in principle limited by the accuracy of the measurements and the 

corrections, which depends highly on the mechanical accuracy of the accelerator, 

treahnent table, and EPID. The predominant obstacle for routine clinical application is 
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still the extra time that is required to measure and COlTect the patient set-up on-line. In 

our institute, on-line cOlTections are at the moment only applied when the random set­
up variations of a patient appear too large for meaningful application of the off-line 

cOlTection protocol (see Chapter 6). For these patients, only variations larger than a 

specific threshold are cOlTected, which seriously reduces the amount of corrections 

(and hence extra treatment time), whilst maintaining a very high accuracy (see 

Chapter 6). 

Online conection of intemal organ motions is more complicated because the 

tumor is nonnally not visible in the pOltal images that are obtained using the treatment 

beam. In 0 a method to infer the prostate position from the gas pockets that are visible 

in routine pOlial images is presented. The method may be quick and simple but the 

final accuracy will be limited because internal organ motion is not always accompa­

nied by gas pockets. Clinical studies are needed to evaluate the use of this method. At 

the cost of an extra burden for the patient, radio-opaque markers can be implanted in 

the tumor to increase the visibility of the prostate [7,16,122]. Other imaging modali­

ties like ultrasound [64,113] or CT [65,72] may also be applied. Ultrasound has the 

advantage of being quick and easy to apply, whereas CT scans display a better image 

quality, but at the moment these techniques are still in the experimental phase. 

However, development of accurate and easy-to-use tools for on-line detection and 

correction of tumor position would lead to significant reductions in safety margins 

with new possibilities for dose escalation. 

VI. Future directions 

Apmt from fUtther improvement of on-line conection procedures, some other hot­

topics concerning geometrical uncertainties in radiotherapy are the following: 

lueasurement and COlTection of rotations, the measurement and minimization of intra­
treatment variations, the incorporation of biological models mId critical organ motion 

to detennine treatment margins, and the accurate delineation of the target volumes. 
Some discussion on these issues is supplied in the next sections 

a. Rotations 

For patients treated in the pelvic area, rotational variations in internal tumor position 

can be up to 20°, see Chapter 5 and van Herk et al. [119]. The external set-up of 
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patients with head and neck tumors can be rotated up to 10° with respect to the 

reference position [40]. The measurement of rotational set-up deviations in portal 

images can normally only be perfonned within the plane of the portal image. If 

serious out-of-plane rotations occur, the bony stmctmes will project differently in the 

portal image and will not match with the reference image anymore. Only sophisticated 

software can provide the 3D rotations from 20 portal images, and at least 2 portal 

images are required to match them with the 3D CT data sets (41). Internal rotations 

have up till now mainly been measured in patients with prostate cancer. Since the 

principal rotation axis appears to be pelpendicular to the sagittal plane, in principle 

one sagittal image through the prostate is sufficient to establish the rotation. Once the 

typical rotations are known, they can be used to deternune the CTV -to-PTV margin 

(see Chapter 4). It gets more complicated when parts of the CTV can rotate with 

respect to each other. For gynecological tumors, the primary tumor region that is 

located within the pelvic bone can rotate with respect to the elective lymph nodes that 

lie along the spinal cord. In that case one nught have to split the CTV in two, deter­

mine separate margins for both pmis, and combine the resulting volume into one PTV. 

Instead of applying safety margins, one might try to COlTect for rotational 

variations, either on-line or off-line. It is however more difficult to handle rotations 

than translations, which are cOlTected by shifting the treatment table. In-plane 

rotations are also relatively easy to cOlTect; if the rotation axis is in the same direction 

as the beam axis, the rotation can be cOlTected by rotating the collimator if one is 

careful to use the same rotation axis in the cOlTection as in the measurement. Nonnally 
however, multiple beams are used from different directions. In theOlY, all possible 

tumor rotations can be covered by combinations of rotations of collimator, gantry and 

treatment table. In practice, this can imply unacceptable changes in treatment geome­
try. Consequently, a table has been developed which can tilt and roll within a range of 

±4° (48). The range may be too small in some cases, but larger rotations of the table 

nught cause a change in the patient anatomy ( or worse). Therefore, the general 

solution is to correct rotations by tr'anslations, aligning especially those stmctmes with 

the highest priOlity (often close to the isocenter). The residual rotational variation 

must then be included in the PTV margins (see Chapter 4). 

b. Intra-treatment variations 

Another subject currently under investigation is the minimization of the effect of intra­

treatment variations, i.e., trunor movement during one radiation session. Although this 
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can in principle be considered as a random variation (if the reference position is equal 

to the average intra-treatment position), which contIibutes relatively little to the PTV 

margin (see Chapter 4), the amplitudes for intel11al organ motion due to breathing can 

be over a centimeter [8]. Furthellnore, combination of intra-treatment motion of the 

target with intra-treatment variation of the field shape, as happens with dynamic multi 

leaf collimation, can yield serious over- and underdosages [127]. Therefore, especially 

for treatment of tumors in the upper torso new equipment is being developed to 

account for this movement, either by automatically turning the accelerator on and off 

at specific moments in the nOllual breathing cycle [62], or by artificially controlling 

the breathing cycle during treatment by interrupting the air supply [124]. The fanner 

method is still in the experimental phase and the latter method seems quite a burden 

for the patient. It is therefore not clear whether these techniques will be routinely used 

in the future. Although the treatments in the thorax region are most likely to display 

significant intra-treatment motion, recently MR imaging has been used to demonstrate 

prostate movement during one treatment [83]. Because control of the tumor position 

seems not possible for the prostate as for lung tumors, the intra-treatment motion will 

remain even in case of on-line tumor position correction, and should be included in 

the PTV margins as being random variations. 

c. Biologicalmodellillg 

The criteria that were used in the margin calculation procedure described in Chapter 4, 

were based on geometrical considerations; the field sizes should be such that on 

average a sufficiently homogeneous dose is delivered to the CTV. However, the 

clinical value of a treatment might be scored better using biological models that try to 

predict the tumor control probability (TCP) and normal tissue complication probabili­

ties (NTCP) fi'OlU the calculated dose distributions in tumor and critical organs, 

respectively. In theory, margin calculation could be based on TCP and NTCP as well. 

The problem with these parameters is however that they are not yet reliable enough. 

Especially for the NTCP, more clinical studies are needed to justify their use. In 

inverse radiotherapy treatment plmming a similar discussion is going on. There is 

much controversy about whether radiobiological models can already be used or if the 

optimization should still be based on dose and volume criteria only [19,21]. 

If the CTV-to-PTV margin that yields an optimal radiobiological effect is to be 

calculated, a combination of TCP and NTCPs must be optimized. This poses the 

question of how the probability of tumor control should be compared to the probabil-
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ity of sedous complications. To some extent, this comparison will always be arbitrary 

but there seems to be some consensus about a quantity called p+ which unites the TCP 

and NTCPs for all critical organs in a simple manner [21]. When determining 

margins, the position variation of the critical organs should ideally be taken into 

account as well. However, critical organs like bladder and rechun can, apart limn 

moving around, also vary significantly in shape. Several groups have started to 

develop models to describe these vadations [74,125). 

d. Delilleatioll IIl/certail/ty reductioll 

Concerning reduction of uncertainties in radiotherapy, probably the largest progress to 

be made is in accurate detennination of the CTV borders. Due to the insufficient 

visibility in the diagnostic images of these borders (and especially the microscopic 

spread), there can be significant vmiation in delineation. This uncertainty has not been 

addressed in this thesis so far because it is somewhat different from organ motion or 

set-up deviation; there is uncertainty in size instead of positiol/ of the CTV. Further­

more, the delineation accuracy can be very anisotropic due to variations in smround­

ing tissues. However, since tumor delineation is perfollned only dming planning, 

possible enors are systematic (i.e., influencing all treatment fractions) and should not 

be ignored. Variances in delineation rnight therefore somehow be added to the 

variances of the systematic set-up deviations and organ motions [I). Nevertheless, at 

the moment few people explicitly include these uncertainties when establishing 

margins. 

CT is the standard imaging modality used to obtain 3D patient data for radiation 

treahnent planning. CT has the advantage that Houndsfield units of the CT are easily 

converted into electron densities, which are required for adequate dose calculation. 

Unfortunately, not all tumors are clearly visible in these images because the tumor can 

have similar electron densities as its sunoundings; for instance, it can be very hard to 

distinguish the border between bladder and prostate in CT images. Many investiga­

tions have been perfollned to determine the variability in hunor delineation, especially 

for prostate cancer. Local differences between physicians or between the same 

physician at different times can exceed I cm [24,37,68,100,115,131). 

To increase the delineation accmacy many groups have investigated the use of 

other image modalities like MRI, SPECT or ultrasound to find the real tumor borders 

[6,33,58,76,92,93). Since these images are not suitable for treahnent planning 
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(because direct information about electron densities is lacking), delineations in the 

images should be transferred to CT images to be able to continue the planning. This 

has stimulated a whole new field of 3D matching of images of different modalities 

[58,88,110,120]. But, whatever modality is used, there will always be some inter­

physician variability. To avoid this, software should be generated to contour the 

different organs automatically. This would also reduce the time that is required for 

planning considerably, but until now the only contours that can be drawn automati­

cally are around high contrast organs like bones or patient skin. 
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SAMENVATTING 

Inleiding 

De behandeling van kankelpatienten met radiotherapie is er op gerieht de tumor te 

vernietigen door middel van ioniserende straling. Bij exteme radiotherapie wordt de 

straling meestal gegenereerd door een lineaire versneller. De patient wordt op de 
behandeltafel in de versnellerruimte gelegd en de stralenbundel uit de versneller wordt 

op de tumor gericht. Meestal wordt er vanuit meerdere richtingen gestraald am de 
schade aan het nonnale weefsel (dat altijd meebestraald wordt) zoveel mogelijk te 

beperken. Radiotherapie is het effeetiefst wanneer de totale dosis in meerdere fraeties 

wordt gegeven; het nonnale weefsel kan tussen de fraeties beter herstellen dan het 

tumor weefse!' Een vereiste is dan dat de tumor zieh elke fraetie op dezelfde geplande 

(referentie) positie ten opziehte van de bestralingsbundels bevindt. Maar hoewel er 

veel aandaeht wordt besteed aan het betrouwbaar positioneren van de patient, zijn 

geomettisehe variaties onvennijdelijk. Deze valiaties kunnen opgesplitst worden in 

"systematische" and "random" varia ties. Systematische variaties geven aan hoe de 
gemiddelde afwijking van de referentie positie varieert van patient tot patient, tenvijl 

random variaties een indicatie geven van de van-dag-tot-dag verschillen in de patient 
positionering. 

Uit praktisehe overwegingen vindt er ook vaak een opsplitsing plaats tussen 

externe positioneringsonzekerheden en interne orgaan bewegingen. Onzekerheden in 

positionering zijn variaties in de positie van de patient ten opziehte van de stralenbun­
dels. Deze wordennonnaal gesproken gemeten met (elektronisehe) afbeeldingsappa­

ratuur, waarmee, net als bij een nonnale riintgenfoto, een doorliehtingsbeeld van de 

bestraling kan worden gemaakt (niet aile straling wordt in de patient geabsorbeerd). 

De botstructuren die in deze beelden zichtbaar zijn, kunnen dan vergeleken worden 

met de geplande referentie situatie. Orgaan bewegingen zijn de bewegingen van de 
tumor ten opzichte van de bot sOlleturen. Het is minder eenvoudig om deze bewegin­

gen te meten omdat de tumor zelf meestal niet ziehtbaar is in de doorliehtingsbeelden, 

maar versehillende methoden om dit te ondelvangen zijn in ontwikkeling. Om te 

voorkomen dat de tumor gemist wordt tijdens de bestraling als gevolg van deze 

onzekerheden, worden er tijdens het plannen van de behandeling normaliter veilig­

heidsmarges rond de olmor aangehouden. 
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De planning gebemt vaak met behulp van een computer waannee een behande­

ling gesimuleerd kan worden. De dlie-dimensionale (3D) patient anatomie is meestal 

beschikbaar in de vorm van een selie 20 computed tomography (CT) coupes. Hierop 

kunnen tumor en kritieke organen aangegeven worden. De planner bepaald dan welke 

stralenbundels er gebruikt gaan worden, en met een computeralgoritme wordt de 

verwachte dosis in tumor en kritieke organen uitgerekend. Vaak worden dosis volume 

histogrammen (DVH) gebruikt ter verificatie van een bestralingsplan. Een DVH geeft 

aan welk deel van een bepaHld orgaan een bepaalde dosis krijgt. 

Sinds 1993 wordt het te bestralen tumorgebied met (eventueel) microscopische 

uitbreiding vaak het CTV (clinical target volume) genoemd. Het CTV met veilig­

heidsmarges voor geometrische onzekerheden is het PTV (planning target volume). 

De gekozen b\U1delconfigmatie in een plan moet dan zodanig zijn dat de dosis in het 

PTV voldoende is (met maxima Ie sparing van gezonde weefsels). In dit proefsc1n'ift 

zijn manieren onderzocht om PTV-marges te berekenen en minimaliseren. 

Automatische 3D expansie van een CTV tot een PTV 

In hoofdstuk 2 wordt beschreven hoe een PTV -marge van gegeven grootte automa­

tisch kan worden berekend. Het CTV is een 3D volume, dat door de radiotherapeut 

wordt ingetekend in een serie 20 CT-coupes van de patient. Omdat de geometrische 

afwijkingen in elke richting klUlIIen optreden, zijn de benodigde veiligheidsmarges 

ook 3D. In de praktijk is gebleken dat het onmogelijk is om een 3D marge met de 

hand in 20 CT coupes in te tekenen. Daarom is een algoritme ontwikkeld om de vom1 

van het dlie dimensionale PTV te berekenen. De input van het algoritme is het CTV 
en de gewenste marge in de drie orthogonale hoofdrichtingen. De CTV contouren die 

zijn ingetekend in de CT-coupes, worden gebl1likt om een volume in een 3D reken­

matrix te creeren; volume elementen (voxels) binnen het CTV hebben wam'de 1, 

voxels erbuiten waarde O. Elk CTV voxel wordt dan uitgebreid met een ellipso'ide met 

diameters gelijk aan de gewenste marges in de drie richtingen. Vit dit 3D PTV volume 

worden vervolgens weer 20 contouren berekend die worden tel1lggezet in de CT 

coupes vool' verdel'e planning van de behandeling. Deze automatische methode 

verhoogt de snelheid en nauwkeurigheid van de PTV intekening enonn. 

In hoofdstuk 3 wordt het klinische voordeel van automatische 3D marge 

berekening bestudeerd. Omdat handmatige intekening van 3D marges onmogelijk is, 
werd (en wordt) in veel praktische gevallen de derde dimensie (loodrecht op de CT 

coupes) gewoon genegeerd. 20 marges worden dan coupe voor coupe, en aileen 
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binnen de coupes, bepaald. Voor 10 patienten met prostaatkanker zijn de fouten 

gekwantificeerd die zo worden gemaakt. Afhankelijk van de vonn van het CTV, bleek 

dat de 20 marges op sommige plaatsen meer dan een centimeter k1einer waren dan de 

3D uitgerekende marges. Dit kon leiden tot serieuze onderdosering van de tumor en 

tot een verlaging van de verwachte waarschijn1ijklleid van tumor controle met 15%. 

Bel'ekening en vel'ificatie van PTV-Illal'ges aan de hand van patient data 

Een meer complete methode van marge berekening wordt voorgesteld in hoofdstuk 4. 

De methode maak! gebmik van kennis van gemeten systematische en random 

variaties voor relevante patient categorieen. De CTV matrix (zie vorige sectie) wordt 

geconvolueerd met de distributies van deze variaties in translaties en rota ties. Dit 

levert zogenaamde "bedekkingwaarschijnlijkheidslllatrices" 01' met voxelwaardes 

tussen 0 en I. De voxelwaardes geven de kans aan dat het voxel door het CTV wordt 

bedekt. Iso-waarschijnlijkheid volumes worden dan gekozen als PTV zodanig dat het 

CTV een adequate dosis krijgt. Oil kan worden gecontroleerd door dezelfde bedek­

kingwaarschijnlijkheidsmatrix te gebnliken voor snelle en analytische berekening van 

het gellliddeide DVH van het CTV voor alle mogelijke systematische afwijkingen. 

Het effect van random varia ties op de CTV dosis kan worden bepaald door de 

geplande dosis eerst te convolueren met de betreffende distributies. Tezamen levelt dit 

een compleet beeld op van het effect van alle variaties op de dosis in het CTV. Het 

blijkt dat de systematische variaties ongeveer drie maal zwaardere consequenties 

hebben voor de CTV dosis dan de random variaties. 

In het vijfde hoofdstuk wordt het in het hierboven beschreven model gebruikt 

voor patienten met prostaat kanker. Voor deze patienten is de interne tumor beweging 

significant omdat de tumor tussen de blaas en het rectum in ligt, die beide aanzienlijk 

in volume knnnen varieren. Het doel was am te bepalen of er verschillen in PTV­

marges zijn wanneer de patienten in mg of in buikligging worden bestraald. Hiervoor 

zijn van een groep van 30 patienten met prostaatkanker 4 CT scans gemaakt geduren­

de de bestralingsperiode van 7 weken. 15 patienten zijn behandeld in rugligging en 15 

in buikligging. De bewegingen van de ingetekende prostaten zijn verkregen door 

middel van automatische vergelijking van de 3D positie. De posilioneringsonzekerhe­

den zijn gemeten met behulp van een elektronisch afbeeldingsapparaat. Hoewel de 

buikligging in eerste instantie voordelig leek (d.w.z. minder geometrische onzekerhe­

den), bleek na scheiding van systematische en random variaties dat de vereiste PTV­

marges ongeveer gelijk zijn. 
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On-line cOl'l'igel'en van geometl'ische onnauwkeul'igheden. 

hI het zesde hoofdstuk is de efficientie van het oll-lille corrigeren van positionerings­

fouten bestudeerd. Bij on-line con-ecties worden de positioneringsfouten gemeten met 

doorlichtingsbeelden die gemaakt zijn met slechts een klein gedeelte van de dagelijkse 

bestralingsdosis. De besh"aling wordt onderbroken en de af\vijking wordt gemeten. 

Voordat de rest van de bestraling wordt gegeven, kan een fout in de positie worden 

gecorrigeerd. De methode is getest voor 14 patienten met gynaecologische tumoren. 

Deze patienten vel10nen relatief grote positioneringsfouten, zelfs wanneer een off-lille 

cOlTectieprotocol toegepast wordt. Off-line correcties hebben tot doel de systemati­

sche variaties te reduceren door de gemiddelde positioneringsfout te bepalen voor de 

eerste paar fracties, en vervolgens de rest van de fracties hielvoor te corrigeren. Het 

blijkt dat een aantal minuten extra behandelingstijd nodig is voor het uitvoeren van 

een on-line correctie. Dit resulteerde echter weI in bijna verwaarloosbaar k1eine 

positioneringsfouten wat een significante verkleining van de PTV marges rechtvaar­

digt. Voorlopig wordt echter een combinatie van off-line en on-line correctie proto­

collen gebruikt totdat on-line cOlTecties sneller uitgevoerd kllnnen worden. In eerste 

instantie worden alle patienten met het off-line protocol behandeld. Pas wanneer het 

off-line protocol slechte resultaten geeft, wordt overgegaan op on-line correcties. 

In hoofdstuk 7 is de haalbaarheid van het detecteren van inteme orgaan beweging 

met "nonnale" doorlichtingsbeelden van de bestraling onderzocht voor patienten met 

prostaatkanker. De veronderstelIing is dat gas in het rectum, dat in de bee1den net zo 

goed zichtbaar is als botstnrcturen, gebnrikt kan worden om de ventrale rectum wand 

te bepalen. Omdat de prostaat op het rectum ligt voor patienten in nrgligging, zou 

mogelijk ook de prostaat positie hienlit afgeleid kunnen worden. De CT data van de 

15 in nrgligging behandelde patienten uit hoofdstuk 5 zijn gebnrikt am dit te verifie­

ren. De doorlichtingsbeelden zijn gesimuleerd door berekening van digitale recon­

slnlcties van de CT data. De velplaatsingen van de ventra Ie rectumwand, zoals 

automatisch gemeten aan de hand van rectumgas in de bee1den, zijn gecorreleerd met 

de werkelijke rectumwand velplaatsingen (gemeten met behulp van de ingetekende 

rectum contouren) en met de prostaatbewegingen (zie hoofdstuk 5). De con-elatie 

coefficient was in beide gevallen zeer significant. Een nadeel van de methode is dat er 

niet altijd gas in het rectum zit zodat niet alle prostaatbewegingen gedetecteerd 

kllnnen worden. Maar zelfs wanneer wordt aangtnomen dat alleen de zichtbare 

prostaat verplaatsingen voor de groep van 15 patienten in deze studie worden gecorri­

geerd, kan de PTV -marge met ongeveer 2 111m worden verkleind. 
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OK dan, eindelijk weer tijd voor enkele wat persoonlijkere noten. Voor the making of 

het boekje gaat bovenal mijn dank uit naar aile collega's die mijn tijd op de afdeling 

klinische fysica van de Daniel zo aangenaam maken en hebben gemaakt. Het feit dat 

ik al acht jam zonder eigenlijk een trein te rnissen tussen Amsterdam en Rotterdam 

op-en-neel' aan het rei zen ben, geeft al aan dat het met de werksfeer wei goed zit. Na 

een avondje uit (of werken natuurlijk) met de collega's hoefde ik nooit lang te zoeken 

naar een goedkope (een gebakje slechts) en comfOliabele slaapplaats: vooral Jack, 

ErikL, en Kasper heb ik zodoende aardig kUllI1en vetmesten. 

Gezamenlijk congresbezoek werd ook eigenlijk standaard verlengd met mini­

maal een paar dagen vakantie. Zo heb ik ondenneer met Maarten en ErikK een heel 

stuk gezien van respectievelijk de zuidoostelijke VS en Schotland. Ook de doorgaans 

waterige survival-weekendjes met de afdeling waren een groot succes. Over nlljn 

kamergenoten in de afgelopen jaren eveneens niets dan lof: de momenten die ik 

samen met onder andere Marjan, Hans, Kasper, Marco en ErikD heb doorgebracht 

waren van een grote gezelligheid. Dat geeft me trouwens oak de gelegenheid omnlljn 

toekomstig kamergenoot te bedanken: Roberi, ideaal dat je twee maanden voor nllj 

bent gaan promoveren. Dat heeft me een hoop werk bespaard. 

De goede sfeer is absoluut een eerste voorwaarde voor het tot stand komen van 

dit boekje geweest. De tweede voorwaarde is natuurlijk de hulp die ik heb gehad. En 

dan wil ik naast aile coauteurs in ieder geval even de projectleiders Andries, Henk, en 

Ben noemen, die mij op sympathieke wijze goed aan de gang hebben gekregen. Ik 

vraag mij wei eens af of zij wei eens hebben getwijfeld aan mijn promotie (ik in ieder 

geval meerdere malen) maar uiteindelijk lijlct het toch zover te kamen, En verder 

natuuriijk Hans, die ons MV A-clubje precies op het juiste moment kwam versterken. 

Het is wat mij betreft geen toeval dat ik eigenlijk pas sinds die tijd echt ben opge­

schoten met het onderzoek. 

Een groot voordeel van het fysisch-k1inisch onderzoek vind ik toch wei dat het 

zo dicht bij de praktijk staat. Ideeen en ontwikkelde software werden vaak meteen 

getest en in gebmik genomen door de clinici, Het contact met de laboranten, en met 

name Marjan, SandraQ, Marjolein, John, Ger!, en Merik, is wat mij betreft altijd 

bijzonder fijn en leerzaam geweest. Hetzelfde geldt voor de samenwerking met de 
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betrokken radiotherapeuten waaronder Carien, PeterK en Manouk. Van de meer 

ondersteunende afdelingen wi! ik verder met name de seeretaresses, de audiovisuele 

dienst, de bibliotheek, de automatisering en natuurlijk het personee1srestaurant 

hartelijk bedanken voor de pelfeete en snelle service die altijd ge1everd werd. 

En verder toeh maar even op de zaken voolUitlopend, voor de afronding van het 

geheel ben ik vanzelfsprekend ook dank versehuldigd aan de "kleine" promotieeom­

missie onder voorzittersehap van Peter Levendag. Ook de overige leden van de 
1tgroteU promotiecommissie, die niet voorin venneld staan, wil ik even noemen: 

Anders Bralune, Wilfiied De Neve, Ben Mijnheer, en Roland Kalmar: thanks for the 

trouble of reading the thesis and appearing at the promotion. 

De oplettende lezer vraagt zieh na al deze positieve geluiden missehien af 

waarom ik in de afgelopen aeht jaar eigenlijk nog niet verhuisd ben naar het Rotter­

damse. Naast dat ik Amsterdam als stad toeh eeht een tikkie gezelliger vind dan 

Rotterdam, komt dat voomamelijk doordat ik een aantal dierbare personen bij mij in 

de buurt heb zitten. En nu ik toeh bezig ben, grijp ik meteen de gelegenheid aan om 

mijn waardering voor hen even op papier te zetten. Om te beginnen de gabbers van 
AMVJ, hetzelfde geldt eigenlijk voor hen als voor de eollega's: met name de gezellig­

heid brengt mij er toeh altijd toe om zelfs in regen, sneeuw en storm altijd mijn 

balletje (en pedalen) te gaan trappen. Vier vrienden met wie ik lilet toevallig minimaal 

een AMVJ verleden dee I moet ik er zeker even uitliehten: Henkie, Otje, Maus en 

Causio, het spijt me bijzonder dat ik sleehts twee van jullie als parammf heb kullllen 

kieZell. Weet in ieder geval de tijd die ik regelmatig met jullie doorbreng altijd een 
buitengewoon genoegen is. 

Het moge kortom duidelijk zijn dat ik het goed naar mijn zin heb. Eehter, de 

voornaamste reden dat ik tot op heden absoluut niet mag klagen is toeh wei omdat ik 

zoon vanmijn ouders, broer van niljn broertje, en vdend van niljn vriendinnetje ben. 
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de voordelen van het bestralen met hoog-energetische elektronen naast fotonen. Ook 

voIgt hij een opleiding tot k1inisch fysicus. De auteur woont nog steeds in Amsterdam 

en gaat met de trein en de fiets naar zijn werk. Hij heeft uitgerekend dat het totaal 

aantal afgelegde woon-werk kilometers overeenkomt met ongeveer 8 maal een rondje 

aardbol (waarvan een half 01' de fiets). 
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