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EPIDEMIOLOGY

Head and neck squamous cell carcinoma (HNSCC) arises from the epithelium of the upper aerodigestive 
tract, i.e. the oral cavity, sinonasal cavity, pharynx and larynx1, see Figure 1. Annually, approximately 700,000 
patients are diagnosed with HNSCC worldwide, accounting for 3.9% of the total global cancer incidence2. In 
the Netherlands, the reported annual incidence is approximately 21503.

Figure 1. Anatomy of the head and neck region
Subsites of origin of head and neck squamous cell carcinoma are indicated4.

Historically, the main risk factors included cigarette use and alcohol consumption. In oral cavity squamous 
cell carcinoma (OCSCC), smoking increases the risk of developing a tumor threefold. Moreover, concomitant 
alcohol consumption acts synergistically and further raises the risk 10- to 15-fold5. Also the use of smokeless 
tobacco and especially betel quid, which is commonly used in Southeast Asia and India, is associated with an 
increased risk for OCSCC6. In oropharyngeal squamous cell carcinoma (OPSCC), a growing fraction of tumors 
is caused by infection with oncogenic human papillomavirus (HPV)7. In OPSCC, attributable fractions vary 
between 10 and 90%, and are particularly high in the United States, Canada and Western Europe7. HPV-positive 
OPSCC is different at the molecular8 and clinical level, with a more favorable prognosis9, and is considered 
a separate disease entity. The role of HPV in OCSCC is controversial. A meta-analysis showed a worldwide 
pooled HPV DNA estimate of 24.2% in oral cavity tumors10, but more recent studies showed lower attributable 
fractions, ranging from 4% to 15%11-13. This discrepancy is likely caused by different HPV detection strategies, 
and lower fractions were reported by studies that used more reliable testing algorithms. Finally, genetic 
syndromes, such as Fanconi anemia and dyskeratosis congenita, are associated with a high risk of developing 
HNSCC. For instance, Fanconi anemia patients have an increased risk of over 700-fold (95% CI 260–1540)14.

CLINICAL AND HISTOPATHOLOGICAL STAGING

Clinical and histopathological classification is performed according to the TNM-classification system of the 
Union for International Cancer Control (UICC)15 and the American Joint Committee on Cancer (AJCC)16. This 
system consists of three components: the dimensions of the primary tumor and invasion in surrounding 
structures (T), the presence, number, dimensions and extent of cervical lymph node metastasis (N), and the 
presence of distant metastasis (M). The TNM-classification was updated in 2017 (8th edition), and important 
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changes were the inclusion of a separate staging system for HPV-positive OPSCC, depth of invasion for OCSCC 
and extranodal extension in the N-stage of HPV-negative HNSCC. Staging of HNSCC is performed by physical 
examination often including investigation under general anesthesia, imaging, cytology of lymph nodes and 
histopathology after surgical excision.

STAGING OF THE CLINICALLY N0 NECK

Prominent lymph node metastases are discovered by palpation, but smaller metastases cannot be 
discriminated from negative nodes. It has been shown that approximately 30–40% of early-stage OCSCC 
patients have metastatic disease after pathological examination of elective neck dissection specimen, despite 
being clinically staged as N0 (cN0) and apparently free of lymph node metastasis17. Hence, if we rely on the 
clinical staging only and do not treat a cN0 neck in T1/T2 OCSCC patients, we will undertreat 30–40% of the 
patients. However, overtreatment will occur in 60–70% of the cN0 patients when the neck is treated electively, 
that is, treated when there is no clinical diagnosis of nodal disease. This dilemma fueled both imaging and 
molecular research and led to the development of several methods to select patients at high risk for occult 
metastasis while preventing overtreatment in the low-risk group.

To assist manual palpation, several radiological techniques (including ultrasound imaging, computed 
tomography, magnetic resonance imaging and positron emission tomography) have been tested, but for the 
detection of occult metastasis most lack the required accuracy18. However, a combination of ultrasound (US) 
combined with fine-needle aspiration cytology (FNAC) yields better performance. In this case, the nodal size 
on ultrasound is used to select lymph nodes at risk of nodal disease. Subsequently, these nodes are assessed by 
FNAC, the whole procedure abbreviated as USgFNAC. USgFNAC can achieve a sensitivity of 76% and specificity 
of 100%19. However, the diagnostic performance depends on the criteria used to select the lymph nodes at risk, 
the experience of the radiologist and pathologist, as well as the subgroup of patients studied19. In practice, the 
reported sensitivity in multicenter studies is generally lower20-22. The sensitivity is reduced by sampling error 
(in case of a micrometastasis) and aspiration of the wrong nodes. Furthermore, up to 20% of the aspirates are 
not evaluable due to insufficient quantity or quality of the material. To increase the sensitivity of USgFNAC and 
increase the number of evaluable aspirates, a real-time quantitative PCR assay was developed using squamous 
cell-specific marker hLy6D23. This assay was quite successful, but unfortunately false positives were introduced, 
possibly due to the introduction of skin keratinocytes in the aspirates and the suboptimal specificity of the 
marker. Other studies demonstrated markers with higher specificity like pemphigus vulgaris antigen 24 and 
squamous cell carcinoma antigen (SCCA)25. Use of these markers could reduce the number of false positives, 
but large studies are still awaited to prove that molecular analysis of the aspirates really improves USgFNAC.

Sampling error issues when analyzing aspirates can be circumvented by using a sentinel lymph node biopsy 
(SLNB), whose value in staging of cN0 OCSCC patients became increasingly evident during the last decades. 
This technique acts on the premise that cancer cells will metastasize to the first draining lymph node, i.e. the 
sentinel node (SN), in advance of spreading more widely throughout the lymphatic system of the neck. The 
SN is identified by visualization of a radioactive tracer that is injected in the tumor area. Subsequently, the 
SN is surgically removed using gamma probe, and optionally blue dye, guidance concurrent with transoral 
excision of the primary tumor. In some cases more than one SN can be identified26. After resection, the SN 
undergoes extensive histopathological examination that includes step-serial sectioning and immunostaining 
to detect deposits as small as isolated tumor cells. Eligible patients are diagnosed with primary tumors that 
can be reliably resected transorally with a clear margin without need for entry of the neck for resection or 
reconstruction27. Moreover, only patients who are staged cN0 by imaging are qualified for a SLNB. Removing 
the first draining node followed by meticulous histopathological examination should discriminate between 
N0 and N+ cases. A neck dissection is performed in a second surgical procedure when the SN turns out tumor-
positive. Reported sensitivities are between 80% and 91% and negative predictive values (NPVs) between 
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88% and 94%28-30. Recently, a large multicenter study reported a sensitivity of 86% and a NPV of 95%31. A 
caveat is the reduced performance in tumors located at the floor of mouth due to difficult detection of the 
sentinel lymph node30. In addition, the need of two surgical procedures when the sentinel node is positive of 
tumor hampers introduction of SNLB in common clinical practice. Also, fibrosis of the neck due to SLNB may 
complicate future surgical procedures that will be necessary if a delayed lymph node metastasis develops in 
the operated region of the neck. 

Reverse transcriptase PCR (RT-qPCR) assays have been developed to assess the presence of cancer cells in the 
removed lymph node during surgery next to scrutinizing histopathology. The accuracies of these assays are 
quite acceptable, ranging from 86% to 100% using conventional pathological examination as reference25,32. 
Unfortunately, the actual value of these assays has not been assessed in a prospective clinical setting. An 
intrinsic problem is that it is almost impossible to prove additional value over scrutinizing histopathology. In 
most studies, the lymph nodes are halved. Next, one half is analyzed by histopathology and the other half by 
RT-qPCR. Differences between histology and molecular assays may, therefore, be explained by sampling error 
instead of different test performances. 

Alternative approaches have been evaluated. In studies in breast cancer patients, it was observed that 
metastasizing and non-metastasizing breast tumors could be distinguished at baseline on basis of their 
expression profiles33. In a number of subsequent papers, the value of gene expression profiling has been 
determined in HNSCC to predict whether a tumor has metastasized to the neck or not34-38. Gene expression 
signatures showed surprisingly little overlap and reported accuracies vary significantly. Many studies have not 
been reproduced properly, limiting possible clinical implementation. Most promising in this respect was the 
initial study published by Roepman et al. The authors identified a set of 852 genes that predicted N-stage38,39, 
and this profile was validated using a dedicated diagnostic microarray platform in a multicenter setting40. 
Furthermore, the authors specifically explored the performance of their signature in the clinically relevant 
cT1-2N0 HPV-negative oral cancer subgroup. They found a higher NPV (89%) and sensitivity (86%) in these 
early-stage patients compared to all patients. Nonetheless, despite the validation in multicenter setting, this 
profile has also not been implemented in clinical practice due to high costs and absence of an application 
to formalin-fixed paraffin-embedded (FFPE) tissue. In particular for the clinically relevant cT1-T2 oral cancer 
group, frozen samples are difficult to obtain. Furthermore, to be competitive with other techniques such as 
SLNB, the NPV should be preferably 95% or higher to make it the method of choice. Ultimately, a combination 
of both methods could be an interesting approach41.

IMAGING

In HNSCC, imaging is used for determination of the stage of disease and in some cases for follow-up after 
treatment. For these indications, the commonly used modalities are ultrasound, computed tomography (CT), 
magnetic resonance imaging (MRI) and positron emission tomography (PET). Ultrasound is mainly used for 
staging of the neck42. More recently, ultrasound has also been applied to assess the depth of invasion of the 
primary tumor43, which might be used for staging of OCSCC.

Computed tomography uses absorption of ionizing radiation to create images of underlying structures. 
This technique shows very clear bone detail, but lacks soft tissue contrast. Moreover, dental implants may 
cause severe artifacts, which reserves CT imaging in OCSCC and OPSCC predominantly for detection of bone 
invasion44,45. For staging of laryngeal squamous cell carcinoma (LSCC) it can be very useful, and depending on 
local preferences may be the modality of choice45. Also, CT is commonly used for radiation treatment planning 
and a chest-CT may be acquired to exclude lung metastases in patients who are at risk for this46.

MRI is the preferred modality for visualization of soft tissue, and is particularly appropriate to evaluate the 
extent of the primary OCSCC, OPSCC and depending on local preferences also LSCC. MRI protocols typically 
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include the following sequences: T1, T2, contrast-enhanced T1, and a sequence with fat-suppression47. More 
recently, these conventional sequences are complemented by functional MRI such as diffusion-weighted 
imaging (DWI) and perfusion weighted imaging48. MRI has a relatively long examination time as compared to 
CT, which makes it susceptible to motion artifacts caused by patient movement, swallowing and breathing.

In HNSCC, positron emission tomography, often combined with CT, is used to detect distant metastasis in 
high-risk patients49, and may also be used to determine treatment response when the patient is treated with 
primary chemoradiotherapy (CRT)50-54. The techniques measures uptake of a positron emitting tracer. The 
most commonly used tracer is 18F-Fluoro-deoxyglucose (18F-FDG), a marker of tissue glucose metabolism, 
that is increased in malignant tissue, but also in inflammation, and intrinsically high in heart and neural tissue.

TREATMENT

Treatment protocols vary between different tumor locations and stage of disease. Early stage tumors can 
be treated by surgery or radiotherapy alone. Advanced stage tumors are generally treated by multimodality 
therapies, explained in more detail below. The mainstay of treatment for OCSCC is surgery, and the goals of 
treatment are complete resection of the primary tumor with adequate margins and staging and treatment 
of the neck. The surgical approach depends on tumor location and extension. Small tumors can often be 
resected transorally, but locally advanced tumors and/or tumors that originate from posterior areas may 
require more extensive surgical approaches like a visor flap with lingual release or a lip-splitting incision with 
or without mandibulotomy. Moreover, marginal and segmental mandibulectomy are added to the surgery 
when preoperative evaluation shows of invasion of periosteum (marginal mandibulectomy) or invasion of 
cortex (segmental mandibulectomy). Management of the neck was traditionally performed by selective neck 
dissection in cN0 patients, i.e. levels I to III or levels I to IV (oral tongue), or modified radical neck dissection in 
cN-positive cases. More recently however, cT1N0 or cT2N0 cases may be treated with transoral excision and 
SLNB (see above). In the past, observation of low-risk cN0 patients was also studied, but current guidelines 
do not recommend observation of cN0 patients55,56. Primary radiotherapy or concomitant CRT is generally 
not advised for OCSCC. The occurrence of osteoradionecrosis is high and acute side-effects are also higher 
in OCSCC compared to other HNSCC subsites57,58. One study even reported lower survival rates for CRT59. 
Therefore, the mainstay of OSCC treatment is surgery, and in OCSCC primary CRT remains mostly reserved for 
treatment of functionally non-resectable tumors at the time.

The oral cavity consists of important structures for speech, swallowing and facial appearance. Surgical 
resection affects all three functions and successful treatment in terms of quality of life therefore often 
involves reconstruction. Small defects can often be closed primarily or by using regional flaps, e.g. fascial 
artery musculomucosal (FAMM) flap60 or buccal fat pad flap61. Larger defects require larger regional flaps or 
preferably microvascular free-tissue transfer, e.g. a radial forearm free flap or a osteocutaneous fibula free flap. 
Microvascular free flap reconstruction show better functional outcome than regional flap reconstruction62. 

On the contrary, pharyngeal and more advanced laryngeal cancers are frequently treated with organ 
preservation protocols, i.e. radiotherapy or CRT63,64. Standard protocols include 60-70 Gy delivered in 2 Gy 
fractions 5 times per week for 7 weeks combined with high-dose cisplatin (100 mg/m2, day 1, 22, 43). Especially 
for HPV-positive OPSCC this protocol is very effective with high survival rates. The successful treatment of 
these patients even evolved in treatment de-escalation trials to minimize treatment related side-effect, but 
unfortunately several large trials showed lower survival rates after treatment with adjusted protocols65,66.

Other treatment options are transoral laser surgery for early stage LSCC67, hypopharyngeal squamous cell 
carcinoma (HPSCC)68 and OPSCC69, and total laryngectomy with or without partial pharyngectomy for 
advanced laryngeal and hypopharyngeal cancers (T4a). More recently, transoral robotic surgery became 
available for early stage OPSCC and unknown primary tumors with adequate tumor control70,71. Advantages 
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are that patients can be treated with a single procedure and that they may experience better functional results 
compared to primary radiotherapy. However, a recent randomized trial did not confirm this and instead 
showed slightly better swallowing-related quality of life scores in patients treated with primary radiotherapy72.

Depending on tumor-specific risk factors, surgical management of HNSCC may require adjuvant treatment. 
Criteria for postoperative (chemo)radiotherapy are locally advanced disease, pN2 or pN3 disease, perineural 
invasion, extracapsular spread and tumor-positive margins. Adjuvant treatment with radiotherapy improves 
overall survival in these patients with poor prognosis73. Side-effects of this treatment include xerostomia 
and osteoradionecrosis, which are less common with intensity-modulated radiation therapy (IMRT)74. This 
radiotherapy technique is considered the standard nowadays. In the future, patients may also benefit from 
proton beam therapy to further reduce side effects as demonstrated in normal tissue complication probability 
models75-77. Moreover, an additional survival benefit has been found in patients with tumor-positive margins, 
multiple positive lymph nodes or extracapsular spread for postoperative, platinum-based CRT78,79. 

Long-term survival in patients with recurrent or metastatic HNSCC (R/M HNSCC) is possible in the minority of 
patients when salvage surgery or reirradiation is possible80. Several palliative treatment regimens exist, but the 
cornerstone has been the combination of cisplatin and fluorouracil (FU) for many years. In the last decades, 
the addition of cetuximab, which is a monoclonal antibody directed against the epidermal growth factor 
receptor (EGFR), was shown to establish a survival benefit81 but unfortunately long-term responses are very 
sporadic. Even more recently, immunotherapy was added to the pallet of systemic options for R/M HNSCC. 
Several monoclonal antibodies were shown to induce long-term responses in approximately 20% of patients 
with platinum refractory R/M HNSCC82-84. Future studies will establish the exact regimen of immunotherapy 
and also focus on optimal patient selection85.

PROGNOSIS

The 5-year survival of HNSCC is 58% in the Netherlands in the period of 2007 to 20113, but these survival 
rates vary from 10% to 98% depending on site, stage, age, comorbidity and subsite86. Despite advances in 
diagnostic and therapeutic management of HNSCC patients, overall survival in the Netherlands improved 
only 1% in the past 20 years3. The most important predictor of overall survival is the presence of HPV, but only 
in OPSCC13,87,88. For other sites, overall survival highly depends on the presence of metastatic LNs and ECS. 
5-year overall survival drops from 75% in pN0 patients to 50% in pN-positive and ECS-negative patients and 
to 30% in ECS-positive patients89. This effect is caused by an increase of locoregional recurrence90 and distant 
metastases91, and possibly treatment-related morbidity92.

The most important prognostic factors at present are disease stage including ECS, HPV and histological findings 
after surgery. To assess stage, accurate diagnostic modalities are critical but meet limitations. Consequently, 
prognostic models are imprecise and treatments cannot be adequately tailored to the individual patient. For 
these reasons there is active research into molecular biomarkers to improve diagnosis, to predict treatment 
responses and to predict prognosis in general more accurately. 

MOLECULAR TOOLBOX

Historically, to detect genetic alterations, specific genes or genomic regions of interest were examined 
individually, for example, by Sanger sequencing (point mutations) and microsatellite analysis (patterns 
of allelic loss). These techniques provided recurrent changes, but generally at a low resolution and with 
labor-intensive methods, which hampered a comprehensive identification of candidate cancer genes and 
associated genetic changes. Moreover, the cloning of these genes was cumbersome and the molecular tools 
to characterize these genes were limited to ectopic expression in cell lines.
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After its discovery in 1992, comparative genomic hybridization (CGH)93 made the detection of copy number 
aberrations (CNAs) accessible on a genome-wide scale albeit with limited resolution. Additionally, after the 
implementation of array CGH, with DNA microarrays replacing the original metaphase chromosome spreads, 
it even became possible to analyze CNAs across the entire genome with initially moderate and later ultra-high 
resolution94-96. The same hybridization-based techniques were used to determine gene expression of many 
genes simultaneously in a tumor or other sample97,98. Later, platforms became available for genome-wide 
expression profiling, supporting integral molecular profiling of the transcriptome. During the last years, next-
generation sequencing (NGS) has taken over the descriptive genomics field and is currently used to determine 
somatic mutations (whole-exome sequencing), gene expression profiles (RNA sequencing) and copy number 
alterations (low-coverage whole-genome sequencing).

Some limitations came along with this era of high throughput descriptive genomics. First of all, the costs are still 
very high. To be able to clinically implement results of high-throughput studies, researchers have developed 
dedicated research platforms that are less expensive; examples are the MammaPrint dedicated microarray 
platform99 and Ampliseq Cancer Hotspot Panel for targeted sequencing100. Another possibility has been explored 
by Nielsen et al.101 They developed an immunohistochemistry assay to distinguish the molecular classes of breast 
cancer that were previously described by Perou et al.102 on the basis of expression profiles.

A second limitation involves the interpretation of the data and the validation of results. New statistical 
techniques had to be developed to handle the statistical challenges of big data research. Interpretation 
became more difficult for biologists and clinicians, emphasizing the important role of biostatisticians and 
bioinformaticians. Initial studies were usually underpowered and suffered from a lack of thorough validation 
in independent series. Finally, the results of microarray analysis are affected by the use of different platforms, 
different experimental protocols and many other variables. Quite some effort has been made to improve the 
reproducibility, but it is far from optimal103. NGS platforms are expectantly less sensitive to these difficulties, 
but the available gene expression data sets are still limited.

Besides the descriptive genomics toolbox, also the functional genomics toolbox increased tremendously with 
the introduction of retroviral and lentiviral vectors, germline modification of the mouse, small interference 
RNA gene expression knockdown and recently genome editing by, for example, CRISPR/Cas9 technology. 
The evolving molecular tools have been used to investigate head and neck carcinogenesis, and the molecular 
landscape of head and neck cancer.

CARCINOGENESIS OF HPV-NEGATIVE HNSCC

Cancer, including HNSCC, is caused by the accumulation of genetic and epigenetic alterations of genes in 
various signaling pathways. The most frequently affected pathways in HNSCC involve the cell cycle checkpoints 
(e.g. p53/ pRb pathways), RTK/RAS/PI(3)K signaling (e.g. epidermal growth factor receptor (EGFR), PIK3CA, 
PTEN), differentiation (e.g. NOTCH1, FAT1, TP63) and cell death (e.g. FADD, CASP8). Most genes involved can be 
classified as tumor suppressor genes. An important exception is PIK3CA, which harbors activating mutations 
or copy number gains in one-tenth to one-third of the HPV-negative tumors104-106.

In 1996, Califano et al.107 presented the first stepwise genetic progression model of HNSCC, based on molecular 
analysis of histological premalignant mucosal changes and invasive cancers. They identified that the number 
of chromosomal aberrations (i.e. loss of heterozygosity (LOH) at specific loci) increases with histopathological 
progression. Furthermore, specific alterations were recurrently found in histological lesions that represent the 
early steps in the development of invasive cancer, that is, LOH at chromosomes 3p, 9p and 17p. These early 
genomic alterations were also the most frequent changes in the invasive tumors.

Mutations in TP53 (17p) can be found in 60–84% of the HPV-negative tumors104,105,108 and mutations and/or 
focal deletions of CDKN2A (9p) in 57%105. Deletions of chromosome 3p (often the entire arm) can be found 
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in 80% of the tumors105. Remarkably the critical cancer gene on 3p is still a mystery. Other genetic alterations 
were found in more advanced premalignant lesions and invasive cancer and are believed to occur later during 
carcinogenesis. This initial model was later revised by Braakhuis et al.109 that is described below (Section ‘Field 
cancerization’ and Figure 2).

Recent NGS studies revealed many more candidate cancer genes. Alterations in these genes are commonly 
shared, but are generally less frequent and sometimes very infrequent. Examples are mutations in NOTCH1 
(26%) and FAT1 (32%). An explanation for this finding might be that cell cycle regulation needs to be disturbed 
by few specific key players as an early step in the carcinogenesis process, whereas the other hallmarks of 
cancer are likely regulated by more divergent pathways and genes.

Figure 2. Progression model of molecular carcinogenesis of oral squamous cell carcinoma.
An adapted version of the genetic progression model of head and neck squamous cell carcinoma (HNSCC)110.
A genetically altered stem cell forms a ‘patch’ of clonally related daughter cells with the same genetic alteration (e.g. mutation in TP53). 
Such a patch can, for example, be detected by immunostaining for mutated p53. Subsequent genetic changes provide a survival benefit or 
enhanced proliferation for the altered stem cells and they laterally replace the normal epithelial stem cells, which results in the formation of a 
larger precancerous field. As the field becomes larger, additional genetic hits give rise to various subclones within the field (clonal divergence) 
that take over the field. Finally, a subclone acquires sufficient molecular alterations to transform into an invasive tumor cell. Three critical steps 
can be discriminated in this model: the first mutation causing a genetically altered patch, the outgrowth of a single mutated stem cell into a 
group of mutated stem cells generating the field and the transformation of a premalignant field into invasive cancer. Predictors of malignant 
transformation are aneuploidy and the accumulation of cancer-associated genetic changes. Well-known altered pathways in HNSCC are 
depicted for the three genetic subtypes that are now distinguished, that is, human papillomavirus (HPV)-positive HNSCC, HPV-negative 
HNSCC with few copy number alterations (low chromosomal instability (CIN)) and HPV-negative HNSCC with many copy number alterations 
(high CIN). HPV-negative, low CIN tumors are characterized by enrichment of HRAS activating mutations, CASP8 inactivating mutations and 
absence of TP53 mutations. Future studies are necessary to further characterize these tumors molecularly, particularly to determine the early 
steps in carcinogenesis.
Moreover, many recurrent genomic alterations cannot be depicted in the progression model to date. For some alterations, the timing during 
carcinogenesis is known, but the involved genes and pathways are not. Examples are 3p loss (early step), 7q gain (late step) and 8p loss (late 
step). For other alterations, the involved genes and pathways are known, but their timing is not. Examples are inactivating mutations in FAT1, 
AJUBA, NOTCH1 and activation of FGFR1 (HPV-negative tumors) and FGFR3 (HPV-positive tumors). 
Important genetic and chromosomal alterations are indicated in the upper yellow boxes. A distinction is made between oncogenic pathways 
(blue boxes) and tumor-suppressive pathways (orange boxes). ↑ indicates overexpression or gain; ↑↑ indicates high-level amplification; ↓ 
indicates loss; and ↓↓ indicates homozygous loss. CASP8: caspase 8, apoptosis-related cysteine peptidase; CCND1: cyclin D1; CDK: cyclin-
dependent kinase; CDKN2A: cyclin-dependent kinase inhibitor 2A (p16); EGFR: epidermal growth factor receptor; HRAS: Harvey rat sarcoma 
viral oncogene homolog; mt: mutated; PIK3CA: phosphoinositide-3 kinase subunit-α; PTEN: phosphatase and tensin homolog; TGFβ: 
transforming growth factor-β.
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1CARCINOGENESIS OF HPV-POSITIVE HNSCC

The HPV genome consists of six early genes (E1–E7) and two late genes (L1 and L2). Two early genes (i.e. 
E6 and E7) have a role in oncogenesis111, particularly when expressed in the basal epithelial layers. The E6 
protein binds to tumor suppressor protein p53 causing its inactivation and degradation112. The E7 protein 
binds to the RB pocket proteins also promoting their degradation113. By E6 and E7 gene expression, the 
virus bypasses the G1/S block, permitting S-phase entry and viral replication110. The induction of these 
processes by the viral oncogenes can be regarded as early changes in the carcinogenesis of HPV-positive 
tumors, comparable to mutations and/or deletions of TP53 and CDKN2A, the latter acting in the Rb pathway 
(see Figure 2). Evidence from studies of cervical cancer indicated that while E6 and E7 are necessary to 
initiate and maintain the transformation of normal epithelial cells to invasive cancer, expression of these 
viral oncogenes is not sufficient to develop a full-blown tumor. The alteration of additional oncogenic 
pathways is required for malignant progression114. However, the modification of additional pathways is 
accelerated by the chromosomal instability that is caused by E6 and E7 expression115. The deregulated 
cellular S-phase entry promotes DNA damage, and when p53-mediated DNA damage response is 
abrogated by E6, this may lead to DNA changes116. Frequently affected pathways in HPV-positive HNSCC 
involve RTK/RAS/PI(3)K signaling (e.g. PIK3CA, FGFR3), differentiation (e.g. NOTCH1, TP63) and cell death 
(e.g. TRAF3)105.

In a recent review a model of HPV infection was proposed with productive virus producing infections in the 
oral cavity mucosa, and transforming infections in the oropharyngeal crypt epithelial cells117. This model 
explains most research findings on HPV-mediated head and neck carcinogenesis.

FIELD CANCERIZATION

Besides describing the progression of oral mucosa to invasive cancer, Califano et al. noted that some 
genetic alterations were shared between the invasive tumors and the associated surrounding abnormal 
(noninvasive) mucosal cells, which suggests that these cells originated from a common progenitor107. This 
finding supported the concept of ‘field cancerization’, hypothesized by Slaughter et al. in 1953 to explain 
the frequent development of local recurrences and SPTs in oral squamous cell carcinoma patients118. 
They examined 783 resected oral tumors and concluded that these cancers were often surrounded by 
histologically abnormal epithelium possibly caused by long-term carcinogen exposure. Moreover, the 
finding of multiple independent invasive foci suggested a multiclonal origin of squamous cell cancer. The 
genetic explanation of the field cancerization concept was studied in depth and reported in 2001 by Tabor 
et al.119 These authors analyzed biopsies of tumors and macroscopically normal adjacent mucosa and found 
shared genetic alterations in 50% of the cases. These genetically abnormal cells were coined as fields. In 
25% of the cases, these fields extended into the surgical margins and apparently remained behind, causing 
local relapses and SPTs120,121.

Subsequent research of immunohistochemical staining patterns of mutated p53 allowed microscopic 
visualization of the likely earliest changes in the mucosal epithelium122. These alterations presented as small 
patches that preceded the fields. This observation refined the progression model for HNSCC109, which is 
depicted schematically in Figure 2. Of note, these models are mainly based on oral cancer and oropharyngeal 
cancer, but there are no reasons to assume that laryngeal or hypopharyngeal tumors follow other models. It 
was hypothesized that a mucosal stem cell becomes genetically altered and forms a ‘patch’ of clonally related 
daughter cells with the same genetic alteration (TP53 mutation). This clonal unit concept has recently been 
demonstrated by lineage tracing experiments in the skin epithelium in mice123. Subsequent alterations would 
provide a survival benefit or enhanced proliferation to the genetically altered stem cell, thereby laterally 
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replacing the normal epithelial stem cells. This results in the formation of a larger precancerous field. Some 
of these fields become visible and present as white (leukoplakia) or red (erythroplakia) lesions. As the field 
becomes larger, additional genetic hits give rise to various subclones within the field (clonal divergence). 
These subclones may take over the field and ultimately acquire sufficient genetic alterations to transform into 
an invasive tumor.

The concept of field cancerization seems at present to be specific for HPV-negative tumors, but has also 
been studied for HPV-positive tumors under the assumption that HPV infection is the first event in HPV-
mediated carcinogenesis and that the presence of transcriptionally active HPV could serve as reliable 
biomarker of field cancerization. In this study, HPV16-E6-mRNA could not be identified in resection 
margins of 20 HPV-positive cancers124, suggesting that HPV-positive tumors are not surrounded by these 
large fields. Although the apparent absence of fields surrounding HPV-positive tumors is in line with the 
favorable prognosis of HPV-positive disease, it strongly relies on the assumption that HPV infection indeed 
is the starting event. There are also some contrasting observations. There are reports of cases presenting 
with multiple synchronous HPV-positive HNSCCs (e.g. McGovern et al.125). This could be explained by 
the presence of preneoplastic fields, although multiple transforming infections could explain this as 
well as suggested in a recent HPV carcinogenesis model by Leemans et al.117 This model proposed that 
the oral cavity is the major site of productive infections, while transforming infections occur in specific 
oropharyngeal cells. Altogether, the concept of field cancerization in HPV-positive tumors remains an 
interesting topic for future studies.

EARLY DETECTION OF RECURRENT DISEASE BY MOLECULAR DIAGNOSIS

As stated above, the frequent development of local and regional recurrences is a major problem in the 
treatment of HNSCC patients. Depending on stage and site, local and/or regional recurrence rates have been 
reported of 20–50%126,127. Moreover, distant metastasis occur in 10–40%128 during follow-up. Remarkably, 
local recurrences occur even when the surgical margins are histologically tumor-free. Two explanations of 
this relatively high incidence of locoregional recurrence have been suggested110. First, residual tumor cells 
that are undetectable by standard histological and radiological examination can remain in situ after surgery. 
These residual cells have been defined as minimal residual cancer (MRC). Furthermore, it has been shown 
and described above that tumors develop in precancerous fields that can be 5–10 cm in diameter. Part of this 
precancerous field can extend into the surgical margins and as most are not macroscopically visible by the 
naked eye, they remain behind unnoticed. Additional genetic alterations can cause outgrowth of a second 
tumor from the residual premalignant field (‘second field tumor’). Second field tumors can occur in close 
proximity of the primary resected tumor and within 3 years. These tumors are then clinically diagnosed as 
local recurrences. Second field tumors can also develop at more distant sites or after 3 years and are then 
diagnosed as SPTs. Hence, local recurrences can be subdivided in two categories, those resulting from MRC 
and those resulting from fields that remained behind. The different types of recurrent disease are illustrated 
in Figure 3.
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Figure 3. Field cancerization and local relapse.
Field cancerization and its role in the development of local recurrences and second primary tumors is shown110. Premalignant fields are 
mucosal areas with epithelial cells that have cancer-associated genetic or epigenetic alterations. Precursor fields, which are shown in light 
blue, consist of cells that do not show invasive growth despite their cancer-associated genetic changes. An important clinical implication of 
a field is that it may be the source of local recurrences and second primary tumors after surgical resection of the initial carcinoma. This figure 
describes the three sources of recurrent disease: true local recurrence that derives from cancer cells that stayed behind; a second tumor from 
premalignant cells that stayed behind and is clonally related to the index tumor (‘second field tumor’); and a second tumor from unrelated 
premalignant cells (‘second primary tumor’). At present, the distinction is made on the basis of clinical criteria. Local recurrences are defined 
as tumors that arise within 2 cm and within 3 years of the original primary tumor. Second primary tumors are defined by any tumor that arises 
beyond 2 cm of the primary tumor or after 3 years at the same location120. The distinction between local recurrences and second field tumors 
can only bemade withmolecular analysis. Index tumor, premalignant field in corresponding surgical margins and recurrent tumor should be 
of common clonal origin for the recurrent tumor to be considered a second field tumor. Less laborious techniques to distinguish between the 
two types of local recurrence would be helpful, but have not been developed at the time. The distinction does not have clinical consequences 
at present, but this will change when targeted chemopreventive treatment for fields becomes available.

DETECTION OF MINIMAL RESIDUAL HEAD AND NECK CANCER

First attempts to detect residual cancer cells in margins that were histologically free of tumor were published 
20 years ago by Brennan et al. These authors used TP53 mutations as molecular marker, which was elegantly 
detected by ‘plaque assays’129. The authors showed that mutated TP53 in the surgical margins is associated 
with a higher risk of locoregional recurrence. In many subsequent studies, the paradigm remained unchanged: 
detection of TP53 mutations (if present in the primary tumor) in the corresponding margins is a risk factor for 
locoregional recurrence130,131. However, techniques based on detection of mutated DNA lack specificity. Partly, 
this can be explained by the use of mutated TP53. This is an early change in carcinogenesis and will not detect 
only residual tumor cells but also residual precancerous fields that do not always progress. What is more, 
residual tumor cells should be treated by postoperative radiotherapy, but this is not indicated for residual 
fields. Furthermore, mutated DNA leaks from necrotic tumors. In particular, the latter combined with the 
high sensitivity of the methods causes specificity problems. Other research groups have suggested to exploit 
other DNA markers such as methylation markers132 or microsatellite markers133 to determine the presence of 
minimal residual disease, but the performance was similar to mutated TP53 analysis and most studies were 
small. We assume that next generation sequencing approaches may revive this research field.

DNA is a very stable molecule that easily causes contamination problems. Therefore, RNA-based assays to 
detect MRC have been evaluated as well. These tests were expected to be more specific than DNA-based 
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assays130. Several genes were considered promising markers since they were highly expressed in HNSCC tumor 
cells, but not in stromal cells. Examples are hLy6D, SCCA and EGFR. These RT-PCR-based assays usually have a 
very high sensitivity and are, for example, able to detect a single tumor cell in a background of 107 nucleated 
blood cells134. However, a prospective study including 105 cases failed to show prognostic relevance of hLy6D 
expression in deep surgical margins135. Even when the tumors with high hLy6D expression were analyzed as 
subgroup and between 5 and 15 biopsies per patient were analyzed, there was no association with clinical 
outcome.

One of the major issues that was indicated by the authors and has to be addressed in future research is the 
sampling of these margins. Even 15 biopsies are subject to sampling-error given the large resections. A 
more comprehensive way of sampling the margins could overcome the false-negative results. Wrapping the 
specimen in nitrocellulose and analysis of the DNA by methylation markers has been tried, but thus far only 
in very small series136.

Despite that the concept of detecting residual tumor cells in tissue samples by molecular methods is very 
attractive, the sampling error problem, which also hampers histological examination, is an issue that is not 
easily solved. RT-qPCR methods using histogenic markers have the additional disadvantage that false-positive 
results are easily found due to the presence of normal epithelial cells in the superficial margins. Tumor-specific 
DNA markers (e.g. TP53 mutations) have the limitation that DNA from necrotic tumor cells contaminate the 
samples, causing false-positive results, and might detect precancerous changes in superficial margins. Hence, 
the results of all these studies still leave much to be desired. In later studies, expression profiling studies to 
predict local recurrences have been tried as well, but the associations were generally not strong and profiles 
have not yet been adequately validated137,138.

Nonetheless, the gains are high: postoperative radiotherapy or nowadays postoperative chemoradiation 
could be tailored on the basis of the presence of residual disease. An intrinsic problem remains that local 
recurrences may develop from two different sources: tumor cells and precancerous fields that stayed behind. 
This has major biological but also clinical consequences. Hence, it will be required to make a separation 
between residual tumor cells and residual fields, particularly when superficial margins containing mucosal 
epithelium are analyzed.

The fact that DNA is stable and easily contaminates margin samples has an intriguing other application. 
The shedding of DNA might well result in tumor-specific alterations in the blood. Already in the 1990s 
microsatellite alterations in the serum of HNSCC patients were discovered139. Since then, new techniques 
have been developed to detect what is now called circulating tumor DNA (ctDNA). At present, two frequently 
applied techniques are NGS and digital PCR. Relatively few studies focused on the detection of ctDNA in 
HNSCC. In 2014, Bettegowda et al.140 explored the detectability of ctDNA in 15 types of cancer including 10 
advanced stage HNSCC patients. CtDNA was detectable in the majority, but results are difficult to interpret 
given the small number of cases. More recently, Wang et al.141 published a study that focused specifically on 
the detection of ctDNA in HNSCC. They performed targeted sequencing of recurrently mutated genes and the 
HPV16 E6 gene in DNA extracted from plasma (47 patients) and saliva samples (93 samples). Depending on 
the subsite, ctDNA in plasma was detectable in 80–100% of the cases, whereas tumor DNA was detected in 
47–100% in saliva. Moreover, post-treatment saliva samples in a subset of cases (n = 9) showed positive tumor 
DNA in advance of clinical relapse in 4/9 cases. The remaining five cases had no detectable tumor DNA in their 
saliva during follow-up and remained clinically disease free. These results suggest new approaches for early 
detection of residual/recurrent disease. However, numbers are small and postoperative saliva sampling was 
performed at random time points. Longitudinal sampling combined with optimized detection methods will 
be required to assess the clinical implications.
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1DETECTION OF RESIDUAL PRENEOPLASTIC FIELDS

Residual preneoplastic fields are responsible for approximately 1/3 of local relapses. Moreover, SPTs in the 
upper aerodigestive tract occur in an annual rate of approximately 2–3%. SPTs, too, can derive from residual 
precancerous fields. Second primary tumors can either be clonally related to the first tumor or derive from 
an independent field. Early detection of these (residual) preneoplastic fields could provide opportunities to 
prevent its progression to invasive carcinoma, for example, by chemoprevention. Several methods have been 
published to identify fields and assess the risk for malignant progression. Importantly, histological changes 
(e.g. dysplasia) have been shown to be suboptimal to detect premalignant changes or predict malignant 
potential of the fields. Possibly, the recently recognized morphological change indicated as ‘differentiated 
dysplasia’ might change the picture142. 

Other methods have been evaluated that typically focus on the detection of genomic alterations in tissue 
biopsies. This can be tested in biopsies from both visible lesions (e.g. leukoplakia) and the mucosal margins 
of surgical specimens. Retrospective studies as early as 1996 have convincingly shown that detection of 
specific genetic alterations (e.g. LOH at chromosome 9p and 3p) are important for risk assessment of oral 
precancer143-145. These findings were also found to be applicable for analyses of surgical margins146. Moreover, 
prospective evaluation of these markers was successful147,148, ultimately demonstrating the added value of 
detection of these genomic alterations in premalignant fields. Remarkably, this has not become the new 
clinical standard. Clinical implementation is hampered mainly by the fact that, despite excellent prognostic 
stratification of patients, for the individual patient it does not have clinical consequences. Although not very 
effective, it is generally accepted to remove visible preneoplastic lesions (leukoplakia) surgically, followed by 
active surveillance149. This policy is not affected by molecular stratification of patients. This may change when 
more effective, but also more toxic, treatments become available. When effective therapeutic interventions 
have been developed and tested to reduce malignant transformation and improve overall survival, a simple 
LOH-based or NGS-based test might become an important companion diagnostic assay.

Also, screening for and monitoring of fields might become an option by noninvasive diagnostic approaches 
using brushed cells or saliva. Promising results were shown in a study on the detection of specific genomic 
alterations in exfoliated cells sampled by brush cytology. In a pilot study using allelic imbalance of cancer-
associated chromosome regions assessed by 12 microsatellite markers, an estimated sensitivity of 78% and a 
specificity of 100% was determined150. However, in a larger follow-up study the analytical sensitivity reduced 
to 45%148. Future studies with more sensitive NGS techniques may improve these test characteristics.

Besides noninvasive molecular diagnosis, also visualization of premalignant fields may be very helpful. 
Poh et al. showed that loss of autofluorescence in tumor adjacent mucosa is associated with histological 
and molecular premalignant changes151,152. Furthermore, these authors developed a handheld device to 
determine loss of fluorescence visualization in the operating theater and are currently assessing its value in a 
randomized controlled trial (COOLS trial)153. Notwithstanding, detecting and risk assessment of fields is one 
step, but new and perhaps targeted chemopreventive therapies need to be developed and translated from 
early experimental phases to clinical trials.

In conclusion, the detection of residual precancerous fields is possible and clinically relevant when using tissue 
biopsies. The applied methods have been validated thoroughly. Future research should focus on noninvasive 
detection of these fields. A noninvasive test could also be applied to invisible premalignant fields, which could 
be specifically interesting for screening of high-risk subjects. However, in parallel to diagnostic approaches, 
chemopreventive therapies have to be developed, allowing detected precancerous changes to be treated.
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MOLECULAR CLASSIFICATION OF HNSCC: HPV

As indicated above, molecular detection and risk assessment of preneoplastic changes is quite effective. 
In contrast, detection of residual disease has not been very successful to identify patients at high risk for 
locoregional recurrence or distant metastases. The intrinsic issue of sampling error hampers applications and 
other approaches are required. With the upcoming of reliable, high-throughput profiling methods, molecular 
stratification of HNSCC seems to be the most interesting alternative approach. The most pronounced molecular 
subgroup in HNSCC is defined by HPV status. Intriguingly, these tumors show very different molecular profiles 
including a lack of TP53 mutations and fewer chromosomal aberrations than typically present in HPV-
negative HNSCC154-157. Moreover, HPV-positive and -negative tumors can be distinguished by gene expression 
profiles158 and epigenetic signatures159,160. Updates of these molecular differences using NGS have recently 
been published by the Cancer Genome Atlas105 and Seiwert et al.106 The majority of previous findings were 
confirmed. Additionally, new findings provided a more comprehensive overview of the molecular landscape 
of HPV-positive HNSCC. In contrast to results of previous studies104,108, the absolute number of somatic 
mutations was found to be comparable between HPV-positive and HPV-negative tumors105. However, as 
expected, the landscape of somatic mutations and copy number alterations differed importantly. Altogether, 
HPV-positive tumors can be considered a very well-validated molecular subgroup of HNSCC with major 
impact on prognosis. In fact, HPV-positive OPSCC patients have such a favorable prognosis that treatment 
de-intensification trials were initiated.

The increasing importance of HPV-positive tumors as a separate molecular and clinical subgroup of HNSCC 
also fueled research for reliable HPV detection methods, particularly in archival FFPE tumor specimen. In 
theory, this is easily determined by HPV DNA detection, but in practice this turned out to be quite a challenge. 
Most assays have been borrowed from the cervical cancer screening research field and these PCR-based 
assays are generally very sensitive, causing false-positive results. The generally accepted ‘gold standard’ test 
for tumor tissue is the detection of E6 and E7 mRNA expression detected by RT-PCR. The RT-PCR assay can be 
reliably performed on mRNA from fresh-frozen tumor tissue. However, these standard assays are less reliable 
on mRNA that is isolated from FFPE tissue since the RNA is degraded and of poor quality. This is a major 
disadvantage because often only FFPE material of tumors is available. Hence, other HPV detection methods 
have been developed with variable performances.

The most frequently applied methods are PCR-based approaches to detect HPV DNA. However, due to 
the high sensitivity, these methods result in false-positive results161. A second, commonly utilized method 
is fluorescence in situ hybridization. This test is highly specific, but relatively difficult to implement and the 
sensitivity is suboptimal (83–88%)162,163. The third procedure relies on the detection of surrogate markers in 
combination with HPV detection assays. The most widely applied surrogate marker is the expression of p16 
(encoded by CDKN2A). In OPSCC, there is a high correlation between p16 expression and the presence of a 
transcriptionally active HPV infection. However, this test lacks specificity when used as individual test (false-
positive rates between 15% and 20%)162-164. Algorithms have been developed to overcome the weaknesses 
of using individual tests. Smeets et al.163 assessed the performance of several combinations of individual HPV 
tests in OPSCC. They found that an algorithm of p16 expression followed by detection of high-risk HPV DNA 
by GP5+/6+ PCR on the p16-positive samples showed the highest correlation to E6/E7 mRNA expression in 
the corresponding frozen specimen. This was later confirmed in a follow-up study of independent cases165. 
Thus far, no algorithm has been developed for other subsites besides the oropharynx. The sensitivity of 
immunostaining for p16 in subsites other than the oropharynx seems to be much lower12,13. Hence, a reliable 
and simple test for HPV applicable to all tumor sites still needs to be developed and, more importantly, 
thoroughly validated. This would enable us to obtain reliable figures on incidence and prevalence of HPV-
positive tumors outside the oropharynx and, determine whether HPV presence is also a major prognostic 
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marker for non-OPSCC. For OPSCC, test algorithms that include p16-immunostaining followed by some kind 
of HPV DNA detection can be considered as well validated and reliable.

MOLECULAR CLASSIFICATION OF HNSCC: OTHER SUBCLASSES

Besides the subclass of tumors defined by HPV-status, a third molecular subgroup is emerging. This subgroup 
was first discovered by Smeets et al.166 and is characterized by a very limited number of genetic changes and 
wild-type TP53 status. Tumors are HPV-negative and arise primarily in the oral cavity. A recent report of the 
TCGA105 confirmed that approximately 15% of the cases showed very few chromosomal aberrations (somatic 
copy number alteration (SCNA) quiet). Moreover, this subset was enriched with activating mutations in HRAS, 
inactivating mutations in CASP8 and wild-type TP53. Molecular findings are supported by clinical behavior 
as this SCNA quiet subtype has a markedly favorable prognosis compared to other HPV-negative tumors105.

The described stratifications rely on HPV presence, genetic changes and mutational profiles. In the landmark 
study by Perou et al.102 subclasses of breast cancer were identified using expression profiling, an observation 
that changed the breast cancer research field. Along these lines, several groups have studied the molecular 
classification of HNSCC by gene expression signatures. The first study was performed by Chung et al. using 
microarray data of 60 tumors34. They identified four subtypes that were later referred to as basal (BA), 
mesenchymal (MS), atypical (AT) and classical (CL)167. In retrospect, a limitation of this study was that assessment 
of HPV status was not standard at that period. More recently, meta-analyses have been performed to detect 
and validate molecular subtypes in larger cohorts168,169, which support the existence of these subclasses. 
The referred studies show a correlation to the original subtypes defined by Chung et al.34 The breast cancer 
classification shows a clear difference in clinical response between the different subgroups170. These findings 
have been carefully validated171-173. A comparable clinical relevance of molecular subtypes was demonstrated 
in HNSCC. However, despite the correlation of the different signatures, these studies showed conflicting 
clinical associations. For example, while ‘basal-like’ tumors showed the worst prognosis in the paper of Chung 
et al.34, Walter et al.167 showed that ‘atypical’ tumors had the poorest outcome. Another difficulty is caused by 
the inclusion of HPV-positive tumors. Cluster analyses often show enrichment of HPV-positive cases in certain 
clusters, which is expected based on their different biological background. However, HPV-positive tumors 
also cluster together with HPV-negative tumors frequently105. Unfortunately, this separation of HPV-positive 
tumors in different clusters is not explained by a separate clinical behavior169. Hence, the subclasses identified 
by unsupervised cluster analyses of expression profiles do not match with the relevant genetic subtypes, that 
is, HPV-positive and HPV-negative tumors and within the HPV-negative tumors the SCNA-quiet group. Also 
interesting are the molecular subtypes based on expression profiling of HPV-positive tumors only174-176. These 
subtypes relate to virus characteristics and prognosis. 

In summary, molecular subtypes of HNSCC characterized by either HPV status or few genomic alterations are 
emerging; independent final validation in large cohorts of various populations is still necessary. Moreover, 
additional molecular subtypes of HNSCC identified by gene expression profiling seem to be present, but 
clinical applications need further investigation and validation.

PROGNOSTIC MODELING USING BIOMARKERS

One of the most important factors in patient management is disease prognosis, as it impacts the chosen 
treatment and determines the clinical outcome for the patient. Prognostic models are aimed to predict the 
prognosis of patients with a certain disease using multivariable datasets. In HNSCC, outcome measures are 
often overall survival, disease-specific survival, locoregional control and recurrence-free survival. HNSCC 
prognostic models combine clinical variables with histopathology and biomarkers to optimize the model 
performance, i.e. the accuracy of the model to predict the prognosis of a patient correctly. A frequently 
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used measure of a model’s goodness of fit is the C-index. It gives the probability that a randomly selected 
patient who experienced an event (e.g. death or recurrence) had a higher risk score than a patient who had 
not experienced the event. For time-to-event data analysis, the C-index should be integrated over a defined 
time period, e.g. 5 years. The C-index ranges from 0.5 to 1.0, where a C-index of 0.5 resembles a model with 
a random chance of correctly stratifying a patient that experiences an event (e.g. death or recurrence) or 
not, and a value of 1.0 resembles a model with perfect stratification of patients that experience an event 
or not. As a rule of thumb, a C-index of >0.7 is considered a good model177. Features to be included in the 
model are selected by using a specific method such as stepwise regression (for datasets with features << 
patients) or LASSO regression (for datasets with features >> patients) and trained to estimate the coefficients 
of the regression model. Selection and training is generally carried out using the same dataset. This procedure, 
however, is sensitive to overfitting: a term used for a model that describes random fluctuations in the data 
rather than true relationships between the variables. This results in a model with a very high C-index when 
applied to the training dataset, but with little external validity when applied to a different dataset. Cross-
validation can be used to prevent overfitting, but independent validation using additional datasets that were 
not used for feature selection or model training is considered mandatory to show external validity of a model.

The best known prognostic model for OCSCC, or cancer in general, is the TNM-staging system as mentioned 
before. TNM is most accurate when using the pathologic staging system with a C-index of 0.65 (TNM 7) and 
0.70 (TNM 8) for overall survival178. For OPSCC, p16 status is included in TNM 8 as surrogate for HPV status. This 
makes TNM 8 superior over TNM 7, also in patients from the Netherlands88. Other prognostic models have been 
described, which usually combine clinical factors with histopathology and/or biomarkers179,180. These models 
show similar or slightly better C-indexes, but caution is required when comparing performances because 
the C-index also depends on cohort characteristics such as number of events. Next to the TNM-staging 
model, no prognostic models have been widely implemented in daily clinical routine. An ideal model would 
outperform TNM-staging significantly. Moreover, TNM-staging is particularly useful as prognostic model by 
using histopathology. These data are only available after surgery, which precludes accurate pretreatment 
prognostication. Well-timed availability of prognosis could provide better patient counselling and selection 
of patients for treatment intensification or deintensification trials. Options for pretreatment prognostic 
biomarkers are imaging181 and molecular analysis that can be performed on pretreatment biopsies39,138,182-184.

PROGNOSTIC MODELING OF HNSCC

Besides TNM and some histological features, the HPV status is the most important prognostic marker in 
HNSCC, and therefore it is included in TNM 8 by p16-immunostaining as surrogate marker. Several studies 
from a variety of countries demonstrated that patients with HPV-positive OPSCC have a strikingly prognostic 
advantage compared to HPV-negative OPSCC patients87,88,185. A number of multivariate prognostic risk models 
that include HPV status and other risk factors have been developed for OPSCC87,185-187.

Interestingly, patients with HPV-positive OPSCC show a favorable prognosis, but a subgroup of these patients 
does not. To some extent, the above-mentioned risk models enable stratification of HPV-positive patients 
in high and low risk by the use of clinical variables (e.g. smoking, comorbidity, stage of disease). However, 
the identification at baseline of HPV-positive tumors with poor prognosis is still suboptimal. Biomarkers are 
under investigation and promising results include the quantification of tumor-infiltrating lymphocytes188,189, 
expression of human leukocyte antigen class I190 and expression of cancer stem cell enrichment markers (e.g. 
CD98)191. Moreover, recent gene expression profiling studies stratify patients, but in 2 studies HPV-positive 
OPSCC could be divided in 2 groups174,176, while in a third study it was divided in three groups175. Altogether, 
results should be considered experimental and validation in larger cohorts is required.
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Other biomarkers for prognostic modeling are still awaited, especially to stratify HPV-negative HNSCC patients 
in high- and low-risk groups. One approach is through gene expression profiling. Several groups have used 
microarray data to predict metastatic behavior, locoregional recurrence and/or overall survival39,138,182-184. 
However, clinical implementation lags behind. Thinkable reasons are the inadequate reproducibility of 
the classification algorithms, the high costs and the lack of applications for FFPE specimens. Combining 
multiple data sets is a possible solution to improve the reproducibility183, but very well-annotated clinical 
data (including HPV-status, pN-stage, follow-up data, etc.) are required to make maximum use of the data 
sets. Independent validation by other techniques would probably substantiate the reproducibility, but is 
frequently missing. Moreover, in most studies heterogeneous patient populations are studied (e.g. regarding 
HPV status, treatment and tumor subsite) and often studies are underpowered. This does not affect generation 
of research hypotheses, but it hampers clinical implementation in the end.

RADIOMICS

Traditionally, imaging of HNSCC is primarily used to describe locoregional extension of the tumor and to assist 
staging192. However, from these diagnostic images a variety of quantitative features can be extracted as well: 
a process that is termed “radiomics”193. These radiomic features may subsequently be used for prognostic 
modelling. Radiomic analyses have been applied in HNSCC patients, mostly focusing on CTs from radiotherapy 
treatment plans. Aerts et al. were first to describe a prognostic radiomic signature in OPSCC194. This model was 
actually a lung cancer based signature that was applied to OPSCC. Later, they developed a OPSCC-specific 
model195, and their approach was followed by others196-198. The preference for CT is explained by: (1) each 
elemental region of the CT image (voxel) is expressed in terms of Hounsfield units (HU) corresponding to the 
x-ray attenuation (or tissue density)193; and (2) the availability of delineated tumor volumes from radiation
treatment plans. 

However, as mentioned before, MRI is the preferred imaging modality for OCSCC, because of the superior 
soft tissue contrast and lower sensitivity to dental artifacts. Yet, radiomic analysis of MRI is more complicated 
because the signal intensities are influenced by MRI vendor and acquisition protocols199. Nonetheless, MRI 
radiomics has successfully been performed in cancer research, for instance in breast cancer, glioblastoma and 
prostate cancer200-202. In HNSCC, prognostic models based on MRI radiomics were described in several small 
series of oropharyngeal cancer203,204 and in a larger mixed HNSCC cohort205.

OUTLINE OF THIS THESIS

As described above, treatment choices for HNSCC patients are largely dependent on TNM-staging and 
clinical variables such as subsite and age at diagnosis. Prognostic models could help to stratify patients more 
accurately in groups with a favorable and unfavorable prognosis to optimize personalization of treatment 
and counselling of patients. In the past, several models have been published, but these models often lack 
precision or adequate validation. Moreover, most models were trained and validated using heterogeneous 
HNSCC cohorts. In this thesis, novel prognostic models were developed and validated with homogeneous 
OCSCC or OPSCC cohorts.

The etiologic role of HPV in OPSCC has been well established in the past. In non-oropharyngeal HNSCC 
however, much less is clear about the etiologic and prognostic role of HPV. Partly, this is caused by the absence 
of a reliable HPV-test. Usually HPV DNA test are employed, but these are too sensitive causing false positive 
results. In OPSCC, a test algorithm is most frequently used to determine HPV status that consists of p16Ink4A(p16)
immunostaining followed by PCR-based detection of high-risk HPV DNA on the p16-immunopositive 
samples. Unfortunately, this algorithm fails in non-oropharyngeal HNSCC because of a lower sensitivity of 
p16-immunostaining. In Chapter 2, a new molecular HPV-detection algorithm is presented that is suitable for 
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non-oropharyngeal HNSCC. Punch biopsies were obtained from tumor enriched regions of the formalin-fixed 
paraffin-embedded tissue block, and combined DNA and RNA extraction was performed from the punch 
biopsy. Next, PCR-based detection of HPV-DNA with partial genotyping was performed for 15 HR-HPV types, 
and positive results were validated by detection of E6 mRNA.

Tumors may be biologically characterized by gene expression, and this information can contribute to optimal 
prognostication of OCSCC patients. Comprehensive gene expression of the entire genome can be acquired 
by using microarray analyses or RNA sequencing. However, these techniques are expensive and require 
considerable experience in bioinformatics for analyses. Ideally, gene expression is assessed with a platform that 
is more widely available and results can be interpreted by physicians. In Chapter 3, a gene expression prognostic 
model is presented that uses microarray data to select genes that are subsequently assessed with quantitative 
polymerase chain reaction (qPCR) in a validation cohort. Genes predict overall and disease-free survival, but also 
the presence of nodal metastasis. Moreover, the gene expression prognostic model is combined with clinical 
variables and histopathology to optimize accuracy, and also to assess the additional value of the genes.

OCSCC patients often undergo MRI imaging during the diagnostic process, but these scans are primarily used 
for describe the tumor qualitatively and to assist in staging. However, quantitative features can be obtained by 
radiomic analyses, and these features may possess important prognostic information. In Chapter 4, radiomic 
analyses have been performed using native T1 MRI scans of OCSCC and OPSCC patients. 545 features are 
extracted from the scans and used for prognostic modelling. These models are subsequently compared to and 
combined with clinical prognostic models to obtain the most accurate models that can be used in advance 
of treatment.

Recurrent HNSCC can be salvaged surgically, but only when detected in an early stage. Regrettably, relapses 
are frequently discovered in an advanced stage though, and only non-curative treatment may be offered for 
these patients. The gold standard for disease monitoring remains investigation under general anesthesia with 
biopsies, but this is obviously very invasive. Imaging is also possible, but lacks clinical sensitivity to detect 
disease in a very early stage. Recently, detection of circulating tumor DNA (ctDNA) has been explored for 
disease monitoring. This ctDNA is shedded to the circulation by apoptotic tumor cells and can be distinguished 
from germline DNA by its molecular aberrations. In HNSCC, several methods have been described that 
focus on specific molecular aberrations (e.g. mutations, copy-number aberrations, HPV). Ideally however, a 
comprehensive method focuses on all aberrations to detect the majority of tumors. In Chapter 5, a ctDNA 
detection method is presented for HNSCC that detects somatic mutations, copy number aberrations and HPV 
DNA with a single sequencing library strategy. This method is applied to 40 HNSCC patients and 20 non-
cancer controls.

Theoretically, gene expression should be able to describe the biological behavior of a tumor very accurately, 
but, despite extensive efforts by us and others, C-indexes tend not to exceed 0.80. An explanation might 
come from molecular heterogeneity. In this concept, a tumor actually consists of many subclones that are 
genetically linked by clonal evolution, but also show important differences. The use of a single biopsy of such 
a tumor for gene expression analysis may not capture the most aggressive part of the tumor and hence predict 
a wrongly favorable prognosis. Moreover, relapses, which are a major source of disease-specific death, may 
develop from small, but aggressive, subclones of which residual cells remain in the patient after treatment. In 
Chapter 6, we assess genetic heterogeneity by analyzing copy number aberrations in multiple biopsies that 
are taken from a single tumor. The data is subsequently used to develop an algorithm that predicts genetic 
similarity and dissimilarity between two biopsies, and this algorithm was combined with targeted sequencing 
to assess genetic relationships of paired primary tumors and local recurrences.

In Chapter 7 we discuss the findings in broader context, and present suggestions to proceed. 

In Chapter 8 a summary of the thesis is provided. 
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ABSTRACT

The most widely applied algorithm for human papillomavirus (HPV) detection in formalin-fixed, paraffin-
embedded (FFPE) specimens of oropharyngeal head and neck squamous cell carcinoma (HNSCC) consists 
of p16INK4A immunostaining followed by PCR-based detection of high-risk HPV DNA on p16INK4A-
immunopositive samples. However, in nonoropharyngeal HNSCC this algorithm fails, hampering correct 
interpretation of the prevalence and prognosis of HPV in these cases. In this study, we developed and 
validated a molecular HPV detection method for FFPE specimens of oropharyngeal and nonoropharyngeal 
HNSCC. Sectioning of FFPE blocks was circumvented by using punch biopsies from tumor-enriched regions of 
FFPE tissue blocks, and combined extraction was applied to obtain high-quality DNA and RNA from the punch 
biopsy. Next, PCR-based detection of HPV DNA was performed for 15 high-risk HPV types with subsequent 
detection of E6 mRNA for validation. The combined DNA/RNA FFPE test of tissue cores was assessed in well-
characterized cohorts with known HPV status based on earlier work, that is, a cohort of oropharyngeal HNSCC 
(n = 80) and oral cavity HNSCC (n = 25), and reached an accuracy of 97% and 100%, respectively. In conclusion, 
our method is rapid, simple, and shows an excellent diagnostic performance for detection of HPV type 16. 
Ultimately, it can be applied for large cohort studies to determine the etiologic fraction and prognostic 
implication of HPV in nonoropharyngeal HNSCC.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) develops in the epithelial lining of the oral cavity, pharynx, 
and larynx, and accounts for approximately 4% of the global cancer incidence and mortality1. Classic etiologic 
factors are tobacco use and consumption of alcohol-containing beverages2. In 2007, the World Health 
Organization declared that infection with human papillomavirus (HPV), mostly type 16 (HPV16), is an additional 
causative factor for HNSCC3. The virus causes tumors most frequently in the oropharynx [oropharyngeal 
squamous cell carcinoma (OPSCC)], and particularly in the tonsil. This subgroup of HPV-positive OPSCCs is 
a separate disease entity when compared with the classic HNSCCs because of its clinical behavior4, specific 
microscopic appearance5, and different molecular alterations6. The HPV-attributable fraction of OPSCC differs 
geographically between 9% in Southern Europe7 and 60% or higher in North America8. It convincingly 
has been shown that patients with HPV-positive OPSCC have a much better prognosis than HPV-negative 
OPSCC patients9-11. This has led to a new TNM staging system for p16INK4A (p16)-positive OPSCC12, using 
p16 immunostaining as a surrogate marker for HPV infection, and even prompted clinical trials focusing on 
treatment de-intensification13.

Accurate HPV detection methods are required to obtain reliable data on the prevalence and prognosis 
of HPV-positive OPSCCs, and are absolutely crucial in patient selection for treatment de-escalation trials. 
RNA expression of the E6/E7 oncogenes on fresh-frozen samples generally is considered to be the gold 
standard for detection of oncogenic HPV infections14,15, but various alternative HPV detection methods 
have been developed and validated for use on formalin-fixed, paraffin-embedded (FFPE) tissue. Single-
modality HPV-DNA testing by PCR methods is too sensitive, and may detect futile productive infections16 or 
minor carryover contaminations17. Consequently, detection of HPV-DNA only is not specific enough. On the 
other hand, DNA in situ hybridization is less sensitive, and misses HPV-positive tumors14,18. Recently, RNA in 
situ hybridization techniques were developed19,20 that combine the advantage of in situ hybridization (ie, 
localizing the virus directly to malignant cells) with higher sensitivity than DNA in situ hybridization21-23. 
However, this method is expensive and requires specific expertise, and at present the most frequently used 
approach is an algorithm using p16 as a surrogate marker. This algorithm comprises p16 immunostaining 
followed by PCR-based detection of high-risk HPV DNA on the p16-immunopositive samples14, and is 
accurate for OPSCC with a sensitivity of 98% and a specificity of 96%24. However, the algorithm relies on the 
sensitivity of the p16 immunostaining to select tumors for HPV-DNA testing. In two studies evaluating head 
and neck tumors outside of the oropharynx, the sensitivity of p16 immunohistochemistry was a mere 74% 
and 79%25,26, compared with almost 100% in OPSCC14,24. A lower sensitivity of p16 immunostaining will cause 
false-negative findings, hampering conclusions of the clinical relevance of HPV status in nonoropharyngeal 
HNSCC.

Because of these challenges of accurate HPV assessment, much less is known about the HPV-etiologic 
fraction in tumors outside the oropharynx. Moreover, accurate data on the prognostic impact of HPV in 
nonoropharyngeal HNSCC currently are scarce as well. Older meta-analyses showed a worldwide pooled 
HPV-DNA estimate of 24.2% in oral cavity tumors8, but these estimates relied on PCR-based HPV-DNA 
detection methods, including even ultrasensitive nested PCR approaches. Recent studies that relied on 
additional markers for HPV status including RNA detection showed much lower attributable fractions, 
somewhere between 4% and 15% in the oral cavity7,25,26. In these studies, p16 immunostaining was 
bypassed either by using DNA in situ hybridization26 or detection of E6/E7 RNA expression in FFPE specimen 
blocks7,25. Nonetheless some concerns remain. One aspect is the lack of clinical validation of the applied 
detection techniques, hampering interpretation and comparative analysis of the presented results, and 
obstructing the implementation for clinical decision making. A second concern is the standard practice 
of tissue sectioning on microtomes. Although many investigators use cleaning protocols to avoid sample-
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to-sample contamination, this is a nuisance and prone to errors. Moreover, cutting and mounting of the 
sections is laborious and requires considerable hands-on time, which hampers the large studies that are 
necessary. On the other hand, a check of tumor presence and an estimate of tumor percentage is required 
for proper interpretation of molecular test results.

Based on these considerations and our previous experiences and those of others, we developed and validated 
a new, simple molecular HPV detection method suitable for FFPE specimens of HNSCC both inside and 
outside the oropharynx. We circumvent sectioning of the FFPE blocks to reduce contamination and hands-on 
time, apply combined extraction of high-quality DNA and RNA, and perform HPV-DNA detection of 15 high-
risk HPV types with partial genotyping to allow subsequent detection of E6 mRNA for interpretation of the 
findings. We focused on HPV16 because tumors in the head and neck region are caused primarily by this virus 
type, but methods can be extended to other types as well. The new test algorithm that we named HPV rapid 
tissue core (HPV-rTcore) assay was validated clinically on both the DNA level and the RNA level for HPV16 using 
a cohort of OPSCCs and oral cavity squamous cell carcinomas (OSCCs).

MATERIALS AND METHODS

Patients and Tissue Specimens
To evaluate the presented testing method, two cohorts were used. The first cohort was described before24. In 
short, cohort 1 comprised 86 OPSCCs from patients who presented between 2008 and 2011 at Amsterdam 
University Medical Center at VUmc, and were included consecutively in a prospective sampling study. A biopsy 
of the tumor was performed under general anesthesia and two specimens were taken, of which one was 
fixed in 4% buffered formalin and embedded in paraffin, and the other was snap-frozen and stored in liquid 
nitrogen at −196°C. The second cohort consisted of 25 OSCCs from historical sample series27,28. In addition, 
in the second cohort both FFPE and fresh-frozen material were available, either from pretreatment biopsy 
specimens or the resection specimen.

Historical Group Classification
RNA extraction of the OPSCC and OSCC frozen biopsy specimens was described previously24,27,28, and the 
RNA subsequently was stored at −80°C. Both DNA and RNA were analyzed. The presence of E6 mRNA in the 
fresh-frozen biopsy specimens of both the OPSCC and the OSCC cohort was considered the gold standard 
for etiologic HPV involvement14, and was detected by an HPV16 E6*I RT-PCR–enzyme immunoassay (EIA) as 
previously described14. Among the 86 OPSCC tumors, 24 were HPV positive and 62 were HPV negative24. In 
total, 21 of 24 HPV-positive tumors contained HPV16, two contained HPV33, and one contained HPV3524. 
Among the 25 OSCCs, four were HPV16 positive27 and 21 were HPV negative28.

Nucleic Acid Extraction on FFPE Tissue Samples
For sampling of tumor-enriched regions, sterile, disposable 1-mm biopsy punches with a plunger system (a 
gift from Claudia Küpper, Kai Europe GmbH, Solingen, Germany) were used as described previously29. The 
archived hematoxylin and eosin–stained slides from the tissue block for initial histologic diagnosis were used 
to select a tumor-enriched region from which to take a biopsy specimen. The hematoxylin and eosin section 
and tumor block were aligned and a punch was taken only when they matched macroscopically. When they 
did not match, a novel diagnostic section was prepared as the first step. No surface treatment of the FFPE 
blocks was applied. Although it has been considered, it was not required. The punch biopsy specimens were 
stored in microcentrifuge vials (Eppendorf, Hamburg, Germany) with a screw cap at room temperature.



Development and Validation of a Novel and Rapid Molecular Detection Method for hrHPV in FFPE Tumor Tissue

33

2

Total nucleic acid extraction from the 1-mm punch biopsies was performed without deparaffinization by 
overnight lysis at 58°C in 250 μL lysis buffer containing 237.4 μL 10 mmol/L Tris-HCL (Invitrogen, Carlsbad, 
CA) pH 8.0/0.25% SDS (Bio-Rad Laboratories B.V., Veenendaal, the Netherlands), and 12.6 μL 20 mg/mL 
proteinase K (Invitrogen). The samples were incubated in an Eppendorf thermomixer with continuous shaking 
(500 rpm), and proteinase K was added again after four hours. DNA and RNA were isolated by a NucliSense 
EasyMag isolation procedure (bioMérieux SA, Marcy l’Étoile, France) and dissolved in 30 μL elution buffer 
(catalog number 280132; bioMérieux). DNA and RNA concentrations were measured using the Qubit DNA 
HS Assay Kit and Qubit RNA HS Assay Kit (Invitrogen) on a Qubit 4.0 fluorometer (Invitrogen) according to the 
manufacturer’s protocol. Total nucleic acid isolates were stored at −80°C until use.

HPV-DNA Detection and Genotyping
High-risk HPV-DNA detection and partial genotyping were performed using the HPV-Risk Assay according 
to the supplier’s instructions (Self-screen B.V., Amsterdam, the Netherlands)30,31. In short, 5 μL isolated DNA 
(maximal DNA concentration, 20 ng/μL) was used as input for the HPV-Risk Assay and was run on a VIA 7 Real-
Time PCR system (Applied Biosystems, Foster City, CA). This assay targets the E7 region of 15 high-risk HPV 
types (ie, HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 67, and 68). Four different fluorescent channels are 
used: HPV16 and HPV18 are detected in separate fluorescent channels, detection of the other 13 HPV types 
is combined in the third fluorescent channel, and the human β-globin gene (HBB) is detected in a fourth 
channel. HBB serves as an internal control to confirm that the sample has sufficient amplifiable DNA. A sample 
was scored as HPV negative when the threshold cycle (CT) value for HBB was ≤36 and CT values for all HPV 
channels were >36. A sample was considered positive for HPV16, HPV18, and/or other high-risk HPV types 
when a CT value ≤36 in the channel for HPV16, HPV18, and/or other HPV types was obtained. A sample was 
recorded as invalid when the CT values for all channels (HPV and HBB) were >36. The cut-off value of 36 was 
chosen because it was the highest CT value shown by replicate assays to have the same CT value. At higher CT 
values, replicates became unreliable. See Results for more detail.

Figure 1. Primer and probe design of the E6*I real-time quantitative PCR assay for human papillomavirus type 16. 
The E6*I spliced-out sequence is shown in italics. Sequences complementary to the primers and probe are shown in bold.

HPV16 E6 mRNA Detection
A TaqMan (Applied Biosystems)–based mRNA assay was developed to detect HPV16 E6 mRNA expression. The 
TaqMan assay was designed to specifically detect RNA and not DNA, using a splice-site spanning probe to detect 
the most abundant splice variant within the HPV16 E6 open reading frame (ie, E6*I). Moreover, the amplicon 
length was kept short to facilitate optimal amplification of RNA from FFPE specimen blocks. A schematic 
overview of the new assay is shown in Figure 1. First, 8 μL RNA was treated with DNAse I, amplification grade 
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(cat. 18068015; Invitrogen) in a 10-μL reaction volume according to the manufacturer’s protocol. The DNAse-
treated mRNA was diluted to a total volume of 26.4 μL and used for real-time quantitative RT-PCR (RT-qPCR). 
RT-qPCR was performed on an ABI7500 Real-Time PCR system (Applied Biosystems) in a one-step reverse 
transcription and subsequent PCR reaction using the GoTaq Probe 1-Step RT-qPCR System (Promega, Madison, 
WI) according to the manufacturer’s protocol. RT-qPCR analyses were performed in 20 μL containing 10 μL GoTaq 
Probe qPCR Master Mix (2×), 0.4 μL GoScript RT Mix for 1-Step RT-qPCR (50×), 900 nmol/L forward and reverse 
primers (Biolegio B.V., Nijmegen, the Netherlands), 250 nmol/L hydrolysis probe (Biolegio B.V.), 4 μL RNA, and 
2.6 μL nuclease-free water. Before use, 30 nmol/L carboxy-X-rhodamine reference dye was added to the GoTaq 
Probe qPCR Master Mix. Cycling conditions were 15 minutes at 45°C and two minutes at 95°C, followed by 40 
cycles of 15 seconds at 95°C of denaturation, and 60 seconds at 60°C of annealing/extension. In parallel, a 
previously developed assay for the housekeeping gene encoding β-glucuronidase (GUSB)14 was performed to 
examine the sample RNA quality. Sequences of primers and probes are listed in Table 1. The TaqMan assay was 
evaluated using two HPV16-positive HNSCC cell lines and one HPV-negative HNSCC cell line: UD-SCC-232 (viral 
copy number: 23.433), UPCI:SCC-9034 (viral copy number: 483.033), and VU-SCC-120, which is HPV negative35. The 
detection limit was determined with a serial dilution of RNA from UD-SCC-2 and UPCI:SCC-90 using 20 ng to 
2 pg RNA per reaction. The RNA specificity of the assay was determined by evaluation of RNA from UD-SCC-2 
in four combinations: with or without pretreatment of the RNA with DNase I, amplification grade (Invitrogen), 
and with or without addition of reverse transcriptase. In addition, cDNA calibration curves were determined 
in the number of cDNA copies using constructed and synthesized gBlocks (Integrated DNA Technologies, 
Coralville, IA) that are fusions of HPV16 and GUSB sequences. The gBlock had the following sequence: 
5’-CAAAAACGCAGAAAATACGTGGTTGGAGAGCTCATTTGGAATTTTGCCGATTTCATGACTGAACAGTCACCGA 
CGAGAGTGCTGGGGAATAAAAAGGGGATCTTCACTCGGCAGAGACAACCAAAAAGTACATGATATAATATTAGAAT 
GTGTGTACTGCAAGCAACAGTTACTGCGACGTGAGGTGTATTAACTGTCAAAAGCCACTGTGTCCTGAAGAAAAGCAAAGA 
CATCTGGACAAAAAGCAAAGATTCCAT-3’ (standard font style corresponds to GUSB; italic font style corresponds 
to HPV16). Similar to the HPV-Risk Assay for DNA, a sample was scored as HPV16 negative when the CT value for 
GUSB was ≤36 and the CT value for E6*I was >36. When the E6*I CT value was ≤36, the sample was considered 
HPV16 positive. A sample was recorded as invalid when the CT values for both GUSB and E6*I were >36.

Assessment of Reproducibility
A series of samples were analyzed in duplicate to assess reproducibility, the effect of retesting, and potential 
sampling heterogeneity. Both the same RNA/DNA isolate (n = 27) was used in an independent reaction at a 
later time point, and second punch biopsies were taken at a later time point from the same specimen blocks 
of 18 tumors. These biopsy specimens were processed similarly to the first punch biopsy, but at a later time 
point to examine the effect of retesting and sampling error. For both reproducibility assays, an interval of 
approximately three months was used.

Statistical Analysis
HPV status assessed by HPV16 E6*I RT-PCR-EIA assay14 on nucleic acids isolated from the matched frozen 
specimens was used as the gold standard for the calculation of sensitivity, specificity, and accuracy. A Spearman 
rank correlation coefficient with corresponding P value was used to compare repeat samples because 
heteroskedasticity of the data precluded the use of a Pearson product-moment correlation coefficient. All 
statistical analyses were performed using package stats in R version 3.6.1 (R Project for Statistical Computing, 
https://www.r-project.org, last accessed July 5, 2019).
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Table 1. Primer and Probe Sequences Used for E6*I and GUSB Expression Analyses

Target Sequence
Primer location in genome 

sequence (length)
Amplicon 
length, bp

HPV16 E6*I 
(NC_001526)a

F: 5’-TGTGTGTACTGCAAGCAACAG-3’ 191-211 (21)

89R: 5’-CCAGATGTCTTTGCTTTTCTTC-3’ 440-461 (22)

TPb: 5’-CTGCGACGTGAGGTGTATTAACTGTCAAA-3’ 215-226^409-425c (29)

GUSB
(NM_000181)a

F: 5’-TTTGGAATTTTGCCGATTTCAT-3’ 7:65964334-65964355 (22)

84R: 5’-GTCTCTGCCGAGTGAAGAT-3’ 7:65961013-65961031 (19)

TPb: 5’-CCAGCACTCTGGTCGGTGACTGTTCA-3’ 7: 65961046-65964330 (26)

Abbreviations: F, forward primer; GUSB, β-glucuronidase ; HPV, human papillomavirus; R, reverse primer; TP, TaqMan probe. 
a. GenBank accession number (https://www.ncbi.nlm.nih.gov/genbank/).
b. With 6-Carboxyfluorescein 5’-reporter and Black Hole Quencher 1 3’-quencher.
c. HPV type 16 E6 is spliced between chromosome positions 226 and 409.

RESULTS

Validation of the HPV-rTcore workflow presented was performed in subsequent steps. First, the HPV16 E6*I RT-
qPCR test was developed and its analytical performance was evaluated using a serial dilution of RNA from cell 
lines. Second, the HPV16 E6*I RT-qPCR test was compared with the previously developed HPV16 E6*I RT-PCR-
EIA14 using archived RNA from fresh-frozen biopsy specimens of OPSCC patients to confirm the diagnostic 
accuracy. Next, HPV-DNA and mRNA detection was performed on nucleic acid isolates of FFPE punch biopsies 
of OPSCC and OSCC patients. The HPV status in this cohort was well defined and assessed by HPV16 E6*I RT-
PCR-EIA on RNA from the matched frozen samples. Finally, the accuracy was evaluated by a testing algorithm 
that combined HPV-DNA and mRNA testing on FFPE biopsy specimens. The results of each step are described 
in the following sections.

Analytical Validation of RT-qPCR Assay for Detection of HPV16 E6*I
Performance of the RT-qPCR TaqMan assay for HPV16 E6*I was tested using RNA from two HPV16-positive cell 
lines, and one HPV-negative cell line. The assay was positive in the HPV16-positive cell lines, and negative in the 
HPV-negative cell line and technical negative controls (with or without DNAse digestion and without addition 
of reverse transcriptase). No effect of DNAse digestion was found on E6*I and GUSB CT values. The detection 
limit of the assay using a serial dilution of fresh RNA from HPV-positive cell line UD-SCC-2 and UPCI:SCC-90 in 
sterile water was found to be 20 pg RNA (UD-SCC-2) and 2 pg RNA (UPCI:SCC-90). Moreover, at a CT value of 
36, three DNA copies of GUSB and seven copies of HPV16 can be detected according to the gBlock calibration 
curve (Supplementary Figure 1). The assay was highly specific for the detection of RNA because assays without 
addition of reverse transcriptase did not detect any product with a CT value <36.

Clinical Validation of HPV16 E6*I RT-qPCR Assay on Fresh-Frozen Biopsy Specimens of 
OPSCC Patients
After technical confirmation of the RT-qPCR TaqMan assay performance, the diagnostic accuracy was 
benchmarked against our previous HPV16 E6*I RT-PCR-EIA assay14 using archived RNA from snap-frozen 
biopsy specimens of a previously reported cohort of 86 OPSCC patients with well-defined results24. The 
comparison is shown in Table 2. There was good agreement between the results of the previous EIA assay and 
the new TaqMan-based RT-qPCR assay (96%). The HPV16 E6*I RT-qPCR assay has a high sensitivity (95%) and 
specificity (97%).
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Table 2. HPV E6*I Detection on RNA of Snap-Frozen Biopsy Specimens from OPSCC Patients by Taqman Assay versus the HPV16 E6*I RT-PCR-
EIA as Gold Standard

Taqman Assay
HPV16 E6*I RT-PCR-EIA gold standarda

HPV negative HPV16 positive other HPV positive

RT-qPCR Taqmanb
HPV negative 60 1 3

HPV16 positive 2 20 -

Abbreviations: EIA, enzyme immunoassay; HPV, human papillomavirus; HPV16, human papillomavirus type 16; RT-qPCR, real-time 
quantitative RT-PCR.
a. Frozen samples. 
b. Identical frozen samples.

Nucleic Acid Isolation from FFPE Material Using Punch Biopsies
Sampling of tumor cells for nucleic acid isolation was performed using sterile punch biopsies from tumor-
enriched regions of FFPE specimens. The median estimated percentage of tumor of the enriched and sampled 
region was 50% (range, 10% to 80%; SD, 16%). After sampling, combined extraction of DNA and RNA was 
performed. The median DNA and RNA yields in 30 μL elution volume were 10 ng/μL (range, 5 to 15 ng/μL; SD, 
7.1 ng/μL), and 12 ng/μL (range, 4 to 26 ng/μL; SD, 5.8 ng/μL), respectively.

Table 3. HPV DNA Detection by the HPV-Risk Assay on FFPE Punch Biopsies from OPSCC and OSCC Patients versus the Gold Standard (HPV16 
E6*I RT-PCR-EIA on RNA From Matched Frozen Material)

HPV-Risk assay
HPV16 E6*I RT-PCR-EIA gold standarda

HPV negative HPV16 positive other HPV positive

OPSCC cohortb

HPV negative 55 1 -

HPV16 positive 1 19 -

other HPV positive - - 3

Invalidc 1 - -

OSCC cohortb

HPV negative 20 - -

HPV16 positive - 4 -

other HPV positive - - -

Invalidc 1 - -

Abbreviations: EIA, enzyme immunoassay; FFPE, formalin-fixed paraffin-embedded; HPV, human papillomavirus; HPV16, human 
papillomavirus type 16; OPSCC, oropharyngeal squamous cell carcinoma; OSCC, oral cavity squamous cell carcinoma; RT-qPCR, real-time 
quantitative RT-PCR.
a. RNA-based detection on frozen samples.
b. DNA-based detection on FFPE punch biopsies.
c. A sample was recorded as invalid when the threshold cycle values for all HPV channels and HBB were ≥36.

Table 4. HPV16 E6*I RNA Detection by RT-qPCR TaqMan Assay on FFPE Punch Biopsies from OPSCC and OSCC Patients versus the Gold 
Standard (HPV16 E6*I RT-PCR-EIA on RNA from Matched Frozen Material)

RT-qPCR TaqMan assay
HPV16 E6*I RT-PCR-EIA gold standarda

HPV negative HPV16 positive other HPV positive

OPSCC cohortb

HPV negative 56 1 3

HPV16 positive 1 19 -

Invalidc - - -

OSCC cohortb

HPV negative 21 - -

HPV16 positive - 4 -

Invalidc - - -

Abbreviations: EIA, enzyme immunoassay; FFPE, formalin-fixed paraffin-embedded; HPV, human papillomavirus; HPV16, human 
papillomavirus type 16; OPSCC, oropharyngeal squamous cell carcinoma; OSCC, oral cavity squamous cell carcinoma; RT-qPCR, real-time 
quantitative RT-PCR.
a. RNA-based detection on frozen samples.
b. RNA-based detection on FFPE punch biopsies.
c. A sample was recorded as invalid when the threshold cycle values for E6*I and GUSB were ≥36.
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Detection of HPV DNA of 15 High-Risk HPV Types in Nucleic Acid Isolates of Punch Biopsies
For confident HPV detection, we aimed for molecular HPV testing on FFPE biopsy specimens by combining 
a DNA test and an RNA test. First, we compared the results of the DNA test method against the results of 
the previous RT-PCR-EIA assay14 on matched fresh-frozen tumor material, which we considered the gold 
standard. Two cohorts were used for validation: the OPSCC cohort (80 of 86 FFPE biopsy specimens could 
be retrieved), and an OSCC cohort consisting of 25 tumors. Matched fresh-frozen and FFPE samples were 
available. Results found in both cohorts are shown in Table 3. In total, 103 of 105 samples had valid DNA-
based test results, with 1 false-positive and 1 false-negative result as compared with the gold standard. 
Hence, the HPV-Risk Assay on isolated DNA already was highly accurate in both cohorts (96% in both the 
OPSCC and OSCC cohorts). These results were stable when retesting the same DNA sample (rho = 0.75; P = 
8 × 10−6) (Figure 2A), and when evaluating a second punch biopsy from the same FFPE biopsy (rho = 0.82; 
P = 2 × 10−5) (Figure 2B).

The reproducibility of results with CT values >36 was low for HBB (Figure 2A) and HPV (Figure 2B). Because the 
template DNA input was standardized on 100 ng by Qubit DNA quantitation, the signal intensity depended 
mostly on the level of DNA template degradation, which was unpredictable. Therefore, the cut-off was set at a 
CT value of 36 to call a sample diagnostic (HBB) and positive (HPV). The limitation of using a CT value of 36 as 
the cut off is that sensitivity of the assay should be checked regularly, which is performed easily using a large 
aliquoted batch of DNA of a HPV-positive cell line or using synthetic DNA templates.

Table 5. HPV16 Detection by Combination of HPV DNA Detection by the HPV-Risk Assay and RT-qPCR TaqMan Assay on FFPE Punch Biopsies 
from OPSCC and OSCC Patients versus the Gold Standard (HPV16 E6*I RT-PCR-EIA on RNA from Matched Frozen Material)

HPV-Risk Assay + RT-qPCR TaqMan assay
HPV16 E6*I RT-PCR-EIA gold standarda

HPV negative HPV16 positive other HPV positive

OPSCC cohortb

HPV negative 56 1 3

HPV16 positive 1 19 -

Invalidc - - -

OSCC cohortb

HPV negative 21 - -

HPV16 positive - 4 -

Invalidc - - -

Abbreviations: EIA, enzyme immunoassay; FFPE, formalin-fixed paraffin-embedded; HPV, human papillomavirus; HPV16, human 
papillomavirus type 16; OPSCC, oropharyngeal squamous cell carcinoma; OSCC, oral cavity squamous cell carcinoma; RT-qPCR, real-time 
quantitative RT-PCR.
a. RNA-based detection on frozen samples.
b. DNA- and RNA-based detection on FFPE punch biopsies.
c. A sample was recorded as invalid when both DNA and RNA testing were invalid.
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Figure 2. Technical reproducibility. 
The x axis and y axis represent threshold cycle (CT) values of the housekeeping genes of the two replicates under comparison. Each diamond 
symbol represents a specific sample. Correlations were assessed with a Spearman rank correlation coefficient (rho) and corresponding P 
value. A: Technical reproducibility of the human papillomavirus (HPV)–Risk Assay by retesting the same DNA sample. The target is HBB. B: 
Reproducibility of HPV-Risk Assay on DNA samples from second punch biopsies of the same FFPE specimen. The target is HBB. C: Technical 
reproducibility of E6*I real-time quantitative PCR (qPCR) assay by retesting the same RNA sample. The target is β-glucuronidase (GUSB). D: 
Reproducibility of the E6*I qPCR assay on RNA samples from second punch biopsies of the same FFPE specimen. The target is GUSB. Note that 
reproducibility problems between replicates started to occur when one of the samples had a CT value of 36 or higher, which was the reason 
for setting the cut-off point at 36. n = 27 (A and C); n = 18 (B); n = 17 (D).

Detection of HPV16 E6*I in Nucleic Acid Isolates of Punch Biopsies
Next, the HPV16 E6*I TaqMan RT-qPCR assay was validated using the same FFPE punch biopsy–derived 
nucleic acid isolates, and the results, similarly as described in the previous paragraph, were compared against 
the results of the previous HPV16 E6*I RT-PCR-EIA assay14 on the matched fresh-frozen tumor material (Table 
4). All samples had a valid result in RT-qPCR. Because the assay was designed to detect HPV16, the three 
non–HPV16-positive OPSCC samples were negative, and these samples were neglected for calculation of the 
assay accuracy for molecular detection of HPV16, leaving one false-positive and one false-negative result as 
compared with the gold standard. The accuracy for HPV16 by E6*I TaqMan RT-qPCR assay was very high (97% 
in the OPSCC cohort, and 100% in the OSCC cohort). Stability of the assay was ensured using the same nucleic 
acids of a sample (rho = 0.97; P = 4E-17) (Figure 2C), and a second isolate from the second punch biopsies (rho 
= 0.83; P = 3.5E-5) (Figure 2D). Again, reproducibility between replicates was low for CT values of 36 or higher. 
Hence, for RNA analyses, a CT value of 36 also was chosen as the cut-off point to call a sample diagnostic 
(GUSB) and positive (E6*I).
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Development of Molecular HPV Testing Algorithm for HPV16 Suitable for FFPE Material
Finally, an algorithm that sequentially combines the DNA and RNA test was evaluated. A schematic overview 
is presented in Figure 3. The overall accuracy of the algorithm for HPV16 was 97% and 100% in the OPSCC and 
OSCC cohorts (Table 5), respectively.

Figure 3. Human papillomavirus rapid tissue core (HPV-rTcore) workflow for sample processing and determination of HPV in formalin-fixed, 
paraffin-embedded (FFPE) specimens. 
The method is based on contamination-free sampling (punch biopsy with disposables), simultaneous DNA and RNA extraction, HPV-DNA 
detection with genotyping (HPV-Risk Assay), and HPV-RNA detection on the HPV-DNA–positive samples by real-time quantitative RT-PCR 
(RT-qPCR). HE, hematoxylin and eosin.
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DISCUSSION

In this study we developed and validated a molecular HPV detection method suitable for FFPE tissue blocks 
of HNSCC from all subsites. A molecular method was developed based on a contamination-proof sampling 
method using disposable punches and combined extraction of DNA and RNA that can be automated, followed 
by HPV-DNA detection with partial genotyping and detection of E6 mRNA in the HPV16 DNA-positive cases 
using a newly developed RT-qPCR test. This new RT-qPCR test is less laborious and more user-friendly than the 
previously developed HPV16 E6*I RT-PCR-EIA assay14 that was based on an EIA read out. DNA-based testing for 
15 high-risk HPV types by HPV-Risk Assay was shown to be reproducible and highly accurate in both cohorts 
(96% in both the OPSCC and OSCC cohorts), even without combined RNA analysis. The combined method can 
further prove the presence of transcriptionally active HPV, and performed well with high reproducibility and 
an overall accuracy of 97% and 100% for the detection of HPV16 in the OPSCC and OSCC cohorts, respectively. 
Moreover, the RNA analysis added to the performance of the DNA test by increasing the percentage of valid 
test results from 98% to 100%.

This study compares the new assays with the original results of the HPV16 E6*I RT-PCR-EIA on RNA from the 
matched frozen samples. However, whether this latter test is the absolute gold standard is obviously arbitrary. 
Three samples were found in which the results of the HPV16 E6*I RT-PCR-EIA did not match the results of the 
new RT-qPCR test. It remains questionable which result should be considered correct. However, because the 
new test is being evaluated in this study, we chose to comply with the previous test results. The choice of this 
gold standard also influenced the calling of false-positive and false-negative test results of the FFPE tests. One 
sample was negative in the previously used HPV16 E6*I RT-PCR-EIA, but HPV positive according to the new 
RT-qPCR test on RNA from frozen material, and also HPV-DNA and HPV-RNA were detected in FFPE. Moreover, 
this sample also had strongly positive staining for p16. Most likely, this is a true HPV-positive sample that was 
missed by the original assay. Moreover, a second discordant sample was found. This sample was HPV negative 
according to the new tests on RNA from frozen material and FFPE and p16 staining was negative. However, 
the HPV16 E6*I RT-PCR-EIA was positive and we had to consider this sample to be HPV positive based on the 
original data. Most likely, this was a true HPV-negative sample with a false-positive EIA. Hence, the new assay 
may in fact be even more accurate than the presented data indicate.

Between samples, a large range of CT values that indicated a positive test result because of differences in 
relative tumor content, HPV-DNA copy number, expression level, and particularly nucleic acid quality was 
expected. Indeed, a relative difference of up to 8 CT values (DNA) and 10 CT values (RNA) was found between 
the samples with the highest and lowest levels of HPV-positive test results (data not shown), whereas the 
nucleic acid template input was comparable (50 to 100 ng). Given these differences in the level of HPV-
positive test results, an absolute threshold rather than a relative one (ΔCT) was used to score a test positive 
or negative. This threshold for the housekeeping genes was set at a CT value of 36 for both the DNA and RNA 
tests. This cut-off value was chosen based on the reproducibility of replicate assays. To implement this test in 
a different laboratory it is important to validate it on local equipment and other reagents before using the 
test for diagnostic purposes. The data of HPV-positive cell lines or synthetic DNA templates can be used for 
implementing the assay.

A relatively large number of samples were evaluable compared with other studies that applied combined 
DNA and RNA HPV detection. In the combined analysis for HPV16 testing all cases were diagnostic. Other 
studies reported 8.5%7 and 4.9%25 of nonevaluable cases. This difference may be explained by different DNA/
RNA extraction methods or detection methods, and also differences in specimen quality.

There were three major strengths to this study. First, a thorough clinical validation of the developed testing 
algorithm for optimal interpretation of the results was included. Second, the use of disposable sampling 
methods diminishes the major problem of cross-contamination introduced by sectioning. The paraffin 
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microtomes are a suspected source of cross-sample contamination despite cleaning procedures and knife 
switches. This was tested before (data not shown), and sectioning in diagnostic testing was omitted. The 
routinely made hematoxylin and eosin slides can serve well macroscopically to guide the area for punching. 
Finally, the current workflow resulted in 100% evaluable cases.

There were also limitations to our approach. In this study, nucleic acid isolation was performed using the 
NucliSens EasyMag, which may not be available in every diagnostic laboratory. However, this method also 
should be applicable to any column-based nucleic acid isolation kit. Another limitation of this study was the 
focus on detection of HPV16 only at the RNA level. Future research will overcome this limitation because 
E6*I assays for non-16 high-risk HPV types have been developed36, and a technical validation with synthetic 
DNA fragments (gBlocks) can be performed. Moreover, cell lines with HPV33 have been reported37 and 
constructed38.

This simple and reliable detection method that we termed HPV-rTcore assay can be applied in large cohort 
studies to determine the attributable fraction of HPV in archival specimens, allowing analysis of prognostic 
implications.
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SUPPLEMENTARY FIGURES

Supplementary Figure S1. Calibration curves of HPV16 E6*I cDNA and β-glucuronidase (GUSB) cDNA gBlocks. 
The x axis represents the absolute number of cDNA copies and the y axis represents the corresponding CT value. Solid dots are the average 
CT values (of three replicates) found when analyzing a given number of cDNA copies. Dashed lines are the actual calibration curves, and its 
functions are shown in the figure.
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ABSTRACT

Accurate staging and outcome prediction is a major problem in clinical management of oral cancer patients, 
hampering high precision treatment and adjuvant therapy planning. Here, we have built and validated 
multivariable models that integrate gene signatures with clinical and pathological variables to improve staging 
and survival prediction of patients with oral squamous cell carcinoma (OSCC). Gene expression profiles from 
249 human papillomavirus (HPV)-negative OSCCs were explored to identify a 22-gene lymph node metastasis 
signature (LNMsig) and a 40-gene overall survival signature (OSsig). To facilitate future clinical implementation 
and increase performance, these signatures were transferred to quantitative polymerase chain reaction (qPCR) 
assays and validated in an independent cohort of 125 HPV-negative tumors. When applied in the clinically 
relevant subgroup of early-stage (cT1-2N0) OSCC, the LNMsig could prevent overtreatment in two-third of 
the patients. Additionally, the integration of RT-qPCR gene signatures with clinical and pathological variables 
provided accurate prognostic models for oral cancer, strongly outperforming TNM. Finally, the OSsig gene 
signature identified a subpopulation of patients, currently considered at low-risk for disease-related survival, 
who showed an unexpected poor prognosis. These well-validated models will assist in personalizing primary 
treatment with respect to neck dissection and adjuvant therapies.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the 7th most common tumor in the world1. HNSCC 
originates in the mucosal linings of the oral cavity, oropharynx, hypopharynx and larynx. The majority of 
patients (30-40%) present with oral squamous cell carcinoma (OSCC)2. Classical risk factors for HNSCC are 
tobacco use and alcohol consumption. Additionally, human papillomavirus (HPV) infection became manifest 
as a cause during the last decade. The HPV-attributable fraction is highest in oropharyngeal squamous cell 
carcinoma (OPSCC), and varies from 20-90% depending on the geographical region3. Also oral cancers may 
arise from HPV infection, but the attributable fraction is lower, ranging from 0-6%4. OPSCCs caused by HPV 
infection are different at the molecular level5 and have a highly favorable prognosis6. This different clinical 
behavior led to treatment de-intensifying trials to personalize treatment and a staging adaptation in the 8th 
edition of the TNM Classification of Malignant Tumors of the Union for International Cancer Control (UICC)7. 

The 5-years overall survival for OSCC is 60%, but ranges from 10 to 80% depending on the extent of the tumor 
at diagnosis8, as defined by the TNM stage. TNM staging is based on prognosis and employed for treatment 
planning in patients with OSCC9, but is group-based and meets limitations for personalizing treatment of the 
individual patient. 

OSCC is mainly treated by surgery with or without postoperative radiotherapy or chemoradiotherapy, and 
besides TNM stage, additional important prognostic features are derived from histopathological examination of 
the surgical specimen. For example, tumor-positive surgical margins (R+) and lymph node metastasis (LNM) with 
extracapsular spread (ECS) are classical treatment-decisive prognostic factors and indicators for postoperative 
chemoradiotherapy. Of note, histopathological examination of the specimen is only available for postoperative 
therapy decisions, and not for pre-treatment prediction of prognosis and treatment planning. Particularly for 
patients with a clinically N0 neck an important choice has to be made between elective treatment of the neck, 
with associated morbidity, or active surveillance with the risk of occult lymph node metastases that will become 
manifest during follow-up. Molecular profiling of tumor specimen may provide additional, objective information 
to improve current prognostication, and can even be performed on pretreatment biopsies to stage the neck.

Several prognostic models based on molecular profiles have been evaluated for HNSCC in general, or for OSCC 
specifically10-13. These models predicted survival of the studied populations, and added independent information 
to other established prognostic factors. However, none of these models has been introduced in clinical practice. 
Reasons are (1) insufficient clinical validation of the models, (2) the complexity and lack of reproducibility of the 
different profiling platforms14, (3) heterogeneous study populations regarding HPV status and tumor subsite, 
(4) the high costs of transcriptomic profiling, and (5) the lack of compatibility with formalin-fixed paraffin-
embedded (FFPE) tissue specimen. Translation of expression profiles to quantitative real-time polymerase chain 
reaction (qPCR) platforms using selected gene panels may overcome most of these disadvantages.

Another argument holds true for expression profiles associated with the clinically N0 neck. Previously, an 
expression profile has been identified and appropriately validated in a multicenter trial15-17. The signature 
remained accurate with negative predictive values (NPV) of 88% to 90% in the clinically relevant subgroup. 
However, the sentinel node biopsy is a competing diagnostic modality in this patient group with an even 
higher NPV of 95%18. Notwithstanding, sentinel node biopsy has not been introduced widely, has a poor 
performance for floor of mouth tumors, and has the obvious disadvantage that it remains a surgical procedure 
with radioactive tracers, whereas for gene expression analysis only a biopsy is required. Particularly, switching 
to RT-qPCR analysis of a thoroughly selected gene panel may further enhance the predictive power of the 
gene signature because of the large dynamic range of RT-qPCR.

We therefore aimed to identify and test gene expression signatures to address these important challenges in 
head and neck oncology: prediction of lymph node metastasis (LNM) and overall survival (OS). First, signatures 
of informative genes were selected from gene expression data by regression methods. Next, a limited number 
of genes were selected for platform transition to RT-qPCR assays, and the prognostic power was validated 
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using an independent cohort of surgically-treated HPV-negative OSCC patients. The molecular data were 
further combined with clinical and pathology data to provide the most accurate models for clinical practice to 
predict nodal metastatic disease and prognosis.

MATERIALS AND METHODS

Patients
Four independent cohorts of human papillomavirus (HPV)-negative OSCC patients were included (1) a cohort 
of 2 merged tumor gene expression profiles (array cohort 1, AC1) from the University Medical Center Utrecht 
(UMCU) and VU University Medical Center Amsterdam (VUmc); (2) a cohort of tumor gene expression profiles 
(array cohort 2, AC2) from the University Hospital Parma Medical Center (UHPMC); (3) an independent cohort 
of frozen tumor samples from VUmc, UHPMC and University Hospital Düsseldorf (UHD) for RT-qPCR gene 
expression profiling (qPCR cohort); and (4) an RNAseq dataset of OSCC tumors from The Cancer Genome Atlas 
(TCGA) Network19. Use of tissue from surgical specimen adhered to nation- and institution-specific procedures 
and guidelines. Informed consent was obtained of enrolled patients, when required. This study followed the 
Guidelines for the REporting of tumor MARKer Studies (REMARK)20 (Supplementary Table 6). 

HPV status
HPV status was either determined with p16 immunostaining followed by HPV DNA PCR on p16-positive 
samples (AC1) and/or with HPV16 E6*I RT-PCR in the AC1 and qPCR cohorts. Both assays have been validated 
and described before21. In AC2, the HPV status was not available. In the other cohorts on the other hand, 1 out 
of 151 (AC1) and 1 out of 126 (qPCR cohort) tumors were HPV-positive. Hence, the contribution of HPV positive 
tumors in AC2 was assumed to be low and no samples were excluded.

Gene expression datasets
Similarly preprocessed VUmc (GSE84846) and UMCU (GSE30788) microarray datasets were combined, and 
comparability of the expression data of both centers was ensured. Data from AC2 (GSE84846) were not 
combined to the other datasets, because of a different reference design: Universal Human Reference RNA (cat. 
740000, Agilent Technologies, Santa Clara, CA, USA) in AC1 and a pool of cell line RNA in AC2 (CAL 27, ATCC 
CRL-2095, American Type Culture Collection, Manassas, VA, USA). All preprocessing steps of the microarray 
data were performed using the limma package22 in R (Supplementary Materials).

RT-qPCR
RNA was purified from fresh frozen tumor tissue and synthesis of cDNA was performed from 1 μg of total 
RNA using the High-Capacity RNA-to-cDNA Kit (cat. 4387406, Applied Biosystems; Foster City, CA). qPCR was 
performed using Taqman Low-Density Array (TLDA) Cards (cat. 4346800, Applied Biosystems) (Supplementary 
Table 2). qPCR Ct values were determined with predefined thresholds that were equal per gene for all patients. 
Relative gene expression was determined by the ΔΔCt method23 using GUSB Ct-values for normalization. 
GUSB was selected as the most stable housekeeping gene (see Supplementary Table 7) out of four candidate 
genes (GAPDH, GUSB, RPLP0, and RPL4).

Statistical analyses
Per dataset, the predictive power for LNM and survival was assessed with the global test24,25. Datasets with 
significant predictive power (p <0.05) were used for gene selection. Genes were selected from the microarray 
data by using a combination (detailed later) of lasso logistic regression or lasso Cox regression and univariable 
FDR-based association analysis. The latter was included to enhance reproducibility of individual markers assayed 
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by qPCR. The gene selection procedure is displayed in Figure 1 and further detailed in the Supplementary 
Materials. For the LNM genes, the p-values per gene of AC1 and AC2 were combined by Fisher’s combined 
probability test, whereas for the prognostic genes only p-values of AC1 were considered, because the AC2 data 
did not pass the global test. For technical validation, the correlation between microarray and RT-qPCR data of 
20 cases was determined by Pearson’s correlation coefficient. For the RT-qPCR data, the univariable association 
of delta Ct values of the selected genes with either LNM or OS was determined by logistic or Cox regression, 
respectively. For prediction on independent samples, clinical variables were selected using stepwise regression, 
followed by adding the selected genes in a logistic (Cox) ridge regression to render multi-type prediction 
models. Model performance was assessed by bootstrapping. The prediction models for outcome consisted of 
(1) prognostic genes, (2) significant clinical factors and pathological TNM-stage (pTNM), (3) significant clinical
factors and a composite pathological variable (positive if ECS or R+ surgical margins or >1 LNM was present), and 
the combinations (4) 1+2 and (5) 1+3. The predictive performance was assessed by area-under-the-ROC-curve
(AUC) and integrated AUC (iAUC) over 5-year follow-up time for LNM and OS, respectively, complemented for
LNM by the negative predictive value (NPV). Additive value of the gene signature was assessed with the global
test. All statistical tests performed were two-sided. Univariable p-values were corrected for multiple testing using 
the Benjamini-Hochberg FDR procedure26.

Figure 1. Schematic representation of the different phases of the study. 
Two microarray cohorts (Array Cohort 1 (AC1), n=150; Array Cohort 2 (AC2), n=99) were explored by univariable and multivariable gene 
selection to identify a 22-gene lymph node metastasis signature (LNMsig) and a 40-gene overall survival signature (OSsig). For the OSsig, 20 
genes were selected that were predictive for OS, and 20 additional genes were selected after the genes were ranked on their predictive value 
for recurrent disease to account for disease-specific death. For LNM prediction, a previously validated multigene microarray signature(15–17) 
was used as preselection. Subsequently, our signatures were transferred to RT-qPCR assays and correlated to the microarray data in 20 cases 
(technical validation). After this technical validation, 6 genes with poor correlation coefficients were replaced by the second best genes 
from the initial microarray analyses. Finally, the definitive signatures were validated on an independent cohort of 125 tumors (independent 
validation). †Univariable p-values were corrected for multiple testing using the Benjamini-Hochberg FDR procedure. AC1, Array Cohort 1; 
AC2, Array Cohort 2; FDR, false discovery rate; LNM, lymph node metastasis; qPCR, quantitative polymerase chain reaction.



﻿

52

RESULTS

Microarray data from two cohorts, 150 OSCC patients from The Netherlands (Array Cohort 1, AC1) and 99 
OSCC patients from Italy (Array Cohort 2, AC2), were used to identify genes related to LNM and OS (Table 1). 
LNM was present in 60% of AC1 patients and 49.5% of AC2 patients. In AC1, the median overall follow-up time 
was 7.2 years (95% CI = 6.7 – 8.1). In AC2, the median overall follow-up time was 3.5 years (95% CI = 3.3 – 4.3).

Table 1. Characteristics of Patients in the Four Study Cohortsa

Characteristic
Array Cohort 1 Array Cohort 2 qPCR Cohort TCGA Cohort

Pb Value
(n = 150) (n = 99) (n = 125) (n = 160)

Age, mean (SD) 62 (10.7) 66 (10.3) 63 (12.6) 62 (13.6) P=0.06
Gender

Male (%) 90 (60.0) 54 (54.5) 72 (57.6) 105 (65.6)
P=0.30

Female (%) 60 (40.0) 45 (45.5) 53 (42.2) 55 (34.4)
Smoking (PY)

0-10 (%) 36 (24.0) 51 (51.5) 41 (32.8) 47 (29.4)

P<0.001
11-24 (%) 19 (12.7) 10 (10.1) 13 (10.4) 13 (8.1)
>24 (%) 95 (63.3) 38 (38.4) 71 (56.8) 60 (37.5)

Unknown (%) - - - 40 (25.0)
Subsite

Oral tongue (%) 53 (35.3) 41 (41.4) 48 (38.4) -
P=0.62

Other oral cavity (%) 97 (64.7) 58 (58.6) 77 (61.6) -
TNM stage

I (%) 18 (12.0) 22 (22.2) 16 (12.8) 10 (6.3)

P=0.02
II (%) 22 (14.7) 12 (12.1) 27 (21.6) 32 (20.0)
III (%) 31 (20.7) 21 (21.2) 26 (20.8) 25 (15.6)
IV (%) 79 (52.7) 44 (44.4) 56 (44.8) 82 (51.3)

Unknown (%) - - - 11 (6.9)
N-stage

Negative (%) 60 (40) 48 (48.5) 61 (48.8) 57 (35.6)
P=0.35Positive (%) 90 (60) 49 (49.5) 64 (51.2) 76 (47.5)

Unknown - 2 (2.0) - 27 (16.9)
pCompVarc

Negative (%) - - 79 (63.2) -
Positive (%) - - 38 (30.4) -

Unknown (%) - - 8 (6.4) -
Abbreviation: pCompVar, pathological composite variable; PY, packyears; SD, standard deviation.
a. Percentages may not total 100 because of rounding.
b. P values were calculated with the use of One-Way ANOVA for continuous variables and χ² test for categorical variables.
c. Scored positive if extracapsular spread or positive resection margins or >1 lymph node metastasis was present.

Identification of genes for prediction of lymph node metastasis and survival in OSCC
The gene selection strategy is summarized in Figure 1 and described in detail in the Supplementary Materials. 
In short, the previously published LNM gene profile15,17 was evaluated to predict N-stage in AC1 and AC2. 
Using the global test with pathological N-stage as outcome, these genes had a p-value of 9.3E-06 and 9.9E-
03 in AC1 and AC2, respectively. Combined univariable analysis identified 221 significant genes (FDR<0.1, 
Supplementary Table 1). From these genes, 22 genes were selected for RT-qPCR validation based on their 
ranking in univariable and multivariable analysis.

For survival, a similar gene pre-selection strategy was hampered by the lack of thoroughly validated prognostic 
gene signatures in the public domain. We therefore included other techniques to reduce the dimensions of 
the data, but also explored all genes to ensure that important prognostic genes were not missed. We only 
used AC1 for gene selections, as AC2 did not pass the global test due to the shorter follow-up time (global test 
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p-values AC1: 7.8E-3 and AC2: 0.73). Univariable analysis of all genes identified 226 (out of 37,662) significant
genes in AC1 (FDR<0.1, Supplementary Table 1). Next, 20 genes were selected by univariable and multivariable 
analyses for survival, and 20 additional genes were selected after ranking the genes on their predictive value 
for recurrent disease to account for disease-specific death (see Figure 1). Two genes overlapped between the 
40 survival genes and the 22 LNM genes (Supplementary Figure 1), rendering an overall signature of 60 target 
genes for technical and independent RT-qPCR validation (Supplementary Table 2).

Technical RT-qPCR validation of identified genes
First, the 60 target genes were technically validated in a subset of 20 cases from AC2 to evaluate the platform 
transition. For these 20 cases, correlation coefficients were calculated between microarray and corresponding 
RT-qPCR data (Supplementary Table 3). In total, 52 of 60 genes validated well, as they showed a good 
correlation between microarray and RT-qPCR data (mean r=0.64, SD=0.26). The remaining 8 genes correlated 
poorly, showing a correlation coefficient >1 SD below the mean. Cox regression nonetheless indicated that 
two of these eight genes did correlate with survival, i.e. EIF5 (P=0.011) and ATP6V0A1 (P=0.057), and these 
were therefore kept in the panel. The remaining 6 genes were replaced by the second best genes from the 
initial microarray analyses (Supplementary Table 1), and subsequently analyzed.

Independent RT-qPCR validation of selected genes
The RT-qPCR validation cohort consisted of 125 OSCC cases that were independent from both microarray 
cohorts. In this validation cohort, nodal metastasis was detected in 51.2% of patients, and the median overall 
follow-up time was 5.1 years (95% CI = 4.4 – 6.3) (Table 1). The selected genes were run on customized 
microfluidic RT-qPCR cards, and the results were tested by univariable analyses and corrected for multiple 
testing. From the LNMsig 15 of 22 genes had an FDR<0.1 (Supplementary Table 4). From the OSsig 10 of 40 
genes had an FDR<0.1 for OS, seven of which also significantly associated with disease-free survival (DFS). 
Thus, after correction for multiple testing, in total 25 of 60 genes selected from microarray datasets could be 
validated with RT-qPCR assays in an independent patient cohort.

Table 2. Performance Metrics of Gene Signature in N-stage prediction

qPCR validation, all qPCR validation, cT1-2N0

(n = 125) (n = 54)

NPV (95% CIa) 66 (57.1-74.7) 84 (71.7-95.2)

TN 40 26

TN + FN 61 31

PPV (95% CIa) 67 (59.1-76.6) 43 (21.5-64.5)

TP 43 10

TP + FP 64 23

Sensitivity (95% CIa) 67 (42.3-83.5) 67 (29.6-93.2)

TP 43 10

TP + FN 64 15

Specificity (95% CIa) 66 (39.3-83.2) 67 (39.7-86.2)

TN 40 26

TN + FP 61 39

AUC (95% CIa) 0.69 (0.63-0.75) 0.66 (0.52-0.78)

Abbreviations: AUC, Area Under the ROC Curve; CI, confidence interval; FN, false negative; FP, false positive; NPV, negative predictive 
value; PPV, positive predictive value; TN, true negative; TP, true positive.
a. Confidence intervals were assessed by bootstrapping.
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A gene expression-based model to predict lymph node metastasis in OSCC
The performance of the LNM predictive signature is summarized in Table 2; see Supplementary Table 4 for 
the estimates per gene. When all clinical stages of disease are considered, the AUC of this model was 0.69 
(Table 2), with an NPV of 66% (Table 2). Next, we performed a subgroup analysis on the clinically relevant 
subset of tumors with clinical stages I and II (n=54), because these tumors qualify for transoral resection 
without treatment of the neck. In this subgroup, the AUC (0.66, Table 2) and the sensitivity of the LNMsig 
(67%, Table 2) were comparable with the performance statistics in all stages. The NPV, however, increased 
from 66% to 84% (Table 2). There were no clinical variables that correlated to LNM (data not shown) and 
data from histopathology is not available before surgery planning. Moreover, the fraction of occult lymph 
node metastasis was comparable in cT1 and cT2 tumors (i.e. 25% and 29% respectively). Previously, Van 
Hooff et al.17 proposed a clinical decision model that recommends an elective neck dissection when the gene 
expression signature prediction indicates N+ or active surveillance when the prediction is N0, and estimated 
the benefit. Following this decision model, the LNMsig shows a similar benefit and could have prevented 
overtreatment in over 66% of the pN0 cases (72% or 24% overtreatment without or with the clinical decision 
model, respectively; see Figure 2).

A gene expression-based prognostic model for OSCC with independent prognostic value
The 40 survival genes significantly discriminated between high and low risk cases (OS: iAUC=0.63, P=1.6E-3 
(global test), Table 3 and Figure 3A-left; DFS: iAUC=0.65, P=6.8E-3 (global test), Table 3 and Figure 3A-right; see 
Supplementary Table 4 for Ridge estimates per gene). In a clinical setting the genes should add prognostic 
information to established parameters. Hence, the gene signature was analyzed in context of clinical and 
histopathological data.

Several clinical factors were associated with OS, and none with DFS. A model was trained with the most 
important clinical factors for this dataset and pathological TNM-stage (pTNM). The clinical factors selected and 
included in the model were: age at diagnosis and smoking (i.e. packyears, PY), see Supplementary Table 5 for 
univariable p-values. The model with these two clinical factors and pTNM accurately predicted overall survival 
(iAUC=0.66, Table 3), but not DFS (iAUC=0.53, Table 3). Adding OSsig to this model improved the accuracy (OS: 
iAUC=0.68, OSSig: P=0.03 (global test), Table 3 and Supplementary Figure 2A). For DFS, a model based on the 
two clinical variables + pTNM and the OSsig gave an iAUC of 0.60. Note that this is lower than a model based 
on the OSsig only (iAUC 0.65).

Besides pTNM, other histopathological variables are important to decide on adjuvant treatment. In the Dutch 
guidelines, decisive criteria for adjuvant postoperative therapy are extracapsular spread (ECS), tumor-positive 
margins (R+) and multiple metastatic lymph nodes (>1 LNM). We created a composite variable (pCompVar) 
that was scored positive if ECS or R+ or >1 LNM was present. This composite variable was combined with 
clinical factors (i.e. age, PY) in a prognostic model (OS: iAUC=0.73, DFS: iAUC=0.62; see Table 3). The OSsig 
improved the accuracy of the model (OS: iAUC=0.74, OSsig: P=0.02 (global test), Table 3 and Supplementary 
Figure 2B; DFS: iAUC=0.68, OSsig: P=0.01 (global test), Table 3). DFS was most accurately predicted by a model 
that combined the OSsig and pCompVar, not including pTNM (iAUC=0.70; OSsig: P=5.6E-3 (global test)). 

A subgroup analysis was performed with patients without criteria for postoperative radiotherapy, i.e. cases 
that were pCompVar-negative (n=79, Figure 3B-left). For these cases a multi-type prognostic model was 
built that included clinical factors (age and smoking) and the OSsig. The iAUC increased from 0.70 to 0.73 by 
adding the prognostic genes (Table 3 and Figure 3B-right). Predictive models for DFS were less accurate in this 
subgroup, although a predictive model with genes only showed some predictive power (iAUC=0.65, OSsig: 
P=0.27) (Supplementary Figure 3, Supplementary Table 3).
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These findings show that the prognostic value of the OSsig adds to established clinical and pathological 
prognostic variables.

Figure 2. Incorporation of the LNMsig in a clinical decision model that was previously proposed for patients with clinically early stage (cT1-
T2N0) oral squamous cell carcinoma (OSCC). 
At present, early-stage OSCCs are treated with an elective neck dissection (END, levels I-III or I-IV depending on location) in most centers. 
This would cause overtreatment in 39 patients (first bar, indicated in red). The clinical decision model recommends performing an END when 
the gene expression signature prediction is N+ or active surveillance when the prediction is N0. The hypothetical situation when using this 
decision model is represented in the second and third bar. Following the decision model, only 23 patients are directly treated with an elective 
neck dissection (second bar), overtreatment is restricted to 13 cases, and 26 patients receive appropriate treatment (third bar). The patients 
who are pN+ and receive an END are labeled as receiving appropriate treatment (indicated by yellow color). 

External validation of LNMsig and OSsig with TCGA RNAseq data
For additional external validation, we used RNAseq data of HPV-negative OSCC tumors from the TCGA 
Network publication19 (n=160, Table 1). The 22-gene LNMsig was significantly associated to pathological 
N-stage (P= 7.6E-06, global test). Moreover, the LNMsig could accurately classify the tumors with an AUC of
0.73 (95% CI = 0.67 to 0.78). The performance of the 40-gene OSsig was also significant (iAUC=0.59, P=0.02
(global test), Supplementary Figure 4). The OSsig was less informative since the average follow-up time for
the 89 non-deceased cases was very short (2.2 years, SD = 2.35, Supplementary Figure 5A), and the baseline
hazard was relatively high when compared to the RT-qPCR validation cohort (Supplementary Figure 5B).
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Table 3. Univariable and multivariable analysis of genomic, clinical, pathological and combined models in validation cohort

Overall survival Disease free survival

iAUCa (95% CIb) Pc value iAUCa (95% CIb) Pc value

Unitype

 OSsig 0.63 (0.57-0.68) 0.002 0.65 (0.60-0.70) 0.007

 Clinical 0.66 (0.59-0.73) 0.54 (0.49-0.61)

 pTNM 0.51 (0.47-0.57) 0.51 (0.47-0.57)

 pCompVard 0.64 (0.56-0.71) 0.63 (0.56-0.71)

Multitype

 Clinical+pTNM 0.66 (0.60-0.73)   0.53 (0.47-0.60)  

 OSsig+clinical+pTNM 0.68 (0.64-0.73) 0.03 0.60 (0.55-0.64) 0.01

 Clinical+pCompVard 0.73 (0.67-0.80) 0.62 (0.54-0.70)  

 OSsig+clinical+pCompVard 0.74 (0.69-0.79) 0.02 0.68 (0.63-0.73) 0.01

pCompVard negative subgroup

 OSsig 0.71 (0.65-0.76) 0.01 0.65 (0.61-0.68) 0.28

 Clinical 0.70 (0.61-0.79)   0.53 (0.43-0.68)  

 OSsig+clinical 0.73 (0.68-0.78) 0.02 0.52 (0.46-0.65) 0.47

Abbreviations: iAUC, integrated Area Under the Curve; OSsig, Overall Survival signature; pCompVar, pathological composite variable; 
pTNM, pathological TNM stage
a. Area under the curve was integrated over 5 year follow-up time.
b. CIs were assessed by bootstrapping on out-of-bag samples. 
c. Significance of the OSsig was assessed with the global test22,23. 
d. Scored positive if extracapsular spread or positive resection margins or >1 lymph node metastasis was present.
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Figure 3. The overall survival signature (OSsig) predicts overall survival and disease-free survival, also in low-risk patients. 
(A) Kaplan-Meier analysis of overall survival (left) and disease-free survival (right) with risk groups defined by tertile predicted hazards
by the OSsig analyzed with qPCR in the independent validation cohort of 125 OSCC patients. We also considered threshold optimization
for creating the three groups; resulting KM curves were very similar and are hence not displayed. (B) On the left, a Kaplan-Meier analysis
is shown for overall survival in the independent validation group with risk groups defined by pCompVar, which is scored positive when
during histopathological examination either extracapsular spread (ECS) or involved resection margins (R+) or >1 lymph node metastasis was 
identified. These are routinely used histopathological criteria for adjuvant treatment. On the right the result of a subgroup analysis is shown to 
improve the stratification of the pCompVar-negative patients (n=79). TNM-staging was not informative to stratify this group (data not shown), 
but the OSsig was able to identify a subgroup of patients (blue line) with relatively poor prognosis who might have benefited from adjuvant 
treatment (OS: iAUC=0.71; OSsig: P=0.01 (global test). The performances of all predicting models are listed in Table 3. Area under the curve 
was integrated over 5 year follow-up time. Tick marks on curves indicate censoring. iAUC, integrated Area Under the Curve; OSsig, Overall 
Survival signature; pCompVar, pathological composite variable.
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DISCUSSION

We identified prognostic gene expression signatures that are predictive of LNM and OS in OSCC by rigorous 
gene selection and validation. First, we selected 60 genes using microarray data, and these genes were 
validated in an independent cohort of OSCC patients by the use of RT-qPCR assays. Finally, we built 2 
multivariable genomic models: a lymph node metastasis model (LNMsig) and overall survival model (OSsig) 
and confirmed the additive value of the gene signatures to existing and established variables.

The LNMsig with 22 genes predicted nodal metastatic disease with an NPV of 84% in clinical stages I and 
II. These diagnostic performance statistics are comparable to previous results using a 732-probe microarray
signature17. However, the RT-qPCR approach facilitates clinical implementation considerably, because a
comparable performance was achieved with less genes and a more user-friendly platform. A high NPV is
necessary to identify patients who can be spared an elective neck dissection. Recent reports showed that the 
sentinel node biopsy (SNB), which is an alternative staging technique, is more accurate with an NPV of 95%18 
at comparable prevalence rates of LNM. The SNB, however, is an invasive surgical procedure with associated
risks and costs, and with lower sensitivity in floor of mouth tumors27-29. Moreover, it has not been introduced
widely. It has been suggested that a combination of an expression signature and SNB may be more accurate
for staging of the clinically N0 neck30.

The OSsig could be used to personalize treatment. By itself, the OSsig predicted overall survival with an iAUC 
of 0.63, which is already promising compared to the iAUC of 0.51 of standard pTNM. For prediction of DFS, the 
OSsig was even more valuable, particularly when combined with histopathology, as clinical variables were not 
informative for DFS. These data confirm the predictive value of the OSsig, but also indicate that integrating 
clinical, molecular and histopathological variables delivers most accurate predictive models.

The design of this study enabled the identification of robust associations in three ways. First, we used different 
gene expression platforms to cancel out platform-specific findings. Second, we studied homogeneous patient 
cohorts: only HPV-negative, surgically treated OSCCs were included. Finally, we considered patients from 3 
European countries, thereby excluding the discovery of population-specific gene signatures.

Our findings may be limited by two factors. First, intra-tumor heterogeneity may cause differences in gene 
expression profiles within a tumor; although previous findings suggest that expression profiles seem 
stable in HNSCC31. Second, all cohorts investigated were retrospective. It should be mentioned, however, 
that retrospective data obtained in The Netherlands are generally accurate, because treatment and follow-
up of HNSCC patients has been centralized to a few clinical centers and clinical management adheres to 
standardized national guidelines.

Our findings suggest at least two implications. First, the prognostic model may be used for treatment 
escalation in patients with tumors that do not fulfill the current criteria for postoperative radiotherapy, i.e. 
margin involvement, >1 metastatic lymph node or ECS. Second, a model that integrates clinical variables and 
the OSsig accurately predicts prognosis without the addition of histopathology. This model may specifically 
be important to predict survival in patients who are treated with primary radiotherapy or chemoradiotherapy, 
since histopathology is not available for these patients. These are important directions for future work. Since 
frozen material is not always available in these cases, future research should also include applications for FFPE 
tissue. Ultimately, prospective clinical trials will be required to determine whether the integrated risk models 
could guide clinical decision making and improve treatment results with respect to outcome and morbidity.
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SUPPLEMENTARY METHODS

Patients
Four independent cohorts of oral squamous cell carcinoma (OSCC) patients with frozen biopsies were 
included in this study: (1) a cohort of 150 patients from the University Medical Center Utrecht (UMCU) and 
VU University Medical Center Amsterdam (VUMC) for microarray gene expression profiling (array cohort 1, 
AC1); (2) a cohort of 99 patients from the University Hospital Parma Medical Center (UHPMC) for microarray 
gene expression profiling (array cohort 2, AC2); (3) a cohort of 125 patients from VUMC, UHPMC and University 
Hospital Düsseldorf (UHD) for qPCR gene expression profiling; and (4) an RNAseq dataset of HPV-negative 
OSCC tumors from the Cancer Genome Atlas Network publication19. Inclusion criteria were: presentation with 
a squamous cell carcinoma in the oral cavity, date of incidence prior to July 1st 2012, and treated surgically 
with curative intent. All patients were 18 years or older and had no previous malignancy that impacts outcome. 
Included ICD-10 codes were: C00.3-4, C02.0-3, C02.8-9, C03, C04, C05.0, and C06. Human papilloma virus (HPV) 
positive tumors were excluded from further analysis. Informed consent was obtained of enrolled patients 
when required, and nation- and institution-specific procedures and guidelines were followed in addition. For 
instance, for the Netherlands use of residual tissue from surgical specimen adhered to the Code of conduct 
for responsible use by the Federation of Dutch Medical Scientific Societies (FDMSS). This study followed the 
Guidelines for the REporting of tumor MARKer Studies (REMARK)20 (Supplementary Table 6). 

Specimen 
Biopsies were taken from the surgical specimen at time of surgery, snap frozen and subsequently stored in 
liquid nitrogen. Five to ten 20 μm sections were used for RNA isolation. Before and after sampling of the 20 μm 
sections, 5 μm sections were made and stained by haematoxylin and eosin to ensure that at least 50% tumor 
cells were present in the biopsy. RNA isolation was performed using TRIzol (cat. 15596026, Life Technologies, 
Breda, The Netherlands; AC1) or with columns using the RNeasy Mini Kit (cat. 74104, Qiagen, Hilden, Germany; 
AC2 and qPCR cohort), according to the protocol of the suppliers. HPV status was either determined with p16 
immunostaining followed by HPV DNA PCR on p16-positive samples (AC1) or with HPV16 E6*I RT-PCR (qPCR 
cohort) in the AC1 and AC3 cohorts. Both assays have been validated and described before21. In AC2, the HPV 
status was not determined. In the other cohorts on the other hand, 1 out of 151 (AC1) and 1 out of 126 (qPCR 
cohort) tumors were HPV-positive. Hence, the contribution of HPV positive tumors in AC2 was assumed low 
and no further samples were excluded. Quantity and quality of the RNA was tested with the Nanodrop (cat. 
ND-1000, Thermo Fisher Scientific, Amsterdam, The Netherlands) and the Bioanalyzer 2100 (cat. G2939AA, 
Agilent Technologies, Amstelveen, The Netherlands) using the RNA Nanokit (cat. 5067-1511, Agilent). RNA 
Integrity Numbers (RIN-value) were between 6.3 and 10.0. 

Expression arrays 
Two independent cohorts of OSCC patients were processed for gene expression microarray analysis: (1) a 
cohort of 2 merged tumor gene expression profiles (array cohort 1, AC1); and (2) array cohort 2 from the 
University Hospital Parma Medical Center (UHPMC). In AC1, array hybridization was performed, using 0.5 
μg total RNA in the Low RNA Input Linear Amplification Kit (cat. 5184- 3523, Agilent) and the 4x44K Whole 
Human Genome Arrays, according to the manufacturer (Agilent) using dual color labeling. The handling of the 
UMCU samples and their RNA isolation has been published before17. Microarray data of UMCU were retrieved 
from the Gene Expression Omnibus (GSE30788). Additional information on these samples was obtained from 
Agendia (Amsterdam, the Netherlands). In AC2, 0.2 μg of total RNA was labeled and simultaneously amplified 
following the “Two-Color Microarray-Based Gene Expression Analysis (Quick Amp Labeling) Protocol” (Agilent 
Technologies). Labeled-amplified RNA samples were then hybridized on 4X44K Whole Human Genome 
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DNA microarray slides (cat. G4112F, Agilent) according to the instructions of the manufacturer. An Agilent 
Technologies Scanner G2505B US45102976 and the Feature Extraction (FE) Software v 9.5.1.1 with the GE2- 
v5_95_Feb07 Gene Expression protocol were used to scan microarray slides and extract data, respectively.

Preprocessing microarray data 
AC1 gene expression data generated at VUmc was preprocessed in an identical way as those previously 
preprocessed at UMCU17. This comprised: 1) extraction of the median signal from the raw data files without 
background correction, and 2) median and loess within-array normalization as implemented in the Limma-
package (http://www.bioconductor.org). Preprocessed VUmc and UMCU data sets were combined by 
limiting both to the probes that overlapped (using their Agilent probe identifiers). Finally, comparability 
of the expression data of both centers was ensured by a) joint between-array normalization (Aquantile as 
implemented in the Limma-package), and b) removal of possible batch (i.e. center) effects using the Combat-
package32. Raw and processed data are publicly available in the gene expression omnibus (GEO) database 
(GSE85446). 

Data from AC2 were not combined to the other datasets, because of a different reference design: Universal 
Human Reference RNA (cat. 740000, Agilent Technologies, Santa Clara, CA) in AC1 and a pool of cell line RNA in 
AC2 (CAL 27, ATCC CRL-2095, American Type Culture Collection, Manassas, VA). AC2 data were preprocessed in 
the same way as data set AC1. Probes with more than 20% missing values were deleted. AC2 consisted of 106 
samples, but seven were excluded because of poor quality MA plots. Remaining missing values were imputed 
with nearest neighbor averaging with R package impute. For the LNM analysis, two additional patients were 
excluded because information on the LNM was missing. Raw and processed data are registered in the gene 
expression omnibus (GEO) database (GSE84846), but are not publicly available until July25th, 2018 or after 
publication of this manuscript. 

Gene selection 
Per data set, the predictive significance for LNM and survival was assessed with the global test24,25. Data sets 
with significant results (p <0.05) were used for gene selection. For prediction of LNM, we obtained significant 
results for both AC1 and AC2 (AC1, p=9.3E-06; AC2, p=9.9E-03), hence both were used for gene selection. For 
prediction of survival, only AC1 showed predictive significance (AC1, p=7.8E-3; AC2, p=0.73) and was used for 
further analysis. This difference is likely explained by a shorter follow-up time in AC2 compared to AC1 (AC1, 
mean overall follow-up time: AC1: 4.7 years (SD=3.2), AC2: 3.0 years (SD=1.5)). 

The selection of genes was based on univariable and multivariable analysis with an equal contribution to the 
final signature (50% of genes from univariable analysis, 50% from multivariable analysis). For the multivariable 
selection our aim was to come to an optimal set of genes that orthogonally contribute on top of each other 
(see Supplementary Example R code below). Due to selection from a large number of genes using limited 
sample series, it is to be expected that some genes will not validate. Also, the platform transition we conducted 
increases the probability that genes cannot be validated, although this is somewhat counterbalanced by the 
technical validation. For this reason we planned some redundancy in the selected genes. This is best achieved 
by selecting those genes that have the highest signal to noise ratio (e.g. low p-value). The total number of 
selected genes was limited to 60 genes of interest because of the chosen qPCR array card design (60 target 
genes + 4 housekeeping genes, 3 replicates, and 2 samples / array card). Univariable analysis included 
t-tests (LNM) and Cox regression (overall survival). For LNM p-values of AC1 and AC2 were combined with
Fisher’s combined p-value. P-values were adjusted with the Benjamini-Hochberg procedure to control the
false discovery rates (FDR)26. Multivariable analysis consisted of lasso logistic regression (LNM) and lasso Cox
regression (overall survival), as implemented in package glmnet in R. To stabilize the selection, the lasso
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was run repeated N times per analysis (as a leave-one-out cross-validation (LOOCV)). For LNM, the selection 
frequencies of AC1 and AC2 were added up. We next selected those genes that were used most often in the 
models. For survival, models were tested with and without addition of pathological stage of disease (pTNM) 
and age as unpenalized covariate, but the additions did not change the list of selected genes considerably. 

To reduce dimensionality and enrich for relevant predicting genes, previously published HNSCC gene 
signatures were used as input for gene selection. For LNM, we used a previously published LNM predicting 
gene profile 15,16 consisting of 732 probes, which was later validated in a multicenter trial17. For survival, 
thoroughly validated prognostic gene signatures were missing. Therefore, we combined a set of 9 prognostic 
gene expression profiles10-12,33-37 (1,426 probes) and an in-house discovered prognostic profile of genes for 
which copy number alterations and gene expression were best correlated (348 probes). This combined 
survival profile consisted of 1,762 probes. Twenty genes were selected from the combined survival profile 
(1,762 probes), and 20 genes were selected from analyses that included all probes (37,622 probes in AC1). 

Quantitative real-time PCR 
A 384-well Taqman Low-Density Array (TLDA) Card was designed with the selected 60 prognostic genes + 4 
housekeeping genes (GAPDH, GUSB, RPL4, RPLP0). Each gene expression assay was represented by 3 replicates. 
The initial design (TLDA.v1) and optimized design (TLDA.v2) after technical validation (see below) are shown 
in Supplementary Table 2. One μg of mRNA was treated with DNAse I, Amplification Grade (cat. 18068015, 
Invitrogen; Carlsbad, CA) in a 10 μl reaction volume. The DNAse-treated mRNA was subsequently used for 
cDNA synthesis with the High-Capacity RNA-to-cDNA Kit (cat. 4387406, Applied Biosystems; Foster City, CA) in 
a 24.4 μl reaction volume. The qPCR reaction mix consisted of (1) 20 μl cDNA (819 μg), (2) 190 μl water, and (3) 
210 μl 2X TaqMan Gene Expression Master Mix (cat. 4369016, Applied Biosystems). Subsequently, the reaction 
mix was loaded on the TLDA cards according to the protocol of the supplier. Reaction mixes of 2 samples were 
loaded per TLDA card. Experiments were performed on an ABI Prism 7900HT Fast Real-Time PCR System (cat. 
4329001, Applied Biosystems). Thermal cycling conditions were: 50°C for 2 minutes; 94.5°C for 10 minutes; 40 
cycles of denaturation at 97°C for 30 seconds and annealing and extension at 59.7°C for 1 minute. The median 
result of a triplicate assay was used in downstream analysis. 

Gene expression analysis from qPCR data 
For each qPCR reaction, the Ct-value was determined as the cycle number at which the fluorescence signal 
reached a fixed threshold using the SDS RQ Manager Version 1.2.2 (Applied Biosystems). Next, the Ct-values 
were normalized to the GUSB expression level, which was the most stable housekeeping gene in this dataset. 
To select the most stable housekeeping gene, we determined the standard deviation of the gene expression 
within all samples and correlation of the housekeeping gene to the average gene expression of all target 
genes (Supplementary Table 7). GUSB had both the lowest SD (SD=0.94) and the highest correlation to the 
average expression of all target genes (r=0.77). 

Technical qPCR validation 
The 60 selected target genes were technically validated using a subset of 20 cases from AC2 to evaluate the 
platform transition. Hence, the qPCR data were correlated to the array data of the same samples. These 20 
cases were selected to contain a 1:1 ratio of N0/N+ cases and patients that survived/deceased. For these 20 
cases, Pearson’s correlation coefficients were calculated between microarray and corresponding qPCR data 
(Supplementary Table 3). Poor correlation was defined as an r of >1 SD below the mean and a p-value >0.1 
(because of the small sample size). Logistic and Cox regression analyses were performed to determine the 
predictive performance of the genes in this cohort. 
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Histopathology 
Formalin-fixed paraffin embedded slides of the surgical specimens were examined by two specialized 
pathologists (EB + EMS), according to the guidelines of the Royal College of Pathologists UK (https://www.
rcpath.org/resourceLibrary/dataset-for-histopathology-reporting-of-mucosal-malignancies-of-the-oral-
cavity.html). Tumors were staged according to TNM classification of Malignant Tumors, 7th Edition, published 
in affiliation of the Union for International Cancer Control (UICC)38. The margin status was evaluated and 
divided into three groups: (1) involved margins when carcinoma was present in or within 1 mm of the 
margin, (2) negative margins when the excised carcinoma was > 5 mm from the surgical margin, and (3) close 
margins when the tumor was 1-5 mm from the surgical margin39. For model building, the margin status was 
subsequently subdivided in two groups: involved margins when carcinoma was present in or within 1 mm of 
the margin (R+); or negative margins, when the excised carcinoma was > 1 mm from the surgical margin (R0). 
The presence of lymph node metastasis (LNM) was determined by standard histopathological examination 
of the neck dissection specimen if present. When the neck was left untreated, two scenarios were possible: a 
patient was diagnosed N+ when a delayed lymph node metastasis developed during follow-up (≤ three years 
after treatment) or remained N0 when not. In the different cohorts, 128 of 150 (85.3%, AC1), 89 of 99 (89.9%, 
AC2) and 103 of 125 (82.4%, qPCR cohort) the neck was treated with a primary neck dissection. Extracapsular 
spread (ECS) was present if the tumor extended beyond the capsule of the lymph node. When there was 
doubt, the case was classified as having ECS according to the guidelines of the Royal College of Pathologists 
UK40. We created a pathological composite variable (pCompVar) that was scored positive if ECS or R+ or >1 
LNM was present. 

Clinical data 
Several clinical variables were used for prognostic model building. These included age at diagnosis, gender, 
smoking behavior in packyears (1 packyear equals 20 cigarettes a day during 1 year), ECOG Performance 
Status41, and comorbidity. Comorbidity was classified using the Adult Comorbidity Evaluation 27 (ACE-27)42, 
in which an overall comorbid score is graded in four levels: none, mild, moderate or severe. For smoking we 
only considered the packyears in the model building. Compared to categorical smoking variables, packyears 
contains the most information about the smoking habits and was also the most significant smoking variable 
for OS.

Outcomes 
Overall survival (OS) was defined as time from date of incidence to death from any cause. Disease free 
survival (DFS) was defined as time from date of incidence to development of locoregional recurrence, distant 
metastasis or second primary HNSCC. Mean survival times for the various data sets were calculated with the 
reverse Kaplan-Meier as suggested by Schemper et al.43 Patients who died of other causes or develop second 
primary tumors outside the head and neck region (SPT), were censored on the date of death or incidence date 
of the SPT. Local recurrences were scored when these developed within two centimeters of the index tumor 
and within three years after therapy, whereas a regional recurrence was documented when it developed in a 
treated neck within three years after treatment. 

Statistical analysis of the RT-qPCR dataset 
For the qPCR data, the univariable association of delta Ct values of the selected genes with either LNM or OS/
DFS was determined with logistic or Cox regression, respectively. Multivariable models with the selected genes 
were made with logistic ridge regression (LNM) or Cox ridge regression (OS/DFS). For the clinical variables 
univariable p-values of clinical variables were determined by Cox proportional hazards regression (OS, DFS) 
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or logistic regression (LNM). Patients with moderate and severe comorbidity (ACE-27) were considered as one 
group in the analysis, because the group with severe comorbidity (ACE-27) was very small. TNM-stage was 
dichotomized as early stage disease (pTNM I+II) and advanced stage disease (pTNM III+IV). Variables with 
p-value lower than 0.15 were considered as candidates for a multivariable model. For LNM prediction, no
clinical variables met this criterion. Next, stepwise regression was performed to identify a multivariable model 
with clinical variables (using procedure ‘step’ in R). Stepwise selection with Akaike Information Criterion (AIC)
was performed and in each step a variable was added or dropped, which identified the best model. For OS,
the stepwise selection procedure selects age and packyears. The prediction models for outcome consisted
of (1) prognostic genes only, (2) clinical variables and pathological TNM-stage (pTNM), (3) clinical variables
and a composite pathological variable (positive if ECS or R+ or >1 LNM was present), and the combinations
(4) 1+2 and (5) 1+3. In combined clinical and genomic models, the clinical variables were not penalized
and the genes were incorporated with a ridge penalty to avoid overfitting. The predictive performance was
measured by area-under-the-ROC-curve (AUC) and integrated AUC (iAUC)44 at 5-year follow-up time for LNM
and OS/DFS, respectively, complemented for LNM by the NPV, i.e. the proportion of true negatives among
all negative tests. Model performance was assessed by bootstrapping, confidence intervals around the AUC,
sensitivity, specificity, PPV, and NPV were calculated according to methods described by Jiang et al.45-47 (see
Supplementary Outline of Statistics and Supplementary Example R code). Model performance only takes
into account the uncertainty in the genomic, clinical, and pathological coefficients. The variable selection of
clinical variables was not bootstrapped, the pathological variables (pTNM and CompVar) were selected based 
on their known clinical relevance. For the genomics variables we did not perform further selection on the RT-
qPCR data. For OS and RFS the subgroup analysis was performed by refitting the model to the cases of that
subgroup. For LNM subgroup analysis, refitting was not possible due to the small sample size of the subgroup 
(n=54) with a low number of cases (15). Therefore, the AUC for the subgroup was computed by first fitting
the model to all cases (n=125), and then considering the subgroup. Additive value of the gene signature was 
assessed with the global test24,25. All statistical tests performed were two-sided. In multiple testing settings,
univariable p-values were corrected using the Benjamini- Hochberg FDR procedure26. 

External validation with TCGA RNAseq dataset 
Only the 279 patients that were included in the Cancer Genome Atlas Network publication19 were used for 
this analysis, because the RNAseq derived HPV-status, which was considered the most accurate, was not 
available for the other cases. Of these cases, the normalised RNASeqv2 TCGA data were downloaded with 
R package TCGA2STAT. Additional clinical information was downloaded directly from the Broad Institute 
(http://gdac.broadinstitute.org/runs/awg_hnsc__2013_03_30/reports/cancer/HNSC-TP-HPV-positive-36/
mutsignozzlereportscv/nozzle.html). Only HPV-negative tumors of the oral cavity were considered (n=160). 
For lymph node metastasis, patients with a pathological NX-stage were excluded. This left 133 patients for 
lymph node metastases (LNM). For OS, the survival time of one patient was missing and 159 patients were 
available for analysis. The LNM outcome was defined as having a pathological N-stage larger than 0. Of the 60 
genes selected on the microarray data, 1 gene could not be matched to the TCGA data (LRCOL1). 

Before analysis the data were transformed by taking the square root and scaling the data (e.g. all genes 
transformed to zero mean and unit variance). For OS and for LNM, the global test was used to assess the 
association with the genomic signatures. Further predictive performance was assessed by fitting and 
bootstrapping a logistic (for LNM) and Cox (for OS) regression model with ridge penalization. 

Sample size considerations 
Exact sample size calculations are inherently difficult for ridge regression. They also require knowledge of 
the effect sizes, which are unknown in our multivariate setting. To provide some insights regarding correct 
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sample size, we performed some ad hoc tests with the qPCR cohort. Random samples of 45-115 patients were 
repeatedly drawn (50 times) without replacement from the data, supplemented with the actual data for n=125. 
For each outcome variable, the global test was used to assess the predictive performance of the genomic 
signatures. For each same sample size we took the medium p-value across the random samples. Sample sizes 
of 85 cases and more gave consistent p-values <0.05 for each outcome variable (see Supplementary Figure 6), 
assuring that the sample size of 125 is sufficient to assess the performance of the signatures. 

Relation of the genomic signatures to other prognostic markers 
We additionally analyzed the association between the prognostic markers and the OSsig (here taken as the 
linear predictor of the Cox ridge regression, i.e. the log of the hazard ratios), as recommended in REMARK 
criterion 14 (Supplementary Table 6). In this analysis we considered the variables used in the prognostic 
models (i.e. age, smoking, pTNM, pCompVar) and additionally considered gender and comorbidity (ACE27). 
For the age and packyears, a Pearson’s correlation coefficient and an additional p-value were calculated. 
For sex, pTNM, and pCompVar we performed a t-test and for ACE27 we performed an ANOVA. Significant 
correlation between OSsig and gender, smoking, ACE27 and pCompVar were found (Supplementary Figure 7). 
However, as can be seen in this figure, the size of the effects was small. Secondly, we assessed the iAUC of the 
genomic predictor in different subgroups (Supplementary Table 8). Subgroups included were: (1) pCompVar 
negative and positive; (2) Age <70 and ≥70 years at diagnosis; (3) Smoking: packyears <median and ≥median 
value in this dataset; (4) Comorbidity (ACE27): ACE27 0-1 and ACE27 2-3; (5) Male and female gender; and (6) 
pathological stage I+II and III+IV. This analysis showed that the OSsig has good discriminative power in the 
various subgroups. 
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SUPPLEMENTARY OUTLINE OF STATISTICS

1.	 Gene selection with microarray data.

a. Univariable selection

i. p-value per gene with false discovery rate (FDR) control.

1.	 Welch t-test for LNM

2.	 Cox regression for OS

b.	 Multivariable selection with lasso (see example code)

i. Repeatedly fitting the lasso. Genes are ranked based on their selection frequency across the
lasso fits (see example code of the lasso selection).

ii. Analysis conducted with and without mandatory covariates. Mandatory covariates were not
subject to the lasso penalty (e.g. unpenalized).

iii. Logistic regression for LNM, Cox regression for OS

2.	 Technical validation

a. Pearson’s correlation coefficient (and associated p-value) between qPCR – microarray data per gene.

3.	 Validate selected genes on independent data (i.e. qPCR data).

a. Univariable assessment

i. p-value per gene with false discovery correction (FDR) control.

1.	 Logistic regression for LNM

2.	 Cox regression for OS/RFS

4.	 Fit with selected genes on the (independent) qPCR data.

a. Low dimensional models (i.e. clinical and/or pathological) fitted with standard regression techniques. 

i. Clinical variable are selected on the qPCR data for OS. First we conducted a univariate screening 
with p-value of 0.15. Next the clinical model was made by stepwise regression based on AIC.

b.	 Genomics models fitted with ridge regression 

c. Combined models (e.g. clinical, and/or pathological and/or genomics) for RFS/OS fitted with ridge
regression. Clinical and/or pathological are not subject to the ridge penalty.

5.	 Predictive accuracy of the models is assessed by bootstrapping.

a. Bootstrap assessed the parameter uncertainty.

b.	 For the clinical data the variable selection process was not bootstrapped.

c. For genomics and pathological variables there was no further variable selection.

d. For bootstrap code see http://github.com/DennisBeest/BootPredError.

6.	 Step 4b and step 5 are repeated with the (independent) TCGA data.
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SUPPLEMENTARY EXAMPLE R CODE OF THE MULTIVARIABLE GENE SELECTION 
(LASSO)

####################################################

#----Example code

library(glmnet)

####################################################

#----Simulated some survival data, replace these by real data

####################################################

P <- 200

N <- 100

Train <- matrix(nrow=N,ncol=P)

Train[] <- runif(P*N)

Survival <- rep(c(0,1),each=N/2)

Train[Survival==1,1:5] <- Train[Survival==1,5]+0.5

Time <- runif(N)

Time[Survival==1] <- Time[Survival==1]/2

colnames(Train) <- 1:P

penfac <- rep(1,times=P)

####################################################

#----Selection with lasso in the form of a LOOCV.

#----Alternatively the lasso can be run repeatedly on the whole data, or on bootstraps. 

#----The lasso is likely to select a different set of variables each time it is run on slightly different data or when 
the cross-validation folds are changed. Especially when the the data are stongly correlated. The aim of running 
it repeatedly is to stabilise the selection.

#----An unpenalized covariate can be incorporated by setting penfac to 0 for that variable. 

####################################################

N <- length(Survival) 	 #Number of patients

Selected <- list()	 #List for saving selected genes

SavePrediction <- numeric()	 #Optionally for saving cross-validated predictions

for(i in 1:N)	 #Repeat for each patient

{

	 ####################################################

#Leave one patient out

Y <- cbind(time=Time[-i],status=Survival[-i])

X <- Train[-i,]

	 ####################################################

#Fit lasso

model <- cv.glmnet(X,Y,family=”cox”,standardize = FALSE,alpha = 1,nfolds=5,penalty.factor=penfac)
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	 ####################################################

#Keep track of selected variables

betas <- model$glmnet.fit$beta[,model$glmnet.fit$lambda==model$lambda.min]

Selected[[i]] <- names(betas)[which(betas!=0)]

	 ####################################################

#Optionally get an indication of the predictive value

XTest <- Train[i,,drop=FALSE]

SavePrediction[i] <- predict(model,newx=XTest,s=c(“lambda.min”))

}

####################################################

#----Add selected variables together and sort/rank

tab <- table(unlist(Selected))		

o <- order(tab,decreasing=TRUE)

print(cbind(tab[o]))

####################################################

#----End of code
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Supplementary Figure 1. Venn diagram of selected gene signatures shows 2 overlapping genes between OSsig and LNMsig. 
Venn diagram of selected overall survival gene signature (OSsig, 40 genes) and lymph node metastasis gene signature (LNMsig, 22 genes) 
shows that 2 genes overlap, limiting the combined signatures to 60 genes. LNMsig, lymph node metastasis signature; OSsig, overall survival 
signature.

Supplementary Figure 2. Best predicting integrated models of clinical variables, histopathological variables and the overall survival 
signature (OSsig). 
(A-B) Results of the Kaplan-Meier analysis are depicted for overall survival in the independent validation cohort using the best predicting 
models with risk groups defined by tertile predicted hazards of (A) the OSsig combined with significant clinical variables (i.e. age at diagnosis, 
smoking) and pathological TNM stage (pTNM) (iAUC=0.68, OSsig: P=0.03 (global test)), and (B) the OSsig combined with the same clinical 
variables and the a composite histopathology variable (pCompVar) that was scored positive if extracapsular spread (ECS) or involved resection 
margins (R+) or >1 lymph node metastasis was present; all three variables are currently used as indicators for adjuvant treatment (iAUC=0.74, 
OSsig: P=0.02 (global test)). Area under the curve was integrated over 5 year follow-up time. Tick marks on curves indicate censoring. iAUC, 
integrated Area Under the Curve; OSsig, overall survival signature; pCompVar, pathological composite variable; pTNM, pathological TNM 
stage.
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Supplementary Figure 3. The Overall Survival genomic signature (OSsig) predicted disease-free survival of oral squamous cell carcinoma 
(OSCC) in a subgroup of prognostically favorable patients. 
A subgroup of 79 prognostically favorable patients was identified based on histopathological variables, i.e. tumor-free margins (R0), ≤ 1 
lymph node metastasis (LNM), and without extracapsular spread (ECS-neg). Depicted is a Kaplan-Meier analysis for disease-free survival 
in these pCompVar-negative patients of the independent validation group with risk groups defined by median predicted hazards of the 
OSsig (black and blue lines; integrated area under the curve (iAUC)=0.65, OSsig: P=7E-3 (global test)). Area under the curve was integrated 
over 5 year follow-up time. Abbreviations: iAUC, integrated Area Under the Curve; OSsig, Overall Survival signature; pCompVar, pathological 
composite variable.

Supplementary Figure 4. Additional external validation of the overall survival signature (OSsig). 
Kaplan-Meier analysis of overall survival with risk groups defined by median predicted hazards by the OSsig. RNAseq data of the TCGA cohort 
head and neck squamous cell carcinoma cohort were used of HPV-negative, OSCC patients (n=159; iAUC=0.59; OSsig: P=0.02 (global test)). 
Area under the curve was integrated over 5 year follow-up time. Tick marks on curves indicate censoring. Abbreviations: iAUC, integrated Area 
Under the Curve; OSsig, Overall Survival signature.
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Supplementary Figure 5. Comparison of follow-up time and baseline survival curves shows significant differences between our qPCR 
validation cohort and the TCGA cohort. 
(A) Number of patients under consideration (y-axis) in relation to follow-up time (x-axis) of qPCR cohort (black) and TCGA cohort (red). (B) 
Baseline Kaplan-Meier analysis of qPCR cohort (black) and TCGA cohort (red) differed significantly (cox regression: HR= 2.0, 95% CI =1.4–2.9), 
P=3E-4).

Supplementary Figure 6. Random sampling from independent qPCR cohort shows clear relationship between sample size and global test 
p-value, and provides rationale for the tested sample size. 
Random samples of increasing sample size were repeatedly (50 times) drawn without replacement from the data (y-axis). For each outcome 
variable, the global test was used to assess the predictive performance of the genomic signatures. P-values were averaged between random 
samples of the same size (x-axis). Sample sizes of 85 cases and more gave consistent p-values <0.05 for each outcome variable, assuring that 
the sample size of 125 cases of the independent validation cohort should be sufficient to assess the performance of the signatures.
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Supplementary Figure 7. Relation of Overall Survival signature (OSsig) to other prognostic markers. 
(A-F) Relation of the OSsig linear predictor of the Cox ridge regression, i.e. the log of the hazard ratios (y-axis), and other prognostic variables 
(x-axis). A Pearson’s correlation coefficient and an additional p-value were calculated for numerical variables, for ACE27 we performed an 
ANOVAa, and for the remaining categorical variables, a t-test was performed. Relation between OSsig and (A) age (in years, r=0.1, P=0.27), (B) 
gender (P=0.02), (C) smoking (in packyears; r=0.34, P=0.0001), (D) comorbidity (ACE27; P=0.009), (E) pathological TNM stage (pTNM; P=0.13), 
and (F) a composite pathology variable (pCompVar) that was positive if extracapsular spread or tumor-positive resection margins or >1 lymph 
node metastasis was present (P=0.01). For each marker the size of the effects was small, even when a significant relation was found. corr, 
Pearson’s correlation coefficient; pCompVar, pathological composite variable; pTNM, pathological TNM stage.
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Supplementary Table 1. Genes with false discovery rate <0.1 on microarray data

FDR < 0.10 for survival of AC1
FDR based on Fisher combined p-value < 0.10 for N stage of AC1 
+ AC2
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TANC2 A_23_P431404 5.76E-03 1.53E-07 5.97E-02 FN1 A_24_P334130 2.53E-09 2.50E-06 8.3E-08 1.3E-03

SELP A_23_P137697 2.55E-02 1.69E-06 2.65E-02 P4HA1 A_24_P406693 5.20E-08 2.57E-05 4.0E-05 6.3E-05

C9orf116 A_23_P422115 2.55E-02 2.06E-06 4.13E-02 ADAM12 A_23_P350512 1.03E-07 3.39E-05 8.4E-08 6.1E-02

C9orf50 A_23_P406785 2.55E-02 2.71E-06 1.40E-01 FN1 A_24_P85539 5.35E-07 1.32E-04 3.5E-06 8.4E-03

CDK9 A_23_P158083 2.89E-02 4.99E-06 5.30E-03 SCG5 A_23_P62081 1.03E-06 2.04E-04 2.4E-07 2.4E-01

ENST00000362067 A_24_P919789 2.89E-02 6.13E-06 5.54E-03 SPOCK1 A_24_P354689 1.40E-06 2.31E-04 4.8E-06 1.7E-02

FLJ25410 A_23_P89101 2.89E-02 6.08E-06 2.12E-01 TIMM8B A_23_P98382 1.64E-06 2.31E-04 3.4E-04 2.8E-04

SPINK4 A_23_P71880 2.89E-02 4.37E-06 4.20E-01 AL050204 A_24_P937691 3.06E-06 3.77E-04 5.0E-04 3.7E-04

R78584 A_24_P225862 3.41E-02 9.05E-06 7.70E-03 COL5A1 A_23_P158593 3.96E-06 4.35E-04 1.2E-06 2.1E-01

ZNF366 A_23_P407096 3.41E-02 9.50E-06 3.93E-02 ADAM12 A_23_P202327 6.02E-06 5.95E-04 3.0E-06 1.3E-01

TCEB3C A_23_P315910 3.41E-02 9.96E-06 1.76E-01 COL5A1 A_23_P83818 1.28E-05 1.15E-03 5.8E-06 1.5E-01

CCDC88 A_23_P24384 4.39E-02 1.40E-05 2.16E-03 COL6A1 A_24_P331918 1.54E-05 1.18E-03 2.2E-05 4.8E-02

ADCY4 A_23_P381261 5.13E-02 3.01E-05 1.02E-03 SERPINH1 A_23_P76006 1.55E-05 1.18E-03 6.9E-05 1.5E-02

LOC642730 A_24_P683013 5.13E-02 2.59E-05 3.38E-03 EVA1 A_23_P150379 1.71E-05 1.21E-03 3.8E-05 3.1E-02

BC015370 A_24_P205154 5.13E-02 3.56E-05 3.76E-03 MGC11257 A_23_P134477 2.22E-05 1.46E-03 1.4E-03 1.1E-03

CCDC88 A_23_P24389 5.13E-02 2.92E-05 5.84E-03 SDC2 A_24_P380734 2.61E-05 1.61E-03 4.3E-04 4.3E-03

RASA4 A_24_P943263 5.13E-02 3.31E-05 1.17E-02 CALD1 A_23_P42575 3.18E-05 1.85E-03 1.1E-05 2.1E-01

C21orf125 A_32_P214178 5.13E-02 2.47E-05 1.20E-02 COL11A1 A_23_P11806 3.53E-05 1.87E-03 8.3E-05 3.1E-02

ENST00000380632 A_32_P6646 5.13E-02 3.36E-05 1.42E-02 LGALS1 A_23_P166459 3.59E-05 1.87E-03 1.9E-05 1.4E-01

CBFA2T3 A_23_P500741 5.13E-02 2.89E-05 3.34E-02 FAP A_23_P56746 4.97E-05 2.46E-03 1.6E-05 2.3E-01

IL27RA A_24_P348326 5.13E-02 3.41E-05 4.92E-02 MLL A_24_P281913 5.54E-05 2.61E-03 4.4E-05 9.4E-02

NRIP3 A_23_P47682 5.13E-02 2.54E-05 7.10E-02 PLA2G4B A_23_P403424 6.41E-05 2.88E-03 2.6E-04 1.9E-02

TMEM31 A_23_P352717 5.13E-02 2.99E-05 1.09E-01 CSTB A_23_P154894 6.80E-05 2.92E-03 4.5E-04 1.2E-02

PTPN14 A_23_P149111 5.13E-02 3.68E-05 1.63E-01 CCND1 A_24_P193011 7.71E-05 3.18E-03 1.2E-03 5.0E-03

SPATA17 A_23_P346912 5.13E-02 3.18E-05 2.06E-01 COL5A2 A_23_P10391 8.54E-05 3.38E-03 2.2E-05 3.0E-01

CCND1 A_24_P193011 5.13E-02 2.43E-05 2.54E-01 TRIO A_24_P42603 9.49E-05 3.61E-03 7.5E-05 9.9E-02

ESM1 A_23_P144843 5.13E-02 2.67E-05 7.80E-01 POSTN A_24_P347411 9.94E-05 3.64E-03 2.0E-04 3.9E-02

RASGRP2 A_23_P64058 5.18E-02 3.85E-05 2.70E-01 LARP6 A_23_P117782 1.09E-04 3.83E-03 1.5E-04 5.8E-02

ZNF406 A_32_P109922 5.21E-02 4.01E-05 2.72E-01 KDELR2 A_24_P42517 1.15E-04 3.87E-03 1.3E-04 7.1E-02

LOC645277 A_32_P49867 5.66E-02 5.56E-05 6.30E-03 SEC11L1 A_23_P380917 1.20E-04 3.87E-03 2.6E-05 3.7E-01

PVRL3 A_23_P80763 5.66E-02 5.51E-05 7.92E-03 TPM2 A_23_P216501 1.21E-04 3.87E-03 6.6E-05 1.5E-01

C6orf189 A_23_P145054 5.66E-02 4.84E-05 2.59E-02 IGF1R A_23_P305680 1.32E-04 4.01E-03 2.7E-03 3.9E-03

LOC645733 A_32_P3572 5.66E-02 5.25E-05 3.86E-02 CLEC11A A_23_P153489 1.34E-04 4.01E-03 2.3E-04 4.7E-02

LOC92689 A_23_P132915 5.66E-02 5.49E-05 1.06E-01 DENND2D A_23_P85952 1.56E-04 4.54E-03 1.2E-03 1.1E-02

THC2278340 A_24_P479364 5.66E-02 4.78E-05 2.16E-01 TGM3 A_23_P57118 1.63E-04 4.60E-03 1.9E-03 6.8E-03

TMEFF1 A_24_P274987 5.66E-02 5.54E-05 2.44E-01 TPM1 A_23_P391586 1.77E-04 4.80E-03 6.2E-05 2.4E-01
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Supplementary Table 1. (continued)

FDR < 0.10 for survival of AC1
FDR based on Fisher combined p-value < 0.10 for N stage of AC1 
+ AC2
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RESP18 A_24_P59236 5.66E-02 4.68E-05 4.42E-01 PPL A_23_P106906 1.80E-04 4.80E-03 8.1E-04 1.8E-02

CPNE5 A_23_P360804 5.78E-02 5.83E-05 1.57E-02 TPM1 A_32_P89709 1.89E-04 4.89E-03 9.5E-05 1.6E-01

TNFRSF10B A_23_P169030 5.84E-02 6.51E-05 1.26E-01 TPM1 A_23_P206018 1.96E-04 4.89E-03 1.2E-04 1.4E-01

RAI1 A_23_P77807 5.84E-02 6.21E-05 1.37E-01 FBXO32 A_23_P82814 2.00E-04 4.89E-03 3.5E-03 4.8E-03

OPRK1 A_32_P33576 5.84E-02 6.39E-05 2.52E-01 CCND1 A_24_P124550 2.03E-04 4.89E-03 1.0E-03 1.6E-02

EFNA1 A_23_P113005 5.84E-02 6.10E-05 4.14E-01 C1QTNF6 A_24_P211565 2.12E-04 4.89E-03 4.9E-05 3.6E-01

SESTD1 A_23_P367610 5.86E-02 6.81E-05 4.26E-02 NDUFV3 A_23_P211285 2.20E-04 4.89E-03 3.1E-03 6.0E-03

FLT3 A_23_P99442 5.86E-02 6.85E-05 1.79E-01 COL1A2 A_24_P265274 2.21E-04 4.89E-03 2.1E-04 8.9E-02

GCET2 A_24_P182947 6.03E-02 7.21E-05 1.22E-01 SPARC A_23_P7642 2.23E-04 4.89E-03 6.3E-05 3.0E-01

AK097371 A_24_P661612 6.21E-02 8.62E-05 4.76E-04 NID2 A_23_P163087 2.28E-04 4.90E-03 2.5E-05 7.8E-01

NARG2 A_32_P129419 6.21E-02 9.78E-05 1.08E-02 SRPX2 A_23_P136978 2.33E-04 4.90E-03 2.1E-04 9.2E-02

FBXO36 A_23_P432554 6.21E-02 9.64E-05 6.28E-02 ALOX12B A_23_P83634 2.60E-04 5.35E-03 6.8E-04 3.2E-02

RP11-138L21.1 A_23_P20532 6.21E-02 8.32E-05 6.56E-02 RAB3D A_24_P236956 2.85E-04 5.74E-03 1.1E-03 2.3E-02

WDR31 A_24_P6674 6.21E-02 8.11E-05 7.44E-02 TGM1 A_23_P65618 2.91E-04 5.75E-03 6.1E-03 4.1E-03

IL18 A_23_P104798 6.21E-02 9.75E-05 1.43E-01 AK022065 A_24_P478423 3.02E-04 5.86E-03 4.7E-03 5.5E-03

COL4A5 A_24_P290153 6.21E-02 8.43E-05 1.69E-01 RAB10 A_23_P165879 3.26E-04 6.20E-03 5.4E-02 5.3E-04

STC2 A_23_P110686 6.21E-02 9.89E-05 1.78E-01 SERPINB2 A_24_P245379 3.73E-04 6.96E-03 7.4E-04 4.4E-02

BANK1 A_23_P10232 6.21E-02 9.29E-05 1.88E-01 DBI A_23_P79199 3.87E-04 7.08E-03 3.0E-02 1.2E-03

NAPSA A_23_P90130 6.21E-02 9.36E-05 2.05E-01 TRIM29 A_23_P203267 4.16E-04 7.47E-03 6.0E-04 6.2E-02

P2RY14 A_24_P165864 6.21E-02 8.48E-05 3.05E-01 CALD1 A_24_P921366 4.28E-04 7.55E-03 4.3E-05 9.0E-01

CTTN A_23_P202823 6.21E-02 8.44E-05 3.06E-01 P4HA2 A_23_P30363 4.50E-04 7.80E-03 7.2E-05 5.6E-01

TNFRSF19 A_24_P56310 6.21E-02 8.20E-05 3.75E-01 RGS5 A_23_P46045 4.62E-04 7.81E-03 4.7E-03 8.9E-03

CXCL13 A_23_P121695 6.21E-02 9.00E-05 5.54E-01 MLL A_24_P127812 4.66E-04 7.81E-03 3.2E-04 1.3E-01

GLCE A_23_P151870 6.21E-02 8.78E-05 6.54E-01 MGC4677 A_24_P273143 5.07E-04 8.34E-03 2.6E-04 1.8E-01

FBXO36 A_24_P254702 6.69E-02 1.08E-04 1.51E-01 RAB11FIP1 A_23_P31873 5.28E-04 8.56E-03 2.8E-04 1.8E-01

FBXO9 A_23_P254120 6.74E-02 1.31E-04 7.98E-03 P4HA2 A_23_P18966 6.04E-04 9.54E-03 1.5E-04 3.6E-01

SELE A_23_P97112 6.74E-02 1.34E-04 1.45E-02 HSPC159 A_23_P430818 6.08E-04 9.54E-03 4.6E-03 1.2E-02

CCDC48 A_23_P166566 6.74E-02 1.29E-04 1.89E-02 COL5A2 A_23_P33196 6.23E-04 9.61E-03 6.4E-05 9.0E-01

CCDC113 A_24_P73730 6.74E-02 1.34E-04 3.53E-02 INVS A_23_P157970 6.32E-04 9.61E-03 8.7E-05 6.8E-01

AFF1 A_23_P169619 6.74E-02 1.27E-04 4.44E-02 TGFBI A_23_P156327 6.79E-04 1.01E-02 1.0E-04 6.1E-01

GFRA2 A_24_P96505 6.74E-02 1.29E-04 6.18E-02 COL5A3 A_23_P55749 6.83E-04 1.01E-02 2.6E-04 2.5E-01

CLEC3B A_23_P69497 6.74E-02 1.33E-04 8.92E-02 UBTD1 A_23_P161501 6.98E-04 1.01E-02 5.2E-04 1.3E-01

MTL5 A_24_P25234 6.74E-02 1.32E-04 9.66E-02 EIF4A2 A_32_P134402 7.09E-04 1.01E-02 2.3E-01 2.9E-04

KIAA0746 A_23_P426021 6.74E-02 1.34E-04 1.15E-01 TAGLN A_23_P87013 7.13E-04 1.01E-02 7.3E-03 9.2E-03

PPP1R16B A_23_P352535 6.74E-02 1.24E-04 1.28E-01 GDPD3 A_23_P26511 8.32E-04 1.16E-02 5.2E-03 1.5E-02

CD19 A_23_P113572 6.74E-02 1.33E-04 2.01E-01 COL6A1 A_32_P32254 8.43E-04 1.16E-02 1.7E-04 4.7E-01
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Supplementary Table 1. (continued)

FDR < 0.10 for survival of AC1
FDR based on Fisher combined p-value < 0.10 for N stage of AC1 
+ AC2
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THC2375612 A_32_P144999 6.74E-02 1.26E-04 2.29E-01 SEC11L1 A_24_P79413 8.68E-04 1.17E-02 1.5E-04 5.5E-01

BTN3A2 A_24_P252078 6.74E-02 1.16E-04 5.02E-01 DEFB103A A_23_P169017 8.84E-04 1.18E-02 1.6E-02 5.3E-03

BTN3A2 A_23_P391264 6.74E-02 1.30E-04 5.16E-01 SNRP70 A_23_P4902 9.38E-04 1.24E-02 2.3E-03 4.0E-02

LOC149351 A_24_P520767 7.05E-02 1.42E-04 1.77E-02 GALNT2 A_24_P353794 9.96E-04 1.29E-02 1.7E-03 5.7E-02

AK000901 A_32_P126410 7.35E-02 1.50E-04 4.16E-01 SPINK5 A_23_P356494 1.01E-03 1.29E-02 1.1E-02 9.1E-03

C14orf81 A_24_P153558 7.43E-02 1.56E-04 2.52E-02 OPN3 A_23_P74391 1.15E-03 1.41E-02 2.1E-03 5.5E-02

THC2319172 A_32_P875465 7.43E-02 1.54E-04 5.18E-01 CDH2 A_23_P38732 1.15E-03 1.41E-02 1.8E-04 6.5E-01

C12orf35 A_24_P273561 7.56E-02 1.66E-04 7.35E-02 PRSS23 A_23_P150789 1.19E-03 1.41E-02 3.1E-04 3.9E-01

IL3RA A_32_P217750 7.56E-02 1.67E-04 1.23E-01 COL6A3 A_32_P156322 1.20E-03 1.41E-02 2.9E-03 4.1E-02

BLNK A_24_P64344 7.56E-02 1.68E-04 1.69E-01 EVA1 A_24_P278552 1.20E-03 1.41E-02 5.5E-03 2.2E-02

MS4A1 A_23_P116371 7.56E-02 1.66E-04 2.37E-01 IGHG1 A_23_P158817 1.20E-03 1.41E-02 1.5E-03 8.0E-02

FCRL3 A_23_P103803 7.56E-02 1.69E-04 2.56E-01 PLA2G4B A_23_P218203 1.20E-03 1.41E-02 8.4E-04 1.4E-01

TCL1A A_23_P357717 7.57E-02 1.71E-04 3.35E-01 SLC2A4RG A_23_P102575 1.26E-03 1.47E-02 2.3E-03 5.6E-02

THC2444078 A_23_P88988 7.69E-02 1.76E-04 7.49E-02 MAN1B1 A_23_P94857 1.35E-03 1.55E-02 2.2E-04 6.1E-01

STEAP3 A_24_P200000 7.98E-02 1.91E-04 6.49E-03 COL5A2 A_32_P218734 1.37E-03 1.55E-02 1.4E-03 9.8E-02

CCDC93 A_23_P91062 7.98E-02 1.88E-04 1.60E-01 IGHG1 A_23_P218126 1.42E-03 1.60E-02 1.1E-03 1.3E-01

C6orf32 A_24_P941359 7.98E-02 1.86E-04 7.19E-01 ADC A_23_P103371 1.45E-03 1.61E-02 1.8E-03 8.1E-02

ERGIC1 A_23_P333227 7.98E-02 1.90E-04 7.63E-01 WAC A_23_P201996 1.54E-03 1.69E-02 2.5E-03 6.2E-02

AY358804 A_23_P76136 8.02E-02 2.02E-04 6.60E-03 PDGFC A_23_P58396 1.58E-03 1.70E-02 8.3E-04 2.0E-01

KIAA1772 A_23_P119040 8.02E-02 2.04E-04 9.69E-03 RAB11FIP1 A_24_P945029 1.58E-03 1.70E-02 2.1E-04 7.9E-01

GJA4 A_23_P1083 8.02E-02 2.08E-04 2.17E-02 PLEC1 A_24_P913056 1.62E-03 1.72E-02 3.7E-04 4.5E-01

GRK5 A_23_P12884 8.02E-02 1.96E-04 3.31E-02 TPM1 A_24_P44462 1.69E-03 1.78E-02 4.8E-04 3.7E-01

PPP1R3B A_23_P216199 8.02E-02 1.96E-04 7.57E-02 GPX7 A_24_P418816 1.86E-03 1.94E-02 1.7E-03 1.2E-01

GARNL3 A_24_P136522 8.02E-02 2.05E-04 1.02E-01 SPRR3 A_23_P62709 1.90E-03 1.95E-02 1.4E-03 1.4E-01

AL514561 A_32_P123176 8.02E-02 2.00E-04 1.55E-01 PPP2R2A A_23_P123539 1.91E-03 1.95E-02 4.7E-03 4.3E-02

CCR7 A_23_P343398 8.02E-02 2.09E-04 2.93E-01 KDELR2 A_23_P19938 2.02E-03 2.04E-02 4.0E-03 5.4E-02

ICAM3 A_23_P164691 8.08E-02 2.12E-04 3.84E-01 PCOLCE A_23_P251499 2.16E-03 2.16E-02 9.3E-04 2.5E-01

RNF32 A_23_P19816 8.31E-02 2.22E-04 6.80E-02 THBS2 A_24_P605612 2.23E-03 2.20E-02 3.2E-04 7.4E-01

DCX A_23_P500328 8.31E-02 2.24E-04 9.73E-02 PDGFC A_24_P163168 2.25E-03 2.21E-02 2.6E-02 9.3E-03

NAPSB A_23_P90125 8.31E-02 2.27E-04 1.75E-01 NDUFV3 A_24_P416951 2.36E-03 2.29E-02 4.7E-03 5.5E-02

TPBG A_23_P59261 8.31E-02 2.26E-04 5.61E-01 BASP1 A_23_P213385 2.40E-03 2.30E-02 2.9E-04 9.0E-01

RAMP3 A_23_P111737 8.54E-02 2.38E-04 1.64E-01 TRIM29 A_23_P340123 2.42E-03 2.30E-02 8.3E-04 3.2E-01

PGM5 A_24_P120907 8.54E-02 2.36E-04 5.04E-01 ADC A_24_P11462 2.46E-03 2.32E-02 2.6E-03 1.0E-01

PECAM1 A_23_P252471 8.57E-02 2.46E-04 6.51E-02 LAMB3 A_23_P86012 2.51E-03 2.34E-02 7.5E-04 3.6E-01

PARP11 A_24_P188056 8.57E-02 2.42E-04 1.13E-01 COL4A1 A_24_P68342 2.53E-03 2.34E-02 9.9E-04 2.8E-01

LRAT A_32_P113066 8.57E-02 2.46E-04 5.70E-01 SERPINB13 A_23_P432978 2.62E-03 2.39E-02 5.9E-03 4.9E-02
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Supplementary Table 1. (continued)

FDR < 0.10 for survival of AC1
FDR based on Fisher combined p-value < 0.10 for N stage of AC1 
+ AC2
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C6orf182 A_24_P189112 8.59E-02 2.81E-04 9.95E-03 SLC2A4RG A_24_P365442 2.67E-03 2.40E-02 3.8E-03 7.6E-02

POLR2A A_24_P308128 8.59E-02 2.77E-04 1.64E-02 CNFN A_23_P27473 2.69E-03 2.40E-02 7.4E-03 4.0E-02

C20orf160 A_23_P91414 8.59E-02 2.51E-04 1.76E-02 PRSS23 A_24_P937405 2.70E-03 2.40E-02 3.8E-04 7.8E-01

PLCG2 A_23_P106675 8.59E-02 2.80E-04 3.60E-02 COL3A1 A_24_P402242 2.76E-03 2.43E-02 3.4E-03 9.0E-02

KIAA2002 A_23_P65851 8.59E-02 2.89E-04 4.11E-02 MICAL2 A_23_P24843 2.77E-03 2.43E-02 3.4E-04 9.0E-01

SPARCL1 A_23_P113351 8.59E-02 2.79E-04 7.19E-02 UTP15 A_23_P213441 3.03E-03 2.63E-02 4.8E-04 7.1E-01

LRRTM4 A_24_P60268 8.59E-02 2.69E-04 7.39E-02 ADAMTS2 A_23_P213615 3.07E-03 2.64E-02 1.2E-03 2.8E-01

SDF2L1 A_23_P6344 8.59E-02 2.81E-04 8.47E-02 SLPI A_23_P91230 3.22E-03 2.75E-02 1.3E-03 2.8E-01

CNR2 A_23_P310931 8.59E-02 2.94E-04 8.90E-02 PI3 A_23_P210465 3.41E-03 2.85E-02 5.9E-03 6.6E-02

PRSS12 A_23_P121637 8.59E-02 2.60E-04 9.17E-02 TRIO A_23_P425880 3.41E-03 2.85E-02 4.9E-03 7.9E-02

IFT57 A_23_P121386 8.59E-02 2.62E-04 1.32E-01 AP2M1 A_23_P155624 3.50E-03 2.91E-02 9.6E-04 4.1E-01

PCDHA5 A_23_P334045 8.59E-02 2.83E-04 1.37E-01 PPP2CB A_23_P134693 3.71E-03 3.05E-02 1.0E-02 4.1E-02

KIAA1909 A_23_P81640 8.59E-02 2.94E-04 1.75E-01 TRIO A_24_P913431 3.73E-03 3.05E-02 8.7E-04 4.9E-01

TDRKH A_24_P41975 8.59E-02 2.59E-04 1.88E-01 PCNT A_23_P57347 3.83E-03 3.10E-02 6.8E-03 6.4E-02

TBCC A_23_P251248 8.59E-02 2.69E-04 2.37E-01 DENND2D A_23_P311346 4.14E-03 3.33E-02 5.2E-02 9.1E-03

FCRL3 A_23_P358438 8.59E-02 2.53E-04 2.43E-01 EMP1 A_24_P921446 4.20E-03 3.33E-02 3.8E-03 1.3E-01

CR620293 A_24_P854492 8.59E-02 2.92E-04 2.84E-01 TIMP2 A_23_P107401 4.21E-03 3.33E-02 2.6E-03 1.9E-01

CCND1 A_24_P124550 8.59E-02 2.85E-04 3.47E-01 C10orf116 A_23_P161439 4.29E-03 3.36E-02 3.4E-02 1.5E-02

THC2340670 A_32_P154121 8.59E-02 2.87E-04 4.21E-01 LOC147645 A_23_P101246 4.40E-03 3.43E-02 2.7E-02 1.9E-02

PUS3 A_23_P13073 8.59E-02 2.91E-04 5.10E-01 HOP A_24_P913146 4.45E-03 3.44E-02 3.0E-02 1.7E-02

C6orf32 A_23_P215009 8.59E-02 2.90E-04 6.01E-01 FTH1 A_24_P58337 4.79E-03 3.67E-02 9.8E-04 5.8E-01

USHBP1 A_24_P366859 8.60E-02 2.99E-04 2.17E-02 SPINK7 A_23_P213832 4.93E-03 3.73E-02 1.8E-01 3.3E-03

CPEB3 A_23_P46813 8.60E-02 2.98E-04 7.99E-02 MYO10 A_24_P46357 4.95E-03 3.73E-02 1.6E-03 3.7E-01

NCF1 A_23_P42746 8.64E-02 3.03E-04 3.50E-01 PLCXD1 A_23_P61180 5.03E-03 3.75E-02 2.2E-02 2.7E-02

EIF5 A_24_P398810 8.69E-02 3.39E-04 1.15E-03 CREB3 A_23_P423389 5.05E-03 3.75E-02 6.8E-04 8.8E-01

TMEM87A A_24_P65098 8.69E-02 3.38E-04 1.71E-02 CXorf56 A_23_P171223 5.25E-03 3.87E-02 8.4E-03 7.5E-02

A_32_P33434 A_32_P33434 8.69E-02 3.32E-04 6.24E-02 KLK12 A_23_P500010 5.41E-03 3.96E-02 3.5E-03 1.9E-01

KLRF1 A_32_P158966 8.69E-02 3.38E-04 7.73E-02 THBS2 A_23_P62021 5.88E-03 4.27E-02 7.8E-04 9.1E-01

TMEM24 A_23_P353056 8.69E-02 3.16E-04 8.33E-02 FBXL10 A_23_P87919 5.98E-03 4.31E-02 7.0E-03 1.0E-01

IRF4 A_23_P214360 8.69E-02 3.26E-04 1.15E-01 EIF4A2 A_32_P110751 6.23E-03 4.46E-02 2.1E-01 3.6E-03

AX775927 A_32_P148627 8.69E-02 3.31E-04 1.89E-01 FGFBP1 A_23_P30126 6.48E-03 4.61E-02 8.4E-02 9.4E-03

PAEP A_23_P257129 8.69E-02 3.32E-04 2.41E-01 RGS5 A_23_P51518 6.84E-03 4.78E-02 1.5E-01 5.6E-03

VEGF A_23_P81805 8.69E-02 3.22E-04 3.31E-01 C1orf42 A_23_P12155 6.88E-03 4.78E-02 2.1E-02 4.1E-02

DMXL1 A_24_P101128 8.69E-02 3.25E-04 4.05E-01 PSMD2 A_24_P42681 6.97E-03 4.78E-02 3.8E-03 2.3E-01

BCNP1 A_24_P940348 8.69E-02 3.39E-04 4.85E-01 ENY2 A_23_P82748 6.99E-03 4.78E-02 2.4E-03 3.6E-01

AK024456 A_24_P928281 8.69E-02 3.31E-04 5.05E-01 TPM2 A_23_P20566 7.11E-03 4.78E-02 3.1E-03 2.9E-01
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Supplementary Table 1. (continued)

FDR < 0.10 for survival of AC1
FDR based on Fisher combined p-value < 0.10 for N stage of AC1 
+ AC2

G
en

e

Pr
ob

e

FD
R 

su
rv

iv
al

p-
va

lu
e 

Su
rv

iv
al

p-
va

lu
e 

Re
cu

rr
en

ce

G
en

e

Pr
ob

e

Fi
sh

er
’s 

co
m

bi
ne

d 
te

st
 F

D
R

Fi
sh

er
’s 

co
m

bi
ne

d 
te

st
 p

-v
al

ue

p-
va

lu
e 

A
C1

p-
va

lu
e 

A
C2

MLKL A_24_P185044 8.69E-02 3.17E-04 5.55E-01 MYO10 A_23_P7596 7.12E-03 4.78E-02 3.3E-03 2.7E-01

DVL3 A_23_P218884 8.69E-02 3.17E-04 8.66E-01 PAM A_24_P933704 7.14E-03 4.78E-02 1.1E-01 7.8E-03

PACSIN1 A_23_P258088 8.69E-02 3.16E-04 9.36E-01 HPS3 A_23_P40817 7.18E-03 4.78E-02 1.2E-02 7.5E-02

ATP2A3 A_23_P207632 8.85E-02 3.48E-04 3.24E-01 EPOR A_23_P367899 7.20E-03 4.78E-02 1.6E-03 5.8E-01

GIMAP6 A_23_P145631 8.85E-02 3.50E-04 4.49E-01 SLC22A16 A_24_P919084 7.21E-03 4.78E-02 3.9E-01 2.3E-03

ABL2 A_23_P138099 8.88E-02 3.56E-04 2.51E-01 FTH1 A_32_P111565 7.77E-03 5.10E-02 1.3E-03 7.8E-01

CCND1 A_23_P202837 8.88E-02 3.54E-04 4.23E-01 POF1B A_23_P159764 7.80E-03 5.10E-02 1.1E-02 8.8E-02

AVPR2 A_23_P346798 8.91E-02 3.68E-04 8.51E-02 PCNT A_24_P8350 8.08E-03 5.23E-02 7.7E-03 1.3E-01

ABHD7 A_23_P43898 8.91E-02 3.71E-04 1.17E-01 TBRG1 A_24_P21752 8.14E-03 5.23E-02 1.3E-01 7.7E-03

NCR3 A_23_P251881 8.91E-02 3.71E-04 1.81E-01 SLC7A1 A_24_P253251 8.29E-03 5.23E-02 2.0E-02 5.4E-02

SPIB A_23_P39067 8.91E-02 3.63E-04 3.28E-01 SERPINB13 A_23_P119015 8.29E-03 5.23E-02 7.7E-03 1.4E-01

CES4 A_23_P374892 8.91E-02 3.70E-04 3.83E-01 DEFB4 A_23_P157628 8.31E-03 5.23E-02 2.1E-02 5.0E-02

SYNPO2 A_23_P310094 8.91E-02 3.70E-04 8.26E-01 KIFAP3 A_23_P62920 8.31E-03 5.23E-02 1.2E-03 8.8E-01

NAPSA A_32_P107029 8.95E-02 3.75E-04 1.69E-01 S100A8 A_23_P434809 8.42E-03 5.27E-02 1.9E-02 5.8E-02

LAX1 A_24_P291278 9.06E-02 3.83E-04 1.55E-01 PDZK1IP1 A_23_P160920 8.56E-03 5.32E-02 4.2E-03 2.6E-01

SOX9 A_23_P26847 9.08E-02 3.86E-04 6.83E-01 MMP1 A_32_P429083 8.83E-03 5.45E-02 6.2E-01 1.8E-03

MMRN2 A_23_P150057 9.23E-02 3.95E-04 1.51E-02 IL8 A_32_P87013 8.99E-03 5.52E-02 2.0E-02 5.9E-02

ECSM2 A_23_P72651 9.26E-02 4.04E-04 1.88E-01 TAGLN A_23_P87011 9.58E-03 5.84E-02 4.6E-02 2.7E-02

WDR31 A_23_P251324 9.26E-02 4.02E-04 2.04E-01 STXBP1 A_23_P135310 9.89E-03 5.94E-02 1.2E-02 1.1E-01

SP100 A_24_P916816 9.26E-02 4.01E-04 2.45E-01 C1orf42 A_24_P191047 9.90E-03 5.94E-02 1.4E-01 9.0E-03

A_32_P180185 A_32_P180185 9.26E-02 4.06E-04 5.83E-01 ADAMTS2 A_23_P321307 9.93E-03 5.94E-02 2.2E-03 5.9E-01

KCNA5 A_23_P417173 9.37E-02 4.15E-04 5.39E-02 GPSM3 A_24_P230521 1.02E-02 6.06E-02 3.4E-02 4.0E-02

THC2280976 A_32_P58437 9.37E-02 4.19E-04 7.52E-02 CLDN7 A_23_P164284 1.03E-02 6.06E-02 5.3E-03 2.6E-01

LOC646686 A_24_P937649 9.37E-02 4.18E-04 8.54E-02 SLC2A4RG A_23_P102571 1.03E-02 6.06E-02 1.7E-02 8.0E-02

TMEM105 A_32_P919718 9.37E-02 4.23E-04 2.12E-01 SULT2B1 A_23_P107981 1.05E-02 6.10E-02 2.3E-02 6.0E-02

ENST00000371030 A_32_P206479 9.37E-02 4.21E-04 3.02E-01 SMS A_24_P305764 1.05E-02 6.10E-02 4.9E-02 2.8E-02

AL525862 A_32_P97046 9.38E-02 4.32E-04 1.48E-02 SAPS1 A_23_P119448 1.06E-02 6.10E-02 3.0E-01 4.6E-03

LOC441208 A_24_P145009 9.38E-02 4.43E-04 2.18E-02 RPL37A A_23_P142724 1.07E-02 6.17E-02 4.0E-02 3.6E-02

KCNA3 A_23_P201138 9.38E-02 4.39E-04 2.41E-02 KDELR2 A_23_P19936 1.08E-02 6.18E-02 6.0E-03 2.4E-01

CFP A_23_P22444 9.38E-02 4.31E-04 3.37E-01 COL4A1 A_23_P65240 1.09E-02 6.18E-02 1.7E-03 8.5E-01

PRKCB1 A_23_P206585 9.38E-02 4.40E-04 4.04E-01 SEMA3C A_23_P256473 1.10E-02 6.18E-02 5.7E-03 2.6E-01

CLEC10A A_23_P141505 9.38E-02 4.36E-04 5.96E-01 FSTL1 A_23_P212696 1.11E-02 6.18E-02 2.9E-03 5.0E-01

RNF36 A_24_P50543 9.38E-02 4.30E-04 7.60E-01 DSG3 A_23_P153120 1.11E-02 6.18E-02 2.1E-02 7.1E-02

SMARCA3 A_24_P277155 9.38E-02 4.43E-04 9.02E-01 IVL A_23_P353524 1.15E-02 6.37E-02 7.2E-02 2.1E-02

ENST00000377515 A_23_P361679 9.40E-02 4.59E-04 5.83E-03 ARL14 A_23_P92161 1.18E-02 6.49E-02 2.4E-03 6.6E-01

DDIT4 A_23_P104318 9.40E-02 4.61E-04 3.16E-02 MLLT7 A_23_P217487 1.22E-02 6.68E-02 7.0E-01 2.3E-03
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Supplementary Table 1. (continued)

FDR < 0.10 for survival of AC1
FDR based on Fisher combined p-value < 0.10 for N stage of AC1 
+ AC2
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C1orf67 A_32_P87531 9.40E-02 4.67E-04 4.94E-02 SEMA4D A_24_P261169 1.28E-02 7.00E-02 1.0E-02 1.7E-01

ENST00000311695 A_32_P188825 9.40E-02 4.57E-04 8.48E-02 SLC9A3R1 A_23_P308519 1.29E-02 7.01E-02 3.9E-03 4.6E-01

ZNF573 A_23_P339079 9.40E-02 4.66E-04 1.12E-01 DMKN A_23_P320261 1.30E-02 7.03E-02 2.8E-02 6.3E-02

BC032907 A_24_P870362 9.40E-02 4.57E-04 1.19E-01 MGC3207 A_24_P279797 1.36E-02 7.26E-02 7.0E-03 2.7E-01

THC2407434 A_24_P565390 9.40E-02 4.51E-04 1.76E-01 AK021531 A_24_P503729 1.36E-02 7.26E-02 7.0E-03 2.7E-01

ENST00000374472 A_32_P48054 9.40E-02 4.64E-04 1.83E-01 HOP A_23_P254507 1.37E-02 7.29E-02 2.5E-02 7.6E-02

GIMAP8 A_24_P132383 9.40E-02 4.58E-04 4.53E-01 PDE4DIP A_24_P253100 1.39E-02 7.33E-02 4.7E-03 4.0E-01

AK056689 A_24_P548060 9.63E-02 4.81E-04 1.56E-01 SLPI A_24_P190472 1.40E-02 7.33E-02 5.9E-03 3.2E-01

FAM27E2 A_24_P458479 9.64E-02 4.89E-04 3.67E-02 POF1B A_24_P250815 1.41E-02 7.38E-02 2.6E-02 7.5E-02

ZC3H12D A_24_P187826 9.64E-02 4.85E-04 1.11E-01 AEBP1 A_23_P157299 1.42E-02 7.40E-02 1.2E-02 1.6E-01

NCF1 A_32_P116203 9.64E-02 4.88E-04 3.85E-01 RAB25 A_23_P115091 1.43E-02 7.40E-02 6.8E-03 2.9E-01

HOXB9 A_23_P27013 9.65E-02 4.98E-04 1.26E-02 GPX7 A_23_P73972 1.46E-02 7.53E-02 1.2E-02 1.8E-01

TSPAN19 A_23_P2322 9.65E-02 4.92E-04 2.27E-02 YWHAH A_23_P103070 1.49E-02 7.61E-02 1.3E-02 1.6E-01

M69012 A_24_P127159 9.65E-02 4.97E-04 9.75E-02 DKK3 A_24_P261417 1.49E-02 7.61E-02 3.8E-03 5.5E-01

TANC2 A_23_P218346 9.65E-02 4.99E-04 2.15E-01 DKK3 A_23_P162047 1.51E-02 7.64E-02 2.7E-03 7.7E-01

THC2308938 A_32_P99032 9.67E-02 5.06E-04 2.11E-01 EPPK1 A_23_P83388 1.59E-02 7.96E-02 6.0E-03 3.7E-01

CCL21 A_23_P112470 9.67E-02 5.04E-04 2.43E-01 TPM1 A_23_P363344 1.60E-02 7.96E-02 1.6E-01 1.4E-02

WDR68 A_23_P422268 9.84E-02 5.31E-04 4.83E-02 AKR1B10 A_23_P93641 1.60E-02 7.96E-02 5.0E-02 4.5E-02

ENST00000377492 A_23_P348979 9.84E-02 5.31E-04 7.30E-02 KRT2 A_23_P116850 1.60E-02 7.96E-02 4.2E-02 5.3E-02

RGS5 A_23_P46045 9.84E-02 5.31E-04 1.23E-01 AGPAT2 A_32_P26103 1.62E-02 7.99E-02 7.6E-03 3.0E-01

CCL15 A_23_P218369 9.84E-02 5.27E-04 1.79E-01 TMEM40 A_23_P29551 1.62E-02 7.99E-02 1.7E-01 1.4E-02

CCR6 A_24_P234921 9.84E-02 5.34E-04 2.00E-01 LLGL2 A_23_P129738 1.68E-02 8.18E-02 1.4E-02 1.7E-01

DARC A_23_P115161 9.84E-02 5.41E-04 2.78E-01 RPL37A A_32_P783 1.69E-02 8.18E-02 2.6E-02 9.1E-02

CD79B A_23_P207201 9.84E-02 5.40E-04 2.83E-01 CALD1 A_24_P255524 1.69E-02 8.18E-02 6.4E-03 3.7E-01

GPRC5C A_23_P346670 9.84E-02 5.41E-04 3.66E-01 DUOX1 A_24_P316586 1.72E-02 8.26E-02 9.8E-02 2.5E-02

LY9 A_24_P324674 9.84E-02 5.18E-04 5.99E-01 LEPREL2 A_23_P87752 1.72E-02 8.26E-02 4.3E-01 5.8E-03

HSH2D A_23_P153372 9.84E-02 5.34E-04 7.05E-01 FADS3 A_23_P64404 1.85E-02 8.83E-02 6.6E-03 4.0E-01

BC044628 A_32_P117453 9.89E-02 5.51E-04 4.05E-03 IMPDH2 A_24_P166042 1.88E-02 8.90E-02 2.0E-02 1.4E-01

PRAME A_24_P216361 9.89E-02 5.53E-04 1.09E-02 FTH1 A_32_P342064 1.88E-02 8.90E-02 2.9E-03 9.5E-01

MMRN1 A_23_P18539 9.89E-02 5.54E-04 2.12E-01 RBP7 A_24_P165423 1.94E-02 9.15E-02 5.3E-02 5.4E-02

ZBP1 A_23_P259141 9.89E-02 5.51E-04 3.55E-01 HTRA1 A_23_P97990 1.97E-02 9.21E-02 4.3E-03 6.7E-01

ARHGEF15 A_24_P359007 9.89E-02 5.64E-04 6.66E-03 PRKAB2 A_24_P917711 2.01E-02 9.35E-02 2.2E-02 1.3E-01

ERGIC1 A_24_P97770 9.89E-02 5.67E-04 7.28E-03 FTH1 A_32_P820503 2.02E-02 9.36E-02 3.9E-03 7.6E-01

PCDHA1 A_24_P146138 9.89E-02 5.67E-04 4.35E-02 PTK6 A_23_P56978 2.04E-02 9.40E-02 3.1E-01 9.7E-03

ZNF540 A_23_P90542 9.89E-02 5.70E-04 5.78E-02 FLJ23447 A_23_P433798 2.05E-02 9.40E-02 3.5E-03 8.5E-01

ENST00000381158 A_32_P77831 9.89E-02 5.71E-04 1.17E-01 C9orf5 A_24_P12904 2.09E-02 9.56E-02 1.1E-02 2.8E-01
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Supplementary Table 1. (continued)

FDR < 0.10 for survival of AC1
FDR based on Fisher combined p-value < 0.10 for N stage of AC1 
+ AC2
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CAMK2N1 A_24_P117620 9.89E-02 5.73E-04 1.58E-01 S100A9 A_23_P23048 2.15E-02 9.78E-02 2.4E-02 1.3E-01

CCDC69 A_24_P97825 9.89E-02 5.59E-04 5.16E-01 RHO A_23_P57950 2.16E-02 9.78E-02 7.3E-03 4.4E-01

IL27RA A_23_P27606 9.89E-02 5.75E-04 5.40E-01 KLK7 A_23_P39056 2.20E-02 9.89E-02 9.9E-02 3.3E-02

BLR1 A_24_P252945 9.92E-02 5.79E-04 2.30E-01 EPOR A_23_P381954 2.20E-02 9.89E-02 4.4E-03 7.4E-01

FAM112A A_23_P57020 9.95E-02 5.84E-04 2.56E-01 COL7A1 A_23_P144071 2.23E-02 9.98E-02 2.6E-02 1.3E-01

ZBTB34 A_24_P238365 9.99E-02 5.96E-04 2.12E-01 - - - - - -

STC2 A_23_P416395 9.99E-02 5.97E-04 2.36E-01 - - - - - -

INSIG2 A_23_P102454 9.99E-02 5.94E-04 4.59E-01 - - - - - -

U09197 A_24_P937240 9.99E-02 5.99E-04 5.16E-01 - - - - - -

EXOC6 A_23_P169576 9.99E-02 5.90E-04 9.45E-01 - - - - - -
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Supplementary Table 2. Selected gene signature and qPCR assays

Type of 
gene

Ensembl gene ID
Chromosome 

name
Band

Associated 
Gene name

Description

Taqman assay 
technical 

validation 
(TLDA.v1)

Taqman assay 
final signature 
(after technical 

validation) (TLDA.
v2)

LNMsig ENSG00000148848 10 q26.2 ADAM12
ADAM metallopeptidase 
domain 12 [Source:HGNC 

Symbol;Acc:HGNC:190]
Hs01106101_m1 Hs01106101_m1

Ossig ENSG00000129467 14 q12 ADCY4
adenylate cyclase 
4 [Source:HGNC 

Symbol;Acc:HGNC:235]
Hs00934099_m1 Hs00934099_m1

Ossig ENSG00000116748 1 p13.2 AMPD1

adenosine 
monophosphate 

deaminase 1 
[Source:HGNC 

Symbol;Acc:HGNC:468]

Hs00921502_m1 Hs00921502_m1

Ossig ENSG00000109321 4 q13.3 AREG
amphiregulin 
[Source:HGNC 

Symbol;Acc:HGNC:651]
Hs00950669_m1 Hs00950669_m1

Ossig ENSG00000118520 6 q23.2 ARG1
arginase 1 [Source:HGNC 
Symbol;Acc:HGNC:663]

NA Hs00968979_m1

Ossig ENSG00000033627 17 q21.2 ATP6V0A1

ATPase, H+ transporting, 
lysosomal V0 subunit 

a1 [Source:HGNC 
Symbol;Acc:HGNC:865]

Hs00193110_m1 Hs00193110_m1

Ossig ENSG00000160345 9 q34.3 C9orf116

chromosome 9 
open reading frame 
116 [Source:HGNC 

Symbol;Acc:HGNC:28435]

Hs01077891_m1 Hs01077891_m1

Ossig ENSG00000179058 9 q34.11 C9orf50

chromosome 9 
open reading frame 

50 [Source:HGNC 
Symbol;Acc:HGNC:23677]

Hs01368756_m1 NA

Ossig/
LNMsig

ENSG00000122786 7 q33 CALD1
caldesmon 1 

[Source:HGNC 
Symbol;Acc:HGNC:1441]

Hs00921982_m1 Hs00921982_m1

Ossig ENSG00000129993 16 q24.3 CBFA2T3

core-binding factor, 
runt domain, alpha 

subunit 2; translocated 
to, 3 [Source:HGNC 

Symbol;Acc:HGNC:1537]

NA Hs00602520_m1

Ossig ENSG00000168071 11 q13.1 CCDC88B

coiled-coil domain 
containing 88B 
[Source:HGNC 

Symbol;Acc:HGNC:26757]

Hs00989954_mH Hs00989954_mH

Ossig/
LNMsig

ENSG00000110092 11 q13.3 CCND1
cyclin D1 [Source:HGNC 
Symbol;Acc:HGNC:1582]

Hs00765553_m1 Hs00765553_m1

Ossig ENSG00000136807 9 q34.11 CDK9
cyclin-dependent 

kinase 9 [Source:HGNC 
Symbol;Acc:HGNC:1780]

Hs00977896_g1 NA

Ossig ENSG00000147889 9 p21.3 CDKN2A
cyclin-dependent kinase 

inhibitor 2A [Source:HGNC 
Symbol;Acc:HGNC:1787]

NA Hs00923894_m1
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Supplementary Table 2. (continued)

Type of 
gene

Ensembl gene ID
Chromosome 

name
Band

Associated 
Gene name

Description

Taqman assay 
technical 

validation 
(TLDA.v1)

Taqman assay 
final signature 
(after technical 

validation) (TLDA.
v2)

Ossig ENSG00000163815 3 p21.31 CLEC3B

C-type lectin domain 
family 3, member 
B [Source:HGNC 

Symbol;Acc:HGNC:11891]

Hs00162844_m1 Hs00162844_m1

LNMsig ENSG00000060718 1 p21.1 COL11A1
collagen, type XI, 

alpha 1 [Source:HGNC 
Symbol;Acc:HGNC:2186]

Hs01097664_m1 Hs01097664_m1

Ossig ENSG00000188153 X q22.3 COL4A5
collagen, type IV, 

alpha 5 [Source:HGNC 
Symbol;Acc:HGNC:2207]

Hs00166712_m1 Hs00166712_m1

LNMsig ENSG00000130635 9 q34.3 COL5A1
collagen, type V, 

alpha 1 [Source:HGNC 
Symbol;Acc:HGNC:2209]

Hs00609133_m1 Hs00609133_m1

LNMsig ENSG00000142156 21 q22.3 COL6A1
collagen, type VI, 

alpha 1 [Source:HGNC 
Symbol;Acc:HGNC:2211]

Hs01095585_m1 Hs01095585_m1

Ossig ENSG00000085733 11 q13.3 CTTN
cortactin [Source:HGNC 
Symbol;Acc:HGNC:3338]

Hs01124225_m1 Hs01124225_m1

Ossig ENSG00000156234 4 q21.1 CXCL13
chemokine (C-X-C motif ) 
ligand 13 [Source:HGNC 

Symbol;Acc:HGNC:10639]
Hs00757930_m1 Hs00757930_m1

LNMsig ENSG00000176797 8 p23.1 DEFB103A
defensin, beta 

103A [Source:HGNC 
Symbol;Acc:HGNC:15967]

Hs00218678_m1 Hs00218678_m1

Ossig ENSG00000100664 14 q32.32 EIF5

eukaryotic translation 
initiation factor 
5 [Source:HGNC 

Symbol;Acc:HGNC:3299]

Hs01028813_g1 Hs01028813_g1

LNMsig ENSG00000110723 11 q22.3 EXPH5
exophilin 5 [Source:HGNC 
Symbol;Acc:HGNC:30578]

Hs00323579_m1 Hs00323579_m1

LNMsig ENSG00000115414 2 q35 FN1
fibronectin 1 

[Source:HGNC 
Symbol;Acc:HGNC:3778]

Hs00415008_m1 Hs00415008_m1

HKG ENSG00000111640 12 p13.31 GAPDH

glyceraldehyde-3-
phosphate dehydrogenase 

[Source:HGNC 
Symbol;Acc:HGNC:4141]

Hs99999905_m1 Hs99999905_m1

HKG ENSG00000169919 7 q11.21 GUSB
glucuronidase, 

beta [Source:HGNC 
Symbol;Acc:HGNC:4696]

Hs00939627_m1 Hs00939627_m1

LNMsig ENSG00000169429 4 q13.3 IL8
interleukin 8 

[Source:HGNC 
Symbol;Acc:HGNC:6025]

Hs00174103_m1 Hs00174103_m1

Ossig ENSG00000163083 2 q14.2 INHBB
inhibin, beta B 
[Source:HGNC 

Symbol;Acc:HGNC:6067]
Hs00173582_m1 Hs00173582_m1
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Supplementary Table 2. (continued)

Type of 
gene

Ensembl gene ID
Chromosome 

name
Band

Associated 
Gene name

Description

Taqman assay 
technical 

validation 
(TLDA.v1)

Taqman assay 
final signature 
(after technical 

validation) (TLDA.
v2)

Ossig ENSG00000176842 16 q12.2 IRX5
iroquois homeobox 

5 [Source:HGNC 
Symbol;Acc:HGNC:14361]

Hs04334749_m1 Hs04334749_m1

Ossig ENSG00000174718 12 p11.21 KIAA1551
KIAA1551 [Source:HGNC 

Symbol;Acc:HGNC:25559]
Hs01028589_m1 Hs01028589_m1

Ossig ENSG00000134545 12 p13.2 KLRC1

killer cell lectin-like 
receptor subfamily C, 

member 1 [Source:HGNC 
Symbol;Acc:HGNC:6374]

Hs00970274_m1 Hs00970274_m1

LNMsig ENSG00000118058 11 q23.3 KMT2A

lysine (K)-specific 
methyltransferase 
2A [Source:HGNC 

Symbol;Acc:HGNC:7132]

Hs00610538_m1 Hs00610538_m1

LNMsig ENSG00000108244 17 q21.2 KRT23
keratin 23, type 
I [Source:HGNC 

Symbol;Acc:HGNC:6438]
Hs00210096_m1 Hs00210096_m1

Ossig ENSG00000204583 12 q24.33 LRCOL1
leucine rich colipase-
like 1 [Source:HGNC 

Symbol;Acc:HGNC:44160]
Hs01113075_m1 Hs01113075_m1

LNMsig ENSG00000139329 12 q21.33 LUM
lumican [Source:HGNC 

Symbol;Acc:HGNC:6724]
Hs00929860_m1 Hs00929860_m1

LNMsig ENSG00000213401 X q28 MAGEA12
melanoma antigen family 

A, 12 [Source:HGNC 
Symbol;Acc:HGNC:6799]

Hs04176236_m1 NA

LNMsig ENSG00000149573 11 q23.3 MPZL2
myelin protein zero-
like 2 [Source:HGNC 

Symbol;Acc:HGNC:3496]
Hs01083647_m1 Hs01083647_m1

Ossig ENSG00000133055 1 q32.1 MYBPH
myosin binding protein 

H [Source:HGNC 
Symbol;Acc:HGNC:7552]

Hs00192226_m1 Hs00192226_m1

Ossig ENSG00000133026 17 p13.1 MYH10
myosin, heavy chain 10, 

non-muscle [Source:HGNC 
Symbol;Acc:HGNC:7568]

Hs00992055_m1 NA

Ossig ENSG00000104419 8 q24.22 NDRG1
N-myc downstream 

regulated 1 [Source:HGNC 
Symbol;Acc:HGNC:7679]

Hs00608387_m1 Hs00608387_m1

LNMsig ENSG00000122884 10 q22.1 P4HA1

prolyl 4-hydroxylase, 
alpha polypeptide 

I [Source:HGNC 
Symbol;Acc:HGNC:8546]

Hs00914594_m1 Hs00914594_m1

Ossig ENSG00000110435 11 p13 PDHX

pyruvate dehydrogenase 
complex, component 

X [Source:HGNC 
Symbol;Acc:HGNC:21350]

Hs00185790_m1 Hs00185790_m1

Ossig ENSG00000154330 9 q21.11 PGM5
phosphoglucomutase 

5 [Source:HGNC 
Symbol;Acc:HGNC:8908]

Hs00222671_m1 Hs00222671_m1
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Supplementary Table 2. (continued)

Type of 
gene

Ensembl gene ID
Chromosome 

name
Band

Associated 
Gene name

Description

Taqman assay 
technical 

validation 
(TLDA.v1)

Taqman assay 
final signature 
(after technical 

validation) (TLDA.
v2)

Ossig ENSG00000110777 11 q23.1 POU2AF1
POU class 2 associating 
factor 1 [Source:HGNC 

Symbol;Acc:HGNC:9211]
NA Hs01573371_m1

Ossig ENSG00000185686 22 q11.22 PRAME

preferentially expressed 
antigen in melanoma 

[Source:HGNC 
Symbol;Acc:HGNC:9336]

Hs01022301_m1 Hs01022301_m1

Ossig ENSG00000127329 12 q15 PTPRB

protein tyrosine 
phosphatase, receptor 
type, B [Source:HGNC 

Symbol;Acc:HGNC:9665]

Hs01549049_m1 Hs01549049_m1

LNMsig ENSG00000143248 1 q23.3 RGS5
regulator of G-protein 

signaling 5 [Source:HGNC 
Symbol;Acc:HGNC:10001]

Hs01555176_m1 Hs01555176_m1

HKG ENSG00000174444 15 q22.31 RPL4
ribosomal protein 
L4 [Source:HGNC 

Symbol;Acc:HGNC:10353]
Hs03044647_g1 Hs03044647_g1

HKG ENSG00000089157 12 q24.23 RPLP0
ribosomal protein, 

large, P0 [Source:HGNC 
Symbol;Acc:HGNC:10371]

Hs99999902_m1 Hs99999902_m1

LNMsig ENSG00000166922 15 q13.3 SCG5
secretogranin 

V [Source:HGNC 
Symbol;Acc:HGNC:10816]

Hs00161638_m1 Hs00161638_m1

Ossig ENSG00000007908 1 q24.2 SELE
selectin E [Source:HGNC 

Symbol;Acc:HGNC:10718]
Hs00950401_m1 Hs00950401_m1

Ossig ENSG00000174175 1 q24.2 SELP

selectin P (granule 
membrane protein 

140kDa, antigen 
CD62) [Source:HGNC 

Symbol;Acc:HGNC:10721]

Hs00927900_m1 Hs00927900_m1

LNMsig ENSG00000197632 18 q21.33 SERPINB2

serpin peptidase inhibitor, 
clade B (ovalbumin), 

member 2 [Source:HGNC 
Symbol;Acc:HGNC:8584]

Hs01010736_m1 Hs01010736_m1

LNMsig ENSG00000149257 11 q13.5 SERPINH1

serpin peptidase inhibitor, 
clade H (heat shock 

protein 47), member 
1, (collagen binding 

protein 1) [Source:HGNC 
Symbol;Acc:HGNC:1546]

NA Hs01060397_g1

Ossig ENSG00000148942 11 p14.2 SLC5A12

solute carrier family 5 
(sodium/monocarboxylate 

cotransporter), member 
12 [Source:HGNC 

Symbol;Acc:HGNC:28750]

Hs01054637_m1 Hs01054637_m1

Ossig ENSG00000198021 X q27.2 SPANXA1

sperm protein associated 
with the nucleus, 

X-linked, family member 
A1 [Source:HGNC 

Symbol;Acc:HGNC:11218]

Hs03007483_gH Hs03007483_gH
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Supplementary Table 2. (continued)

Type of 
gene

Ensembl gene ID
Chromosome 

name
Band

Associated 
Gene name

Description

Taqman assay 
technical 

validation 
(TLDA.v1)

Taqman assay 
final signature 
(after technical 

validation) (TLDA.
v2)

Ossig ENSG00000122711 9 p13.3 SPINK4
serine peptidase inhibitor, 
Kazal type 4 [Source:HGNC 
Symbol;Acc:HGNC:16646]

Hs00205508_m1 NA

LNMsig ENSG00000152377 5 q31.2 SPOCK1

sparc/osteonectin, 
cwcv and kazal-like 

domains proteoglycan 
(testican) 1 [Source:HGNC 
Symbol;Acc:HGNC:11251]

Hs00928769_m1 Hs00928769_m1

Ossig ENSG00000159516 1 q21.3 SPRR2G
small proline-rich 

protein 2G [Source:HGNC 
Symbol;Acc:HGNC:11267]

Hs00972901_s1 Hs00972901_s1

Ossig ENSG00000172403 4 q26 SYNPO2
synaptopodin 2 
[Source:HGNC 

Symbol;Acc:HGNC:17732]
Hs00326493_m1 Hs00326493_m1

Ossig ENSG00000170921 17 q23.2 TANC2

tetratricopeptide repeat, 
ankyrin repeat and 

coiled-coil containing 
2 [Source:HGNC 

Symbol;Acc:HGNC:30212]

Hs00229073_m1 Hs00229073_m1

Ossig ENSG00000100721 14 q32.13 TCL1A
T-cell leukemia/lymphoma 

1A [Source:HGNC 
Symbol;Acc:HGNC:11648]

NA Hs00951350_m1

LNMsig ENSG00000150779 11 q23.1 TIMM8B

translocase of inner 
mitochondrial 

membrane 8 homolog 
B (yeast) [Source:HGNC 

Symbol;Acc:HGNC:11818]

Hs02339636_g1 Hs02339636_g1

Ossig ENSG00000114854 3 p21.1 TNNC1
troponin C type 1 

(slow) [Source:HGNC 
Symbol;Acc:HGNC:11943]

Hs00896999_g1 Hs00896999_g1

Ossig ENSG00000168477 6 p21.32 TNXB
tenascin XB [Source:HGNC 
Symbol;Acc:HGNC:11976]

Hs00954865_m1 Hs00954865_m1

Ossig ENSG00000146242 6 q14.1 TPBG
trophoblast glycoprotein 

[Source:HGNC 
Symbol;Acc:HGNC:12004]

Hs00907219_m1 NA

LNMsig ENSG00000140416 15 q22.2 TPM1
tropomyosin 1 

(alpha) [Source:HGNC 
Symbol;Acc:HGNC:12010]

Hs00165966_m1 Hs00165966_m1

Ossig ENSG00000110900 12 p11.21 TSPAN11
tetraspanin 11 
[Source:HGNC 

Symbol;Acc:HGNC:30795]
Hs01391666_m1 Hs01391666_m1

Ossig ENSG00000112715 6 p21.1 VEGFA

vascular endothelial 
growth factor A 
[Source:HGNC 

Symbol;Acc:HGNC:12680]

Hs00900055_m1 Hs00900055_m1
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Supplementary Table 3. Pearson’s correlation coefficients and corresponding p-values of technical validation

Gene Correlation coefficient PCR vs Array P-value correlation

SPRR2G -0.98 2.30E-13

SERPINB2 -0.95 1.30E-10

MYBPH -0.94 4.90E-10

TNNC1 -0.94 8.10E-10

KRT23 -0.93 1.90E-09

CXCL13 -0.93 4.20E-09

IL8 -0.93 1.50E-08

COL11A1 -0.9 9.10E-08

DEFB103 -0.89 1.30E-07

SYNPO2 -0.88 4.00E-07

PRAME -0.87 5.10E-07

AREG -0.87 7.20E-07

TIMM8B -0.86 1.10E-06

PDHX -0.86 1.50E-06

AMPD1 -0.86 1.50E-06

SPANXA -0.85 1.90E-06

FN1 -0.85 2.40E-06

SPOCK1 -0.83 5.50E-06

EXPH5 -0.81 1.30E-05

KLRC1 -0.81 1.30E-05

SLC5A12 -0.8 2.00E-05

COL5A1 -0.8 2.70E-05

LUM -0.79 2.80E-05

TSPAN11 -0.76 8.50E-05

SELE -0.76 9.60E-05

TPM1 -0.73 2.70E-04

INHBB -0.7 5.80E-04

MPZL2 -0.7 6.40E-04

CLEC3B -0.69 7.40E-04

CCND1 -0.68 9.80E-04

TNXB -0.67 1.10E-03

NDRG1 -0.67 1.30E-03

CTTN -0.67 1.40E-03

ADAM12 -0.64 2.30E-03

SCG5 -0.64 2.40E-03

KIAA1551 -0.64 2.40E-03

P4HA1 -0.61 4.10E-03

CALD1 -0.57 8.40E-03

ADCY4 -0.56 9.50E-03

SELP -0.56 1.00E-02

VEGFA -0.56 1.00E-02

COL4A5 -0.54 1.40E-02

KMT2A -0.53 1.70E-02

RGS5 -0.52 1.90E-02
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Supplementary Table 3. (continued)

Gene Correlation coefficient PCR vs Array P-value correlation

C9orf116 -0.51 2.20E-02

TANC2 -0.5 2.30E-02

PGM5 -0.48 3.30E-02

LRCOL1 -0.45 4.50E-02

COL6A1 -0.45 4.90E-02

PTPRB -0.44 5.00E-02

CCDC88B -0.42 6.30E-02

IRX5 -0.4 8.30E-02

MAGEA12a -0.37 1.10E-01

TPBGa -0.22 3.50E-01

ATP6V0A1a -0.21 3.80E-01

C9orf50a -0.21 4.00E-01

CDK9a -0.17 4.70E-01

SPINK4a 0.15 5.30E-01

MYH10a -0.07 7.50E-01

EIF5a 0.03 8.90E-01
a. Genes with correlation coefficients ≤1 SD (mean r=0.64, SD=0.26)
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Supplementary Table 4. Coefficient estimates and false discovery rates of qPCR results of the gene signatures

Overall survival Lymph node metastasis Disease free survival
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ADAM12 -0.05 -0.27 0.17 0.66 -0.25 -0.52 0.01 0.07 0.10 2.1E-02 -0.05 -0.28 0.18 0.67

ADCY4 0.45 0.14 0.76 4.6E-03 0.03 0.04 0.38 -0.02 0.82 0.07 0.53 0.20 0.86 1.8E-03 0.02 0.07

AMPD1 0.08 -0.02 0.17 0.12 0.26 4.4E-03 -0.04 -0.16 0.08 0.53 0.07 -0.04 0.17 0.20 0.37 -1.9E-02

AREG -0.01 -0.18 0.16 0.93 0.95 4.4E-03 -0.22 -0.45 -0.01 0.05 -0.14 -0.33 0.06 0.16 0.33 -2.6E-02

ARG1 0.01 -0.07 0.09 0.82 0.87 -5.6E-04 0.12 0.03 0.23 0.02 -0.03 -0.12 0.05 0.40 0.50 -4.9E-02

ATP6V0A1 0.10 -0.28 0.48 0.61 0.82 0.01 0.32 -0.12 0.80 0.17 0.09 -0.31 0.50 0.64 0.70 2.5E-02

C9orf116 -0.30 -0.60 0.00 0.05 0.12 -0.05 -0.21 -0.57 0.14 0.25 -0.29 -0.61 0.03 0.08 0.21 -0.1

CALD1 -0.01 -0.35 0.34 0.98 0.98 -0.01 -0.51 -0.96 -0.09 0.02 0.04 -0.1 -0.16 -0.52 0.20 0.39 0.50 -4.3E-02

CBFA2T3 0.47 0.20 0.73 5.4E-04 0.01 0.04 0.36 0.03 0.70 0.03 0.50 0.23 0.76 2.5E-04 0.00 0.07

CCDC88B 0.31 0.02 0.59 0.03 0.11 0.03 0.25 -0.07 0.59 0.13 0.44 0.15 0.73 2.9E-03 0.02 0.10

CCND1 -0.08 -0.29 0.14 0.48 0.67 -1.5E-03 -0.25 -0.54 0.02 0.08 0.11 -0.1 -0.13 -0.37 0.10 0.28 0.42 -1.3E-02

CDKN2A 0.02 -0.08 0.11 0.71 0.84 0.01 -0.06 -0.17 0.06 0.32 0.01 -0.09 0.11 0.81 0.81 1.5E-02

CLEC3B 0.25 0.01 0.50 0.04 0.12 0.02 0.44 0.14 0.77 0.01 0.38 0.12 0.65 4.2E-03 0.02 4.4E-02

COL11A1 -0.10 -0.22 0.02 0.11 -0.10 -0.23 0.03 0.15 0.17 2.8E-02 -0.07 -0.19 0.06 0.30

COL4A5 -0.11 -0.32 0.11 0.34 0.54 -0.02 -0.20 -0.49 0.07 0.16 -0.10 -0.34 0.13 0.38 0.50 -6.8E-03

COL5A1 -0.08 -0.31 0.14 0.45 -0.30 -0.58 -0.03 0.03 0.06 -1.2E-02 -0.17 -0.41 0.06 0.15

COL6A1 -0.02 -0.29 0.25 0.88 -0.24 -0.56 0.07 0.14 0.17 3.3E-02 -0.03 -0.31 0.25 0.84

CTTN -0.11 -0.33 0.10 0.30 0.52 -0.02 0.09 -0.18 0.36 0.51 -0.25 -0.47 -0.03 0.03 0.10 -0.1

CXCL13 0.16 0.02 0.29 0.02 0.09 0.02 0.09 -0.08 0.26 0.30 0.12 -0.02 0.26 0.09 0.23 6.9E-03

DEFB103 0.06 -0.02 0.14 0.12 0.13 0.03 0.24 0.02 0.04 0.1 -0.03 -0.12 0.06 0.50

EIF5 0.15 -0.26 0.56 0.48 0.67 0.02 -0.01 -0.47 0.46 0.98 0.13 -0.30 0.57 0.55 0.62 3.6E-02

EXPH5 0.26 -0.02 0.53 0.07 0.54 0.23 0.89 1.1E-03 0.01 0.1 0.18 -0.11 0.46 0.22

FN1 -0.13 -0.30 0.04 0.14 -0.40 -0.65 -0.17 9.3E-04 0.01 -0.1 -0.21 -0.40 -0.03 0.02

IL8 -0.13 -0.30 0.04 0.15 -0.09 -0.28 0.10 0.34 0.38 -3E-02 -0.16 -0.34 0.03 0.10

INHBB -0.05 -0.26 0.17 0.66 0.83 -0.03 -0.04 -0.31 0.24 0.80 0.03 -0.19 0.25 0.78 0.80 -2.3E-02

IRX5 0.10 -0.16 0.37 0.45 0.66 0.02 0.16 -0.15 0.48 0.31 0.18 -0.11 0.47 0.23 0.38 4.5E-02

KIAA1551 0.33 0.00 0.66 0.05 0.12 0.04 0.22 -0.14 0.61 0.24 0.24 -0.10 0.58 0.17 0.33 2.3E-02

KLRC1 0.14 0.01 0.28 0.03 0.11 0.03 -0.17 -0.37 0.02 0.09 0.09 -0.06 0.25 0.24 0.39 -1.6E-03

KMT2A 0.32 -0.17 0.81 0.20 0.15 -0.40 0.70 0.59 0.59 4.2E-02 0.27 -0.23 0.76 0.29

KRT23 -0.01 -0.14 0.12 0.92 0.27 0.10 0.47 2.8E-03 0.02 0.1 -0.03 -0.16 0.11 0.72

LRCOL1 0.19 0.08 0.30 5.3E-04 0.01 0.08 -0.05 -0.19 0.08 0.43 0.13 0.02 0.25 0.03 0.10 0.07

LUM 0.02 -0.24 0.28 0.89 -0.14 -0.46 0.16 0.37 0.39 -8.9E-03 0.11 -0.14 0.37 0.38

MPZL2 0.26 0.02 0.49 0.03 0.38 0.09 0.68 0.01 0.03 3.1E-02 0.20 -0.05 0.44 0.11

MYBPH 0.03 -0.03 0.09 0.34 0.54 -2.0E-04 -0.08 -0.15 0.00 0.04 0.01 -0.05 0.08 0.64 0.70 -2.2E-02

NDRG1 -0.04 -0.28 0.20 0.74 0.85 0.01 -0.12 -0.40 0.15 0.39 -0.09 -0.34 0.16 0.48 0.58 1.1E-02

P4HA1 -0.03 -0.41 0.35 0.88 -0.68 -1.18 -0.23 4.4E-03 0.02 -0.1 -0.25 -0.64 0.15 0.22

PDHX -0.23 -0.66 0.20 0.29 0.52 -0.03 -0.07 -0.57 0.43 0.78 -0.24 -0.69 0.22 0.31 0.42 -0.1

PGM5 0.36 0.20 0.53 1.9E-05 7.4E-04 0.06 0.04 -0.17 0.26 0.71 0.28 0.10 0.45 2.1E-03 0.02 3.6E-02

POU2AF1 0.15 3.0E-04 0.29 0.05 0.12 0.01 0.12 -0.06 0.31 0.20 0.11 -0.04 0.26 0.16 0.33 -2.6E-02

PRAME -0.01 -0.08 0.06 0.79 0.87 -0.01 0.07 -0.02 0.15 0.13 0.08 0.00 0.15 0.05 0.15 0.1
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Supplementary Table 4. (continued)

Overall survival Lymph node metastasis Disease free survival
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PTPRB 0.27 -0.07 0.61 0.12 0.26 0.01 0.10 -0.27 0.49 0.59 0.19 -0.17 0.56 0.29 0.42 -1.9E-02

RGS5 0.33 0.09 0.58 0.01 0.37 0.02 0.74 0.05 0.07 0.1 0.39 0.13 0.66 0.00

SCG5 0.02 -0.22 0.26 0.87 -0.31 -0.62 -0.03 0.04 0.07 -3.3E-02 -0.02 -0.27 0.22 0.85

SELE 0.22 0.05 0.39 0.01 0.05 0.03 0.21 0.00 0.45 0.06 0.29 0.13 0.46 5.9E-04 0.01 0.06

SELP 0.28 0.12 0.43 4.9E-04 0.01 0.05 0.24 0.03 0.48 0.03 0.33 0.17 0.48 3.3E-05 1.3E-03 0.08

SERPINB2 -0.02 -0.14 0.10 0.77 0.21 0.05 0.39 0.02 0.04 0.1 -0.08 -0.22 0.05 0.23

SERPINH1 0.07 -0.22 0.36 0.64 -0.56 -0.96 -0.19 4.1E-03 0.02 -0.1 -0.16 -0.43 0.12 0.26

SLC5A12 -0.04 -0.13 0.05 0.36 0.55 -0.01 0.04 -0.07 0.16 0.43 0.05 -0.04 0.14 0.28 0.42 0.06

SPANXA -0.01 -0.08 0.05 0.69 0.84 0.00 0.04 -0.05 0.12 0.40 0.01 -0.06 0.09 0.70 0.74 4.2E-02

SPOCK1 -0.05 -0.24 0.14 0.58 -0.32 -0.57 -0.09 0.01 0.03 -4.5E-02 -0.20 -0.40 0.00 0.05

SPRR2G 0.02 -0.06 0.10 0.66 0.83 -3.7E-03 0.18 0.07 0.31 2.9E-03 -0.03 -0.12 0.06 0.51 0.61 -4.3E-02

SYNPO2 0.10 -0.05 0.25 0.20 0.39 1.5E-03 -0.04 -0.22 0.13 0.63 0.13 -0.03 0.29 0.11 0.24 7.0E-03

TANC2 -0.04 -0.39 0.31 0.83 0.87 -4.8E-03 -0.43 -0.87 -0.01 0.05 -0.37 -0.74 0.00 0.05 0.15 -0.07

TCL1A 0.20 0.08 0.31 1.0E-03 0.01 0.06 0.14 -0.01 0.29 0.08 0.17 0.05 0.30 0.01 0.03 0.06

TIMM8B 0.17 -0.18 0.52 0.33 0.32 -0.07 0.73 0.11 0.14 2.6E-02 0.20 -0.17 0.57 0.29

TNNC1 0.05 -0.03 0.12 0.23 0.45 4.0E-03 -0.06 -0.15 0.03 0.22 0.05 -0.03 0.13 0.22 0.38 8.3E-03

TNXB 0.24 0.04 0.43 0.02 0.09 0.03 0.22 0.00 0.46 0.06 0.31 0.11 0.51 2.5E-03 0.02 0.06

TPM1 0.04 -0.15 0.24 0.67 -0.45 -0.73 -0.20 7.9E-04 0.01 -0.1 -0.07 -0.28 0.13 0.50

TSPAN11 0.28 0.04 0.51 0.02 0.09 0.03 0.15 -0.17 0.47 0.36 0.26 -0.01 0.52 0.06 0.16 3.3E-02

VEGFA -0.26 -0.51 -0.02 0.04 0.12 -0.04 -0.08 -0.39 0.22 0.59 -0.22 -0.48 0.05 0.11 0.24 -3.5E-02
a. Confidence intervals are not provided, because methodology to construct these is lacking for logistic ridge regression. In addition, they 
are likely uninformative (wide) due to collinearity in the variables.
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Supplementary Table 5. Coefficients and p-values of clinical and pathological variables for integration with gene signatures

Univariate Multivariate Univariate

overall survival overall survival disease-free survival

Variable name p-value Coefficient p-value Coefficient p-value Coefficient

ECOG (0a/1) 0.14 0.59 0.92 -0.05

Age 0.001 0.04 9.50E-04 0.05 0.69 0.005

ACE27 (nonea/mild/moderate+severe) 0.02 0.93 1.16 0.28 0.46 -0.06

Sex (malea/female) 0.1 0.51 0.64 0.15

PackYears 0.005 0.02 0.003 0.02 0.32 0.007

pTNM (1+2a vs. 3+4) 0.44 0.24 0.29 0.33 0.39 0.29

pCompVar (negativea/positive) 7.00E-06 1.4 7.00E-05 1.3
a. Reference category
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Supplementary Table 6. Remark criteria checklist

Item to be reported

Introduction    

1 State the marker examined, the study objectives, and any pre-specified hypotheses. X

Material and methods

Patients    

2
Describe the characteristics (e.g., disease stage or co-morbidities) of the study patients, including 
their source and inclusion and exclusion criteria. 

X

3 Describe treatments received and how chosen (e.g., randomized or rule-based). X

Specimen characteristics

4
Describe type of biological material used (including control samples) and methods of preservation 
and storage.

X

Assay methods

5

Specify the assay method used and provide (or reference) a detailed protocol, including specific 
reagents or kits used, quality control procedures, reproducibility assessments, quantitation methods, 
and scoring and reporting protocols. Specify whether and how assays were performed blinded to the 
study endpoint.

X

Study design    

6
State the method of case selection, including whether prospective or retrospective and whether 
stratification or matching (e.g., by stage of disease or age) was used. Specify the time period from 
which cases were taken, the end of the follow-up period, and the median follow-up time. 

X

7 Precisely define all clinical endpoints examined. X

8 List all candidate variables initially examined or considered for inclusion in models. X

9
Give rationale for sample size; if the study was designed to detect a specified effect size, give the 
target power and effect size. 

X

Statistical analysis methods

10
Specify all statistical methods, including details of any variable selection procedures and other 
model-building issues, how model assumptions were verified, and how missing data were handled. 

X

11
Clarify how marker values were handled in the analyses; if relevant, describe methods used for 
cutpoint determination.

X

Results    

Data    

12

Describe the flow of patients through the study, including the number of patients included in each 
stage of the analysis (a diagram may be helpful) and reasons for dropout. Specifically, both overall 
and for each subgroup extensively examined report the numbers of patients and the number of 
events.

X

13
Report distributions of basic demographic characteristics (at least age and sex), standard (disease-
specific) prognostic variables, and tumor marker, including numbers of missing values. 

X

Analysis and presentation 

14 Show the relation of the marker to standard prognostic variables. X

15

Present univariable analyses showing the relation between the marker and outcome, with the 
estimated effect (e.g., hazard ratio and survival probability). Preferably provide similar analyses for 
all other variables being analyzed. For the effect of a tumor marker on a time-to-event outcome, a 
Kaplan-Meier plot is recommended. 

X

16
For key multivariable analyses, report estimated effects (e.g., hazard ratio) with confidence intervals 
for the marker and, at least for the final model, all other variables in the model. 

X

17
Among reported results, provide estimated effects with confidence intervals from an analysis in 
which the marker and standard prognostic variables are included, regardless of their statistical 
significance. 

X

18
If done, report results of further investigations, such as checking assumptions, sensitivity analyses, 
and internal validation.

X

Discussion    

19
Interpret the results in the context of the pre-specified hypotheses and other relevant studies; include 
a discussion of limitations of the study.

X

20 Discuss implications for future research and clinical value. X
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Supplementary Table 7. Housekeeping gene performance

Correlation coefficient SDa

Housekeeping gene GAPDH GUSB RPL4 RPLP0 mean-Ct target genesb

GAPDH 1 0.77 0.82 0.83 0.69 1.17

GUSB 0.77 1 0.72 0.71 0.77 0.94

RPL4 0.82 0.72 1 0.87 0.67 1.05

RPLP0 0.83 0.71 0.87 1 0.65 0.98
a. Standard deviation of housekeeping gene across all samples.
b. Correlation of Ct-value of housekeeping gene and average Ct-value of all target genes (n=60).
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Supplementary Table 8. Assessment of performance of the gene signature in relevant subgroups by integrated area-under-the-curve (iAUC)

OS DFS

Subgroup iAUC 95% CI iAUC 95% CI n

CompVar: 0 0.71 0.65 0.76 0.65 0.61 0.68 79

CompVar: 1 0.58 0.51 0.65 0.62 0.55 0.7 38

Age<70 0.64 0.59 0.7 0.62 0.57 0.68 88

Age>=70 0.56 0.48 0.66 0.76 0.7 0.82 37

PackYears < median 0.61 0.54 0.69 0.7 0.65 0.75 59

PackYears >= median 0.54 0.48 0.62 0.54 0.47 0.63 66

Female 0.58 0.51 0.67 0.56 0.49 0.63 53

Male 0.63 0.56 0.69 0.64 0.58 0.72 72

pTNM: 1 or 2 0.6 0.52 0.68 0.53 0.45 0.64 43

pTNM: 3 or 4 0.63 0.57 0.69 0.63 0.57 0.7 82

ACE27: 0-1 0.66 0.6 0.73 0.68 0.63 0.75 77

ACE27: 2-3 0.65 0.57 0.74 0.56 0.49 0.63 48

Treatment surgery only 0.51 0.43 0.61 0.69 0.65 0.71 60

Treatment surgery + adjuvant 0.67 0.61 0.73 0.65 0.58 0.73 65
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ABSTRACT

Objectives
Head and neck squamous cell carcinoma (HNSCC) shows a remarkable heterogeneity between tumors, which 
may be captured by a variety of quantitative features extracted from diagnostic images, termed radiomics. 
The aim of this study was to develop and validate MRI-based radiomic prognostic models in oral and 
oropharyngeal cancer.

Materials and Methods
Native T1-weighted images of four independent, retrospective (2005–2013), patient cohorts (n = 102, n = 
76, n = 89, and n = 56) were used to delineate primary tumors, and to extract 545 quantitative features from. 
Subsequently, redundancy filtering and factor analysis were performed to handle collinearity in the data. 
Next, radiomic prognostic models were trained and validated to predict overall survival (OS) and relapse-free 
survival (RFS). Radiomic features were compared to and combined with prognostic models based on standard 
clinical parameters. Performance was assessed by integrated area under the curve (iAUC).

Results
In oral cancer, the radiomic model showed an iAUC of 0.69 (OS) and 0.70 (RFS) in the validation cohort, 
whereas the iAUC in the oropharyngeal cancer validation cohort was 0.71 (OS) and 0.74 (RFS). By integration 
of radiomic and clinical variables, the most accurate models were defined (iAUC oral cavity, 0.72 (OS) and 
0.74 (RFS); iAUC oropharynx, 0.81 (OS) and 0.78 (RFS)), and these combined models outperformed prognostic 
models based on standard clinical variables only (p < 0.001).

Conclusions
MRI radiomics is feasible in HNSCC despite the known variability in MRI vendors and acquisition protocols, and 
radiomic features added information to prognostic models based on clinical parameters.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is a malignancy arising in the mucosal lining of the oral 
cavity, oropharynx, larynx, and hypopharynx1. Unfortunately, mortality rates are high2, and long-term 
functional deficits often remain after therapy3. Ideally, treatment is personalized to maximize treatment 
efficacy and minimize side effects. However, treatment personalization is currently only based on stage, site, 
and histological parameters after surgery, with suboptimal performance4.

Despite that HNSCC arise in one tissue type, they are remarkably heterogeneous hampering accurate 
prediction of clinical behavior5. This heterogeneous tumor biology may be captured by imaging6,7. In the 
past, images were mostly described by qualitative features such as dimension and invasion in neighboring 
structures, but currently images are also being analyzed by extraction of a variety of quantitative features, 
also termed radiomics8.

Radiomic analyses have previously been applied in HNSCC patients, but most studies focused on computed 
tomography (CT), most particularly for radiotherapy planning. Aerts et al described a prognostic radiomic 
signature based on CT scans of lung cancer and applied this signature successfully in oropharyngeal 
cancer9. Others followed with comparable approaches10-14. The preference for CT is explained by (i) intuitive 
interpretation of signal intensities that correspond to tissue radiodensity8, (ii) standardization of imaging 
performance across vendors and scanners8, and (iii) availability of delineated tumor volumes from radiation 
treatment plans.

Nonetheless, in clinical practice, magnetic resonance imaging (MRI) is often the modality of choice for 
imaging of head and neck tumors, because of the superior soft tissue contrast. However, the acquired MRI 
signal intensities are influenced by scanner parameters and many image acquisition-related factors15. Still, 
MRI can identify physical properties of the tumor by application of separate sequence acquisition protocols 
(e.g., diffusion-weighted MRI (DWI), dynamic contrast-enhanced (DCE) MRI16), and therefore, MRI might 
better capture overall tumor biology than CT. As such, MRI radiomics was able to categorize breast cancer, 
glioblastoma, and prostate cancer in different molecular subtypes17-19. In HNSCC, prognostic models based 
on MRI radiomics were only described for small series of less than 20 cases of oropharyngeal cancer20,21 or 
heterogeneous cohorts22,23.

In this study, we present an MRI radiomics workflow based on T1-weighted images that is applied in 
two independent patient cohorts of oral cancer (n = 102 and n = 76) and two cohorts of HPV-negative 
oropharyngeal cancer (n = 89 and n = 56) for prediction of overall survival (OS) and relapse-free survival (RFS).

MATERIAL AND METHODS

Patients
Four independent, retrospective cohorts of HNSCC patients included (i) a cohort of oral squamous cell 
carcinoma (OSCC) patients from Amsterdam UMC, location VUmc (VUMC), treated from 2005 to 2013; (ii) a 
cohort of OSCC patients from University Medical Center Utrecht (UMCU) treated from 2010 to 2013; (iii) a cohort 
of HPV-negative oropharyngeal squamous cell carcinoma (OPSCC) patients from VUMC, treated from 2008 to 
2012; and (iv) a cohort of HPV-negative OPSCC patients from UMCU treated from 2010 to 2013. All patients 
were treated with curative intent. HPV status was assessed with p16 immunohistochemistry and subsequent 
PCR-based HPV DNA detection on p16-immunopositive cases. HPV-positive tumors were excluded because 
this group is considered to be a separate disease entity within HNSCC24, which would interfere with radiomic 
findings25 and clinical outcome26. The Dutch Medical Research Involving Human Subjects Act (WMO) does not 
apply to this study and therefore informed consent was waived by the Medical Ethics Review Committee at 
Amsterdam UMC. Medical records were reviewed to obtain clinical characteristics, including age at diagnosis, 
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gender, comorbidity, and clinical TNM-stage (7th edition)27. Comorbidity was classified using the Adult 
Comorbidity Evaluation 27 (ACE-27)28. Two outcome measures were used: (a) OS, which was defined as time 
from date of incidence to death from any cause; and (b) RFS, which was defined as time from date of incidence 
to development of locoregional recurrence, distant metastasis, or second primary HNSCC. For RFS, patients 
who died of other causes or developed other tumors outside the head and neck region were censored at the 
date of death or incidence date of the other tumor.

MRI
The schematic workflow of this study is depicted in Figure 1. Axial 2D T1W images without gadolinium 
enhancement and short TI inversion recovery (STIR) (OSCC VUMC, OSCC UMCU, OPSCC VUMC) or T2-weighted 
(OPSCC UMCU) images were available for all patients. These scans were obtained using scanners of different 
vendors and protocols (Supplementary Table 1). Native T1W images were used for feature extraction because 
this sequence was available for all tumors. The STIR sequence was used to facilitate tumor segmentation, and 
for feature extraction in the OSCC cohorts to assess a possible additional prognostic value. Our protocols 
of contrast-enhanced T1W imaging changed in time (e.g., slice thickness, 2D versus 3D, with or without fat 
saturation), and therefore this sequence was not considered in this study.

Figure 1. Illustration of radiomics pipeline
Abbreviations: MRI, magnetic resonance imaging; OPSCC, oropharyngeal squamous cell carcinoma; OSCC, oral cavity squamous cell 
carcinoma; T1W, T1-weighted.

Segmentation
MR images of VUMC patients were transferred to VelocityAI 3.1 (Varian Medical Systems), whereas UMCU MRI 
scans were transferred to an in-house developed target volume delineation tool29. Subsequently, STIR images 
were automatically co-registered to the T1W images and registration was visually checked. Supervised manual 
delineation of all primary tumors was performed by S.M. and B.P. (both 3 years of experience) with visual 
inspection of delineation by senior head and neck radiologists (P.G. or F.P. with 11 and 25 years of experience). 
In Figure 2, an example of a delineated tumor is shown on T1W MRI and STIR.
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Figure 2. Illustration of tumor segmentation on T1 MRI and STIR
Exemplary segmentation of a T2N2b tongue tumor on the left side on T1W MRI (A) and STIR (B).

Feature extraction and processing
The feature extraction and processing can be found in detail in the Supplementary Methods. The extracted 
features are described in Table 1.
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Table 1. Radiomic raw features (p = 545)

Group Number Name

First order statistics 35

From entire image (before normalization): Maximum gray level, minimum gray level, 
range, mean, median, standard deviation, maximum gray level of all values over 0.5, 
median of all values over 0.5, mean of all values over 0.5
From tumor VOI (after normalization): Maximum gray level, minimum gray level, range, 
mean, median, standard deviation, interquartile range, coefficient of variation (COV, in 
percentage), skewness, kurtosis, excess kurtosis, median absolute deviation of the median, 
mean absolute deviation of the median, mean absolute deviation of the mean, mean 
Laplacian, total energy, variance, root-mean-square (RMS), mean of the maximum voxel 
and the six adjacent voxels (Maxstar), integrated intensity, entropya, uniformitya 

Spatial autocorrelation 2 Moran’s I, Geary’s C

Intensity-volume histogram 
features

1 Area under a cumulative intensity-volume histogram curve (AUC)

Morphological features 11
Tumor volume, surface area, surface to volume ratio, surface area to surface of an 
equivolumetric sphere to volume ratio, radius of an equivolumetric sphere, compactness 
1, compactness 2, spherical disproportion, sphericity, asphericity, maximum 3D diameter

Fractal features 4
Fractal dimension (calculated), fractal dimension (fitted), fractal abundance, fractal 
lacunarity

Texture features based on 
gray level co-occurrence 
matrixa,b

300

Joint maximum, joint average, joint variance, joint entropy, difference average, difference 
variance, difference entropy, sum average, sum variance, sum entropy, angular second 
moment, contrast, dissimilarity, inverse difference, inverse difference normalized, inverse 
difference moment, inverse difference moment normalized, inverse variance, correlation, 
autocorrelation, cluster tendency, cluster shade, cluster prominence, first measure of 
information correlation, second measure of information correlation

Texture features based on 
gray level run lengtha,b 192

Short runs emphasis, long runs emphasis, low gray level run emphasis, high gray level run 
emphasis, short run low gray level emphasis, short run high gray level emphasis, long run 
low gray level emphasis, long run high gray level emphasis, gray level non-uniformity, gray 
level non-uniformity normalized, run length non-uniformity, run length non-uniformity 
normalized, run percentage, gray level variance, run length variance, run entropy 

a. Obtained using a discretization of 32, 64 or 128 gray level bins
b. Calculated from matrices per direction and then averaged (average), or from merged matrix created using all matrices over all directions 
(combined). The matrices were calculated either per x-y plane (2D, but all planes were used in the calculation) or volumetrically (3D).

Interobserver feature stability
MRI scans of 30 OPSCCs were re-segmented by an independent senior head and neck radiologist (J.C., with 
35 years of experience) according to the pipeline described before. Subsequently, feature extraction was 
performed and the mean value of similar features was determined, leaving n = 89 unique features. The Kendall’s 
coefficient of concordance was determined and a coefficient of ≥ 0.7 was considered high concordance.

Factor analysis and model training
The subsequent steps of predictive modelling that were applied in this study have been described before30, 
and can be found in detail in the Supplementary Methods.

Influence of vendor and magnetic field strength
As described above, a variety of MRI acquisition protocols and equipment of different vendors were used. 
Although this may impact the radiomics analyses, it reflects current clinical routine. Ideally, a correlation 
analyses would be performed of test-retest data from different vendors and magnetic field strengths to 
standardize the data, but such datasets are not available. Instead, multivariate analysis of variance (MANOVA) 
was performed to compare the mean factor scores between vendors and magnetic field strength in VUMC 
patient cohorts. In the UMCU cohorts (OSCC and OPSCC), only the mean factor scores between magnetic field 
strengths were compared, because most scans were obtained using one MR vendor (Table 2).
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RESULTS

Patient characteristics
Patient cohorts consisted of 102 patients (VUMC OSCC), 76 patients (UMCU OSCC), 89 patients (VUMC OPSCC), 
and 56 patients (UMCU OPSCC). Patient characteristics for each cohort are presented in Table 2. VUMC OSCC 
and UMCU OSCC cohorts had similar distributions of age and gender, but VUMC patients presented with 
higher comorbidity scores (p < 0.001), more advanced T-stage (p < 0.01), and consequently a poorer overall 
survival (p = 0.01). In contrast, VUMC OPSCC and UMCU OPSCC cohorts only differed significantly from each 
other in terms of ACE-27 score (p = 0.01). Moreover, the scans were obtained using scanners of different 
vendors and protocols (see also Supplementary Table 1).

Table 2. Patient characteristics

VUMC OSCC UMCU OSCC VUMC OPSCC UMCU OPSCC P-value* P-value±

Number of cases 102 76 89 56

Median age years (MAD) 63 (11.9) 66.3 (11.1) 60 (7.4) 64 (11.9) 0.23 0.24

Gender male 64 (62.7) 46 (60.5) 49 (55.1) 35 (62.5)

female 38 (37.3) 30 (39.5) 40 (44.9) 21 (37.5) 0.77 0.48

Smoking current 51 (50.0) 34 (44.7) 54 (60.7) 34 (60.7)

former 35 (34.3) 24 (31.6) 26 (29.2) 13 (23.2)

never 16 (15.7) 15 (19.7) 9 (10.1) 6 (10.7)

unknown 0 (0) 3 (3.9) 0 (0) 3 (5.4) 0.23 0.16

Alcohol current 68 (66.7) 49 (64.5) 66 (74.2) 40 (71.4)

former 13 (12.7) 6 (7.9) 12 (13.5) 10 (17.9)

never 21 (20.6) 17 (22.4) 11 (12.4) 3 (5.4)

unknown 0 (0) 4 (5.3) 0 (0) 3 (5.4) 0.11 0.07

ACE27 0 28 (27.5) 27 (35.5) 26 (29.2) 17 (30.4)

1 34 (33.3) 40 (52.6) 33 (37.1) 27 (48.2)

2 28 (27.5) 4 (5.3) 27 (30.3) 7 (12.5)

3 12 (11.8) 5 (6.6) 3 (3.4) 1 (1.8)

unknown 0 (0) 0 (0) 0 (0) 4 (7.1) <0.001 0.01

T-stage 1 12 (11.8) 20 (26.3) 7 (7.9) 6 (10.7)

2 36 (35.3) 28 (36.8) 35 (39.3) 17 (30.4)

3 21 (20.6) 4 (5.3) 16 (18.0) 13 (23.2)

4 33 (32.4) 24 (31.6) 31 (34.8) 20 (35.7) <0.01 0.67

N-stage 0 62 (60.8) 51 (67.1) 40 (44.9) 18 (32.1)

1 20 (19.6) 6 (7.9) 14 (15.7) 7 (12.5)

2 20 (19.6) 19 (25.0) 35 (39.3) 30 (53.6)

3 0 (0) 0 (0) 0 (0) 1 (1.8) 0.13 0.19

Stage I 10 (9.8) 18 (23.7) 4 (4.5) 4 (7.1)

II 23 (22.5) 17 (22.4) 17 (19.1) 6 (10.7)

III 25 (24.5) 6 (7.9) 15 (16.9) 7 (12.5)

IV 44 (43.1) 35 (46.1) 53 (59.6) 39 (69.6) 0.01 0.4

Vendor GE 49 (48.0) 0 (0) 70 (78.7) 0 (0) <0.001 <0.001

Philips 4 (3.9) 76 (100) 1 (1.1) 55 (98.2)

Siemens 48 (47.1) 0 (0) 18 (20.2) 1 (1.8)
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Table 2. (continued)

VUMC OSCC UMCU OSCC VUMC OPSCC UMCU OPSCC P-value* P-value±

Toshiba 1 (1.0) 0 (0) 0 (0) 0 (0)

Magnetic field strength 1.0 T 12 (11.8) 0 (0) 1 (1.1) 0 (0) <0.001 <0.001

1.5 T 83 (81.4) 58 (76.3) 71 (79.8) 21 (37.5)

3.0 T 7 (6.9) 18 (23.7) 17 (19.1) 35 (62.5)

Survival deceased 49 (48.0) 24 (31.6) 47 (52.8) 28 (50.0)

alive 53 (52.0) 52 (68.4) 42 (47.2) 28 (50.0) 0.01 0.87

Median time to death years (MAD) 1.4 (1.2) 1.3 (1.0) 2.1 (1.9) 2.0 (1.5) 0.03 0.17

Median follow-up time 
(alive patients)

years (MAD) 4.5 (2.0) 3.7 (0.9) 5.9 (1.7) 5.0 (0.5) <0.001 <0.001

Abbreviations: MAD, median absolute deviation; OPSCC, oropharyngeal squamous cell carcinoma; OSCC, oral cavity squamous cell 
carcinoma; T, Tesla.
P-value* = VUMC OSCC compared to UMCU OSCC, and calculated with the use of Student’s t-test for continuous variables and χ² test for 
categorical variables.
P-value± = VUMC OPSCC compared to UMCU OPSCC, and calculated with the use of Student’s t-test for continuous variables and χ² test for 
categorical variables.

Normalization
Since different MRI parameters were used on MRI systems supplied by different vendors, we assessed the 
influence of signal intensities on radiomic analysis31,32 using five gray level normalization methods that are 
described in the Supplementary Methods. A high concordance was found for the 89 radiomics features before 
and after normalization (mean = 0.82, sd = 0.19). Figure 3 a shows a histogram of the concordances of the core 
89 radiomics features. Given the minor influence of gray level normalization on these features, it was decided 
to proceed with unnormalized data.

Interobserver stability
Another putative important variable in radiomics feature extraction is definition of the tumor contours by 
manual delineation, which may introduce variability in the data by inconsistency of segmentation33. Therefore, 
the stability of the radiomics features of a random subgroup of 30 VUMC OPSCCs was assessed when the 
tumors were delineated by two independent radiologists. A high concordance was found of the 89 radiomics 
features (mean = 0.88, sd = 0.09) suggesting that delineation by experienced radiologists is consistent or 
minor changes in delineation do not impact radiomic features. Figure 3b displays the concordances of the 89 
core radiomics features with multiple delineations.

Dimension reduction and factor analysis
Redundancy filtering was applied to the 89 core radiomic features to remove highly correlated features which 
resulted in 50 features (VUMC OSCC dataset) and 51 features (VUMC OPSCC dataset). A regularized estimator 
of the correlation matrix between the features was obtained, and factor analysis was performed on this matrix, 
which showed that both VUMC OSCC features and VUMC OPSCC features were described by 7 latent factors. 
The factors accounted for 78% (VUMC OSCC) and 77% (VUMC OPSCC) of the variation in the data. The 7 factors 
can be roughly interpreted as representing (i) 3D geometrics, (ii) meta-gray level co-occurrence, (iii) meta-first 
order, (iv) gray level mix, (v) meta-gray level run length, (vi) geometrics, and (vii) entropy. The exact content 
of each factor is shown in Supplementary Table 2 (OSCC) and Supplementary Table 3 (OPSCC). The highest 
variation in both datasets is explained by factors 1 (3D geometrics) and 2 (meta-gray level co-occurrence).
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Figure 3. Radiomic features showed high concordance before and after gray level normalization and high interobserver stability
(A) Five methods of gray level normalization were performed before feature extraction and the concordance was calculated of the 89
averaged radiomics features before and after normalization. The figure shows an histogram of the Kendall’s coefficients of concordance
(mean = 0.82, sd = 0.19).
(B) For 30 VUMC OPSCCs, interobserver stability was assessed by delineation of the tumors by two independent radiologists. The figure shows 
an histogram of the Kendall’s coefficients of concordance (mean = 0.88, sd = 0.09).

OSCC prognostic models
The 7 extracted latent factors were used to train a model to predict OS and RFS of OSCC patients. For OS, an 
iAUC was found of 0.69 in both the VUMC OSCC cohort and the UMCU OSCC cohort (Table 3). For RFS, iAUCs of 
0.63 and 0.70 were found in the VUMC OSCC cohort and the UMCU OSCC cohort, respectively (Table 3). These 
radiomics models were compared to models using (i) tumor volume, and (ii) clinical variables (N-stage, age at 
diagnosis and gender). Tumor volume only had a limited prognostic value (iAUC 0.50–0.60). Compared to the 
radiomics only model, the clinical models performed equally or worse (Table 3). Subsequently, the radiomics 
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and clinical models were combined to assess whether this could further improve the performance. Indeed, 
the most accurate models were found when radiomics and clinical data were combined (Table 3), and the 
iAUC improvement was also statistically significant (Supplementary Table 4). Figure 4a and b show Kaplan-
Meier curves of the UMCU OSCC cohort with group stratification based on the median predicted risk.

Table 3. Performance of radiomic, clinical, and combined models in OSCC and OPSCC cohorts

Overall survival Relapse-free survival

iAUC (95% CIa) Pb value iAUC (95% CIa) Pb value

OSCC VUMC - training

Radiomic 0.69 (0.59-0.73) 0.63 (0.50-0.68)

Clinicalc 0.69 (0.61-0.75) 0.60 (0.49-0.66)

Radiomic + clinicalc 0.75 (0.65-0.77) 0.65 (0.51-0.67)

OSCC UMCU - validation

Radiomic 0.69 (0.52-0.75) 0.009 0.70 (0.54-0.75) 0.003

Clinicalc,d 0.65 (0.51-0.72) 0.02 0.64 (0.51-0.70) 0.08

Radiomic + clinicalc,d 0.72 (0.55-0.74) 0.01 0.74 (0.58-0.78) <0.001

OPSCC VUMC - training

Radiomic 0.71 (0.62-0.76) 0.70 (0.58-0.77)

Clinicalc 0.57 (0.46-0.61) 0.56 (0.42-0.61)

Radiomic + clinicalc 0.73 (0.62-0.76) 0.70 (0.56-0.75)

OPSCC UMCU - validation

Radiomic 0.71 (0.58-0.77) 0.02 0.74 (0.60-0.83) 0.08

Clinicalc,d 0.74 (0.64-0.83) <0.001 0.71 (0.58-0.82) 0.01

Radiomic + clinicalc,d 0.81 (0.68-0.91) <0.001 0.78 (0.62-0.83) 0.04

Abbreviations: CI, confidence interval; iAUC, integrated Area Under the Curve; OPSCC, oropharyngeal squamous cell carcinoma; OSCC, 
oral cavity squamous cell carcinoma.
a. CIs were assessed by bootstrapping. 
b. Assessed by log-rank testing in validation cohorts with group stratification based on the median predicted risk.
c. Clinical models consisted of N-stage, age at diagnosis and gender.
d. Recalibration of coefficients of clinical variables was allowed to optimize comparability with radiomic models. 

For delineation, STIR imaging was also used since the tumors are more clearly discriminated from normal 
tissue on this sequence. Radiomic features extracted from this sequence may also further improve the 
prognostic model, and therefore additional prognostic models based on the combination of STIR and T1W 
MRI radiomic features were trained and validated. In the training cohort, the iAUC did not improve by using 
the combination of T1W MRI and STIR (Table 4), whereas in the validation cohort the iAUC did improve, but 
the precision of the estimated iAUC is low given the wide confidence intervals. The difference between the 
cohorts might also be explained by the shorter follow-up time in the OSCC UMCU cohort or the smaller cohort 
size (Table 2).

OPSCC prognostic models
Following the strategy of assessing the relevance of radiomics models in OSCC patients, OPSCC models 
were trained using radiomics, clinical data, tumor volume, and a combination of both. Note that the study 
encompassed only HPV-negative cases. Similarly to the OSCC cohorts, radiomics-only models predicted the 
outcome of OPSCC patients (Table 3). The clinical models, however, were less informative in the VUMC cohort 
(Table 3). The better performance of the clinical models in the OPSCC UMCU cohort may relate to the shorter 
follow-up time or the smaller cohort size (Table 2). The combined models showed the highest iAUCs (Table 
3), and were significantly better than radiomic and clinical models (Supplementary Table 4). Tumor volume 



Outcome prediction of head and neck squamous cell carcinoma by MRI radiomic signatures

107

4

only had a limited prognostic value (iAUC 0.53–0.64). Figure 4c and d show Kaplan-Meier curves of the UMCU 
OPSCC cohort with group stratification based on the median predicted risk.

Influence of vendor and magnetic field strength
Radiomic features were extracted from scans with three different magnetic field strengths (Table 2). The VUMC 
cohorts also consisted of data extracted from scanners of various MR vendors (Table 2). MANOVA analysis 
implied that there might be an effect of the field strength on factor 3 (meta-first order), factor 4 (gray level 
mix), and factor 5 (meta-gray level run length) (Supplementary Table 5). Second, MANOVA analysis presented 
a possible effect of MR vendor on factor 3 (meta-first order), factor 4 (gray level mix), factor 5 (meta-gray level 
run length), factor 6 (geometrics), and factor 7 (entropy) (Supplementary Table 6). However, the indicated 
effects were not consistent across datasets, except for factor 3 (meta-first order).

Figure 4. The radiomic signature predicts overall and relapse-free survival in oral cavity squamous cell carcinoma and oropharyngeal 
squamous cell carcinoma
(A, B) Kaplan-Meier analysis of overall survival (A) and relapse-free survival (B) with risk groups defined by median predicted hazards of the 
radiomic signature in the UMCU validation cohort of 76 OSCC patients. 
(C, D) Kaplan-Meier analysis of overall survival (C) and relapse-free survival (D) of different risk groups defined by median predicted hazards 
of the radiomic signature in the UMCU validation cohort of 56 OPSCC patients. 
All P-values are calculated using a log-rank test. Tick marks on curves indicate censoring.
Abbreviations: OPSCC, oropharyngeal squamous cell carcinoma; OSCC, oral cavity squamous cell carcinoma.
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Table 4. Performance of radiomic (T1W + STIR), clinical, and combined models in OSCC cohort

Overall survival Relapse-free survival

iAUC (95% CIa) Pb value iAUC (95% CIa) Pb value

OSCC VUMC - training

Radiomic 0.67 (0.57-0.71) 0.62 (0.47-0.65)

Clinicalc 0.69 (0.61-0.75) 0.60 (0.49-0.66)

Radiomic + clinicalc 0.74 (0.64-0.76) 0.65 (0.49-0.66)

OSCC UMCU - validation

Radiomic 0.80 (0.68-0.84) <0.001 0.72 (0.57-0.77) 0.01

Clinicalc,d 0.65 (0.51-0.72)  0.02 0.64 (0.51-0.70) 0.08 

Radiomic + clinicalc,d 0.82 (0.67-0.83) <0.001 0.76 (0.61-0.80) 0.001

Abbreviations: CI, confidence interval; iAUC, integrated Area Under the Curve; OPSCC, oropharyngeal squamous cell carcinoma; OSCC, 
oral cavity squamous cell carcinoma; STIR, Short TI Inversion Recovery; T1W, T1-weighted.
a. CIs were assessed by bootstrapping. 
b. Assessed by log-rank testing in validation cohorts with group stratification based on the median predicted risk.
c. Clinical models consisted of N-stage, age at diagnosis and gender.
d. Recalibration of coefficients of clinical variables was allowed to optimize comparability with radiomic models. 

DISCUSSION

This study was set out to develop prognostic models based on MRI radiomics in oral cavity and oropharyngeal 
cancer patients. Although MRI is most commonly used in head and neck cancer imaging, clinical routine 
shows a large variety of MRI vendors and MRI acquisition protocols, which might hamper radiomic analyses. 
Here we show that despite this potential problem, relevant information can be extracted.

In four patient cohorts, 545 quantitative features were extracted from native T1W MRI, and a four-step method 
was applied to reduce dimensions while preserving the data’s covariation30. This method includes redundancy 
filtering and factor analysis, and provided models based on 7 latent factors both in OSCC and in OPSCC. These 
factors roughly describe tumor intensity (i.e., “graylevel-mix” and “meta-firstorder”), shape (i.e., “3D geometrics” 
and “geometrics”), and texture (i.e., “meta-graylevelco-occurrence,” “meta-graylevelrunlength,” and “entropy”). 
In validation setting, the prognostic performance of these models was accurate, and the combined models 
outperformed clinical characteristics alone in predicting both OS and RFS. These results are very promising 
and indicate that MRI radiomic analysis may have additional value to current prognostic variables.

Furthermore, as with all prognostic models, it is important that it applies in settings outside the reference 
hospitals involved in the development. Partly, this was overcome by using independent validation cohorts 
provided by a second institution that uses imaging equipment from different vendors. Moreover, feature 
stability remained high with and without gray level normalization, and did not depend on interobserver 
variability. Together this suggests that the external validity of the signature described is expected to be high.

To date, only few prognostic MRI radiomic signatures for HNSCC have been published20-23. Most previous 
studies applied radiomic analyses to CT scans of HNSCC patients10-13, and comparable performance of the 
prognostic models was reported. However, in these studies, delineated CT scans from radiotherapy treatment 
plans were used, which are often not available in surgically treated patients and thereby not available for 
many HNSCC patients. Nonetheless, MRI radiomics has been applied to nasopharyngeal carcinoma34-39, which 
is a separate disease entity40.

Next to radiomic signatures, there is a myriad of other prognostic biomarkers for HNSCC available that, for 
instance, are based on imaging41, immunohistochemistry42, and microarray data4. The advantages of our 
radiomic profile is that it is available before treatment and based on standard diagnostic images, thereby 
avoiding additional costs and discomfort for the patient. Moreover, radiomic analyses may better capture 
tumor heterogeneity than biomarkers43.



Outcome prediction of head and neck squamous cell carcinoma by MRI radiomic signatures

109

4

Our study has several strengths. First, standard-of-care native T1W MR images were used to extract the 
radiomic features. This sequence is used in almost all clinical HNSCC protocols and makes the results broadly 
applicable. Second, multiple adequately sized patient cohorts were imaged on scanners of different vendors 
to develop and validate the models, which further contributes to the generalizability of the approach. In 
addition, features were not very sensitive to delineation. Finally, the prognostic signature is interpretable 
for clinicians: the latent factors represented different tumor characteristics and were subsequently used in 
Cox regression. Cox regression is familiar to most clinicians as opposed to machine learning algorithms44, 
alleviating the “black box” effect of many high-throughput prognostic models.

However, there are also limitations to be identified in this study. Foremost, the MRI scans of the tumors in 
this study stem from scanners of different vendors and were attained with different acquisition settings, 
causing data variability. Indeed, our analyses indicate that some factor scores might be influenced by the 
variety of scanning protocols and used MR equipment. This is especially true for factor 3, which is made up of 
features describing first-order statistics that would be expected to be influenced by acquisition settings and 
magnetic field strength. However, the largest variability in the data was explained by factors 1 and 2, which 
appeared not to be influenced by vendor and field strength variability. Nonetheless, more uniform data will 
likely improve model performance and validity8. Finally, the radiomic signatures were combined with several 
important clinical variables (e.g., N-stage, age at diagnosis), but combination with other important clinical 
factors such as smoking (packyears) and alcohol consumption (unityears) might improve prediction accuracy 
further45. Of note, the retrospective nature of this study precluded the use of the 8th edition of the UICC 
TNM Classification because important information was not available (i.e., clinical depth of invasion and clinical 
extranodal extension). However, it has been shown that the 8th edition outperforms the previous edition46, 
and including the new system in future studies may improve prediction of the clinical and combined clinical-
radiomic models.

In conclusion, we developed and validated a prognostic signature based on radiomic features extracted 
from standard-of-care MRI. This finding suggests that important prognostic information is present in MRI 
databases of HNSCC patients across the world. It also implicates that MRI acquisition protocols should be 
further standardized to optimize exchangeability of data and models. Future research could focus on analysis 
of feature stability by scanning patients on scanners of different vendors, and on the same scanner at multiple 
time points (test-retest analysis). Moreover, we already show that combining multiple sequences may improve 
the prognostic performance of the model, while future studies should incorporate functional MRI sequences 
and multiple imaging modalities (i.e., CT and PET) to capture more aspects of tumor biology.
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SUPPLEMENTARY METHODS

Feature extraction
In total, 545 radiomic features were extracted from the tumor VOIs projected onto the T1W images using 
ACCURATE47,48, which is available at https://petralymphoma.org/accurate-tool/. This version was modified to 
allow DICOM input of MRI. No voxel interpolation was applied before feature extraction. The features were 
either based on first order statistics (n=35), intensity-volume histograms (n=1), morphology (n=11), fractals 
(n=4), spatial autocorrelation (n=2) or texture (n=492). Texture features were derived from gray-level co-
occurrence matrices and from gray-level run-length matrices. Each texture feature was calculated in four ways. 
For the first approach, matrices were created per direction and per x-y plane (2D) for all planes and all four 
possible directions, and subsequently combined into a single matrix that was used to calculate the feature from 
(2D combined). For the second approach, the feature was calculated from each matrix, created per direction 
and per x-y plane (2D) for all planes and all four possible directions, and then averaged (2D averaged). For the 
third approach, matrices were created per direction for the entire VOI (3D) for all thirteen possible directions, 
and subsequently combined into a single matrix that was used to calculate the feature from (3D combined). 
For the fourth approach, the feature was calculated from each matrix, created per direction for all thirteen 
possible directions, and then averaged (3D averaged). In addition, a discretization of 32, 64 or 128 gray level 
bins was applied (Table 1). All features were implemented according to the recommendations set by the 
image biomarker standardization initiative49. 

Normalization
Because various MRI parameters were used including intensity features, a gray level normalization was applied 
to the MRI scans in advance of feature extraction. Four schemes for normalization were considered:

•	 N-I: no normalization was applied.

•	 N-II: a multiplicative transformation was used to fix the range of gray levels for all the images31. Each 
gray level was multiplied by the ratio MEDIAN/(median of the reference volume of interest (VOI))
where MEDIAN was a constant, i.e. the median value for all analyzed reference VOIs. 

•	 N-III: the gray levels within the tumor VOI that were located outside the range of three standard
deviations of the average voxel intensity were not considered in further analysis31.

•	 N-IV: the median value of the reference VOI was subtracted from gray levels within the tumor VOI and
subsequently divided by the median absolute deviation (MAD) within the reference VOI according to 
the following formula:

IN =
I – median(Iref)

MADref

	 Where IN is the normalized gray level within the tumor VOI, I is the gray level within the tumor VOI in 
advance of normalization, Iref is the gray level within the reference VOI and MADref is the MAD within 
the reference VOI. 

For N-II and N-IV, two reference structures were used for normalization, i.e. the obliquus capitis inferior muscle 
(N-IIa and N-IVa) and the myelum (N-IIb and N-IVb).

Feature processing
As described before, texture features were calculated using different settings for coding of gray level intensity, 
different numbers of considered directions and different methods of including the obtained values in the 
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considered directions. The average value of similar features with different calculation settings was determined 
reducing the initial 545 raw radiomic features to 89 core features (see also Table 1). These core features were 
subsequently used in downstream analysis (see Factor analysis).

Factor analysis
After obtaining the core 89 features, redundancy filtering was performed by removing the minimal number 
of features under marginal correlation threshold τ, which was set τ=0.95. Next, features were scaled (centered 
around 0 and variance 1) to avoid a situation where the features with the largest scale dominate the analysis. 
A regularized estimator of the correlation matrix between the scaled features was obtained, and a maximum 
likelihood factor analysis was performed on the matrix. The number of latent features was determined using 
the Guttman-Kaiser rule50 on the regularized correlation matrix. Factor scores were obtained by regressing 
the latent features on the observed data by way of the obtained factor solution. All steps were carried out 
using the R package “FMradio: Factor modeling for radiomic data”, version 1.1.1 (https://CRAN.R-project.org/
package=FMradio)30.

Prognostic model training
The resulting factor scores were used as predictors for a Cox model built on the training sets: (1) VUMC OSCC, 
and (2) VUMC OPSCC. Subsequently, the parameter matrices of the factor analysis performed on the training 
sets were used to construct factor scores for the samples in the validation sets: (1) UMCU OSCC, and (2) 
UMCU OPSCC, and these factor scores were used as predictors in a Cox model for the validation sets. Models 
were built to predict overall and disease-free survival. Performance of all models was assessed in terms of 
the (integrated) area-under-the-curve (iAUC) with a confidence interval that was assessed by bootstrapping 
(1000 times). Moreover, the patients of the validation sets were divided into low-risk and high-risk groups 
based on the median of the model scores and a log-rank test was performed. The radiomics only models were 
compared to a clinical-variables only model and a model holding both the radiomic features and clinical-
variables. Clinical models were based on those features that were uniformly available and for which, a priori, 
some predictive power is expected: i.e. N-stage, age at diagnosis, and gender. T-stage and ACE-27 score held 
no predictive power in this dataset. Additionally, the radiomics only models were compared to tumor volume 
alone as proposed by Welch et al51. The iAUC of the combined model (radiomics + clinical) was compared to 
the iAUC of the individual prognostic models (radiomics only + clinical only) with the Wilcoxon rank sum test 
for dependent samples52, and a multiplicity correction was performed using the Holm method. P-values of less 
than 0.05 were considered statistically significant.
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Supplementary Table 1. MRI protocols of included patients

Patient ID Manufacturer
Magnetic 

field 
strength

T1 
Repetition 

time

T1 
Echo 
time

T1 
x.size 
mm

T1 
y.size 
mm

T1 
z.size 
mm

STIR 
Repetition 

time

STIR 
Echo 
time

STIR 
Inversion 

time

STIR 
x.size 
mm

STIR 
y.size 
mm

STIR 
z.size 
mm

OSCC_VUMC_1 GE 1.5 440 14 0.5 0.5 3.3 4740 27 150 0.5 0.5 3.3

OSCC_VUMC_2 GE 1.5 540 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_3 GE 1.5 520 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_4 SIEMENS 1.5 593 15 0.4 0.4 3.3 5540 134 150 0.4 0.4 3.3

OSCC_VUMC_5 SIEMENS 1.0 588 15 0.8 0.8 3.0 5565 30 150 0.8 0.8 3.0

OSCC_VUMC_6 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_7 GE 1.5 500 14 0.5 0.5 4.4 6600 33 160 0.5 0.5 4.4

OSCC_VUMC_8 SIEMENS 1.5 456 12 0.8 0.8 4.4 5000 70 150 0.4 0.4 6.5

OSCC_VUMC_9 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_10 SIEMENS 1.5 645 11 0.6 0.6 4.4 6050 41 160 0.4 0.4 4.8

OSCC_VUMC_11 SIEMENS 1.5 658 10 0.7 0.7 4.4 6050 41 160 0.4 0.4 4.8

OSCC_VUMC_12 TOSHIBA 3.0 753 10 0.7 0.7 3.3 9930 48 225 0.4 0.4 3.3

OSCC_VUMC_13 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_14 SIEMENS 1.5 488 14 0.5 0.5 3.3 7630 62 160 0.5 0.5 3.3

OSCC_VUMC_15 SIEMENS 1.0 540 15 0.8 0.8 3.0 5100 30 150 0.8 0.8 3.0

OSCC_VUMC_16 GE 1.5 460 13 0.5 0.5 3.3 5000 30 150 0.5 0.5 3.3

OSCC_VUMC_17 SIEMENS 1.5 645 11 0.6 0.6 4.4 6810 44 160 0.4 0.4 4.8

OSCC_VUMC_18 GE 1.5 520 14 0.5 0.5 4.4 6840 32 160 0.5 0.5 4.4

OSCC_VUMC_19 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_20 SIEMENS 1.5 645 11 0.6 0.6 4.4 6050 41 160 0.4 0.4 4.8

OSCC_VUMC_21 SIEMENS 1.5 580 11 0.6 0.6 4.4 6050 44 160 0.4 0.4 4.8

OSCC_VUMC_22 GE 1.5 540 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_23 SIEMENS 1.0 644 15 0.8 0.8 3.0 6095 30 150 0.8 0.8 3.0

OSCC_VUMC_24 SIEMENS 1.0 540 15 0.8 0.8 3.0 5100 30 150 0.8 0.8 3.0

OSCC_VUMC_25 GE 1.5 480 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_26 SIEMENS 1.5 522 14 0.4 0.4 3.3 5290 27 150 0.4 0.4 3.3

OSCC_VUMC_27 GE 3.0 620 17 0.5 0.5 3.3 6360 8 160 0.5 0.5 3.3

OSCC_VUMC_28 GE 1.5 500 14 0.5 0.5 4.4 6400 63 150 0.5 0.5 4.4

OSCC_VUMC_29 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_30 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_31 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_32 Philips 3.0 750 16 0.4 0.4 4.4 4534 50 180 0.4 0.4 4.4

OSCC_VUMC_33 GE 3.0 620 17 0.5 0.5 3.3 6360 8 160 0.5 0.5 3.3

OSCC_VUMC_34 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_35 SIEMENS 1.5 553 12 0.8 0.8 4.4 5000 70 150 0.4 0.4 6.5

OSCC_VUMC_36 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_37 Philips 3.0 666 16 0.4 0.4 4.4 5591 50 180 0.4 0.4 7.7

OSCC_VUMC_38 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_39 SIEMENS 1.5 600 15 0.9 0.9 3.0 6095 30 150 1.1 1.1 3.0

OSCC_VUMC_40 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_41 SIEMENS 1.5 521 14 0.4 0.4 3.3 5290 27 150 0.4 0.4 3.3
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Supplementary Table 1. (continued)

Patient ID Manufacturer
Magnetic 

field 
strength

T1 
Repetition 

time

T1 
Echo 
time

T1 
x.size 
mm

T1 
y.size 
mm

T1 
z.size 
mm

STIR 
Repetition 

time

STIR 
Echo 
time

STIR 
Inversion 

time

STIR 
x.size 
mm

STIR 
y.size 
mm

STIR 
z.size 
mm

OSCC_VUMC_42 SIEMENS 1.5 522 14 0.4 0.4 3.3 5270 27 150 0.4 0.4 3.3

OSCC_VUMC_43 SIEMENS 1.5 598 14 0.5 0.5 3.5 7630 62 160 0.5 0.5 3.5

OSCC_VUMC_44 GE 1.5 640 14 0.5 0.5 3.3 6540 26 150 0.5 0.5 3.3

OSCC_VUMC_45 GE 1.5 500 14 0.5 0.5 4.4 6600 63 160 0.5 0.5 4.4

OSCC_VUMC_46 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_47 GE 1.5 500 14 0.6 0.6 4.4 6600 32 160 0.6 0.6 4.4

OSCC_VUMC_48 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_49 GE 1.5 540 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_50 SIEMENS 1.5 645 11 0.6 0.6 4.4 6050 44 160 0.4 0.4 4.8

OSCC_VUMC_51 SIEMENS 1.5 645 11 0.6 0.6 4.4 7460 41 160 0.4 0.4 4.8

OSCC_VUMC_52 SIEMENS 1.5 645 11 0.6 0.6 4.4 4260 40 160 0.4 0.4 4.8

OSCC_VUMC_53 GE 1.5 460 13 0.5 0.5 3.3 6540 26 150 0.5 0.5 3.3

OSCC_VUMC_54 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_55 SIEMENS 1.5 671 14 0.6 0.6 3.6 6770 27 150 0.5 0.5 3.6

OSCC_VUMC_56 GE 3.0 620 17 0.5 0.5 3.3 6760 37 160 0.5 0.5 3.3

OSCC_VUMC_57 SIEMENS 1.0 750 15 0.8 0.8 3.0 7000 30 150 0.8 0.8 3.0

OSCC_VUMC_58 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_59 GE 1.5 460 13 0.5 0.5 3.3 6540 26 150 0.5 0.5 3.3

OSCC_VUMC_60 SIEMENS 1.5 600 12 0.8 0.8 4.4 7860 16 150 0.4 0.4 4.4

OSCC_VUMC_61 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_62 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_63 SIEMENS 1.5 645 10 0.7 0.7 4.4 6660 41 160 0.4 0.4 4.8

OSCC_VUMC_64 SIEMENS 1.5 645 11 0.6 0.6 4.4 6050 41 160 0.4 0.4 4.8

OSCC_VUMC_65 GE 1.5 460 13 0.5 0.5 3.3 6540 26 150 0.5 0.5 3.3

OSCC_VUMC_66 SIEMENS 1.0 600 15 0.9 0.9 3.0 5700 30 150 0.9 0.9 3.0

OSCC_VUMC_67 SIEMENS 1.5 465 14 0.5 0.5 3.3 7630 62 160 0.5 0.5 3.3

OSCC_VUMC_68 GE 1.5 520 14 0.5 0.5 4.4 6600 63 160 0.5 0.5 4.4

OSCC_VUMC_69 SIEMENS 1.5 488 14 0.7 0.7 4.4 6670 62 160 0.5 0.5 4.4

OSCC_VUMC_70 SIEMENS 1.5 546 14 0.4 0.4 4.4 5520 27 150 0.4 0.4 4.4

OSCC_VUMC_71 Philips 3.0 666 16 0.4 0.4 4.4 9415 50 180 0.4 0.4 4.4

OSCC_VUMC_72 GE 1.5 520 14 0.5 0.5 4.4 6600 63 160 0.5 0.5 4.4

OSCC_VUMC_73 SIEMENS 1.5 595 14 0.4 0.4 3.3 6300 27 150 0.4 0.4 3.3

OSCC_VUMC_74 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_75 SIEMENS 1.5 600 15 0.8 0.8 3.0 5600 30 150 1.1 1.1 3.0

OSCC_VUMC_76 SIEMENS 1.0 540 15 0.9 0.9 3.0 5100 30 150 0.9 0.9 3.0

OSCC_VUMC_77 SIEMENS 1.5 465 14 0.5 0.5 3.3 7630 62 160 0.5 0.5 3.3

OSCC_VUMC_78 SIEMENS 1.5 621 14 0.4 0.4 3.3 6270 27 150 0.4 0.4 3.3

OSCC_VUMC_79 SIEMENS 1.5 553 14 0.5 0.5 3.3 7630 62 160 0.5 0.5 3.3

OSCC_VUMC_80 SIEMENS 1.5 488 14 0.5 0.5 3.3 7630 62 160 0.5 0.5 3.3

OSCC_VUMC_81 GE 1.5 480 14 0.5 0.5 3.3 4940 33 150 1.0 1.0 3.3

OSCC_VUMC_82 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4
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Supplementary Table 1. (continued)

Patient ID Manufacturer
Magnetic 

field 
strength

T1 
Repetition 

time

T1 
Echo 
time

T1 
x.size 
mm

T1 
y.size 
mm

T1 
z.size 
mm

STIR 
Repetition 

time

STIR 
Echo 
time

STIR 
Inversion 

time

STIR 
x.size 
mm

STIR 
y.size 
mm

STIR 
z.size 
mm

OSCC_VUMC_83 SIEMENS 1.0 540 15 0.8 0.8 3.0 5100 30 150 0.8 0.8 3.0

OSCC_VUMC_84 SIEMENS 1.5 603 15 0.4 0.4 3.3 5540 134 150 0.4 0.4 3.3

OSCC_VUMC_85 Philips 1.0 561 14 0.4 0.4 4.4 4198 90 -1 0.4 0.4 4.4

OSCC_VUMC_86 SIEMENS 1.5 522 14 0.4 0.4 3.3 5290 27 150 0.4 0.4 3.3

OSCC_VUMC_87 SIEMENS 1.5 522 14 0.4 0.4 3.3 5290 27 150 0.4 0.4 3.3

OSCC_VUMC_88 GE 1.5 540 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_89 SIEMENS 1.5 571 14 0.4 0.4 3.5 5770 27 150 0.4 0.4 3.5

OSCC_VUMC_90 GE 1.5 540 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_91 SIEMENS 1.0 540 15 0.8 0.8 4.0 5100 30 150 0.8 0.8 4.0

OSCC_VUMC_92 SIEMENS 1.0 650 15 0.8 0.8 3.0 6100 30 150 0.8 0.8 3.0

OSCC_VUMC_93 SIEMENS 1.0 540 15 0.8 0.8 3.0 5100 30 150 0.8 0.8 3.0

OSCC_VUMC_94 SIEMENS 1.5 645 11 0.6 0.6 4.4 4240 40 160 0.4 0.4 4.8

OSCC_VUMC_95 GE 1.5 500 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_96 GE 1.5 520 14 0.5 0.5 4.4 5500 33 150 0.5 0.5 4.4

OSCC_VUMC_97 GE 1.5 500 14 0.5 0.5 4.4 6600 63 160 0.5 0.5 4.4

OSCC_VUMC_98 SIEMENS 1.5 521 14 0.4 0.4 3.3 5290 27 150 0.4 0.4 3.3

OSCC_VUMC_99 SIEMENS 1.5 456 12 0.8 0.8 4.4 5000 70 150 0.4 0.4 6.5

OSCC_VUMC_100 GE 1.5 540 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

OSCC_VUMC_101 GE 1.5 460 13 0.5 0.5 3.3 6540 32 150 1.0 1.0 3.3

OSCC_VUMC_102 GE 1.5 540 14 0.5 0.5 4.4 6600 32 160 0.5 0.5 4.4

UMCU_OSCC_1 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_2 Philips 1.5 583 15 0.6 0.6 4.0 2134 24 165 0.5 0.5 4.0

UMCU_OSCC_3 Philips 1.5 589 15 0.6 0.6 4.0 1733 24 165 0.5 0.5 4.0

UMCU_OSCC_4 Philips 1.5 515 15 0.6 0.6 4.0 1867 24 165 0.5 0.5 4.0

UMCU_OSCC_5 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_6 Philips 1.5 593 15 0.5 0.5 4.4 4200 130 -1 0.5 0.5 5.5

UMCU_OSCC_7 Philips 1.5 596 15 0.6 0.6 4.0 1730 23 165 0.5 0.5 4.0

UMCU_OSCC_8 Philips 1.5 591 15 0.6 0.6 4.0 1733 24 165 0.5 0.5 4.0

UMCU_OSCC_9 Philips 1.5 593 15 0.6 0.6 4.0 2131 24 165 0.5 0.5 4.0

UMCU_OSCC_10 Philips 1.5 652 14 0.4 0.4 4.4 3097 9 165 0.8 0.8 4.4

UMCU_OSCC_11 Philips 1.5 517 15 0.6 0.6 4.0 1998 24 165 0.5 0.5 4.0

UMCU_OSCC_12 Philips 1.5 649 14 0.4 0.4 4.4 3099 9 165 0.8 0.8 4.4

UMCU_OSCC_13 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_14 Philips 1.5 588 15 0.6 0.6 5.0 1734 24 165 0.5 0.5 5.0

UMCU_OSCC_15 Philips 1.5 592 15 0.6 0.6 4.0 2132 24 165 0.5 0.5 4.0

UMCU_OSCC_16 Philips 1.5 652 14 0.4 0.4 4.4 3094 9 165 0.8 0.8 4.4

UMCU_OSCC_17 Philips 1.5 590 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_18 Philips 1.5 515 15 0.6 0.6 4.0 1867 24 165 0.5 0.5 4.0

UMCU_OSCC_19 Philips 1.5 591 15 0.6 0.6 4.0 1733 24 165 0.5 0.5 4.0

UMCU_OSCC_20 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_21 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0
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Supplementary Table 1. (continued)

Patient ID Manufacturer
Magnetic 

field 
strength

T1 
Repetition 

time

T1 
Echo 
time

T1 
x.size 
mm

T1 
y.size 
mm

T1 
z.size 
mm

STIR 
Repetition 

time

STIR 
Echo 
time

STIR 
Inversion 

time

STIR 
x.size 
mm

STIR 
y.size 
mm

STIR 
z.size 
mm

UMCU_OSCC_22 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_23 Philips 1.5 652 14 0.4 0.4 4.4 3098 9 165 0.8 0.8 4.4

UMCU_OSCC_24 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_25 Philips 1.5 652 14 0.4 0.4 4.4 3098 9 165 0.8 0.8 4.4

UMCU_OSCC_26 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_27 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_28 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_29 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_31 Philips 1.5 652 14 0.4 0.4 4.4 3098 9 165 0.8 0.8 4.4

UMCU_OSCC_33 Philips 1.5 590 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_34 Philips 1.5 590 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_35 Philips 1.5 590 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_36 Philips 1.5 591 15 0.6 0.6 4.0 1733 24 165 0.5 0.5 4.0

UMCU_OSCC_37 Philips 1.5 590 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_38 Philips 1.5 652 14 0.4 0.4 4.4 3098 9 165 0.8 0.8 4.4

UMCU_OSCC_39 Philips 1.5 652 14 0.4 0.4 4.4 3098 9 165 0.8 0.8 4.4

UMCU_OSCC_40 Philips 1.5 652 14 0.4 0.4 4.4 3098 9 165 0.8 0.8 4.4

UMCU_OSCC_41 Philips 3.0 666 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_42 Philips 3.0 666 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_43 Philips 1.5 587 15 0.6 0.6 4.0 1660 25 165 0.5 0.5 4.0

UMCU_OSCC_44 Philips 1.5 584 15 0.6 0.6 4.0 1660 25 165 0.5 0.5 4.0

UMCU_OSCC_45 Philips 1.5 587 15 0.6 0.6 4.0 1660 25 165 0.5 0.5 4.0

UMCU_OSCC_46 Philips 3.0 666 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_47 Philips 1.5 650 14 0.4 0.4 6.2 6047 9 165 0.7 0.7 6.2

UMCU_OSCC_48 Philips 3.0 666 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_49 Philips 1.5 591 15 0.6 0.6 4.0 1656 26 165 0.5 0.5 4.0

UMCU_OSCC_50 Philips 1.5 652 14 0.4 0.4 4.4 3098 9 165 0.8 0.8 4.4

UMCU_OSCC_51 Philips 1.5 652 14 0.4 0.4 4.4 3098 9 165 0.8 0.8 4.4

UMCU_OSCC_52 Philips 1.5 589 15 0.6 0.6 4.0 1658 25 165 0.5 0.5 4.0

UMCU_OSCC_53 Philips 1.5 595 15 0.6 0.6 4.2 2130 24 165 0.5 0.5 4.2

UMCU_OSCC_54 Philips 1.5 652 14 0.4 0.4 4.4 3097 9 165 0.8 0.8 4.4

UMCU_OSCC_55 Philips 1.5 652 14 0.4 0.4 4.4 3098 9 165 0.8 0.8 4.4

UMCU_OSCC_56 Philips 1.5 587 15 0.6 0.6 4.0 1657 26 165 0.5 0.5 4.0

UMCU_OSCC_57 Philips 1.5 652 14 0.4 0.4 4.4 3097 9 165 0.8 0.8 4.4

UMCU_OSCC_58 Philips 1.5 590 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_59 Philips 1.5 588 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_60 Philips 1.5 652 14 0.4 0.4 4.4 3096 9 165 0.8 0.8 4.4

UMCU_OSCC_61 Philips 1.5 594 15 0.6 0.6 4.0 1779 27 165 0.5 0.5 4.0

UMCU_OSCC_62 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_63 Philips 3.0 653 16 0.6 0.6 4.0 4868 25 220 0.6 0.6 4.0

UMCU_OSCC_65 Philips 1.5 589 15 0.6 0.6 4.0 1733 24 165 0.5 0.5 4.0
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Supplementary Table 1. (continued)

Patient ID Manufacturer
Magnetic 

field 
strength

T1 
Repetition 

time

T1 
Echo 
time

T1 
x.size 
mm

T1 
y.size 
mm

T1 
z.size 
mm

STIR 
Repetition 

time

STIR 
Echo 
time

STIR 
Inversion 

time

STIR 
x.size 
mm

STIR 
y.size 
mm

STIR 
z.size 
mm

UMCU_OSCC_67 Philips 1.5 652 14 0.4 0.4 4.4 3098 9 165 0.8 0.8 4.4

UMCU_OSCC_68 Philips 1.5 590 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_71 Philips 1.5 652 14 0.4 0.4 4.4 3094 9 165 0.7 0.7 4.4

UMCU_OSCC_72 Philips 1.5 590 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_73 Philips 1.5 590 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_74 Philips 1.5 652 14 0.4 0.4 4.4 3098 9 165 0.7 0.7 4.4

UMCU_OSCC_75 Philips 1.5 590 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_77 Philips 1.5 590 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_78 Philips 1.5 652 14 0.4 0.4 4.4 3098 9 165 0.8 0.8 4.4

UMCU_OSCC_79 Philips 1.5 590 15 0.6 0.6 5.0 2134 24 165 0.5 0.5 5.0

UMCU_OSCC_80 Philips 1.5 590 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

UMCU_OSCC_82 Philips 1.5 517 15 0.6 0.6 4.0 1867 24 165 0.5 0.5 4.0

UMCU_OSCC_83 Philips 3.0 653 16 0.4 0.4 3.3 4425 25 220 0.4 0.4 3.3

UMCU_OSCC_84 Philips 1.5 588 15 0.6 0.6 4.0 1734 24 165 0.5 0.5 4.0

OPSCC_VUMC_1 GE 3.0 580 16 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_2 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_3 GE 1.5 460 13 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_4 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_5 GE 1.5 560 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_6 GE 1.5 620 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_7 Philips 3.0 666 16 0.4 0.4 4.4 NA NA NA NA NA NA

OPSCC_VUMC_8 GE 1.5 620 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_9 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_10 GE 1.5 720 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_11 SIEMENS 1.5 522 14 0.4 0.4 3.3 NA NA NA NA NA NA

OPSCC_VUMC_12 SIEMENS 1.5 390 14 0.9 0.9 4.4 NA NA NA NA NA NA

OPSCC_VUMC_13 GE 1.5 480 14 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_14 GE 1.5 480 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_15 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_16 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_17 GE 1.5 460 13 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_18 GE 1.5 600 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_19 GE 1.5 620 14 0.5 0.5 6.5 NA NA NA NA NA NA

OPSCC_VUMC_20 SIEMENS 1.5 546 14 0.4 0.4 4.4 NA NA NA NA NA NA

OPSCC_VUMC_21 GE 3.0 600 16 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_22 GE 1.5 440 14 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_23 GE 1.5 420 13 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_24 GE 3.0 720 16 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_25 SIEMENS 1.5 492 14 0.4 0.4 4.4 NA NA NA NA NA NA

OPSCC_VUMC_26 GE 1.5 620 14 0.5 0.5 6.5 NA NA NA NA NA NA

OPSCC_VUMC_27 GE 1.5 640 14 0.5 0.5 6.5 NA NA NA NA NA NA
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Supplementary Table 1. (continued)

Patient ID Manufacturer
Magnetic 

field 
strength

T1 
Repetition 

time

T1 
Echo 
time

T1 
x.size 
mm

T1 
y.size 
mm

T1 
z.size 
mm

STIR 
Repetition 

time

STIR 
Echo 
time

STIR 
Inversion 

time

STIR 
x.size 
mm

STIR 
y.size 
mm

STIR 
z.size 
mm

OPSCC_VUMC_28 SIEMENS 1.5 390 14 0.9 0.9 4.4 NA NA NA NA NA NA

OPSCC_VUMC_29 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_30 SIEMENS 1.5 546 14 0.4 0.4 4.4 NA NA NA NA NA NA

OPSCC_VUMC_31 GE 3.0 600 16 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_32 GE 3.0 640 18 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_33 GE 1.5 640 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_34 GE 1.5 540 13 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_35 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_36 SIEMENS 1.5 571 14 0.4 0.4 3.3 NA NA NA NA NA NA

OPSCC_VUMC_37 SIEMENS 1.5 522 14 0.4 0.4 3.3 NA NA NA NA NA NA

OPSCC_VUMC_38 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_39 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_40 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_41 GE 1.5 620 16 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_42 SIEMENS 1.5 465 14 0.6 0.6 3.3 NA NA NA NA NA NA

OPSCC_VUMC_43 SIEMENS 1.5 671 14 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_44 GE 3.0 560 17 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_45 GE 1.5 460 13 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_46 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_47 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_48 SIEMENS 1.5 350 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_49 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_50 GE 3.0 600 17 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_51 SIEMENS 1.0 532 15 0.8 0.8 5.0 NA NA NA NA NA NA

OPSCC_VUMC_52 GE 1.5 740 16 0.5 0.5 3.8 NA NA NA NA NA NA

OPSCC_VUMC_53 GE 1.5 620 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_54 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_55 GE 1.5 480 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_56 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_57 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_58 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_59 GE 3.0 620 17 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_60 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_61 GE 3.0 560 15 0.5 0.5 6.0 NA NA NA NA NA NA

OPSCC_VUMC_62 GE 3.0 680 17 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_63 SIEMENS 1.5 522 14 0.4 0.4 3.3 NA NA NA NA NA NA

OPSCC_VUMC_64 GE 3.0 600 16 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_65 GE 1.5 460 13 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_66 SIEMENS 1.5 488 14 0.7 0.7 3.3 NA NA NA NA NA NA

OPSCC_VUMC_67 GE 1.5 460 13 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_68 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA
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Supplementary Table 1. (continued)

Patient ID Manufacturer
Magnetic 

field 
strength

T1 
Repetition 

time

T1 
Echo 
time

T1 
x.size 
mm

T1 
y.size 
mm

T1 
z.size 
mm

STIR 
Repetition 

time

STIR 
Echo 
time

STIR 
Inversion 

time

STIR 
x.size 
mm

STIR 
y.size 
mm

STIR 
z.size 
mm

OPSCC_VUMC_69 SIEMENS 1.5 488 14 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_70 GE 1.5 620 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_71 GE 3.0 540 17 0.5 0.5 6.0 NA NA NA NA NA NA

OPSCC_VUMC_72 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_73 SIEMENS 1.5 522 14 0.4 0.4 3.3 NA NA NA NA NA NA

OPSCC_VUMC_74 GE 1.5 460 13 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_75 GE 1.5 480 14 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_76 GE 3.0 800 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_77 GE 3.0 780 16 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_78 GE 3.0 600 16 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_79 GE 3.0 600 17 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_80 SIEMENS 1.5 488 14 0.7 0.7 3.3 NA NA NA NA NA NA

OPSCC_VUMC_81 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_82 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_83 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_84 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_85 GE 1.5 460 13 0.5 0.5 3.3 NA NA NA NA NA NA

OPSCC_VUMC_86 GE 1.5 720 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_87 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_88 GE 1.5 500 14 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_VUMC_89 SIEMENS 1.5 547 14 0.6 0.6 4.4 NA NA NA NA NA NA

OPSCC_UMCU_1 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_2 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_3 Philips 1.5 517 15 0.6 0.6 5.4 NA NA NA NA NA NA

OPSCC_UMCU_4 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_6 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_7 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_8 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_9 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_10 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_11 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_12 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_13 Philips 3.0 697 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_14 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_17 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_18 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_19 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_20 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_21 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_22 Philips 3.0 697 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_23 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA
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Supplementary Table 1. (continued)

Patient ID Manufacturer
Magnetic 

field 
strength

T1 
Repetition 

time

T1 
Echo 
time

T1 
x.size 
mm

T1 
y.size 
mm

T1 
z.size 
mm

STIR 
Repetition 

time

STIR 
Echo 
time

STIR 
Inversion 

time

STIR 
x.size 
mm

STIR 
y.size 
mm

STIR 
z.size 
mm

OPSCC_UMCU_24 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_25 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_26 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_29 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_30 Philips 3.0 697 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_31 Philips 3.0 697 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_32 Philips 3.0 697 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_33 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_34 Philips 3.0 697 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_35 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_36 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_37 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_38 Philips 3.0 697 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_39 Philips 3.0 413 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_40 Philips 3.0 697 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_42 Philips 3.0 697 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_44 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_45 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_46 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_47 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_48 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_50 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_51 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_52 Philips 3.0 697 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_54 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_56 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_57 Philips 1.5 590 13 0.6 0.6 4.0 NA NA NA NA NA NA

OPSCC_UMCU_58 Philips 1.5 517 15 0.6 0.6 4.0 NA NA NA NA NA NA

OPSCC_UMCU_59 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_61 Philips 1.5 588 15 0.6 0.6 4.0 NA NA NA NA NA NA

OPSCC_UMCU_63 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_64 SIEMENS 1.5 650 18 0.9 0.9 4.8 NA NA NA NA NA NA

OPSCC_UMCU_65 Philips 1.5 593 15 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_66 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_67 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA

OPSCC_UMCU_68 Philips 3.0 594 16 0.5 0.5 4.4 NA NA NA NA NA NA
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Supplementary Table 2. Factor loadings of OSCC model

Feature Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7

integrated intensity 0.61 0.42

maximum 3D diameter 0.87

surface area 0.86

surface to volume ratio -0.86 0.32

radius of an equivolumetric sphere 0.94

fractal dimension (calculated) 0.51

fractal dimension (fitted) 0.66

fractal abundance 0.94

fractal lacunarity -0.71

Moran’s I -0.56 0.54

Geary’s C 0.55 -0.54

entropy -0.61 -0.36

COOC first measure of information correlation 0.64 -0.54

GLRL run length non-uniformity 0.8

coefficient of variation 0.8 0.5

COOC joint variance 0.94

COOC joint entropy 0.46 0.64 -0.44 -0.33

COOC sum entropy 0.87 -0.32

COOC angular second moment -0.64 0.47 0.39

COOC contrast 0.71 -0.46 0.34

COOC dissimilarity 0.7 -0.65

COOC cluster tendency 0.93

COOC cluster prominence 0.72 0.31

GLRL gray level non-uniformity normalized -0.88

GLRL run entropy 0.36 0.82

gray level median from entire image 0.65

gray level maximum of all values over 0.5 from entire image 0.87

gray level mean of all values over 0.5 from entire image 0.91

gray level median of all values over 0.5 from entire image 0.68

gray level minimum from tumor ROI -0.37 0.73

gray level range from tumor ROI 0.89

median absolute deviation of the median 0.9

mean Laplacian 0.87

energy 0.38 0.59

variance 0.88

Maxstar 0.94

COOC inverse variance -0.59 0.75

COOC correlation 0.94

COOC second measure of information correlation -0.55 0.71

GLRL gray level variance -0.41 0.66

skewness 0.51

AUC -0.73

GLRL short run low gray level emphasis 0.39 0.78

GLRL short run high gray level emphasis -0.38 -0.35 -0.8

GLRL long run low gray level emphasis 0.37 0.73

GLRL long run high gray level emphasis -0.49 -0.74

compactness 2 -0.91

asphericity 0.94

excess kurtosis 0.39

COOC cluster shade 0.41

Abbreviations: COOC, co-occurrence; GLRL, grey-level run-length
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Supplementary Table 3. Factor loadings of OPSCC model

Feature Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7

coefficient of variation -0.69 0.57

excess kurtosis 0.58 0.4

entropy -0.61 -0.48

COOC joint entropy -0.91 -0.33

COOC sum entropy -0.96

COOC angular second moment 0.85 0.32

COOC contrast -0.65 -0.32 -0.57

COOC inverse difference normalized 0.69 0.53

COOC inverse variance 0.69 0.32 0.44

COOC cluster prominence -0.73 0.41

GLRL gray level non-uniformity normalized 0.9

GLRL run length non-uniformity normalized -0.68 -0.51 -0.32

GLRL gray level variance -0.83

GLRL run length variance 0.66 0.5 0.35

GLRL run entropy -0.88

maximum 3D diameter 0.82

surface area 0.89

surface to volume ratio -0.7 0.31 0.42

radius of an equivolumetric sphere 0.91

energy 0.72 0.31

fractal dimension (fitted) 0.55 -0.32

fractal abundance 0.85

fractal lacunarity -0.67

GLRL gray level non-uniformity 0.31 0.87

GLRL run length non-uniformity 0.9

gray level median from entire image 0.54

gray level maximum of all values over 0.5 from entire image 0.77

gray level mean of all values over 0.5 from entire image 0.85

gray level minimum from tumor ROI -0.32 0.62

gray level range from tumor ROI 0.82

mean Laplacian 0.83

variance 0.81

root-mean-square 0.92

Maxstar 0.89

skewness 0.59

AUC -0.74

GLRL short run low gray level emphasis 0.91

GLRL short run high gray level emphasis -0.92

GLRL long run low gray level emphasis 0.4 0.42 0.69

GLRL long run high gray level emphasis -0.88

Moran’s I 0.7

Geary’s C -0.68

COOC first measure of information correlation 0.37 -0.81

COOC second measure of information correlation -0.3 0.82

compactness 2 -0.86

asphericity 0.91

COOC correlation 0.32 0.54 0.61

gray level median of all values over 0.5 from entire image 0.49

fractal dimension (calculated) 0.39

COOC inverse difference moment normalized 0.44 0.48

COOC cluster shade 0.45

Abbreviations: COOC, co-occurrence; GLRL, grey-level run-length
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Supplementary Table 4. Comparison of iAUC of combined models to single modality models with Wilcoxon rank sum test for dependent 
samples and multiplicity correction using Holm method

adjusted p-value

OSCC overall survival Radiomics + Clinical > Radiomics P<0.001

Radiomics + Clinical > Clinical P<0.001

OSCC relapse-free survival Radiomics + Clinical > Radiomics P<0.001

Radiomics + Clinical > Clinical P<0.001

OPSCC overall survival Radiomics + Clinical > Radiomics P<0.001

Radiomics + Clinical > Clinical P<0.001

OPSCC relapse-free survival Radiomics + Clinical > Radiomics P<0.001

Radiomics + Clinical > Clinical P<0.001

Supplementary Table 5. Influence of magnetic field strength on radiomics features as assessed by MANOVA and multiplicity correction 
using Holm method

Factor VUMC OSCC UMCU OSCC VUMC OPSCC UMCU OPSCC

Factor 1 - 3D geometrics 0.35 1.00 1.00 1.00

Factor 2 - meta-gray level co-occurrence 1.00 1.00 1.00 1.00

Factor 3 - meta-first order 0.36 1.00 <0.001 <0.001

Factor 4 - gray level-mix <0.001 0.84 1.00 1.00

Factor 5 - meta-gray level run length 1.00 1.00 0.39 <0.001

Factor 6 - geometrics 1.00 1.00 0.58 1.00

Factor 7 - entropy 1.00 1.00 0.87 1.00

Supplementary table 6. Influence of MR vendor on radiomics features as assessed by MANOVA and multiplicity correction using Holm 
method

Factor VUMC OSCC VUMC OPSCC

Factor 1 - 3D geometrics 1.00 1.00

Factor 2 - meta-gray level co-occurrence 0.96 1.00

Factor 3 - meta-first order <0.001 <0.001

Factor 4 - gray level-mix <0.001 1.00

Factor 5 - meta-gray level run length 1.00 <0.01

Factor 6 - geometrics 1.00 1.00

Factor 7 - entropy 1.00 <0.01
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ABSTRACT

Introduction
Tumor-specific genetic aberrations in cell-free DNA (cfDNA) from plasma are promising biomarkers for 
diagnosis of recurrent head and neck squamous cell carcinoma (HNSCC). However, the sensitivity when using 
somatic mutations only in cfDNA is suboptimal. Here, we combined detection of copy number aberrations 
(CNAs), human papillomavirus (HPV) DNA and somatic mutations in a single sequencing workflow.

Methods
Pretreatment plasmas of 40 patients and 20 non-cancer controls were used for analysis. Plasma DNA underwent 
low-coverage whole genome sequencing (lcWGS) to detect both CNAs and HPV-DNA, and deep sequencing 
to detect mutations in 12 frequently altered cancer driver genes in HNSCC using the same sequencing library. 
A specific analysis pipeline line was developed for data mining. The corresponding tumors were analyzed 
using slightly adapted protocols.

Results
Using the developed method, somatic mutations and CNAs were detected in plasma DNA of HNSCC patients 
in 67% and 52%, respectively. HPV-DNA in plasma was detected in 100% of patients with HPV-positive tumors, 
and not in plasma of patients with HPV-negative tumors or non-cancer controls. Combined analysis increased 
the detection rate of tumor DNA in plasma to 78%. The detection rate was significantly associated with the 
stage of disease of the tumor. Neither HPV status nor location of the primary tumor influenced detection of 
CNAs or somatic mutations in plasma.

Conclusions
This study demonstrates that the combined analysis of CNAs, HPV and somatic mutations in plasma of HNSCC 
patients is feasible and contributes to a higher sensitivity of the assay compared to single modality analyses.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) shows a high rate of recurrences, distant metastasis 
and second primary tumors1, which can often only be treated curatively when detected at an early stage. 
Consequently, there is an imperative need for the development of minimally invasive methods that allow 
early detection of relapsed disease, but such a biomarker is currently not available. Therefore, diagnosis of 
recurrent HNSCC remains dependent on conventional imaging and clinical examination, resulting in many 
patients being diagnosed with recurrent disease at an advanced stage. The introduction of next-generation 
sequencing (NGS) created new opportunities for post-treatment surveillance. A promising example of NGS 
applications is the detection of circulating tumor DNA (ctDNA) in plasma, that was first described in colorectal 
cancer2 and later also in HNSCC3.

In a previous study, Wang et al. studied the detection of somatic mutations and HPV in cell-free DNA (cfDNA) 
from plasma and saliva of 93 patients4. The authors focused on somatic mutations and HPV using a PCR-
amplification based sequencing protocol. Limitations of this approach are: (i) it requires selection of mutations 
from the index tumor, followed by custom primer design for each unique mutation while even cancer driver 
mutations in the recurrent tumor may differ from those in the index tumor5; and (ii) the protocol is complex 
including a gel-purification step, which may introduce cross-contamination6. A more general limitation of 
PCR-based approaches lies in the fact that ctDNA fragments are generally small, on average 160 bp, and to 
allow PCR amplification both primer sequences have to be present on the same fragment, limiting detection 
rates as not all template molecules will be amplified. Others exploited alternative techniques for detection 
of ctDNA in HNSCC, for instance digital droplet PCR7, methylation assays8 and low-coverage whole genome 
sequencing (lcWGS) for copy number aberrations (CNA)9.

All these methods focused on detection of a specific type of genetic alteration, while there is considerable 
heterogeneity of molecular alterations in HNSCC10. As an example, oncogenesis in approximately two-thirds 
of HNSCCs is associated with a high number of CNAs, whereas tumor development in the remaining one-third 
is predominantly characterized by somatic mutations11. Furthermore, a subset of oropharynx tumors is caused 
by oncogenic HPV infections and very few somatic mutations. Ideally, ctDNA detection would cover the 
variety of genetic alterations including HPV-DNA. Moreover, the majority of plasma DNA template molecules 
should be represented in the sequencing library to obtain the highest sensitivity. Therefore, we developed 
and tested a workflow for the combined detection of somatic mutations, HPV-DNA and CNAs using the same 
sequencing library, and assessed its feasibility in pretreatment plasma samples of 40 HNSCC patients and 20 
non-cancer controls.

METHODS

Samples
We studied samples from 40 HNSCC patients and 20 anonymous individuals without cancer. The study was 
approved by the institutional review board and from all subjects signed informed consent was obtained. 
Patients were treated at Amsterdam UMC, location VUmc. Anonymous blood donors at Sanquin in Amsterdam 
served as non-cancer controls. Patient characteristics are depicted in Table 1. The control plasma was obtained 
from anonymized blood donors, and no clinical data was available. Samples of 4 × 6 ml whole blood were taken 
from patients before treatment of the primary tumor (N = 38) or before salvage treatment (N = 2) using EDTA 
vacutainers. Plasma was collected within 24 h from whole blood by centrifugation, and further purified with 
an additional centrifugation step at 20,162 g using a Hettich EBA 12 R microcentrifuge (Hettich, Tuttlingen, 
Germany) to remove contaminating cells. The schematic workflow of plasma DNA isolation, library preparation 
and sequencing is depicted in Figure 1. The cfDNA from 4 ml plasma was isolated using a Qiasymphony 
automated platform (Qiagen, Hilden, Germany). Extra tumor biopsies could be obtained from 27 patients 
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during examination under general anesthesia and were directly snap-frozen and stored in liquid nitrogen. 
Tumor DNA was isolated using the PurelinkTM Genomic DNA Mini Kit (cat. K182001, Invitrogen, Carlsbad, 
CA, USA) after macrodissection to ensure that neoplastic cellularity was over 20%. The actual tumor-derived 
fraction was later precisely quantified from lcWGS using the R package ACE12.

Table 1. Patient characteristics

Characteristic N = 40

Age, mean (SD) 65.6 (9)

Gender

Male (%) 27 (67.5)

Female (%) 13 (32.5)

Smoking (PY)

0-10 (%) 11 (27.5)

11-24 (%) 8 (20)

>24 (%) 21 (52.5)

Subsite

Oral cavity (%) 5 (12.5)

Oropharynx (%) 18 (45)

Hypopharynx (%) 10 (25)

Larynx (%) 5 (12.5)

Unknown primary (%) 2 (5)

TNM stage

I (%) 2 (5)

II (%) 4 (10)

III (%) 6 (15)

IV (%) 28 (70)

T-stage

0 (%) 2 (5)

1 (%) 3 (7.5)

2 (%) 13 (32.5)

3 (%) 4 (10)

4 (%) 18 (45)

N-stage

0 (%) 17 (42.5)

1 (%) 7 (17.5)

2 (%) 15 (37.5)

3 (%) 1 (2.5)

HPVa

Negative (%) 9 (45)

Positive (%) 10 (50)

Unknownb (%) 1 (5)

Abbreviations: HPV, human papilloma virus; PY, packyears; SD, standard deviation.
a. Only determined when primary tumor was located in oropharynx or unknown.
b. No material available from primary tumor for HPV analysis.
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Figure 1. Illustration of workflow for detection of ctDNA. 
Four ml of pretreatment plasma was used for automated DNA isolation and adapter ligation. The resulting library was divided in two to have 
a diagnostic backup, amplified, and subsequently used for low-coverage whole-genome sequencing to detect copy number aberrations and 
HPV, and target enrichment for deep sequencing to detect somatic mutations. Abbreviations: CNA, copy number aberrations; HPV, human 
papillomavirus; PCR, polymerase chain reaction; PE, paired-end; SE, single-end; WGS, whole genome sequencing.

NGS library preparation and lcWGS
Plasma NGS libraries were generated with a 5500 SOLiD™ Fragment Library kit (cat. 4464412, LifeTech, Carlsbad, 
CA, USA) and TruSeq adapters (cat. FC‐121‐4001 and FC‐121‐4002, Illumina, San Diego, CA, USA) using a Biomek 
FX robot (Beckman Coulter, Pasadena, CA, USA). Prior to downstream steps, the plasma sequencing library was 
divided in a diagnostic library (20 µl) and a backup library (25 µl), and the diagnostic library underwent 12 cycli 
of PCR duplication (Figure 1) to generate the fragments for sequencing and allow equimolar pooling. Tumor 
NGS libraries were manually generated using the KAPA Hyper Prep Kit (cat. 07962347001, KAPA Biosystems, 
Cape Town, South Africa). Next, lcWGS was performed on the plasma and tumor samples by sequencing the 
non-enriched NGS libraries using an Illumina HiSeq 2000 instrument (Illumina) with 50 bp single-end reads as 
described before13,14 with 8 to 21 samples per lane.

Target enrichment and deep sequencing
Amplified diagnostic NGS libraries were enriched using a SeqCap EZ Choice kit (cat. 06740251001, Roche 
Nimblegen, Madison, WI, USA) with a 66 kb custom library of the exons of 12 genes (AJUBA, CASP8, CDKN2A, 
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FAT1, FBXW7, HRAS, KMT2D, NOTCH1, NSD1, PIK3CA, PTEN, TP53) that were selected based on TCGA data 
as the most frequently altered cancer driver genes in HNSCC11. The enriched libraries were subsequently 
sequenced on an Illumina HiSeq or Illumina MiSeq instrument with 125 bp or 150 bp paired-end reads.

Bioinformatics and statistical analysis
Specific pipelines to detect CNAs, HPV and somatic mutations in both tumor and plasma DNA are described 
in the Supplementary Methods and Supplementary Figure 1. Clinical characteristics of patients with ctDNA 
detected in plasma were compared to those of patients without ctDNA detected in plasma using Fisher’s 
exact test. All statistical analyses were performed using package ‘stats’ version 3.1.2 in R.

RESULTS

Detection of copy number aberrations in tumor and corresponding plasma
First, 27 tumors, of which biopsies were available, were analyzed for presence of CNAs. On average, each 
tumor had 34 altered segments (range 0–72, Table 2), including well known losses of 3p, 9p, and 17p, and 
gains of 3q, 7p and 8q (Supplementary Figure 2). Next, the corresponding cfDNA was sequenced. The CNA 
profiles of tumor and plasma were compared for corresponding aberrations. An example is shown in Figure 2. 
Alterations were found in 14 out of 27 (52%) plasma samples (Figure 3A and Table 2), whereas in 20 controls, a 
deletion was detected in only one case (5%) (P < 0.01 by Fisher’s Exact test). This deletion was found in an area 
with known copy number variations (4q31.21, database of genomic variants (http://dgv.tcag.ca)), and most 
likely depicts a copy number variation (CNV) and not a somatic genetic change.

Detection of somatic mutations in tumor and corresponding plasma
For detection of somatic mutations, the same sequencing library used for copy number analysis was enriched 
for the 12-gene targeted sequencing panel. The mean coverage for plasma was 478 (range 145–1464). The 
distribution of the coverage of each gene in the plasma DNA is depicted in Supplementary Figure 3 for the 
samples with the highest coverage (A, mean 1464) and lowest coverage (B, mean 145). On average, the tumors 
contained three somatic mutations in the selected genes (range 0–7) with a mean variant allele frequency 
(VAF) of 29.3 (range 1.1–87.3) (Supplementary Table 1). Next, these mutations were searched for in the 
sequencing data of the plasma DNA using the bioinformatics pipelines depicted in Supplementary Figure 1C. 
One or more somatic mutations of the index tumor were detected in the plasma of 18 of 27 (67%) patients 
(Table 2 and Supplementary Table 1).

HPV detection
An algorithm was developed to map reads from lcWGS to HPV genomes. This algorithm was first evaluated 
by comparing the results from tumor DNA lcWGS to the results of a validated HPV test to confirm that it could 
indeed be used for HPV detection15. We found 100% agreement in the HPV-positive and HPV-negative tumors 
analyzed. Next, the developed algorithm was applied to plasma DNA lcWGS, and HPV was detected in plasma 
of all evaluable patients with HPV-positive tumors (Table 2, Supplementary Figure 4). One sample (592) was 
not evaluable for this analysis as the backup FASTQ file was corrupted that was required for HPV genome 
mapping. No false-positive results were detected in plasma of patients with HPV-negative tumors or non-
cancer controls (Table 2, Supplementary Figure 4) at the chosen cut-off value.
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Table 2. Summary of detected tumor associated aberrations in cell-free DNA of plasma

Patient
Tumor 
location 

Stage of 
disease

HPV
Number 
of CNAs 
in tumor 

CNAs 
found in 
Plasma

Number 
of somatic 
mutations 
in Tumor

Number 
of somatic 
mutations 
in Plasma

HPV 
found in 
Plasma

Combined 
detection 
conclusion

Tumor 
status 
known

590 hp IVA 43 Yes 2 2 No Yes

595 hp IVC 31 Yes 4 4 No Yes

598 hp IVB 51 Yes 2 2 No Yes

603 op IVA HPV16 18 Yes 4 0 HPV16 Yes

604 la III 5 No 7 0 No No

606 hp III 36 No 4 2 No Yes

607 la III 40 No 2 1 No Yes

610 oc II 12 No 6 0 No No

616 op IVC HPV16 23 Yes 5 2 HPV16 Yes

617 op IVA HPV16 3 Yes 0 NAa HPV16 Yes

618 la IVA 53 Yes 1 1 No Yes

619 op III Negative 72 No 1 1 No Yes

623 hp IVA 50 Yes 1 1 No Yes

625 op IVA HPV16 14 No 1 1 HPV16 Yes

626 oc IVA 23 Yes 4 3 No Yes

627 op IVA HPV16 16 No 2 1b NAc Yes

628 op IVB Negative 30 No 6 1 No Yes

629 hp IVA 58 No 4 0 No No

632 la III 39 No 2 0 No No

633 op IVA Negative 48 Yes 6 4 No Yes

635 op IVA Negative 62 Yes 2 2 No Yes

636 oc I 0 NAd 6 0 No No

639 op IVA Negative 43 Yes 2 2 No Yes

640 op IVA HPV16 13 No 2 0 HPV16 Yes

642 hp II 61 No 1 0 No No

647 la IVA 23 Yes 2 2 No Yes

649 hp IVA 43 Yes 3 2 No Yes

Tumor 
status 

unknown

591 op II HPV16 NA No NA 0 HPV16 Yes

592 op IVA Unknowne NA No NA 1 No Yes

601 oc I NA No NA 0 No No

608 oc IVA NA Yes NA 1 No Yes

611 up IVB Negative NA Yes NA 1 No Yes

612 up IVA Negative NA Yes NA 0 No Yes

615 hp IVA NA No NA 2 No Yes

622 op IVA Negative NA No NA 0 No No

630 op III HPV16 NA No NA 0 HPV16 Yes

637 op II Negative NA No NA 0 No No

643 op IVA HPV16 NA Yes NA 0 HPV16 Yes

644 hp IVA NA Yes NA 0 No Yes

648 op IVA HPV16 NA No NA 0 HPV16 Yes

Abbreviations: CNA, copy number aberration; hp, hypopharynx; HPV, human papillomavirus; la, larynx; NA, not applicable; oc, oral cavity; 
op, oropharynx; up, unknown primary
a. no somatic mutations present in primary tumor 
b. found only in backup half of pre-PCR ligation product 
c. corrupted backup FASTQ file
d. no CNAs present in primary tumor 
e. no material available from primary tumor for HPV analysis
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Figure 2. Example of tumor and corresponding plasma copy number profile. 
Absolute copy number profile of a cT4aN3M1 hypopharynx tumor (A) and corresponding plasma sample (B) showing, amongst others, well 
known losses of 3p, 9p and 17p, gains of 1q and 3q, and high-level amplifications of 7p and 11q. 2n ploidy was assumed for both samples. The 
graphs depict the number of copies on the Y-axis and the bins ordered by chromosomal location on the X-axis. Plot was derived from ACE.
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Detection of ctDNA without prior knowledge of tumor DNA aberrations
Since the algorithms to detect CNAs in plasma are not dependent on knowledge of tumor DNA aberrations, 
the same methods were applied to the 13 cases of which genetic data of the tumor was not available. CNAs 
were detected in plasma of 5 of 13 patients (38%, Table 2 and Figure 3). For detection of somatic mutations 
in plasma without prior knowledge of the somatic mutations in the primary tumor we took additional 
precautions. More stringent criteria for mutation calling were applied to ensure a low number of false positive 
mutation calls. Using these criteria, mutations were called in plasma of 4 of 13 patients (31%, Table 2). It 
should be noted that when we applied these criteria to the 27 patients with known tumor mutation status 
(Supplementary Table 2), some mutations were identified in cfDNA that were not identified in the primary 
tumor. These calls may be false positive, but could also relate to another (patho)biological process.

Combined analysis of CNA, HPV-DNA and somatic mutations
The combined analysis of CNAs, somatic mutations and HPV in patients with known tumor DNA aberrations 
revealed tumor-associated aberrations in plasma DNA of 21 out of 27 (78%) patients (Table 2). When prior 
knowledge of tumor DNA aberrations was not available, ctDNA was detected in plasma of 10 of 13 patients 
(77%). Combining the results of cfDNA analyses in patients with and without prior knowledge on tumor 
variants, resulted in ctDNA detection in 31 out of 40 patients (78%, Table 2).

Influence of clinical factors
In this cohort, the detection of CNAs and somatic mutations in plasma was not influenced by the location 
of the primary tumor or the HPV status (oropharynx tumors only). However, the TNM-stage was positively 
correlated to detection of CNAs in plasma (P < 0.05), and to mutations in plasma (P < 0.05) (Supplementary 
Figure 5).

Analyses to improve sensitivity
To determine whether sequencing coverage constituted a rate-limiting factor in our experiments, we 
resequenced the index library of plasma of three patients using similar sequencing parameters and combined 
the sequencing results of the first and second run. Despite the increase in the total number of reads, the 
combined mean coverage was very comparable to the mean coverage of the two separate runs after duplicate 
removal, and no additional variants were discovered (Supplementary Table 3), indicating that the libraries 
were sequenced to completion with sufficient coverage.

Next, we prepared target-enriched sequencing libraries from the backup plasma DNA library (Figure 1) 
of seven patients, which may contain additional DNA templates that were not sequenced before. In one 
patient without mutations in the primary plasma DNA library, ctDNA was detected in the backup library 
(Supplementary Table 3). These results demonstrate that input DNA can be the limiting factor for detection of 
tumor variants in plasma.
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Fig. 3. Heatmap of copy number aberrations in tumor and plasma samples. 
(A) For each of 27 patients, copy number aberrations found in plasma, first row, and in tumor, second row, are shown. On the X-axis are the 
segments ordered by chromosomal location. Blue indicates an allelic loss (less than two copies), whereas red indicates an allelic gain or
amplification (more than two copies). On the right, the correlation is shown between segments of plasma and tumor. (B) For the 13 patients 
with missing tumor data, only the plasma copy number aberrations are shown.



Comprehensive multiparameter genetic analysis improves circulating tumor DNA detection in head and neck cancer patients

137

5

DISCUSSION

This study was designed to develop a workflow for detection of CNAs, HPV-DNA and somatic mutations in 
cfDNA from plasma of HNSCC patients using the same sequencing library, and to determine its performance 
in plasma samples of 40 HNSCC patients. This method was based on lcWGS for detection of CNAs and HPV-
DNA, and targeted deep sequencing of a panel of 12 frequently mutated genes in HNSCC.

In our view this approach combines the best of all available approaches, and we detected CNAs in plasma 
of HNSCC patients in 52%, HPV-DNA in plasma of 100% of patients with HPV-positive tumors, and somatic 
mutations in plasma of 67% of HNSCC patients. It was hypothesized that the combined analysis of CNA, HPV 
and mutations would increase the overall sensitivity of the assay, and this was indeed the case. To reduce 
costs, one could argue for a stepwise approach, in which first lcWGS is performed to detect CNAs and HPV-
DNA, and deep sequencing only when CNAs or HPV-DNA are not detected. In fact, for HPV-positive tumors, 
our data suggests that the deep sequencing step is redundant since all HPV-positive tumors could already be 
detected by lcWGS. Other authors demonstrated different HPV-DNA detection methods16-20, but the major 
advantage of our combined approach is that it is comprehensive: a single assay that serves all tumor subtypes.

As genetic alterations in the index and recurrent tumor may differ5, ideally post-treatment surveillance does 
not rely only on detection of genetic changes that were present in the index tumor. In this regard, we show an 
additional advantage of our comprehensive method. Confident detection of somatic mutations without prior 
knowledge of tumor DNA mutations may be hampered by false positive calls, but the detection of CNAs and 
HPV-DNA in plasma did not depend on prior knowledge and can therefore be applied directly to plasma DNA 
with high specificity (>95%).

To our best knowledge relatively few studies focus on the detection of ctDNA in HNSCC patients. Wang et al. 
detected ctDNA in 87% of 47 HNSCC patients4. Importantly, their assay also included detection of circulating 
HPV-DNA in patients with HPV-positive tumors, whereby the sensitivity increased from 64% to 87%. 
Schwaederle et al. found alterations in plasma of 88% of 25 HNSCC patients21. However, these alterations were 
not matched to the mutational profiles of the primary tumors, which in our study was shown to be important 
to exclude false positive calls. Perdomo et al. detected mutations in 42% of 36 HNSCC cases22, Schirmer et al. 
showed a sensitivity of 74%9, and Galot et al. showed a sensitivity of 51%23. In other studies3,7 only very small 
HNSCC patient cohorts were analyzed, which makes a relevant comparison difficult.

There are several options to further enhance the detection rate, which might be required for clinical 
implementation. First, it was shown by others that methods of blood processing have a strong influence on 
cfDNA levels24, and optimizing the sampling of blood by using dedicated cell-free DNA tubes may improve 
detection. Second, increasing the DNA input may overcome undersampling and improve detection of low 
fractions of ctDNA25. This effect was already shown in our study as we detected additional variants when 
sequencing the backup DNA library, and it further implies that a high conversion rate, i.e. the representation 
of the cfDNA in the sequencing library, is of large importance. Third, ctDNA has shorter fragment sizes than 
non-tumor derived plasma DNA26, and size selection of fragments between 90 and 150 bp was shown to 
improve the detection of ctDNA in advanced cancers27. Finally, Wang et al. showed that the combination of 
saliva and plasma analysis also increased sensitivity4, which implies that future cohort studies should also 
include samples of saliva or oral rinses from HNSCC patients.

In conclusion, we developed a method for combined analysis of somatic mutations, HPV-DNA and CNAs in 
cfDNA from plasma of HNSCC patients. Although prior knowledge of the genetic changes in the tumor is 
helpful in the analyses, we show that it is not required. Future research should focus on implementing the 
suggested improvements of the assay and application in a large longitudinal cohort for early detection of 
recurrent disease to proof the clinical utility.



﻿

138

CONFLICTS OF INTEREST

The authors declare that they have no known competing financial interests or personal relationships that 
could have appeared to influence the work reported in this paper.

FUNDING

This work was supported by the European Union’s Seventh Framework Project (grant agreement 611425: 
OraMod). Funders had no role in the design and conduct of the study; collection, management, analysis, and 
interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the 
manuscript for publication.



Comprehensive multiparameter genetic analysis improves circulating tumor DNA detection in head and neck cancer patients

139

5

SUPPLEMENTARY METHODS

BIOINFORMATICS

Detection of CNAs by lcWGS
Detection of CNAs in primary tumors was performed using the R package QDNAseq13. For detection of CNAs in 
plasma DNA, the generated data was analyzed using two approaches. Firstly, aberrations were called based on 
signal differences compared to a reference set of plasma samples using WISECONDOR14. This pipeline searches 
for aberrations using an individual bin method, sliding window method and chromosomal wide aneuploidy 
test. Only aberrations detected by the individual bin method and sliding window method were considered. 
Secondly, the mapped reads were binned (bin size 500 kbp), normalized, and corrected for GC content and 
mappability13. Samples were normalized using the 20 control plasma samples and segmented using the build-
in DNAcopy call28 within QDNAseq. Using the ACE12 function twosamplecompare, which equalizes segments 
between two samples, all patient plasma samples were tested against all control plasma samples. Samples 
were called positive if at least 1 segment had a significantly different mean (multiple testing adjusted P-value 
< 0.001) from all control samples. CNA plasma profiles were visually compared to the corresponding tumor 
profiles.

Detection of HPV by lcWGS
HPV status of oropharyngeal tumors was determined in the formalin-fixed, paraffin-embedded (FFPE) tumor 
specimen by using p16 immunostaining followed by HPV-DNA PCR on p16-positive samples, as described 
before15. HPV status of unknown primary tumors was determined by HPV-DNA PCR of the cytology specimen29. 
Subsequently, an algorithm was developed that exploits the non-human reads of lcWGS and maps these reads 
to the known HPV-genomes. HPV-specific reads were normalized to within-sample human-specific reads. This 
algorithm was first applied to compare the sequencing results of the primary tumors to the validated HPV test. 
Next, the developed algorithm was applied to the non-human reads of WGS of the plasma samples of all 40 
patients and 20 controls. Samples were deemed positive when the fraction of HPV-specific reads exceeded 
the highest fraction observed in controls by a factor 2. 

Identification of somatic mutations in tumor DNA 
For detection of somatic mutations in the primary tumors, two pipelines for analysis were used (Supplementary 
Figure 1A): i. FASTQ files were trimmed using Trimmomatic30, mapped to Hg19 with BWA-MEM31, and 
duplicates were removed using Picard tools’ MarkDuplicates (http://broadinstitute.github.io/picard/). Calling 
was performed using SAMtools Mpileup32 and VarScan33. Settings for VarScan (SNP and indel) were: min-var-
freq 0.01, p-value 0.1, strand-filter 1; ii. Trimming, mapping, and duplicate removal were performed using 
the same tools, however base quality score recalibration was performed using GATK BaseRecalibrator34 and 
calling was performed using GATK MuTect2 with default settings34. Identified variants were filtered using the 
1000 Genomes Project dataset, and variants with EUR AF >0.01 were removed35. Functional annotation of 
sequence variants was performed by Oncotator36 and snpEff37.

Identification of somatic mutations in cfDNA (without knowledge of predetermined tumor 
variants)
Detection of de novo variants in plasma was performed by combining the same two pipelines as described 
for tumors but with different settings of VarScan (SNP and indel): min-reads2 2, min-var-freq 0.001, p-value 
0.9, strand-filter 0. Additionally, a third pipeline was used to reduce the number of false positive calls 
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(Supplementary Figure 1B): iii. FASTQ files were collapsed into Duplex Consensus Sequences (DCS) using 
UnifiedConsensusMaker38 and mapped to Hg19 with BWA-ALN31. Calling was performed using Samtools 
Mpileup32 and VarScan33 using the following settings of VarScan: min-coverage 1, min-reads2 1, min-avg-qual 
20, min-var-freq 0.0001, p-value 0.99, strand-filter 0. Detected variants in plasma DNA were considered valid 
when called by all three pipelines and VAF ≤ 25% to remove potentially remaining germline variants. Further 
filtering of sequence variants and functional annotation were performed as described before.

Detection of predetermined tumor variants in cfDNA
To increase sensitivity and specificity, plasma DNA was examined for the predetermined tumor variants only. 
The schematic workflow is depicted in Supplementary Figure 1C. FASTQ files were mapped to Hg19 with 
BWA-MEM31. For detection of single nucleotide variations (SNVs), the data was trimmed using Trimmomatic30, 
duplicates were removed using Picard tools’ MarkDuplicates, and mutant allele fractions of the tumor variants 
were determined in the corresponding plasma sample using GATK DepthOfCoverage34. These fractions were 
compared to mutant allele fractions of the same variants in the other samples. Samples in which the mutant 
allele fractions significantly exceeded their frequencies in the other samples (P < 0.05) were scored as positive 
according to Wang et al.4 For detection of small insertions and deletions duplicates were not removed. Calling 
was achieved using: i. Samtools Mpileup32 and VarScan33 with the following settings of VarScan (SNP and 
indel): min-coverage 100, min-reads2 2, min-var-freq 0.00001, p-value 0.9, strand-filter 0; and ii. GATK MuTect2 
with default settings34.
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Supplementary Figure 1. Illustration of bioinformatics pipelines for detection of somatic mutations 
(A) For detection of somatic mutations in the primary tumors two pipelines for analysis were used): i. FASTQ files were trimmed using
Trimmomatic30, mapped to Hg19 with BWA-MEM31, and duplicates were removed using Picard tools’ MarkDuplicates (http://broadinstitute.
github.io/picard/). Calling was performed using SAMtools Mpileup32 and VarScan33. Settings for VarScan (SNP and indel) were: min-var-freq 
0.01, p-value 0.1, strand-filter 1; ii. Trimming, mapping, and duplicate removal were performed using the same tools, however base quality 
score recalibration was performed using GATK BaseRecalibrator34 and calling was performed using GATK MuTect2 with default settings34. 
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(B) For detection of somatic mutations in cfDNA in plasma without knowledge of predetermined tumor variants we applied the following: 
the same two pipelines as described in (A) were used but with different settings of VarScan (SNP and indel): min-reads2 2, min-var-freq 0.001, 
p-value 0.9, strand-filter 0. In addition, FASTQ files were collapsed into Duplex Consensus Sequences (DCS) using UnifiedConsensusMaker38 
and mapped to Hg19 with BWA-ALN31. Calling was performed using Samtools Mpileup32 and VarScan33 using the following settings of
VarScan: min-coverage 1, min-reads2 1, min-avg-qual 20, min-var-freq 0.0001, p-value 0.99, strand-filter 0. Detected variants in plasma DNA 
were considered valid when called by all three pipelines and VAF ≤ 25% to remove potentially remaining germ line variants.
(C) For detection of predetermined tumor variants in cfDNA we used the following: FASTQ files were mapped to Hg19 with BWA-MEM31. 
For detection of single nucleotide variations (SNVs), the data was trimmed using Trimmomatic30, duplicates were removed using Picard
tools’ MarkDuplicates, and mutant allele fractions of the tumor variants were determined in the corresponding plasma sample using GATK 
DepthOfCoverage34. These fractions were compared to mutant allele fractions of the same variants in the other samples. Samples in which the 
mutant allele fractions significantly exceeded their frequencies in the other samples (P<0.05) were scored as positive according to Wang et al.4 
For detection of small insertions and deletions duplicates were not removed. Calling was achieved using: i. Samtools Mpileup32 and VarScan33 
with the following settings of VarScan (SNP and indel): min-coverage 100, min-reads2 2, min-var-freq 0.00001, p-value 0.9, strand-filter 0; and 
ii. GATK MuTect2 with default settings34. 
Abbreviations: INDEL, insertion or deletion; SNV, single nucleotide variation.
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Supplementary Figure 2. Frequency plot of copy number aberrations in tumor cohort
The graph represents the relative frequency of gains (in blue) and losses (in red) assessed by low-coverage whole genome sequencing in 27 
tumors for each chromosome position.
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Supplementary Figure 3. Coverage per gene in plasma DNA of sample with highest and lowest mean coverage
A uniform coverage was found of the targeted gene panel in plasma samples with highest (A) and lowest (B) mean coverage, except for a 
few bases in NOTCH1.
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Supplementary Figure 4. HPV detection in non-human reads from low-coverage whole genome sequencing of cell-free DNA
HPV-DNA was detected in reads from low-coverage whole genome sequencing of cell-free DNA from patients with HPV-positive tumors, but 
not in patients with HPV-negative tumors or controls. The graph represents the number of HPV genome reads per million human genome 
reads and the red-line represents the cut-off for discrimination.

Supplementary Figure 5. Barplot of detection of copy number aberrations and somatic mutations in early and advanced stage disease
No copy number aberrations (A) or somatic mutations (B) were detected in patients with early stage disease (disease stage I and II), whereas 
copy number aberrations (A) were detected in 59% (P<0.05) and somatic mutations (B) in 78% (P<0.05) of patients with advanced stage 
disease (disease stage III and IV).
Abbreviations: cfDNA, cell-free DNA; CNA, copy number aberrations; mut, somatic mutations.
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Supplementary Table 1. Detected somatic mutations in primary tumors and corresponding plasma samples

Tumor

Sample HPVa Chromosome Position Gene REF ALT Variant_Type VAF

590 NA chr4 187542108 FAT1 CAG C DEL 29.9

590 NA chr17 7577579 TP53 G GTA INS 36

595 NA chr4 153249440 FBXW7 C A SNP 25.4

595 NA chr4 187584469 FAT1 TGAAAAGAATCCTTGTG T DEL 30

595 NA chr9 139400061 NOTCH1 G C SNP 25.9

595 NA chr17 7577106 TP53 G A SNP 49.7

598 NA chr4 187628119 FAT1 CAGGATCGTGGGCTTCT C DEL 55.5

598 NA chr17 7578474 TP53 C CG INS 70

603 HPV16 chr3 178936091 PIK3CA G A SNP 13.4

603 HPV16 chr4 153247289 FBXW7 G A SNP 20.3

603 HPV16 chr9 139395305 NOTCH1 G A SNP 6.4

603 HPV16 chr14 23442712 AJUBA G C SNP 4.6

604 NA chr3 178936082 PIK3CA G A SNP 39.3

604 NA chr4 187535374 FAT1 G GC INS 36.4

604 NA chr4 187538941 FAT1 T TA INS 36.9

604 NA chr5 176562223 NSD1 C T SNP 36.6

604 NA chr9 139399991 NOTCH1 C T SNP 42.1

604 NA chr11 534289 HRAS C T SNP 39.1

604 NA chr12 49431773 KMT2D C T SNP 36.5

606 NA chr3 178921472 PIK3CA G A SNP 8.9

606 NA chr9 139418427 NOTCH1 CACAGCTGTTG C DEL 22.1

606 NA chr9 139418428 NOTCH1 A G SNP 1.39

606 NA chr17 7578188 TP53 C A SNP 37.6

607 NA chr9 21971120 CDKN2A G A SNP 64.1

607 NA chr9 139400000 NOTCH1 C A SNP 59

610 NA chr4 153332759 FBXW7 G A SNP 8.2

610 NA chr4 187524477 FAT1 G A SNP 4

610 NA chr4 187541808 FAT1 T A SNP 3.4

610 NA chr5 176638938 NSD1 A T SNP 4

610 NA chr12 49433015 KMT2D CA C DEL 1.6

610 NA chr17 7578555 TP53 C T SNP 5.9

616 HPV16 chr3 178928079 PIK3CA G A SNP 16.7

616 HPV16 chr9 139390581 NOTCH1 G C SNP 1.2

616 HPV16 chr9 139391328 NOTCH1 G C SNP 1.5

616 HPV16 chr9 139391547 NOTCH1 G A SNP 1.1
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Plasma

Duplex consensus sequencingb Mutect2c VarScand Summary 
plasmae

ALT_
reads

REF_
reads

ALT_
reads_
total

REF_
reads_
total

P-value VAF TLOD VAF P-value

NA NA NA NA NA 3.3 216.62 4.18 6.66E-52 Confirmed

NA NA NA NA NA 2.1 222.39 1.52 1.26E-15 Confirmed

96 1268 98 15176 2.4E-223 NA NA NA NA Confirmed

NA NA NA NA NA 6.9 1072.56 7.78 2.14E-102 Confirmed

64 656 64 12006 0 NA NA NA NA Confirmed

150 1220 155 14603 5.44193546268299e-319 NA NA NA NA Confirmed

NA NA NA NA NA 1.9 338.48 2.04 5.27E-34 Confirmed

NA NA NA NA NA 1.8 60.46 0.31 0.004643 Confirmed

0 422 2 13385 1 NA NA NA NA Not confirmed

0 464 4 14274 1 NA NA NA NA Not confirmed

0 433 1 12344 1 NA NA NA NA Not confirmed

0 324 1 10557 1 NA NA NA NA Not confirmed

0 387 7 13540 1 NA NA NA NA Not confirmed

NA NA NA NA NA ND ND ND ND Not confirmed

NA NA NA NA NA ND ND 0.09 0.60479 Not confirmed

0 347 5 12030 1 NA NA NA NA Not confirmed

0 481 12 15006 1 NA NA NA NA Not confirmed

2 322 19 11195 0.091133 NA NA NA NA Not confirmed

0 482 7 17297 1 NA NA NA NA Not confirmed

1 216 11 13565 0.149449 NA NA NA NA Not confirmed

NA NA NA NA NA 1.1 132.58 0.94 4.67E-12 Confirmed

0 210 2 13574 1 NA NA NA NA Not confirmed

2 195 6 15380 0.001269 NA NA NA NA Confirmed

0 304 5 13271 1 NA NA NA NA Not confirmed

2 371 4 14985 0.001243 NA NA NA NA Confirmed

0 126 0 14058 1 NA NA NA NA Not confirmed

0 140 2 15240 1 NA NA NA NA Not confirmed

0 170 1 14532 1 NA NA NA NA Not confirmed

0 144 1 15889 1 NA NA NA NA Not confirmed

NA NA NA NA NA ND ND ND ND Not confirmed

0 163 3 14407 1 NA NA NA NA Not confirmed

2 113 6 11090 0.000818 NA NA NA NA Confirmed

0 183 1 14531 1 NA NA NA NA Not confirmed

0 165 0 13568 1 NA NA NA NA Not confirmed

0 255 6 17133 1 NA NA NA NA Not confirmed
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Supplementary Table 1. (continued)

Tumor

Sample HPVa Chromosome Position Gene REF ALT Variant_Type VAF

616 HPV16 chr12 49427912 KMT2D C T SNP 11.2

617f HPV16 - - - - - - -

618 NA chr17 7578550 TP53 G T SNP 71.2

619 Negative chr17 7577568 TP53 C A SNP 43.2

623 NA chr17 7578457 TP53 C A SNP 73

625 HPV16 chr2 202151270 CASP8 C T SNP 16.5

626 NA chr4 187557993 FAT1 CA C DEL 20.9

626 NA chr9 139409854 NOTCH1 T A SNP 32.4

626 NA chr17 7577141 TP53 C T SNP 17.1

626 NA chr17 7578406 TP53 C T SNP 17.9

627 HPV16 chr12 49421581 KMT2D C T SNP 9.3

627 HPV16 chr12 49421705 KMT2D C A SNP 11.8

628 Negative chr3 178936091 PIK3CA G A SNP 39.9

628 Negative chr4 187522492 FAT1 C T SNP 11.7

628 Negative chr4 187584620 FAT1 T A SNP 41.4

628 Negative chr4 187584621 FAT1 GT G DEL 41.5

628 Negative chr9 139402593 NOTCH1 T A SNP 31.1

628 Negative chr17 7578448 TP53 G GC INS 87.3

629 NA chr4 187524787 FAT1 G GA INS 1.4

629 NA chr9 21971155 CDKN2A G A SNP 50.5

629 NA chr17 7577144 TP53 A G SNP 35.1

629 NA chr17 7577518 TP53 T A SNP 29.9

632 NA chr9 21971111 CDKN2A G A SNP 40.2

632 NA chr17 7578275 TP53 G A SNP 33.1

633 Negative chr4 187584558 FAT1 C CA INS 31

633 Negative chr4 187584563 FAT1 G T SNP 30.5

633 Negative chr9 21974506 CDKN2A CA C DEL 33.5

633 Negative chr9 21974508 CDKN2A G T SNP 33.6

633 Negative chr9 21974712 CDKN2A TG T DEL 19.3

633 Negative chr17 7578474 TP53 CG C DEL 28.9

635 Negative chr4 153332667 FBXW7 C A SNP 32.9

635 Negative chr17 7579415 TP53 C T SNP 59.6

636 NA chr3 178952085 PIK3CA A G SNP 18.6

636 NA chr4 153247376 FBXW7 T C SNP 18.5

636 NA chr4 187530963 FAT1 CA C DEL 16.9
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Plasma

Duplex consensus sequencingb Mutect2c VarScand Summary 
plasmae

ALT_
reads

REF_
reads

ALT_
reads_
total

REF_
reads_
total

P-value VAF TLOD VAF P-value

4 216 10 15945 1.75E-06 NA NA NA NA Confirmed

- - - - - - - - - Not confirmed

6 612 9 14838 5.61E-09 NA NA NA NA Confirmed

2 1533 3 16462 0.004922 NA NA NA NA Confirmed

12 367 14 15080 3.96E-25 NA NA NA NA Confirmed

4 731 10 13830 0.000399 NA NA NA NA Confirmed

NA NA NA NA NA 4.7 453.32 8.91 5.96E-179 Confirmed

4 170 6 14201 1.36E-08 NA NA NA NA Confirmed

0 121 4 13023 1 NA NA NA NA Not confirmed

3 166 17 14653 0.000601 NA NA NA NA Confirmed

0 1236 11 15745 1 NA NA NA NA Not confirmed

0 1168 2 16701 1 NA NA NA NA Not confirmed

0 433 2 13385 1 NA NA NA NA Not confirmed

0 471 1 14549 1 NA NA NA NA Not confirmed

0 451 4 14477 1 NA NA NA NA Not confirmed

NA NA NA NA NA ND ND ND ND Not confirmed

0 444 0 13747 1 NA NA NA NA Not confirmed

NA NA NA NA NA 0.7626 31.98 0.87 8.019E-11 Confirmed

NA NA NA NA NA ND ND ND ND Not confirmed

0 159 10 10428 1 NA NA NA NA Not confirmed

1 163 20 12931 0.215525 NA NA NA NA Not confirmed

0 171 7 17345 1 NA NA NA NA Not confirmed

1 380 13 13836 0.287541 NA NA NA NA Not confirmed

0 352 7 14671 1 NA NA NA NA Not confirmed

NA NA NA NA NA 0.9012 58.27 1.9 3.008E-33 Confirmed

3 397 4 16803 2.3E-06 NA NA NA NA Confirmed

NA NA NA NA NA 1.9 323.12 3.31 6.245E-65 Confirmed

7 401 12 19367 2.54E-11 NA NA NA NA Confirmed

NA NA NA NA NA ND ND 1.41 5.878E-23 Not confirmed

NA NA NA NA NA 2.7 137.49 1.74 5.085E-28 Confirmed

14 432 17 15659 8.99E-27 NA NA NA NA Confirmed

20 459 24 17860 7.17E-39 NA NA NA NA Confirmed

1 303 8 12762 0.156577 NA NA NA NA Not confirmed

0 300 1 13574 1 NA NA NA NA Not confirmed

NA NA NA NA NA ND ND ND ND Not confirmed
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Supplementary Table 1. (continued)

Tumor

Sample HPVa Chromosome Position Gene REF ALT Variant_Type VAF

636 NA chr9 21970971 CDKN2A G T SNP 36.9

636 NA chr9 139412297 NOTCH1 C T SNP 38.1

636 NA chr17 7578517 TP53 G A SNP 9.7

639 Negative chr4 187525704 FAT1 C T SNP 12.6

639 Negative chr17 7577538 TP53 C A SNP 27.6

640 HPV16 chr9 139413166 NOTCH1 C A SNP 2.2

640 HPV16 chr17 7578555 TP53 C G SNP 4.7

642 NA chr17 7577545 TP53 T C SNP 18.2

647 NA chr14 23450536 AJUBA C CT INS 59.7

647 NA chr17 7579380 TP53 AGG A DEL 60.7

649 NA chr3 178952085 PIK3CA A G SNP 61.1

649 NA chr14 23451340 AJUBA T TC INS 57.7

649 NA chr17 7578474 TP53 C CG INS 50.5

Abbreviations: ALT, alternative sequence; DEL, deletion; HPV, human papillomavirus; INS, insertion; NA, not applicable; ND, not detected; 
REF, reference sequence; SNP, single-nucleotide polymorphism; VAF, variant allele frequency
a. HPV status only determined in oropharynx tumors. 
b. Detection of SNPs: comparison of mutant fractions in patient under investigation (first two columns) versus control (all other samples; 
third and fourth column) after duplicate removal. P-value was calculated using a two-sided Fisher’s exact test. See also Supplemental 
Methods. 
c. Detection of small insertions or deletions: default settings of GATK Mutect2 were used. TLOD represents the log odds that an altered 
allele exists. 
d. Detection of small instertions or deletions: used settings of VarScan (SNP and indel): min-coverage 100, min-reads2 2, min-var-freq 
0.00001, p-value 0.9, strand-filter 0. 
e. Somatic mutation is considered confirmed when confirmed by DCS (SNP) or Mutect2 AND VarScan (insertion or deletion). 
f. No somatic mutations present in primary tumor
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Plasma

Duplex consensus sequencingb Mutect2c VarScand Summary 
plasmae

ALT_
reads

REF_
reads

ALT_
reads_
total

REF_
reads_
total

P-value VAF TLOD VAF P-value

0 301 0 13523 1 NA NA NA NA Not confirmed

0 274 10 11901 1 NA NA NA NA Not confirmed

0 348 22 15437 1 NA NA NA NA Not confirmed

11 335 15 13802 1.84E-19 NA NA NA NA Confirmed

34 448 35 17506 1.66E-93 NA NA NA NA Confirmed

0 207 0 12577 1 NA NA NA NA Not confirmed

0 241 0 14407 1 NA NA NA NA Not confirmed

0 377 7 17283 1 NA NA NA NA Not confirmed

NA NA NA NA NA 4.4 220.42 2.82 3.509E-44 Confirmed

NA NA NA NA NA 6 796.58 4.31 2.147E-68 Confirmed

48 1491 55 13950 3.45E-66 NA NA NA NA Confirmed

NA NA NA NA NA 3.3 278.34 3.3 1.473E-58 Confirmed

NA NA NA NA NA 1.3 27.6 0.88 2.446E-11 Confirmed
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Supplementary Table 2. Detected somatic mutations in plasma of all samples without tumor knowledge criteria

Sample HPVa Chromosome Position Gene REF ALT
Variant_

Type
VAF_
DCSb

VAF_
Mutect2b

VAF_
VarScanb

Present in 
tumor?c

590 chr2 202141692 CASP8 G A SNP 2.04 1.3 1.06 No

595 chr4 153249440 FBXW7 C A SNP 2.56 5.4 7.21 Yes

595 chr5 176637946 NSD1 C G SNP 0.85 6.4 8.12 No

595 chr9 139400061 NOTCH1 G C SNP 11.11 4.5 9.76 Yes

595 chr17 7577106 TP53 G A SNP 7.41 9.1 12.16 Yes

598 chr12 49427219 KMT2D G A SNP 2.22 2 2.19 No

616 HPV16 chr2 202136245 CASP8 GCT G DEL 2.44 2.8 3.25 No

619 Negative chr9 21974792 CDKN2A G A SNP 0.51 1.2 1.22 No

626 chr4 187557993 FAT1 CA C DEL 4.76 2.9 2.83 Yes

633 Negative chr9 21974506 CDKN2A CA C DEL 2.38 1.5 1.78 Yes

635 Negative chr4 153332667 FBXW7 C A SNP 0.88 3.1 3.45 Yes

635 Negative chr9 139410512 NOTCH1 G A SNP 1.35 1.7 1.06 No

635 Negative chr17 7577559 TP53 G A SNP 2.67 2.5 3.53 No

635 Negative chr17 7578457 TP53 C T SNP 4.82 6.7 7.18 No

635 Negative chr17 7579415 TP53 C T SNP 3.23 4.2 4.62 Yes

639 Negative chr4 187525704 FAT1 C T SNP 1.12 2.7 2.54 Yes

639 Negative chr17 7577538 TP53 C A SNP 1.22 5.4 6.34 Yes

642 chr5 176721936 NSD1 TC T DEL 1.18 1.4 0.8 No

647 chr14 23450536 AJUBA C CT INS 0.67 3.2 2.38 Yes

647 chr17 7579380 TP53 AGG A DEL 3.23 3.6 4.02 Yes

649 chr3 178952085 PIK3CA A G SNP 1.13 1.3 3.16 Yes

649 chr14 23451340 AJUBA T TC INS 1.06 1.7 2.76 Yes

592 Unknownd chr12 49438644 KMT2D C A SNP 0.49 0.8342 0.74 NA

608 chr9 21971036 CDKN2A C A SNP 1.54 2.8 4.02 NA

611 Negative chr10 89717594 PTEN G C SNP 0.82 0.9901 1.16 NA

615 chr4 187524181 FAT1 C T SNP 0.89 0.9843 0.9 NA

615 chr5 176707589 NSD1 A T SNP 2.03 1.6 1.53 NA

Abbreviations: ALT, alternative sequence; DCS, duplex consensus sequencing; DEL, deletion; INS, insertion; NA, not applicable; REF, 
reference sequence; SNP, single-nucleotide polymorphism; VAF, variant allele frequency
a. HPV status only determined in oropharynx tumors.
b. Variants were considered valid when called by three pipelines and VAF ≤ 25% to remove potentially remaining germline variants. See also 
Supplemental Methods.
c. Confirmation of in plasma detected somatic mutation in primary tumor. Only reported when tumor DNA was available.
d. No material available from primary tumor for HPV analysis.
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Supplementary Table 3. Optimization of circulating tumor DNA detection by additional sequencing of primary and backup sequencing 
library

Patient CHROM POS REF ALT
ALT reads 

Plasma  
1st capture

ALT reads Plasma 
resequencing 1st 

capture

ALT reads 
Plasma 2nd 

capture on pre-
PCR backup

P-value 
Plasma 1st 

capture

P-value Plasma 
all sequenced 

captures

606 chr17 7578188 C A 2 NAa 1 0.001 0

606 chr3 178921472 G A 1 NAa 0 0.115 0.246

607 chr9 139400000 C A 2 NAa 0 0.001 0.004

618 chr17 7578550 G T 4 2 2 0 0

627 chr12 49421581 C T 0 0 2 1 0.345

627 chr12 49421705 C A 0 0 2 1 0.018

629 chr17 7577144 A G 1 NAa 0 0.23 0.348

636 chr3 178952085 A G 1 NAa 0 0.124 0.366

a. resequencing of 1st capture was not performed

Abbreviations: ALT, alternative sequence; CHROM, chromosome; NA, not applicable; POS, position; REF, reference sequence
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ABSTRACT

Purpose 
To investigate the pathobiological origin of local relapse after chemoradiotherapy, we studied genetic 
relationships of primary tumors (PT) and local relapses (LR) of patients treated with chemoradiotherapy.

Experimental design
First, low-coverage whole genome sequencing was performed on DNA from 44 biopsies of resected head and 
neck squamous cell carcinoma (HNSCC) specimens (median 3 biopsies/tumor) to assess suitability of copy 
number alterations (CNAs) as biomarker for genetic relationships. CNAs were compared within and between 
tumors and an algorithm was developed to assess genetic relationships with consideration of intratumor 
heterogeneity. Next, this CNA-based algorithm was combined with target enrichment sequencing of genes 
frequently mutated in HNSCC to assess the genetic relationships of paired tumors and LRs of patients treated 
with chemoradiotherapy.

Results 
Genetic relationship analysis using CNAs could accurately (96%) predict tumor biopsy pairs as patient-matched 
or independent. However, subsequent CNA analysis of PTs and LRs after chemoradiotherapy suggested 
genetic relationships in only 20% of cases, and absence in 80%. Target enrichment sequencing for mutations 
confirmed absence of any genetic relationship in half of the paired PTs and LRs.

Conclusions
There are minor variations in CNA profiles within different areas of HNSCC tumors and many between 
independent tumors, suggesting that CNA profiles could be exploited as a marker of genetic relationship. 
Using CNA profiling and mutational analysis of cancer driver genes, relapses after chemoradiotherapy 
appear to be partially genetically related to the corresponding PTs, but seem often genetically unrelated. 
This remarkable observation warrants further studies and will impact therapeutic innovations and prognostic 
modeling when using index tumor characteristics.
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INTRODUCTION

Head and neck squamous cell carcinomas (HNSCC) are among the most common incident cancers worldwide, 
with more than 600,000 newly diagnosed cases each year1,2. HNSCC arises in the mucosal lining of the upper 
aerodigestive tract encompassing the oral cavity, oropharynx, hypopharynx, and larynx. Most tumors arise in 
the oral cavity (30%–40%), followed by the larynx (30%–35%)3. Classic risk factors for HNSCC are smoking and 
excessive alcohol consumption. Also, patients with inherited genetic predispositions such as Fanconi anemia 
have an increased risk for HNSCC4. For tumors arising in the oropharynx (OP) infection with high-risk human 
papillomavirus (HPV), in particular HPV16, is a more recently emerged risk factor5,6.

Unfortunately, the majority (~60%) of patients with HNSCC present with advanced stage disease, meaning 
that the malignancies have invaded neighboring anatomic structures and/or have spread to the lymph nodes 
in the neck. Clinical management of these patients consists of surgery followed by postoperative (chemo)
radiotherapy, locoregional radiotherapy, or concurrent chemoradiotherapy with surgical salvage for residual 
or relapsed cancers. Upfront chemoradiotherapy is applied when surgical resection is considered too invasive, 
the tumor is deemed very sensitive to nonsurgical modalities or when severe problems with swallowing and 
speech are expected after surgery. This multimodality approach has led to improved outcomes in terms of 
quality of life in patients with advanced stage disease, but prognosis still leaves much to be desired2,7. The 
most critical event in the course of the disease is the development of local relapses (LR)7-10. After definitive 
treatment with concurrent chemoradiotherapy, the local failure rate at 3 years of follow-up is between 15% 
and 50%7,11,12.

There are several pathobiological origins for LRs13,14. A local relapse is clinically defined as a lesion that 
develops within 3 years after and within 2 cm from the treated primary tumor, relapses developing spatially or 
temporally more distinct are considered to be second primary tumors (SPT)15. Our current knowledge on the 
pathobiological mechanisms of the development of relapses is mainly based on molecular studies of resected 
oral tumors and their surgical margins13,14,16. Two mechanisms seem to play a role. First, even when the surgical 
margins are histologically diagnosed as tumor-free, tumor cells may have remained behind, also called 
minimal residual cancer (MRC), and these could give rise to an LR. A genetic relationship between tumor and 
LR is then expected. Second, fields of preneoplastic cells that preceded and surrounded the primary tumor 
might stay behind unnoticed after tumor excision, and develop in LRs. These LRs have also been depicted 
as “second field tumors” (SFT)13,14,16. When studied for genetic alterations, these second field tumors share 
the early changes with the index tumor, such as TP53 mutations, CDKN2A mutations and 9p losses, but not 
the late changes. Finally, patients with HNSCC are also at risk for second primary tumors, and as these often 
originate independently from the index tumor, no genetic relationship is expected.

To date, the genetic origin of local relapse after chemoradiotherapy has not been studied very well, and we 
wondered which mechanisms might play a role. As surgical margins are not available from these patients, the 
studies have to rely on genetic characterization of the index tumors and local relapses to investigate genetic 
relationships. Caveats in these analyses are both intratumor genetic heterogeneity, which can be determined 
by multiple biopsies or single-cell analyses, and treatment-induced genetic changes.

Recent research has demonstrated a role for intratumoral genetic heterogeneity in HNSCC development and 
progression17-19, which may indeed contribute to LR20. Therefore, genetic assays to study genetic relationships 
that are validated by analyzing multiple biopsies of primary tumors, would be of great value to study genetic 
relationships between index tumors and LRs. Both chromosomal changes and point mutations in bona 
fide cancer driver genes can be used as markers of genetic relationship. Chromosomal changes are easiest 
determined, but their discriminating power to assess genetic relationships is more limited. Algorithms that 
consider chromosome breakpoints and other genetic changes in HNSCC often relate to losses of complete 
chromosome arms, and are consequently comparable in many different tumors, losing discriminative power. 
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Somatic mutations in cancer driver genes are therefore considered to be most accurate markers to assess 
genetic relationships as they are very unique21,22. However, low-quality DNA from formalin-fixed paraffin-
embedded (FFPE) specimens and PCR errors may cause false positive findings, sometimes with a high variant 
allele frequency (VAF), which could hamper the interpretation of the data. Therefore, a combination of both 
approaches might be the preferred strategy to assess genetic relationships.

The aims of this study are to evaluate copy number alterations (CNAs) as biomarker of genetic relationship 
by studying intratumor genetic heterogeneity using multiple spatially distinct biopsies obtained from 
individual tumors. Second, genetic relationships between LRs and index tumors in patients treated with 
chemoradiotherapy were investigated with this approach, and findings extended with mutation analysis of 
head and neck cancer driver genes.

MATERIALS AND METHODS

Tumors analyzed to develop a CNA-based algorithm tumor
To study the suitability of copy number alterations to assess genetic relationships we had to take into account 
intratumor genetic heterogeneity within distinct samples from one tumor (intratumor) and comparable 
alterations (e.g., frequent 3p losses) between different tumors (intertumor). We therefore collected and 
analyzed 44 biopsies from 13 resected primary oral tumors (3–5 biopsies/tumor). The samples were obtained 
from the resection specimen available at the department of Pathology at Amsterdam UMC (Amsterdam, 
the Netherlands), location VUmc, or at the University Hospital Parma (Parma, Italy), and were snap-frozen. 
All primary tumors were large enough to allow for widely spaced biopsies; care was taken to avoid areas of 
necrosis and ulceration; all sampled areas were documented histologically. None of the patients had received 
treatment prior to definitive surgery.

Tumors and relapses of chemoradiotherapy-treated patients for assessment of genetic 
relationships
We included all patients who developed an LR after cisplatin-based chemoradiotherapy with curative intent 
for an advanced stage HPV-negative oropharyngeal, hypopharyngeal, or laryngeal squamous cell carcinoma 
at Amsterdam UMC, location VUmc, between 2009 and 2014. Criteria for LR were residual or recurrent tumor 
within 2 cm from and within 3 years after the index tumor. All patients were evaluated by medical history, 
physical examination, examination under general anesthesia/panendoscopy, and imaging (e.g., CT and/or 
MRI), staging was according to the 7th edition of the American Joint Committee on Cancer staging manual. 
Only HPV-negative OPSCC tumors were included, determined by p16 immunohistochemical (IHC) staining as 
described by Smeets and colleagues23. Patients received intensity modulated radiotherapy (IMRT) concurrent 
with cisplatin (100 mg/m2 every 3 weeks), with a curative intent.

In total, 113 patients with an HPV-negative oropharyngeal, hypopharyngeal, or laryngeal squamous cell 
carcinoma were treated within the given timespan with curative-intent chemoradiation at our clinic. In total, 
20 (17.7%) of these 113 patients developed a local relapse (12) according to the clinical criteria described above 
or a regional relapse in the neck (8). From the 10 of 12 patients with an LR, we could retrieve the paired FFPE 
biopsies from the pathology archive. Clinical characteristics and follow-up period of the patients of whom the 
tumor and LRs were analyzed did not significantly differ from patients who developed a regional relapse or 
of whom tumor–LR pairs could not be analyzed (Supplementary Table 1). FFPE material with sufficient tumor 
purity, assessed by inspection of the hematoxylin/eosin–stained slide, was used for DNA isolation. When 
required, tumor percentage was enriched by macrodissection and was between 45% and 90%. Definitive 
tumor purity was estimated by ACE (see below).
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Ethical approval
Studies were carried out in accordance to the Declaration of Helsinki. According to the decisions of the 
Institutional Review Board and when patients consented, these studies were performed following the 
guidelines of the Code of Conduct for Human Tissue and Medical Research (https://www.federa.org/codes-
conduct) and the EU General Data Protection Regulation.

Whole-genome low-coverage sequencing for copy number alterations
Genomic DNA was obtained from the snap-frozen samples using the Life PureLink Kit (Thermo Fisher 
Scientific) and from the FFPE samples with either the Life PureLink Kit or the QIAamp DNA Micro Kit (Qiagen). 
DNA yield was analyzed on a Qubit 2.0 (Thermo Fisher Scientific). In total, a minimum of 200 or 250 ng 
DNA from snap-frozen or FFPE material, respectively, was used as input for library preparation. First, DNA 
was sheared on a Covaris S2 (Covaris). Library preparation for DNA isolated from FFPE was conducted using 
the TruSeq Nano Kit (Illumina), following the manufacturer’s instructions. In short, sheared DNA was end-
repaired, the 3’ ends were adenylated, indexed adapters were ligated, and the library was amplified with 10 
PCR cycles. Libraries of DNA from frozen specimen were prepared with SOLiD reagents (Applied Biosystems) 
and amplification with 12 PCR cycles. The quality of the libraries was verified on a Bioanalyzer DNA 7500 chip 
(Agilent Technologies). Whole-genome sequencing libraries of 20 (FFPE) or 24 (fresh frozen) samples were 
pooled equimolarly and sequenced on a single lane of a HiSeq 2500 (Illumina) in a single-read 50-cycle run 
mode (SR50). Raw sequencing reads were mapped to the human reference genome (build GRCh37/hg19) 
with BWA24. Data analysis was performed using the “QDNAseq” R package (version 1.16.0)25. Data were filtered 
against a blacklist of regions known to be germline copy number variants26, and log2 ratios were median-
normalized and segmented with the Circular Binary Segmentation algorithm27. Estimates of tumor purity and 
absolute copy numbers were obtained through the “ACE” R package (version 0.99.6). Calling of the segments 
was done using CGHcall (version 2.42.2)28.

Algorithm development to assess genetic relationships by low-coverage NGS
The segmented data of CGHcall were used to compare copy number profiles. To compare copy number profiles 
and take the specific breakpoints into consideration, we calculated the log-likelihood ratio (LLR) using the 
“Clonality” R package (version 1.28.0), which quantifies the likeliness of two tumors being clonally related29. In 
addition, we did a correlation analysis of segments as described by Sie and colleagues30. Significance of both 
the LLR and correlation score for discriminating pairs and nonpairs was assessed by a permutation test. Under 
the null-hypothesis, the scores (LLR or correlation) of pairs and nonpairs are exchangeable. Therefore, we 
created a permutation null-distribution for the difference in mean score between pairs and nonpairs, where 
the pairs were created by permutation of the sample profiles. The P value for the observed difference in mean 
scores was then computed using this null-distribution.

Calculation of both assays were plotted in 2D and the optimal cutoff determined to define genetic relationships. 
We used the multi-biopsied OSCC samples to develop a classification model for genetic relatedness. For 
evaluating the performance of the predictive model, leave-2-out cross-validation (CV) was used as other 
analyses such as bootstrapping demand larger sample sizes. For evaluation by CV, it is essential that the left-
out samples are completely independent of the training samples. Because biopsies from the same patient 
are related, we did not perform CV on the pairs, but in fact on the patients. In short, all samples of 2 patients 
were left out for testing. The profiles of all remaining patients were used for training the logistic regression 
model with the pairing indicator as response variable and LLR and correlation score as covariates. The model 
was then applied to all paired and nonpaired samples of the two left-out patients, and this was repeated for 
all possible sample couples. The predicted probability scores and true pairing indicators were then used to 
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produce the ROC–curve31, and the corresponding AUC. The optimal cutoff was determined by the highest 
sensitivity and specificity combination using the Youden index32. This threshold was applied to the testing 
cohort to test the performance of the model.

Target enrichment sequencing for mutations
In addition, mutation analysis of the index tumors and relapses of chemoradiotherapy-treated patients was 
performed. We selected a panel of 12 cancer driver genes which are frequently altered in HNSCC according 
to TCGA data (Supplementary Table 2)33. The sequencing libraries as described above were used for target-
enrichment using the SeqCap EZ (Roche) protocol. We aimed for equimolar pooling of 50 ng of all twenty 
samples to a combined DNA amount of 1 μg. Because of low yields in some samples, input of individual 
samples ranged from 6.6 to 83.1 ng, which obviously impacted coverage. The library was hybridized to the 
SeqCap Oligo Pool. Streptavidin beads were used to capture the complex of oligos and DNA fragments, 
and unbound fragments were washed away. The captured fragment pool was amplified by 14 PCR cycles, 
and sequenced on a single lane of a HiSeq 2500 (Illumina) in a paired-end 150-cycle run mode (PE150). Raw 
sequencing data were mapped to the human genome (build GRCh37/hg19) with BWA and duplicate reads 
were marked for removal using Picard (http://broadinstitute.github.io/picard). Variants were called using 
multiple tools, including GATK MuTect234 and Samtools mpileup35 with VarScan 236. To assess mutations, 
we required a minimum coverage of 70 unique reads. We filtered all variants with a frequency higher than 
0.01% in the European population of the 1000 Genome Project cohort37. In addition, we manually filtered 
variants that were apparent in both the primary and the relapse with a VAF of around 50%, independent of 
the tumor purity (germline SNPs). Estimated tumor purity, absolute copy numbers (computed with ACE), and 
VAF obtained with MuTect2 was used for calculation of the 95% confidence interval (CI) of the VAF and the 
absolute number of variant (mutant) alleles (aVA) in the tumor genome. To determine the genetic relation of 
primary and relapse, we looked at the cooccurrence of variants found in the primary, which were present in at 
least 33.3% of the tumor-derived alleles as determined by ACE, implying that the variant occurs in the larger 
part of the tumor cell population. Furthermore, we reviewed each variant manually using the IGV viewer to 
ensure that no false positives were called by the algorithms. Finally, variants that appeared to be specific for 
either the primary tumor or the relapse sample were cross-checked for low coverage reads to ensure that 
minor subclones in either the index tumor or relapse were not missed.
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Figure 1. Classification of sample pairs based on comparison of CNAs. 
A, Validation data of the model: x-axis reflects the log likelihood ratio of a tumor pair, y-axis the correlation of segments. Black solid line 
indicates the classification cutoff with the 95 CI in dotted lines. The circles represent sample pairs of the same tumor (genetically related), 
and the X signs are independent sample pairs. B, AUC curve of our genetic relationship algorithm, with our optimal cut-off point. C, The 
CNA-based classification model was applied on primary tumor and LR samples of patients treated for cure with chemoradiotherapy. The 
pairs indicated as black dots are classified by our algorithm as genetically related, those indicated as black triangles as genetically unrelated.

RESULTS

Genetic relationship analysis by copy number profiles
As a first step, we developed and tested an algorithm for assessing genetic relationships on basis of copy 
number alterations, taking intratumoral genetic heterogeneity into account. We collected multiple biopsies 
of surgical specimen and isolated DNA. We performed whole-genome low-coverage sequencing to generate 
copy number profiles for 44 samples of 13 patients. Similarity of profiles was assessed by (i) the calculation 
of a LLR, which is based on the concordance of gains and losses in two samples and (ii) a correlation score of 
segments of all intra- and interpatient combinations of tumor pairs. Calculations of the two methods were 
plotted in a 2D graph. We made a total number of 946 comparisons, of which 56 were intratumor comparisons 
and 890 intertumor comparisons. The patient-matched intratumor comparisons had a higher mean correlation 
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coefficient (0.83 ± 0.18 vs. 0.25 ± 0.18) and a higher mean log-likelihood ratio (17.3 ± 21.7 vs. −5.5 ± 3.5) than 
the comparisons between different tumor pairs. Both means differed significantly (P < 0.001) analyzed by 
permutation test (10,000 iterations). To classify sample pairs as genetically related or genetically unrelated, 
we used a logistic regression model analysis on the basis of the LLR and the correlation score together. The 
probability of genetic relation by CNA profiles could be predicted by the equation: −13.11 + 19.87 (correlation 
score) + 0.50 (LLR) in our training cohort. Across patients, the AUCs ranged from 93% to 100%, as assessed by 
comparing biopsy couples within a given patient with couples when biopsies were from different patients. 
An optimal cutoff at P(Y) > 0.094 was determined by the highest combination of sensitivity and specificity 
(Youden index) of the classification. Both the correlation score and LLR were significant predictors of genetic 
relationship (P < 0.001). Our model could identify sample pairs in our testing cohort as being biopsies from the 
same tumor with a sensitivity of 95%, a specificity of 96%, and an overall accuracy of 96% (Figure 1A and B).

Copy number profiles of primary tumors and local relapses after chemoradiotherapy
Because the developed algorithm using CNAs appeared to be sufficiently accurate to investigate genetic 
relationships within tumors and between independent tumors, we studied paired primary tumors and local 
relapses of chemoradiation-treated HNSCC patients likewise. From a consecutive cohort of 113 patients with 
HPV-negative tumors treated with chemoradiotherapy between 2009 and 2014, 20 cases developed a local or 
regional relapse within a median follow-up time of 35.7 months (1.05–85.3; Supplementary Table 3). In 10 of 
12 cases with a local relapse, the paired biopsies could be retrieved from the pathology archive. The studied 
cohort of these 10 cases with local relapse consisted of predominantly male patients (80%) all with locally 
advanced disease (T3–T4), 60% of whom had a primary tumor in the oropharynx (all HPV-negative). On the 
basis of imaging during follow-up, two patients were diagnosed with residual disease after treatment, which 
was confirmed by histopathologic assessment of a biopsy or the specimen after salvage surgery (Table 1). 
In the remaining 8 patients, locoregional control seemed achieved but relapses occurred nonetheless. The 
median time to diagnosis of residual or recurrent disease, both considered as local relapses, was 8.2 months 
(5.8–35.1). As expected for patients with relapsed HNSCC, they had a poor overall survival.

From both primary tumors and local relapses, copy number profiles were established by low-coverage whole-
genome sequencing. The copy number profiles showed the characteristic alterations for HNSCC with losses 
and gains at 3p, 8p, 9p, and 11q. Furthermore, a high frequency of amplifications and gains was observed in 
regions containing PIK3CA (85%), EGFR (65%), and CCND1 (60%; Figure 2).

We applied the genetic relationship algorithm described above to the corresponding pairs of primary tumors 
and relapses. Primary tumor and relapse of two patients were designated by the algorithm as genetically 
related, VUMC0905 and VUMC1406, while the eight other pairs were identified as genetically unrelated, 
although two were borderline and within the 0.95 CI of the cut-off value (Figure 1C).

The result that six or maybe even eight of the local relapses in chemoradiotherapy-treated patients seemed 
not genetically related to the index tumors by copy number profile analysis was unexpected. This could imply 
that despite the results reported above, CNA profiling is less suited for assessment of genetic relationships 
of index tumors and LRs after chemoradiotherapy, also because the biological context is very different. 
Therefore, we decided to complement the data by mutation analysis of genes commonly mutated in HNSCC 
and that are assumed cancer driver genes (Supplementary Table 2). All 10 paired tumor and relapse samples 
were sequenced at a median sequencing coverage of 527×, but with a large range (19 – 3,790) depending on 
the sample quality and nucleotide position. In one sample, DNA quality was too poor and coverage too low to 
pass our quality checks, and we lost that pair for mutation analysis, but it was convincingly genetically related 
by copy number analysis. In the nine remaining tumor pairs, sequence variants were found in 10 of 12 tested 
genes, and the median number of variants were 4 (0–8) and 3 (2–8), in respective primary tumors and relapses.
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Table 1. Patient characteristics

General characteristics Primary tumor Treatment primary tumor Relapse

Patient ID Age Sex Sitea TNM stage
Disease 

stage
RT dose 

(Gy)b

Cisplatin dose 
(mg/m2)

Typed Interval 
(months)

Cohort

VUMC0905 63 M LA T3N2cM0 IVA 70 300 Rec 8.2 CRT cohort

VUMC0923 64 M OP T4bN1M0 IVB 70 300 Rec 11.5

VUMC1004 62 M HP T3N2bM0 IVA 70 300 Rec 35.1

VUMC1102 76 F HP T4bN0M0 IVB 70 300 Rec 6

VUMC1122 43 F OP T4aN2cM0 IVA 70 300 Res 6.3

VUMC1123 62 M OP T4aN2bM0 IVA 70 100 Rec 16.6

VUMC1322 64 M OP T3N2bM0 IVA 70 100c Res 5.8

VUMC1406 56 M HP T3N2cM0 IVA 70 300 Rec 6.3

VUMC1417 66 M OP T3N1M0 III 70 280 Rec 26.4

VUMC1419 71 M OP T4aN0M0 IVA 70 280 Rec 17.2
Cohort for training and 

validation of CNA algorithm
ITGH_3 68 M OC T1N0M0 I NA NA NA NA

ITGH_4 80 M OC T4aN2bM0 IVA NA NA NA NA

ITGH_5 64 M OC T4aN0M0 IVA NA NA NA NA

ITGH_6 69 M OC T4aN2bM0 IVA NA NA NA NA

ITGH_7 67 M OC T4aN1M0 IVA NA NA NA NA

ITGH_10 53 F OC T4aN2cM0 IVA NA NA NA NA

ITGH_14 62 M OC T4aN0M0 IVA NA NA NA NA

ITGH_15 72 F OC T4aN2bM0 IVA NA NA NA NA

NPR_201 73 M OC T4aN0Mx IVA NA NA NA NA

NPR_202 66 M OC T4aN2bMx IVA NA NA NA NA

NPR_203 82 F OC T4aNxMx IVA NA NA NA NA

NPR_205 89 F OC T4aN2cMx IVA NA NA NA NA

NPR_206 86 M OC T2N2bMx IVA NA NA NA NA
a. LA, larynx; OP, oropharynx; HP, hypopharynx; OC, oral cavity.
b. Cumulative dose on primary tumor.
c. Switched to carboplatin after development of adverse event.
d. Rec: clinically local recurrence; Res: clinically residual disease.

As examples, we displayed two cases in Table 2, one that we consider as genetically related and one apparently 
not. We applied the ACE algorithm on the data that corrects for stromal contamination and ploidy, and 
provides an estimate of the absolute number of alleles in the tumor cells, and the number of variant alleles. 
When we analyzed the variants with high number of absolute variant alleles (aVA) and that thus were present 
in the very large majority of the tumor/relapse cell population, we found that these were shared in case 
VUMC1406 between primary and relapse, in accordance with the result of the CNA profiling. Case VUMC1406 
had a TP53 (c.716A>G) variant that occurred in all of its tumor alleles of the primary tumor (absolute tumor 
alleles/variant alleles; 0.98/1.02) and in an equal genetic composition in the relapse. This suggests that in this 
particular case, the original population of cells in the index tumor had recurred. However, we also identified 
somatic variants in apparently a smaller fraction of tumor cells (range: 0.05%–27.9%) in either the primary 
tumor or the relapse, which likely reflects slight variations in tumor cell populations. The same was observed 
in all other cases (VUMC1122, −1419, −1102, and −1322) that showed a genetic relationship within tumor 
and relapse pairs based on one or more cancer driver mutations with a high aVA in the index tumor (Figure 2; 
Supplementary Table 4).
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In five of the nine cases, there seemed to be no relation at all between the tumor and relapse. As an example, in 
case VUMC1417 the primary tumor had two mutations in TP53, one with an aVA of 83.4% (c.1022_1023delTC) 
and one with 7.0% (c.1013A>G). The mutation with a frequency of 83.4% should certainly be considered as 
a cancer driver mutation but it lacks completely in the relapse with 2,779 reads on that position. Likewise, 
the relapse of VUMC1417 had double mutations in FAT1 and TP53, but these variants all lacked in the 
primary tumor, although it should be mentioned that the coverage in the tumor was somewhat lower on 
the respective positions but still 96, 68, 181, and 151 reads. All four remaining cases followed this pattern of 
mutually exclusive mutations: VUMC1004, −0923, −1417, and −1123. Hence, these relapses originated from 
very minor subclones in the tumor, or they had an independent genetic origin. A striking example is case 
VUMC1123 with a high VAF mutation in TP53 (c.833C>T) in the tumor, and no mutant reads in 1,495 reads on 
that position in the relapse, while the relapse had another high VAF TP53 (c.574C>T) mutation with no mutant 
reads in 984 reads on that position in the index tumor.

Table 2. Example data of variants found in two tumor pairs

Mutation

Patient Gene Type Mutation Protein change

VUMC1406 genetically 
related

AJUBA Missense c.733G>A p.G245R

AJUBA Missense c.865G>A p.G289S

KMT2D Missense c.2033C>T p.S678F

KMT2D Missense c.8896C>T p.R2966W

NSD1 Missense c.1267G>A p.A423T

NSD1 Missense c.3034C>G p.R1012G

PIK3CA Missense c.3140A>G p.H1047R

TP53 Missense c.716A>G p.N239S

VUMC1417 genetically 
unrelated

FAT1 Frameshift_del c.8013_8016delCTTT p.FF2671fs

FAT1 Frameshift_ins c.3445_3446insA p.M1149fs

TP53 Missense c.1013A>G p.H338R

TP53 Frameshift_del c.1022_1023delTC p.F341fs

TP53 Missense c.761T>A p.I254N

TP53 Frameshift_del c.1019_1028delTGTTCCGAGA p.MFRE340fs

NOTE: Mutations found in two pairs of index tumor and relapse. Case VUMC1406 shares al its dominant variants (highlighted in bold), an 
example of genetic relatedness. All variants of case VUMC1417 are private to either the primary tumor or the relapse, suggesting that these 
are genetically unrelated.
a. VAF, variant allele frequency. Computed by MuTect2.
b. Number of copies of the region of interest.
c. Number of mutant alleles calculated with the VAF and the copy numbers of the region.
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Primary Relapse

Cellularity Coverage VAFa CNb aVAc aVA/CN(%) Cellularity Coverage VAF CN aVA aVA/CN (%)

0.84 587 2.3 1.99 0.05 2.74 0.2 747 NA — — —

0.84 546 2.3 1.99 0.05 2.74 0.2 806 NA — — —

0.84 511 4.6 2.06 0.11 5.45 0.2 671 NA — — —

0.84 324 NA — — — 0.2 737 2.3 1.69 0.22 13.2

0.84 293 7.8 2.88 0.25 8.83 0.2 807 NA — — —

0.84 339 NA — — — 0.2 733 5 1.74 0.49 27.93

0.84 267 NA — — — 0.2 861 7.4 4.25 0.91 21.32

0.84 274 75 0.98 1.02 104.13 0.2 675 10.4 0.93 0.93 99.43

0.5 96 NA — — — 0.18 3382 32.1 3.73 4.12 110.44

0.5 68 NA — — — 0.18 3290 22.8 3.73 2.93 78.45

0.5 233 3.6 2.14 0.15 6.96 0.18 2812 NA — — —

0.5 145 43.1 2.14 1.78 83.38 0.18 2779 NA — — —

0.5 181 NA — — — 0.18 3929 27.9 4.75 3.87 81.4

0.5 151 NA — — — 0.18 3619 25.4 4.75 3.52 74.1
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Figure 2. Summary of CNA and target enrichment sequencing analysis. 
A, Mutations found in index tumor and metachronous local relapse. Pairs are ordered from left to right on basis of genetic dependence (blue, 
genetically related by CNA analysis; yellow, borderline genetically unrelated; dark red, genetically unrelated). For every patient both the 
cancer gene variants in the index tumor and the relapse are shown. When the variant is shared, it is depicted in the “shared” column. Variants 
are shown when present in at least 33.3% of the tumor alleles. B, Detailed CNA profiles of index tumors and relapses. Red, copy number gains; 
blue, copy number losses.

DISCUSSION

Assessment of the genetic landscape of tumors, relapses, and metastases, is technically challenging when 
frozen specimens are not available. Often only archived FFPE tissue material is available, which gives poor 
DNA yields and quality. This negatively impacts genetic analyses as the prepared sequencing libraries are 
generated on only few DNA strands, hampering coverage and introducing more PCR errors. For CNA analysis 
this is not too problematic; only the noise will increase, which can be reduced by increasing the bin size. For 
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mutations, it is more problematic as a basic coverage of at least 30 deep is required to identify a mutation in 
10% of the tumor cells in 3 reads. Moreover, formalin fixation may cause nucleotide deamination, causing 
high sequencing error rates. These limitations can in part be overcome if mutation analysis is restricted to 
established cancer driver genes that usually show high VAFs and are biologically relevant. However, clonal 
evolution during tumor progression may impact also bona fide cancer drivers.

Although many HPV-negative HNSCC tumors share specific genomic alterations with frequent patterns 
of losses in chromosomal regions 3p and 8p, and gains in 3q, 5p, and 8q33, most tumors exhibit a unique 
combination of CNAs, particularly when breakpoints are considered. The combination of the log-likelihood 
ratio29 and the correlation of segments30 on the 44 biopsies of 13 oral cavity samples could make an accurate 
classification between different biopsies from one tumor and independent tumors using copy number 
profiles. The high accuracy (96%) of our classification model reflects the much higher degree of inter- than 
intratumoral heterogeneity, when considering copy number alterations. This result is in line with a recent 
study by Tabatabaeifar and colleagues38. Unfortunately, analysis of genetic relationships by CNA profiling 
seemed less conclusive for tumors and local relapses of chemoradiotherapy-treated patients. This might relate 
to the assay itself, but more likely it reflects the complex pathobiological origin of the relapses. Therefore, 
we extended the biomarker panel with somatic mutation analysis of the known and established HNSCC 
driver genes. When we consider mutations as gold standard, accuracy of CNA profiling is indeed less accurate 
to assess genetic relationships as it was in 6 of 9 cases correct (67%). As indicated above, this likely relates 
to the nature of the relapse after chemoradiotherapy treatment, and comparable studies to lymph node 
metastases may shed more light on this issue. Moreover, the analysis of 3-5 biopsies might not capture the 
genetic heterogeneity of a tumor completely, and we may have underestimated intratumor heterogeneity. 
Nonetheless, CNA profiles are extremely helpful to correct tumor percentages and ploidy using algorithms 
such as ACE, and provides quantitative estimates of the mutant allele numbers39.

We showed by mutation analysis that 5 of 10 relapses of chemoradiotherapy-treated patients analyzed seemed 
genetically related to the tumor based on one or more cancer driver mutations with a high frequency of 
mutant alleles. This is not unexpected as tumor cell populations may vary between tumor and relapse, which 
may relate to the extra cell divisions in relapses but which is also in line with the view that some populations 
are more resistant to particular treatments than others40.

Most remarkable are the five cases of which the relapses seemed not to be genetically related to the index 
tumor. Whether this truly refers an independent origin remains a challenging question. The availability of only 
FFPE specimen hampered DNA sequencing, and in some pairs the coverage was somewhat low. Moreover, 
chemoradiotherapy treatment might have selected resistant clones that were present in the index tumor 
but with frequencies of less than 1% or even 0.1%, and that are not picked up with the current sequencing 
coverage of a single randomly taken biopsy. Moreover, treatment may induce genetic changes, although we 
would expect additional mutations and copy number alterations, and not a disappearance. Hence, this cannot 
explain why cancer driver mutations in the primary tumor are not present in the relapse, and it does not really 
support that treatment induced changes underlie the observed phenomenon.

LRs remain a major obstacle in the success rate of HNSCC treatment. Most of our knowledge on relapses is 
based on studies performed on surgically treated OSCC13,14,16,17. Despite the high frequency of local failure, 
studies to investigate the local relapses after treatment with cisplatin-based chemoradiotherapy are scarce, 
due to the lack of available biological material in the absence of surgery. Incidence of locoregional failure after 
concurrent chemotherapy varies between 15% and 50%7,11,12. In our cohort of 113 patients, only 20 (17.7%) 
patients developed a local and/or regional relapse, of whom 12 (10.6%) had a local relapse. These numbers 
are low but still comparable to other studies on cisplatin-based concomitant chemoradiotherapy in the IMRT 
era12. Nonetheless, the relatively effective treatment in this cohort might relate to the remarkably high number 
of genetically unrelated relapses.
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We evaluated whether the applied treatment protocols played a role. Development of local recurrences from 
residual cells can be explained by insufficient treatment or an inadequate response to treatment. Patients 
receiving less than a cumulative dose of 200 mg/m2 cisplatin have a significant higher risk on developing a 
locoregional relapse41. Also, a lower total irradiation dose or greater tumor volume can potentially lead to 
the outgrowth of residual cells42. All our patients received the planned dose of 70 Gy on their primary tumor. 
However, two patients (VUMC1123 and VUMC1322) did not reach a cumulative dose of >200 mg/m2 cisplatin 
due to inacceptable nephrotoxicity, although patient VUMC1322 switched to a weekly carboplatin regiment. 
Interestingly, this somewhat less optimal primary tumor management did apparently not lead to outgrowth 
of the index tumor as the origin of the relapses of both VUMC1123 and VUMC1322 seemed genetically 
unrelated.

Several molecular mechanisms of action and resistance to chemoradiotherapy are proposed to explain 
inadequate response to treatment, and preclinical studies show many different mechanisms for resistance43. In 
HNSCC the fraction of DNA-bound platinum and genes in the DNA repair pathway (especially Fanconi anemia/
BRCA pathway) are associated with the response to treatment44,45. In clinical studies specific mutations (e.g. 
TP53, NOTCH1)42,46 or expression of specific genes (e.g., hypoxia-related genes or SDF-1 and CXCR442,47) have 
been associated with local treatment failure. These studies generally assume that the development of local 
relapses relates primarily to the outgrowth of residual tumor cells. The idea that so many relapses seem to be 
genetically unrelated to the bulk of the index tumor may impact the interpretation of these studies and could 
explain why we failed to identify clinically meaningful predictive biomarkers. A previous study by Hedberg 
and colleagues also described a case where there was no genetic relationship between the index tumor 
and the recurrence, and the authors suggested that this recurrence might have originated from a second 
independent field or developed as a true second primary tumor17. Irrespective of the precise origin of these 
genetically unrelated relapses, this observation warrants further studies. The impact is tremendous for future 
studies, as it will imply that gene profiling or radiomics studies on the bulk index tumor will not always be able 
to indicate the accurate risk for relapse. Associations may improve when the genetically unrelated relapses are 
filtered out. Also, the evaluation of novel experimental agents in clinical trials might benefit from the precise 
analysis of the relapse type that occurred. In addition, relapses may be treated as new tumors. Given these 
potential impacts, similar studies should be performed but in larger cohorts, and preferably making use of 
multiple frozen biopsies to allow ultradeep sequencing and better estimates of intratumoral heterogeneity.

Our study provides insight in the complex biology of relapsed HNSCC after chemoradiotherapy, and might 
have large consequences for prognostic modeling, the use of predictive and prognostic biomarkers and 
therapeutic innovations.
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Supplementary Table 1. Patient characteristics of local recurrences after treatment with CRT

Patient characteristics

FFPE for analysis 
available (n=10)

No FFPE for 
analysis available 

(n=10)
 

p valuea

Gender

Male (%) 8(80) 8(80)

Female (%) 2(20) 2(20) 1.00

Age, mean (SD) 62.7(8.8) 58.5(8.3) 0.29

Comorbidity score (ACE-27)

None (%) 3(30) 4(40)

Mild (%) 4(40) 5(50)

Moderate (%) 3(30) 1(1)

Severe (%) 0(0) 0(0) 0.71

Site

Oropharynx (%) 6(60) 6(60)

Hypopharynx (%) 3(30) 3(30)

Larynx (%) 1(10) 1(1) 1.00

T stage

T2 (%) 0(0) 3(30)

T3 (%) 5(50) 2(20)

T4a (%) 3(30) 2(20)

T4b (%) 2(20) 3(30) 0.25

N stage

N0 (%) 2(20) 1(10)

N1 (%) 2(20) 1(10)

N2a (%) 0(0) 1(10)

N2b (%) 3(30) 3(30)

N2c (%) 3(30) 3(30)

N3 (%) 0() 1(10) 1.00

Stage

III (%) 1(10) 1(10)

IVA (%) 7(70) 6(60)

IVB (%) 2(20) 3(30) 1.00

Chemotherapy completed

Yes (%) 8(80) 8(80)

No (%) 2(20) 2(20) 1.00

Mean cummulative dose cisplatin 
(mg/m2) 256(82.6) 278(45.7)

0.47

Radiotherapy completed

Yes (%) 10(100) 10(100)

No (%) 0(0) 0(0) 1.00

Mean cummulative dose 
radiotherapy (Gy) 70(0) 70(0)

Median survival time (95% C.I.) 1.54(.00 - 3.59) 1.99(.00 - 4.79)   0.15
a. P values were calculated with the use of t-test for continuous variables, Fisher exact test for categorical variables and log-rank-test for 
survival data test for categorical variables
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Supplementary Table 2. Genepanel of the target enrichment sequencing

Gene Mutated in HNSCC (%)a

TP53 72%

FAT1 23%

CDKN2A 22%

PIK3CA 21%

NOTCH1 19%

KMT2D 18%

NSD1 10%

CASP8 9%

AJUBA 6%

FBXW7 5%

HRAS 4%

PTEN 2%
a. According to TCGA33

Supplementary Table 3. Follow-up data on the chemoradiation cohort (n=113)

PatientID
Year of 

diagnosis
Tumor 

sitea Stage
Local/regional 

relapse
First relapseb Time to 

relapse (m)
Status

Cause of 
death

Overall Survival 
time (m)

VUMC0905 2009 LA IVA Yes Local 8.2 Death
Death with 

disease
18.5

VUMC0909 2009 OP III Yes Regional 15.5 Death Other 67.0

VUMC0918 2009 OP IVB Yes Local 9.5 Death
Death with 

disease
13.6

VUMC0921 2009 OP IVB Yes Regional 11 Death
Death with 

disease
13.5

VUMC0923 2009 OP IVB Yes Local 11.5 Death
Death with 

disease
26.7

VUMC1004 2010 HP IVA Yes Local 35.0 Death
Death with 

disease
45.0

VUMC1009 2010 LA IVA Yes Regional 9.7 Alive NA 67.9

VUMC1102 2011 HP IVB Yes Local 6.0 Death
Death with 

disease
8.5

VUMC1109 2011 HP IVA Yes Regional 6.6 Death Other 48.1

VUMC1122 2011 OP IVA Yes Local 6.2 Death
Death with 

disease
8.8

VUMC1123 2011 OP IVA Yes Local 16.6 Death
Death with 

disease
35.7

VUMC1226 2012 OP IVA Yes Regional 9.6 Death
Death with 

disease
16.6

VUMC1315 2013 OP IVA Yes Local 9.5 Death
Death with 

disease
19.2

VUMC1322 2013 OP IVA Yes Local 5.8 Death
Death with 

disease
8.3

VUMC1323 2013 OP IVA Yes Regional 5.3 Alive NA 34.9
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Supplementary Table 3. (continued)

PatientID
Year of 

diagnosis
Tumor 

sitea Stage
Local/regional 

relapse
First relapseb Time to 

relapse (m)
Status

Cause of 
death

Overall Survival 
time (m)

VUMC1402 2014 HP IVB Yes
Regional + Distant 

metastasis
17.8 Death

Death with 
disease

23.9

VUMC1406 2014 HP IVA Yes Locoregional 6.4 Death
Death with 

disease
8.3

VUMC1417 2014 OP III Yes Local 26.5 Alive NA 30.3

VUMC1419 2014 OP IVA Yes Local 17.3 Alive NA 24.8

VUMC1421 2014 HP IVA Yes Regional 5.5 Alive NA 32.1

VUMC0901 2009 HP III No NA NA Alive NA 73.7

VUMC0903 2009 LA IVB No Distant metastasis 6.7 Death
Death with 

disease
10.3

VUMC0904 2009 HP IVA No NA NA Death
Lost to follow 

up
23.5

VUMC0906 2009 HP III No NA NA Death Other 42.2

VUMC0907 2009 HP IVA No NA NA Alive NA 80.9

VUMC0910 2009 LA III No NA NA Death Other 22.4

VUMC0911 2009 HP IVA No NA NA Death Other 14.9

VUMC0913 2009 HP IVA No NA NA Death
Lost to follow 

up
34.9

VUMC0914 2009 HP III No NA NA Alive NA 81.1

VUMC0915 2009 LA III No NA NA Alive NA 84.7

VUMC0917 2009 OP III No NA NA Alive NA 76.8

VUMC0919 2009 OP IVB No NA NA Death Other 51.2

VUMC0920 2009 OP IVA No NA NA Death
Death with 

disease
1.1

VUMC0925 2009 OP IVB No NA NA Death Other 57.7

VUMC0926 2009 HP IVA No SPT 67.4 Alive NA 85.3

VUMC1001 2010 HP IVA No Distant metastasis 12.7 Death
Death with 

disease
35.9

VUMC1002 2010 HP IVA No NA NA Death
Lost to follow 

up
45.2

VUMC1003 2010 HP IVA No NA NA Alive NA 77.7

VUMC1005 2010 HP III No SPT 19.8 Alive NA 76.2

VUMC1006 2010 HP III No NA NA Alive NA 45.1

VUMC1007 2010 OP IVA No NA NA Alive NA 65.0

VUMC1008 2010 OP IVA No NA NA Death Other 7.5

VUMC1010 2010 HP IVA No Distant metastasis 5.5 Death
Death with 

disease
16.1

VUMC1101 2011 HP IVA No NA NA Alive NA 63.7

VUMC1103 2011 HP III No NA NA Alive NA 68.6

VUMC1104 2011 LA III No NA NA Alive NA 60.6
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Supplementary Table 3. (continued)

PatientID
Year of 

diagnosis
Tumor 

sitea Stage
Local/regional 

relapse
First relapseb Time to 

relapse (m)
Status

Cause of 
death

Overall Survival 
time (m)

VUMC1105 2011 OP IVA No NA NA Alive NA 63.4

VUMC1106 2011 LA III No NA NA Alive NA 35.6

VUMC1107 2011 HP IVA No NA NA Alive NA 58.0

VUMC1108 2011 HP III No NA NA Death Other 58.5

VUMC1111 2011 HP IVA No NA NA Alive NA 59.4

VUMC1112 2011 HP IVA No SPT 19.6 Alive NA 59.1

VUMC1114 2011 OP IVA No NA NA Alive NA 64.6

VUMC1115 2011 OP IVA No NA NA Alive NA 63.0

VUMC1116 2011 HP IVA No SPT 11.6 Death Other 33.6

VUMC1117 2011 OP IVA No Distant metastasis 6.0 Death
Death with 

disease
7.1

VUMC1119 2011 HP III No NA NA Alive NA 68.8

VUMC1121 2011 OP IVB No NA NA Death Other 16.5

VUMC1124 2011 OP IVA No NA NA Alive NA 58.9

VUMC1125 2011 LA IVA No NA NA Alive NA 58.2

VUMC1201 2012 OP IVA No NA NA Alive NA 58.0

VUMC1202 2012 LA III No NA NA Alive NA 57.3

VUMC1203 2012 OP IVB No SPT 53.9 Alive NA 57.6

VUMC1204 2012 OP IVA No Distant metastasis 12.1 Death
Death with 

disease
29.8

VUMC1206 2012 LA IVA No NA NA Alive NA 50.7

VUMC1208 2012 LA III No NA NA Alive NA 50.8

VUMC1209 2012 LA III No NA NA Death NA 46.9

VUMC1211 2012 OP III No NA NA Alive NA 15.4

VUMC1212 2012 OP IVB No NA NA Alive NA 53.0

VUMC1213 2012 HP IVA No NA NA Alive NA 52.0

VUMC1214 2012 HP IVA No NA NA Alive NA 49.0

VUMC1215 2012 OP IVA No NA NA Alive NA 52.0

VUMC1216 2012 HP IVA No NA NA Alive NA 49.9

VUMC1218 2012 OP IVA No NA NA Alive NA 46.2

VUMC1219 2012 OP IVA No NA NA Alive NA 59.1

VUMC1223 2012 OP IVA No NA NA Alive NA 51.8

VUMC1225 2012 OP IVB No NA NA Alive NA 44.6

VUMC1301 2013 OP IVB No NA NA Alive NA 44.2

VUMC1302 2013 OP IVA No Distant metastasis 5.9 Death
Death with 

disease
16.6

VUMC1303 2013 LA III No NA NA Alive NA 43.9

VUMC1304 2013 OP IVA No NA NA Alive NA 37.8
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Supplementary Table 3. (continued)

PatientID
Year of 

diagnosis
Tumor 

sitea Stage
Local/regional 

relapse
First relapseb Time to 

relapse (m)
Status

Cause of 
death

Overall Survival 
time (m)

VUMC1305 2013 LA IVA No NA NA Alive NA 33.3

VUMC1306 2013 OP IVA No NA NA Alive NA 34.5

VUMC1307 2013 OP IVA No NA NA Death Other 28.9

VUMC1308 2013 OP IVB No NA NA Death Other 43.6

VUMC1309 2013 OP IVA No NA NA Alive NA 42.6

VUMC1311 2013 OP IVB No Distant metastasis 4.9 Death
Death with 

disease
5.0

VUMC1312 2013 HP IVA No NA NA Alive NA 44.7

VUMC1313 2013 OP IVA No NA NA Alive NA 41.4

VUMC1314 2013 OP IVA No NA NA Alive NA 39.7

VUMC1316 2013 LA III No NA NA Death Other 39.4

VUMC1317 2013 HP IVB No NA NA Death Other 22.2

VUMC1318 2013 LA IVA No Distant metastasis 5.4 Death
Death with 

disease
26.5

VUMC1319 2013 HP IVB No NA NA Alive NA 39.5

VUMC1325 2013 LA III No NA NA Alive NA 44.0

VUMC1326 2013 HP IVA No Distant metastasis 5.8 Death
Death with 

disease
15.0

VUMC1327 2013 LA IVA No NA NA Alive NA 41.8

VUMC1328 2013 HP IVA No Distant metastasis 18.8 Alive NA 34.9

VUMC1329 2013 HP IVA No NA NA Alive NA 34.2

VUMC1403 2014 LA III No NA NA Alive NA 30.9

VUMC1404 2014 OP IVA No NA NA Alive NA 30.9

VUMC1405 2014 OP III No NA NA Alive NA 30.9

VUMC1407 2014 HP III No NA NA Alive NA 25.3

VUMC1408 2014 OP IVA No NA NA Alive NA 26.3

VUMC1409 2014 LA III No NA NA Alive NA 25.8

VUMC1410 2014 OP IVA No NA NA Death Other 14.8

VUMC1411 2014 OP IVB No Distant metastasis 8.2 Death
Death with 

disease
8.4

VUMC1412 2014 OP IVA No NA NA Alive NA 34.7

VUMC1415 2014 OP IVA No NA NA Alive NA 30.6

VUMC1416 2014 OP IVA No NA NA Alive NA 30.7

VUMC1418 2014 OP III No NA NA Alive NA 24.9

VUMC1420 2014 OP III No NA NA Death Other 10.9

VUMC1422 2014 LA IVA No NA NA Alive NA 32.9

a. LA means larynx, OP means oropharynx and HP means hypopharynx
b. SPT means Second Primary Tumor
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Supplementary Table 4. Detailed results of target enrichment sequencing

Patient Gene Mutation

Ty
pe

Lo
ca

ti
on

Pr
ot

ei
n 

ch
an

ge

Sa
m

pl
e

VUMC1406 AJUBA Missense c.733G>A p.G245R Primary

VUMC1406 AJUBA Missense c.865G>A p.G289S Primary

VUMC1406 KMT2D Missense c.2033C>T p.S678F Primary

VUMC1406 KMT2D Missense c.8896C>T p.R2966W Relapse

VUMC1406 NSD1 Missense c.1267G>A p.A423T Primary

VUMC1406 NSD1 Missense c.3034C>G p.R1012G Relapse

VUMC1406 PIK3CA Missense c.3140A>G p.H1047R Relapse

VUMC1406 TP53 Missense c.716A>G p.N239S Both

VUMC1122 CDKN2A Nonsense c.329G>A p.W110* Both

VUMC1122 FAT1 Frameshift_ins c.819_820insT p.A274fs Primary

VUMC1122 FBXW7 Missense c.925C>T p.R309C Primary

VUMC1122 KMT2D Missense c.15091C>T p.R5031C Primary

VUMC1122 KMT2D Missense c.9730G>A p.E3244K Primary

VUMC1122 NOTCH1 Nonsense c.1408C>T p.Q470* Primary

VUMC1122 PTEN Missense c.235G>A p.A79T Primary

VUMC1122 TP53 Nonsense c.916C>T p.R306* Both

VUMC1419 NOTCH1 Missense c.995G>A p.C332Y Both

VUMC1419 NOTCH1 Missense c.1154C>A p.S385Y Relapse

VUMC1419 NSD1 Missense c.2903A>G p.K968R Relapse

VUMC1419 NSD1 Missense c.5741G>A p.R1914H Relapse

VUMC1419 TP53 Missense c.707A>G p.Y236C Both

VUMC1419 TP53 Missense c.482C>T p.A161V Relapse

VUMC1419 TP53 Missense c.481G>T p.A161S Relapse

VUMC1419 TP53 Missense c.745A>G p.R249G Relapse

VUMC1102 FAT1 Frameshift_del c.9331delA p.I3111fs Both

VUMC1102 FAT1 Missense c.4841C>T p.P1614L Primary

VUMC1102 FAT1 Missense c.115T>A p.Y39N Relapse

VUMC1102 FBXW7 Nonsense c.1099C>T p.R367* Primary

VUMC1102 NSD1 Missense c.6596G>A p.R2199H Primary

VUMC1102 TP53 Missense c.638G>T p.R213L Both

VUMC1322 KMT2D In_Frame_Del
c.2088_2114delCCCCACATCCCCACC

ACCTGAGGACTC
p.696_705SPTSPPPEDS>S Primary

VUMC1322 KMT2D In_Frame_Del c.11235_11237delGCA p.Q3745del Relapse

VUMC1322 NOTCH1 Missense c.6284G>A p.R2095H Relapse

VUMC1322 TP53 Nonsense c.949C>T p.Q317* Primary

VUMC1004 AJUBA Frameshift_ins c.34_35insC p.L12fs Primary

VUMC1004 KMT2D Nonsense c.16342C>T p.R5448* Primary

VUMC1004 NOTCH1 Missense c.7210C>A p.Q2404K Relapse
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0.84 587 2.3 0.85 4.94 1.99 0.05 0.02 0.12 2.74 0.20 747 NA    

0.84 546 2.3 1.00 4.48 1.99 0.05 0.02 0.11 2.74 0.20 806 NA    

0.84 511 4.6 1.27 11.36 2.06 0.11 0.03 0.28 5.45 0.20 671 NA    

0.84 324 NA     0.20 737 2.3 0.85 4.94 1.69 0.22 0.08 0.48 13.20

0.84 293 7.8 3.41 14.73 2.88 0.25 0.11 0.48 8.83 0.20 807 NA    

0.84 339 NA     0.20 733 5 2.88 7.99 1.74 0.49 0.28 0.78 27.93

0.84 267 NA     0.20 861 7.4 5.01 10.45 4.25 0.91 0.61 1.28 21.32

0.84 274 75 65.86 83.14 0.98 1.02 0.90 1.13 104.13 0.20 675 10.4 7.14 14.54 0.93 0.93 0.64 1.30 99.43

0.37 568 63.4 57.14 69.44 3.34 4.27 3.85 4.68 128.10 0.41 146 23.1 13.15 35.50 2.89 1.33 0.76 2.05 46.08

0.37 542 41.1 34.66 47.62 2.53 2.44 2.06 2.83 96.48 0.41 181 NA    

0.37 777 2.4 0.97 4.88 2.53 0.14 0.06 0.29 5.63 0.41 172 NA    

0.37 973 33.3     0.41 329 NA    

0.37 644 2.3 0.93 4.69 3.67 0.16 0.07 0.33 4.44 0.41 267 NA    

0.37 674 15 11.25 19.46 3.34 1.01 0.76 1.31 30.31 0.41 238 NA    

0.37 781 1.5 0.55 3.24 2.34 0.09 0.03 0.19 3.68 0.41 267 NA    

0.37 838 42.1 37.57 46.76 2.81 2.62 2.34 2.91 93.08 0.41 302 11 6.00 18.10 3.17 0.67 0.36 1.09 20.99

0.63 1761 73.6 70.50 76.55 4.07 3.86 3.70 4.02 94.84 0.22 1596 25.9 22.79 29.24 2.91 2.59 2.28 2.93 88.91

0.63 1459 NA     0.22 1442 2.2 1.29 3.50 2.91 0.22 0.13 0.35 7.55

0.63 1048 NA     0.22 1189 1.4 0.64 2.64 2.71 0.14 0.06 0.26 5.06

0.63 1077 NA      0.22 1168 1.6 0.77 2.92 2.71 0.16 0.08 0.29 5.78

0.63 1155 61.5 57.47 65.41 2.13 2.03 1.90 2.16 95.37 0.22 1243 13 10.56 15.77 3.38 1.36 1.11 1.65 40.27

0.63 877 NA     0.22 1203 7 5.07 9.37 3.38 0.73 0.53 0.98 21.68

0.63 883 NA     0.22 1218 7 5.07 9.37 3.38 0.73 0.53 0.98 21.68

0.63 1059 NA               0.22 1221 8.3 6.25 10.78 3.38 0.87 0.65 1.13 25.71

0.37 1277 29.4 26.08 32.93 2.13 1.63 1.44 1.82 76.35 0.41 144 47.1 25.71 70.22 2.98 2.76 1.51 4.11 92.61

0.37 1399 31 27.85 34.27 2.13 1.72 1.54 1.90 80.50 0.41 117 NA    

0.37 1381 NA     0.41 98 23.1 7.82 45.37 2.98 1.35 0.46 2.66 45.42

0.37 1375 6.2 4.64 8.10 2.13 0.34 0.26 0.45 16.10 0.41 121 NA    

0.37 1585 1 0.52 1.74 2.17 0.06 0.03 0.10 2.57 0.41 112 NA    

0.37 1643 8.5 6.77 10.51 2.77 0.52 0.42 0.65 18.96 0.41 140 29.2 15.42 45.90 1.95 1.41 0.75 2.22 72.19

0.38 152 8.6 1.80 23.06 2.80 0.52 0.11 1.40 18.63 0.27 409 NA    

0.38 96 NA     0.27 450 2.7 0.88 6.19 2.21 0.21 0.07 0.47 9.31

0.38 119 NA     0.27 431 3.8 1.41 8.08 2.02 0.28 0.10 0.60 13.99

0.38 83 26.7 9.15 51.20 2.28 1.48 0.51 2.84 64.86 0.27 360 NA              

0.53 679 25 20.14 30.38 1.08 0.71 0.57 0.87 66.09 0.34 126 NA    

0.53 760 6.8 4.53 9.74 2.17 0.27 0.18 0.38 12.35 0.34 49 NA    

0.53 752 NA     0.34 107 17.6 6.06 36.89 4.31 1.44 0.50 3.02 33.45
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Supplementary Table 4. (continued)

Patient Gene Mutation

Ty
pe

Lo
ca

ti
on

Pr
ot

ei
n 

ch
an

ge

Sa
m

pl
e

VUMC1004 NOTCH1 In_Frame_Del
c.7162_7197delCAAAACTTACAGATG

CAGCAGCAGAACCTGCAGCCA
p.QNLQMQQQNLQP2388del Relapse

VUMC1004 NSD1 Missense c.3106G>C p.A1036P Primary

VUMC1004 TP53 Frameshift_del c.352delA p.T118fs Primary

VUMC0923 KMT2D Frameshift_ins c.6476_6477insT p.L2159fs Relapse

VUMC0923 KMT2D Frameshift_del c.1143delC p.P381fs Relapse

VUMC0923 NOTCH1 Frameshift_del
c.823_863delGGCGTGAACACCTACA
ACTGCCGCTGCCCGCCAGAGTGGAC

p.GVNTYNCRCPPEWT275fs Relapse

VUMC0923 NOTCH1 Missense c.812C>T p.A271V Relapse

VUMC0923 TP53 Missense c.734G>T p.G245V Relapse

VUMC1417 FAT1 Frameshift_del c.8013_8016delCTTT p.FF2671fs Relapse

VUMC1417 FAT1 Frameshift_ins c.3445_3446insA p.M1149fs Relapse

VUMC1417 TP53 Missense c.1013A>G p.H338R Primary

VUMC1417 TP53 Frameshift_del c.1022_1023delTC p.F341fs Primary

VUMC1417 TP53 Missense c.761T>A p.I254N Relapse

VUMC1417 TP53 Frameshift_del c.1019_1028delTGTTCCGAGA p.MFRE340fs Relapse

VUMC1123 FAT1 Missense c.1507G>A p.A503T Relapse

VUMC1123 FBXW7 Missense c.1691G>A p.R564H Primary

VUMC1123 KMT2D Missense c.16214G>A p.R5405H Primary

VUMC1123 KMT2D Missense c.15481G>A p.E5161K Primary

VUMC1123 NSD1 Missense c.5789G>A p.R1930H Primary

VUMC1123 TP53 Missense c.833C>T p.P278L Primary

VUMC1123 TP53 Nonsense c.574C>T p.Q192* Relapse

VUMC1123 TP53 Missense c.997C>T p.R333C Relapse
a. Calculated using MuTect
b. Lower limit 95% CI
c. Upper limit 95% CI
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0.53 729 NA     0.34 101 13 4.41 28.09 4.31 1.07 0.36 2.30 24.71

0.53 726 38.7 32.59 44.97 1.16 1.13 0.95 1.32 98.05 0.34 47 NA    

0.53 754 26.3 21.13 32.04 1.91 0.97 0.78 1.18 50.71 0.34 43 NA              

0.37 109 NA     0.60 147 14.7 5.57 29.17 3.08 0.65 0.25 1.29 21.06

0.37 87 NA     0.60 143 52.4 35.82 69.02 3.08 2.31 1.58 3.05 75.08

0.37 146 NA     0.60 208 3.9 1.07 9.65 3.08 0.17 0.05 0.43 5.59

0.37 191 NA     0.60 198 5.9 1.63 14.38 3.08 0.26 0.07 0.64 8.45

0.37 112 NA               0.60 136 35.7 20.82 53.78 2.76 1.46 0.85 2.20 52.94

0.50 96 NA     0.18 3382 32.1 30.33 33.91 3.73 4.12 3.90 4.35 110.44

0.50 68 NA     0.18 3290 22.8 21.17 24.49 3.73 2.93 2.72 3.15 78.45

0.50 233 3.6 0.75 10.20 2.14 0.15 0.03 0.42 6.96 0.18 2812 NA    

0.50 145 43.1 30.85 55.96 2.14 1.78 1.28 2.32 83.38 0.18 2779 NA    

0.50 181 NA     0.18 3929 27.9 26.37 29.47 4.75 3.87 3.66 4.09 81.40

0.50 151 NA               0.18 3619 25.4 23.87 26.98 4.75 3.52 3.31 3.74 74.10

0.59 654 NA     0.43 1101 1.4 0.67 2.56 2.03 0.07 0.03 0.12 3.23

0.59 1113 2.3 1.19 3.98 2.90 0.10 0.05 0.17 3.40 0.43 1187 NA    

0.59 1356 2.1 1.23 3.34 3.90 0.11 0.06 0.18 2.85 0.43 1767 NA    

0.59 1276 1 0.48 1.83 3.90 0.05 0.03 0.10 1.36 0.43 1553 NA    

0.59 1180 2 1.07 3.40 2.78 0.08 0.04 0.14 3.00 0.43 1390 NA    

0.59 1195 64.7 59.20 66.75 2.89 2.70 2.53 2.86 93.28 0.43 1495 NA    

0.59 948 NA     0.43 1191 43.8 39.70 47.98 2.10 2.08 1.89 2.28 98.97

0.59 1006 NA               0.43 1197 1.4 0.73 2.43 2.10 0.07 0.03 0.12 3.16
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Current treatment guidelines of HNSCC are largely based on disease stage according to TNM-classification, 
clinical variables such as subsite, age at diagnosis, comorbidities, and histological findings1,2. However clinical 
decision making is not precise, and tumor-related biological factors are not often considered except for 
the presence of HPV, while it is often a major determinant for treatment response and prognosis. Studies in 
this thesis and by others3-9 show that prognostic models can be developed that are able to stratify patients 
more accurately in groups with a favorable and unfavorable prognosis than TNM-staging. A more accurate 
stratification of HNSCC patients will be of value to optimize personalization of treatment and counseling of 
patients for shared decision making, as has already been shown in other types of cancer10,11.

Exemplary is the progress in OPSCC where the discovery of an etiologic role of HPV infections and the 
improved prognosis of patients with these tumors led to the development of very accurate prognostic 
models12-14 and a subsequent adaptation of the TNM-classification15. However, thus far this did not translate 
into a change in treatment policy, since chemoradiotherapy, which is typically the preferred treatment for 
OPSCC, is particularly effective for HPV-positive tumors16,17, and adaptation of this treatment regimen had a 
negative effect on survival and no lower morbidity18,19. Extrapolation of our knowledge of HPV as a causative 
and prognostic factor to other subsites of HNSCC remains uncertain. Although, it seems likely that the oral 
cavity is frequently exposed to HPV infections, the available data on HPV is limited and sometimes conflicting. 
For a large part, this may be caused by the HPV detection methods that have been applied to these tumors 
and that may be unreliable in non-oropharyngeal HNSCC. In OPSCC, the most frequently used test algorithm 
consists of p16Ink4A(p16)-immunostaining followed by PCR-based detection of high-risk HPV DNA on the 
p16-immunopositive samples. This algorithm has been rigorously validated in OPSCC20,21. Unfortunately, this 
algorithm failed in non-oropharyngeal HNSCC because of a lower sensitivity of p16-immunostaining22,23. 
Consequently, researchers relied on sensitive DNA PCR based methods, causing false positive results and 
hampering the collection of accurate data on the role of HPV in non-oropharyngeal HNSCC. Therefore, 
we developed a new test method in this thesis that combines contamination-free sample handling with 
sequential detection of HPV DNA and mRNA by PCR.

Other methods for HPV detection are on the market, most notably the RNAscope Assay24-28. This assay is based 
on RNA in situ hybridization technology to detect E6/E7 mRNA expression of seven high-risk HPV genotypes 
(HPV16, 18, 31, 33, 35, 52, and 58). This technology is directly applied to diagnostic histological sections 
which enables direct visualization of the virus in the tumor cells. Theoretically, this improves specificity of 
the assay because the results are not influenced by non-carcinogenic, mucosal infections, whereas PCR-
based techniques require nucleic acid extraction which destroys the tumor tissue hampering morphological 
correlation. Disadvantages are the costs of the assay itself and dependence on the interpretation by a 
pathologist. And although additional histological sections can be easily obtained in a prospective setting, 
sectioning of large retrospective series is time consuming and requires significant manpower. We have 
circumvented the sectioning by taking tumor core biopsies with a sterile, disposable biopsy punch using 
the H&E slide for guidance. Core biopsies are taken from tumor enriched areas which makes the risk of false 
negative results by sampling error and false positive results from a non-oncogenic infection much less likely.

Results from studies with stringent detection techniques indicate that the prevalence of HPV in non-
oropharyngeal HNSCC is very low22,23,29. Similarly, using the newly described detection algorithm, we found a 
prevalence of approximately 2% in a multicenter study of 940 oral cavity tumors, and a comparable prognosis 
of patients with HPV-positive and HPV-negative OSCC30. Therefore, although important for research, it is 
unlikely that the developed testing algorithm will be implemented for non-oropharyngeal tumors in future 
clinical practice.

It has been observed that at the molecular level HPV-positive tumors are very different from HPV-negative 
tumors31, although these results were obtained mostly from studies with OPSCCs. This implies that prognostic 
models based on DNA aberrations or gene expression profiles of HPV-negative tumor biopsies are not 
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automatically applicable to HPV-positive tumors. This may not only be true for molecular biomarkers, but 
also for radiomic prognostic models, since radiomic signatures appear to differ between HPV-positive and 
HPV-negative tumors as well32. Therefore, if molecular or radiomic prognostic models are used in the future, 
our newly developed HPV testing algorithm may be valuable to exclude the small group of tumors that are 
caused by HPV and consequently differ at the molecular level, since this may impact correct classification by 
the applied models. Of note, the newly developed HPV-rTcore workflow could be well applied for OPSCC in 
addition.

In the past, multiple prognostic models based on gene expression profiles have been evaluated for HNSCC, but 
none of these models are currently being used in clinical practice. This lack of implementation may be caused 
by the heterogeneity in patient cohorts under investigation and the lack of rigorous validation in the context 
of clinical and histopathological prognostic features. Moreover, the continuous global use of formalin fixation 
and paraffin embedding of tissue, demands the use of biomolecules isolated from an FFPE specimen to allow 
rapid and worldwide clinical implementation. Another complication is that previously published prognostic 
signatures are mostly based on microarray data that are often platform-dependent. Moreover, microarray 
technology became obsolete for expression profiling by the introduction of RNA sequencing (RNAseq). In this 
thesis, we have also developed a prognostic model based on microarray gene expression data, but in contrast 
to many other studies, we verified the findings using RNAseq datasets, transferred the platform to RT-qPCR 
and validated the gene signature by using the RT-qPCR platform. In our study, a homogeneous series of HPV-
negative oral cavity tumors was used, and detailed clinical and histopathological information was available. It 
was indeed possible to identify patients with a good and poor prognosis on top of variables that are currently 
being used in clinical decision making. This result awaits prospective validation, and could be used to select 
patients for personalized treatment in the future, but the added value was somewhat limited. The limited 
added value relates to the fact that oral cancer is typically treated by surgery, which allows investigation of 
the specimen by histopathology. The microscopic findings of margin involvement, lymph node metastasis, 
extracapsular spread, depth of invasion, and growth pattern are already strong prognostic biomarkers, leaving 
only small room for improvements. Obviously, this situation is completely different for tumors from other 
subsites that are treated by radiotherapy, chemoradiotherapy and increasingly more by immunotherapy, and 
expression profiles might have much more added value for prognosis or therapy prediction. The same holds 
true for adjuvant treatment of oral cancers by postoperative radiotherapy or chemoradiotherapy, or future 
(neo)adjuvant immunotherapy.

In our studies we also attempted to solve another important issue in OSCC: the selection of patients with 
occult lymph node metastasis, also using gene expression profiles from the primary tumor. Previously, a 
gene signature had been identified and validated using a dedicated microarray platform, which was quite 
successful with a negative predictive value (NPV) of 89%33-35. We hypothesized that a platform transition to 
RT-qPCR could increase this performance because of the better standardization and larger dynamic range 
of qPCR and it would certainly enhance clinical implementation since qPCR is a diagnostic tool that is 
routinely used in molecular pathology. Remarkably, platform transition to qPCR did not further enhance the 
performance and we found a similar NPV in our cohort. Hence, the gene profiling approach seems to meet 
intrinsic limitations for staging of the clinically N0 neck, and likely additional relevant biological factors such 
as intratumor heterogeneity and stromal contamination, need to be explored to improve predictions. As an 
alternative, sentinel lymph node biopsy (SLNB) is used for detection of occult lymph node metastasis and 
its performance is superior as was demonstrated in a large multicenter trial when compared to palpation 
with USgFNAC, the most widely used methods to stage the clinically N0 neck36. Hence, SLNB remains the 
standard next to elective neck dissection. In floor-of-mouth tumors however, the performance of SLNB is less 
convincing because the signal from the primary tumor tends to mask the signal of the first echelon lymph 
node. Moreover, SNLB demands a second surgical procedure when the SN is tumor-positive. Although it is also 



186

possible that technological improvements of the SLNB will overcome current limitations37-39, there may be a 
role for gene expression profiling40 when the performance could be improved. 

Although prediction of prognosis and presence of lymph node metastases by gene expression profiling was 
generally accurate in our study, misclassifications did occur. These misclassifications seemed to relate at least 
in part to the percentage of tumor cells in the biopsy under investigation. Traditionally, we estimated the 
surface area of tumor cells on H&E slides using a microscope. However, this method remained an estimate. 
To overcome this problem, our lab developed a new method that can more accurately determine the tumor 
percentage from DNA copy number data41. Using this method, we indeed found that the percentage of tumor 
cells was often lower than estimated. How strong this impacts prognostic accuracy remains to be determined: 
not the tumor cells but other cells in the biopsy may be important for prediction of prognosis. For instance, 
lymphocyte infiltrates may impact prognosis, and several immune profiles have been published that may 
be present in expression signatures derived from tumor biopsies42,43. An option to diminish the influence of 
tumor cell fraction is to use single cell RNA sequencing44. However, at present this technique is very technically 
challenging and expensive, and more suited to identify cells than to profile them.

Further, we need to consider that oral cancers, as a subgroup of HNSCCs, may contain subclasses of tumors 
that differ at the molecular level which may have impact on prognosis and performance of biomarkers such 
as gene expression signatures. In this respect, it has already been shown that a separate genetic subgroup of 
HPV-negative HNSCC exists with few DNA copy number alterations and a different mutational profile45 (most 
notably many are p53 wild type). This subgroup was referred to as ‘ SCNA quiet’ by the TCGA consortium and 
shown to have a favorable prognosis46. Recently we showed that also at least one cell line has been generated 
from this particular subgroup of tumors47. We have initiated a research project to more precisely define this 
group of copy number silent tumors, develop faster and easier methods for detection, as well as characterize 
them at the molecular and immunological level.

A final explanation for the misclassifications when applying gene expression profiling may be caused by 
intratumor heterogeneity, which we analyzed by studying DNA alterations in multiple biopsies of separate 
tumors. Although DNA profiles of most biopsies of a single tumor were very similar, some genetic differences 
were apparent indeed. These genetic differences may cause variance in gene expression profiles which could 
also explain incorrect predictions. Indeed, when we performed gene expression profiling of these multiple 
biopsies, we found that gene expression profiles in separate biopsies of one tumor varied significantly causing 
opposite predictions of prognosis and lymph node metastasis (unpublished data). 

Besides using molecular methods, intratumor heterogeneity may be captured by advanced analysis of 
diagnostic imaging. Traditionally, prognostic biomarkers in imaging were qualitative features scored by 
an experienced radiologist such as invasion in neighboring structures, extra-nodal extension, etc., but 
more recently biomarkers have been identified by extraction of quantitative features, an approach termed 
“radiomics”48. Often, a large part of these features focus on tumor texture, which may indeed reflect intratumor 
heterogeneity. In the past, radiomic prognostic models were published based on extracted features from 
CT49-54, but since MRI is generally the diagnostic imaging modality of choice in HNSCC55, a study in this thesis 
was focused on MRI radiomics. Since radiomic analyses use images from the entire tumor as an input for 
feature extraction, this approach may indeed capture the complete tumor phenotype and is, in theory, able to 
determine and quantify heterogeneity. Furthermore, functional imaging such as diffusion-weighted imaging 
(DWI), perfusion weighted imaging and positron emission tomography (PET) are increasingly being used in 
HNSCC56, and may be of interest for future integrated radiomic analyses by itself or combined (e.g. PET-MRI57). 
Finally, imaging is acquired non-invasively, and can be performed at multiple time points during treatment, 
which could identify minor subclones that do not respond to therapy.
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An important issue that we came across in our radiomics study is the lack of standardization between MRI 
scanners between centers and vendors. Moreover, this technique has evolved dramatically, for instance 
regarding acquisition protocols and magnetic field strength. These factors can influence radiomic features 
to some extent, which obstructs optimal usage of large historical databases and standardization in studies. 
Standardization should be a major future objective, and although challenging, it was already performed in 
PET58 imaging.

Furthermore, manual delineation of the volume of interest is time consuming and may impact radiomic 
analyses59. In our study we did not find a major impact of delineation by different observers, but automatic 
and semi-automatic delineation may decrease interobserver variability and increase the speed of analysis. 
Algorithms that show these benefits exist for tumor delineation of CT images, and have been tested in lung 
cancer60,61. However, lung cancer tissue is more easy to distinguish from the air-containing surrounding 
normal lung tissue than HNSCC from its surrounding soft tissue. Nonetheless, future studies will hopefully 
reveal similar algorithms that can be successfully applied to MRI in HNSCC. For instance, deep learning based 
segmentation has been explored in HNSCC recently62. 

Besides prediction of prognosis at baseline, post-treatment monitoring of patients could also identify high-
risk patients for relapse and detect recurrent cancer. Patients are eligible for salvage therapy when the relapse 
is detected at an early stage, but currently recurrent disease is often diagnosed at an advanced stage and 
beyond curative salvage treatment options. Currently, an intensified follow-up regimen would imply more 
frequent visits and taking biopsies from any suspicious lesion. However, this lays a burden on the patient and 
health care system especially when a biopsy is obtained under general anesthesia. Preferably, a less invasive 
screening method would be available that detects recurrent tumors at an earlier stage, and detection of 
circulating tumor DNA (ctDNA) in plasma could meet with this demand.

In this thesis, a method for ctDNA detection was developed and tested in 40 newly diagnosed patients with 
different stages of HNSCC. The results are promising since tumor DNA was detected in 78% of the patients. 
However, our results are not applicable to a follow-up situation as the patients under investigation often had 
advanced stage disease, which is likely different from occult recurrent tumor. Ideally, the sensitivity should 
be higher and the assay should at least be able to detect (almost) all advanced stage tumors. At present, this 
is clearly not the case and future alterations to the assay should be aimed to increase sensitivity. However, it 
is possible that certain tumors do not induce any ctDNA as different mechanisms of leakage of tumor DNA 
may contribute to its presence63. Small tumors may not produce apoptotic cells or circulating tumor cells64. 
Nonetheless, tumors, including small tumors, might induce up- or downregulation of other processes, and this 
activity could be detected using other tools. For instance, it is known that expression profiles of platelets are 
changed by tumor presence and these changes may already be detectable in early stage recurrent tumors65,66. 
Therefore, this technique may be even more promising.

Next to applications in follow-up, detection of ctDNA may be of interest to select patients for targeted therapy 
treatment, which is most relevant in the setting of metastatic disease. Recently, a study was published in 
metastatic lung cancer in which 30% of patients had actionable mutations in plasma. Moreover, 85.7% 
of patients who were treated based on plasma testing showed a complete or a partial response or stable 
disease67. Similar results were later described by Sabari et al.68 In general, less actionable mutations are known 
in HNSCC, but targeted approaches have been applied in recurrent/metastatic HNSCC69. For this application, 
the gene panel should be adjusted, or a commercially available kit could be used.

However, the ctDNA approach might be impacted by the observations in Chapter 6. Although fascinating, the 
molecular differences that were found between primary tumor and local recurrence after chemoradiotherapy, 
indicate that mutations or copy numbers of the primary are not suited as early biomarkers of recurrence. 
In this study, it appeared that copy numbers and mutations of paired tumors and recurrences differed 
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completely in approximately half of the cases. It should be noted, however, that the data were obtained by 
sequencing formalin-fixed paraffin-embedded tumor biopsies, which causes a lower coverage, sequencing 
artefacts and possibly induced mutations due to nucleotide deamination70. However, technical issues cannot 
explain the complete lack of identical molecular alterations that were found in the patients with genetically 
unrelated recurrences. In other types of cancer, it has been shown that therapy can select resistant cells71. 
Also in our study, it is possible that CRT caused selection of a minor subclone of cells that was not detected 
and consequently overlooked in the primary tumor. Either the fraction of these cells may have been below 
the detection rate of target-enrichment DNA sequencing (<0.1-1%) or sampling-error occurred, and the 
analyzed biopsy did not contain this subclone. More advanced sequencing techniques on multiple biopsies 
may detect such minor subclones in the tumor that may be predictive for treatment response in the future. 
Moreover, imaging may guide sampling for biomarker analyses by determination of the most aggressive area 
of the tumor72. Even more remarkable was that the observed heterogeneity was detected in driver genes, 
whereas one would expect that early mutations in carcinogenesis (e.g. in TP53) are still shared. Obviously, 
therapy may also induce mutations73-75, but in this situation these mutations are expected to be additive to 
earlier mutations and hence in that situation most driver mutations should have remained identical. Finally, 
the genetically unrelated relapses may evolve from the surrounding mucosa. Most likely, the surrounding 
contains preneoplastic fields which may further evolve into invasive tumors during follow-up. Often these 
preneoplastic fields are genetically related to the primary tumor, but genetically unrelated fields also 
exist76. In support of this hypothesis, Sherborne et al. found that germline TP53 mutations in pediatric 
patients may sensitize these patients to develop second malignant neoplasms after genotoxic treatment77. 
Preneoplastic fields often harbor TP53 mutations78, and may therefore be at greater risk for progression after 
chemoradiotherapy. Hence, a hypothesis of surrounding, genetically unrelated, preneoplastic fields that 
progress in part because of genotoxic treatment, is not unlikely and supported by some clinical data. This 
remarkable observation will certainly fuel future research as it may be a major contributor to treatment failure. 
Besides the underlying biological process, it will also be important to determine whether this effect can also 
be found after radiotherapy alone, while we expect that it will not play a role after surgery. 

Finally, an important development in the treatment of HNSCC should be mentioned in this discussion. In the 
past years, immunotherapy gained attention with very promising results even as second-line treatment for 
recurrent/metastatic HNSCC. In a fraction of patients, treatment with checkpoint inhibitors of programmed 
cell death protein 1 (PD-1) showed durable responses79-81. However, immunotherapy is expensive and needs 
to be administered repeatedly for several months to years. Moreover, serious side effects may occur, which 
occasionally include life-threatening immune-mediated pneumonitis. Therefore, selection of patients that are 
likely to respond is critical to prevent unwanted side-effects and reduce costs. Expression levels of PD-L1 
are known to predict treatment response to some degree, but a significant number of patients with high 
expression of PD-L1 do not respond to this treatment82. Other biomarkers include microsatellite instability 
(MSI) and high tumor mutation burden in general83,84, and for these biomarkers a liquid biopsy approach 
has been published recently85. Future research will likely determine its usability in HNSCC and also focus on 
HNSCC specific biomarkers.

Major challenges in the clinical management of HNSCC are to improve locoregional control of the tumor, to 
develop better treatments for recurrent/metastatic disease, to find biomarkers for early detection of recurrent 
disease, to improve prediction of prognosis, and to identify markers of personalized treatment. In Chapters 
3 and 4 different approaches to discover novel biomarkers in HNSCC to improve prediction of prognosis are 
presented. In Chapter 3, gene expression analyses were explored, whereas in Chapter 4, MRI radiomics was 
investigated. These methods might be complementary and both can be applied in advance of surgery or 
organ-preserving treatment. Additionally, HPV could be incorporated to the prognostic models presented in 
Chapters 3 and 4 using the simple and accurate method for HPV detection in non-oropharyngeal cancer, which 
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is the subject of Chapter 2. Future research will show if HPV is of interest in these tumors. Clinical outcome may 
also improve with better follow up methods to detect recurrent disease at an early stage. One possibility is to 
screen patients for detection of ctDNA in plasma, and in Chapter 5 we developed and tested a method for this. 
However, further optimization steps are required as well as prospective, clinical validation of early detection 
of recurrent disease. An overarching complication seems intratumor genetic heterogeneity. This may be of 
major influence to the accuracy of the prognostic models in Chapters 3 and 4, and impact ctDNA as biomarker 
for early detection of recurrent disease. It might further be a key factor in treatment success on its own. This 
phenomenon was explored in Chapter 6 and if not tackled in future studies this may indeed get in the way of 
future solutions to address the clinical challenges. 
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SUMMARY

In the introduction (Chapter 1) general information on head and neck cancer is provided and it is outlined 
that treatment of HNSCC patients is primarily based on TNM-staging, imaging and clinical variables such 
as age at diagnosis and tumor subsite, and for surgically treated patients also on histological examination 
of the specimen1. In general, patients with a good prognosis (early stage disease) are treated with single 
modality therapy (surgery or radiotherapy), whereas patients with a poor prognosis (advanced stage disease) 
receive multimodality treatment (surgery with adjuvant (chemo)radiotherapy or upfront concomitant 
chemoradiotherapy). Also immunotherapy is being introduced, and for specific indications bioradiotherapy is 
applied using cetuximab instead of cisplatin. Although prognostic stratification of patients has improved with 
the introduction of TNM 82, refined prognostic models will be required to stratify patients more accurately in 
groups with a favorable and unfavorable prognosis to optimize personalization of treatment and counselling 
of patients. One approach to improve prediction of prognosis is to include biomarkers in these models, which 
may better represent the differences in tumor biology. In HNSCC, the most prominent biomarker is HPV in 
oropharyngeal cancer, and this has been introduced in TNM 82 by the surrogate marker p16 immunostaining. 
For non-oropharyngeal HNSCC such a strong biomarker has not been identified and introduced in clinical 
practice. HPV may also be relevant for non-oropharyngeal HNSCC, but the standard testing algorithms 
fail in these tumors3,4 and an accurate alternative is lacking, hampering studies on the role of HPV in non-
oropharyngeal HNSCC. 

The aim of this thesis was to develop and evaluate novel prognostic biomarkers in HNSCC that can be applied 
in general or to specific tumor subsites. Moreover, a liquid biopsy test was developed that may be used in 
the future for more comprehensive genetic analysis of the tumor and for follow-up after therapy. Finally, we 
studied intratumor heterogeneity and molecular differences between primary and recurrent tumors.

In Chapter 2 a molecular HPV testing algorithm (HPV-rTcore assay) was developed that can be applied to 
archival specimen of oropharyngeal and non-oropharyngeal HNSCC. Tumor sampling was performed with 
punch biopsies from tumor enriched regions, and DNA and RNA was extracted from the cores subsequently. 
Next, PCR-based detection of HPV-DNA was performed for 15 HR-HPV types, and positive results were 
validated by detection of E6 mRNA. This testing algorithm was validated in OPSCC and OSCC samples, and 
reached an overall accuracy of 97% in OPSCC and 100% in OSCC. The HPV-rTcore assay is currently used to 
determine the prevalence of HPV in non-oropharyngeal HNSCC and its prognostic impact, and might become 
a new standard for OPSCC in the diagnostic workup.

In Chapter 3 a prognostic model is presented based on gene expression profiling. Microarray data of OSCC 
was used to select a 22-gene signature to predict N-stage and a 40-gene signature to predict prognosis. These 
signatures were transferred to a quantitative PCR platform and validated in an independent OSCC cohort. 
The signature predicted the presence of occult lymph node metastasis in cT1-2N0 patients with an NPV of 
84%. Additionally, the integration of the 40-gene signature with clinical and pathological variables provided 
accurate prognostic models that outperformed TNM. Finally, the 40-gene signature identified a subpopulation 
of patients, currently considered at low-risk for disease-related death, who showed an unexpected poor 
prognosis. These results may be used for counselling and to select patients for active surveillance instead of 
neck dissection or to select patients that may benefit from adjuvant therapy.

Another approach to develop prognostic models for HNSCC was presented in Chapter 4 using imaging 
biomarkers: native T1-weighted MRI scans of OSCC and HPV-negative OPSCC patients were used to extract 
quantitative features from manually delineated tumors. This approach is also known as ‘radiomics’. In the 
research reported in this chapter, 545 features were extracted that describe tumor signal intensity, shape 
and texture. To these features, redundancy filtering and factor analysis was applied and the acquired factors 
were used for prognostic modelling. These models based on MRI radiomics provided additional prognostic 
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information to known clinical variables, with the best performance of models with a combination of clinical and 
radiomic variables. Interestingly, although variation in MRI vendors and acquisition protocols was large, this 
did not preclude the generation of radiomic prognostic models in this study. These models can be integrated 
with standard diagnostic work-up, as native T1-weighted images are used in most diagnostic protocols.

Recurrent HNSCC can be salvaged surgically, but only when detected at an early stage, which is currently 
often not the case. Recurrent cancer is difficult to detect and the gold standard, examination under general 
anesthesia with biopsy, is very invasive and unsuited for routine screening. Possibly, early discovery can be 
achieved by detection of circulating tumor DNA (ctDNA) which is shedded in plasma by apoptotic tumor 
cells. In Chapter 5 a ctDNA detection method was developed for HNSCC that focuses on somatic mutations, 
copy number aberrations and HPV-DNA detection. It was hypothesized in this chapter that a comprehensive 
approach that identifies different molecular alterations would increase sensitivity of ctDNA detection given the 
considerable genetic heterogeneity between HNSCCs. Somatic mutations and CNAs were detected in plasma 
DNA in 67% and 52% of HNSCC patients, whereas HPV-DNA in plasma was detected in 100% of patients with 
HPV-positive tumors. The combined analysis increased the detection rate to 78%. Calling somatic mutations in 
plasma DNA improved with prior knowledge of mutations in the tumor, but prior knowledge was not required 
to detect CNAs and HPV-DNA in plasma. This study established an encouraging opening for early detection of 
recurrent disease by longitudinal screening of a large cohort.

Although biomarker-based prognostic modelling appears to be possible, all model accuracies appears 
to plateau at some point, suggesting that a particular biological factor limits the application of tumor 
biomarkers analyzed at baseline. In Chapter 6 it was hypothesized that this may be related to intratumor 
genetic heterogeneity either detectable at the time of diagnosis, or exposed by treatment and reflected by 
genetic differences between primary and recurrent tumor. Indeed differences were found in multiregion 
biopsies of surgical specimen, but CNA profiles appeared to be largely similar. Heterogeneity might be more 
profound when sequencing for mutations, which is currently under investigation. However, heterogeneity 
became most prominent when tumors and recurrences were genetically compared as 50% of recurrent 
tumors after chemoradiotherapy appeared to be genetically unrelated to the primary tumor. This finding 
indicates that recurrent tumors likely evolve from very small subclones that are not detected by molecular 
strategies on bulk tumor DNA. Given this observation, the performance of prognostic models based on bulk 
tumor characteristic may indeed reach limitations as minor subclones may determine recurrent disease and 
consequently prognosis, and future studies should include this apparent key factor.

In Chapter 7 the data presented in this thesis are discussed and put in a larger perspective. 
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Hoofdstuk 1 is een algemene introductie met informatie over hoofd-halskanker. Dit hoofdstuk beschrijft onder 
meer de behandeling van patiënten met een hoofd-halsplaveiselcelcarcinoom (HNSCC). De behandeling is 
met name gebaseerd op de TNM-stadiëring, beeldvorming en klinische variabelen zoals leeftijd op moment 
van diagnose en locatie van de tumor. Daarnaast is de behandeling afhankelijk van histologisch onderzoek, 
maar dit geldt met name voor tumoren die primair chirurgisch worden behandeld1. Door de recente introductie 
van TNM 82 kan de prognose van patiënten al beter voorspeld worden, maar aanvullende prognostische 
modellen zijn nodig om patiënten nauwkeuriger in groepen met goede en slechte prognose in te delen zodat 
het mogelijk is de behandeling hierop aan te passen en patiënten beter te kunnen informeren. Het toevoegen 
van biomarkers aan prognostische modellen is een mogelijkheid om deze modellen nauwkeuriger te maken. 
Biomarkers kunnen belangrijke maar subtiele verschillen in tumorbiologie beter weergeven dan conventionele 
prognostische variabelen zoals tumorgrootte. Voor oropharynxtumoren (OPSCC) is aan- of afwezigheid van 
HPV de belangrijkste biomarker. Derhalve werd een aparte stadiëring voor deze tumoren opgenomen in TNM 
82, waarbij gebruik gemaakt werd van een surrogaatmarker voor HPV (p16 immuunhistochemie). HPV zou 
ook relevant kunnen zijn voor tumoren buiten de oropharynx, maar de standaardtest die gebruikt wordt voor 
oropharynxtumoren is onvoldoende betrouwbaar voor deze subsites3,4 en een nauwkeurig alternatief ontbreekt. 
Hierdoor worden studies met betrekking tot de rol van HPV buiten de oropharynx bemoeilijkt.

Het doel van dit onderzoek was de identificatie en evaluatie van nieuwe prognostische biomarkers voor 
HNSCC in het algemeen of voor HNSCC op specifieke tumorlocaties. Er is een betrouwbaar HPV-testsysteem 
voor tumoren in de oropharynx, maar helaas niet voor tumoren in ander subsites terwijl het wel van groot 
prognostisch belang zou kunnen zijn. In het onderzoek dat wordt beschreven in Hoofdstuk 2 werd daarom 
een moleculair HPV-testsysteem (HPV-rTcore assay) ontwikkeld dat toegepast kan worden op gearchiveerd 
materiaal van niet-oropharyngeale HNSCC. Tumormateriaal werd verzameld door stansbiopten te nemen 
uit tumorrijke regio’s, en vervolgens werd DNA en RNA uit deze biopten geëxtraheerd. Voorts werden PCR-
technieken gebruikt voor detectie van HPV-DNA van 15 hoog-risico HPV typen. Een positief resultaat werd 
gevalideerd door middel van E6- mRNA-detectie. Dit testalgoritme werd gevalideerd in oropharynxtumoren 
(OPSCC) en mondholtetumoren (OSCC) met een nauwkeurigheid van 97% in OPSCC en 100% in OSCC. De 
HPV-rTcore assay wordt momenteel gebruikt om de prevalentie te bepalen van HPV in niet-oropharyngeale 
HNSCC, en zou de nieuwe standaard kunnen worden voor HPV diagnostiek in OPSCC. In dit proefschrift is de 
test gebruikt om HPV te detecteren daar waar nodig.

In Hoofdstuk 3 wordt een prognostisch model gepresenteerd wat is gebaseerd op genexpressieprofielen. 
Allereerst wordt gebruik gemaakt van microarraydata van OSCC om een genexpressieprofiel te selecteren 
van 22 genen die voorspellend zijn voor lymfekliermetastasering (N-stadium) en een profiel van 40 genen 
die voorspellend zijn voor de prognose van patiënt. Vervolgens werden deze profielen gevalideerd in een 
onafhankelijk OSCC-cohort, waarbij gebruik gemaakt werd van kwantitatieve PCR om de mate van expressie 
te bepalen. Het N-stadium profiel kon de aanwezigheid van occulte lymfekliermetastasen voorspellen met een 
negatieve voorspellende waarde van 84% in patiënten met een cT1-2N0 tumor. Daarnaast werd een nauwkeurig 
prognostisch model gevonden door het prognostische genexpressieprofiel te combineren met klinische en 
pathologische variabelen. Dit model presteerde beter dan het TNM-stadium. Tot slot werd een subpopulatie 
geïdentificeerd met een slechte prognose, ondanks ontbreken van bekende negatieve prognostische kenmerken. 
Deze resultaten kunnen gebruikt worden voor het beter informeren van patiënten over hun prognose en voor 
behandeling op maat: selectie van patiënten waarbij geen halsklierdissectie vereist is of waarbij adjuvante 
therapie meerwaarde kan hebben. Hierbij moeten we wel opmerken dat de gouden standaard, histopathologisch 
onderzoek van het chirurgisch preparaat, eveneens een zeer sterke voorspellende waarde bleek te hebben. 
Biomarkeranalyses zijn dus belangrijker voor tumoren die niet-chirurgisch behandeld worden. 

In Hoofdstuk 4 is voor een andere benadering gekozen voor de ontwikkeling van prognostische modellen 
voor HNSCC: biomarkers op basis van beeldvorming. Er wordt gebruik gemaakt van blanco T1-gewogen 
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MRI-scans van patiënten met OSCC en HPV-negatieve OPSCC om kwantitatieve eigenschappen af te leiden 
van de handmatig ingetekende tumoren. Deze methode wordt ook wel ‘radiomics’ genoemd. In deze studie 
werden 545 eigenschappen afgeleid die de signaalintensiteit beschrijven van de tumor, alsmede de vorm en 
textuur. Overbodige eigenschappen werden verwijderd, gevolgd door een factoranalyse met de overgebleven 
kerneigenschappen. Deze werden vervolgens gebruikt voor trainen en valideren van prognostische 
modellen. De modellen gebaseerd op MRI-radiomics bevatten additionele prognostische informatie. De 
meest nauwkeurige modellen werden gevonden door combinaties te maken van klinische variabelen en 
MRI-radiomics. Er was een grote variatie in MRI-fabrikanten en acquisitieprotocollen in deze studie, maar dit 
hinderde het vervaardigen van de prognostische modellen niet. Dat laat onverlet dat standaardisatie van 
apparatuur en protocollen, en het gebruik van meer data uit de MRI-beelden, de prognostische modellen kan 
verbeteren. De vervaardigde modellen kunnen makkelijk geïntegreerd worden met de standaard diagnostiek 
aangezien blanco T1-gewogen MRI al gebruikt wordt in de meeste protocollen.

Recidief HNSCC kan vaak chirurgisch nog behandeld worden, mits de recidief-tumor ontdekt wordt in een 
vroeg stadium. Dit is helaas vaak niet het geval. Recidief-tumoren zijn lastig te ontdekken en de gouden 
standaard, onderzoek in narcose met bioptafname van verdachte afwijkingen, is invasief en daarmee niet 
geschikt voor routinematige screening. Vroegdiagnostiek zou wellicht mogelijk gemaakt kunnen worden 
door detectie van circulerend tumor DNA (ctDNA) wat wordt verspreid door apoptotische tumorcellen. In 
Hoofdstuk 5 behandelt een detectiemethode voor ctDNA in HNSCC, gericht op het opsporen van somatische 
mutaties, chromosomale afwijkingen (kopie nummer aberratie (CNA)) en HPV-DNA. De hypothese was dat de 
sensitiviteit van ctDNA-detectie toe zou nemen door gebruik te maken van een gecombineerde analyse van 
verschillende moleculaire veranderingen vanwege de genetische heterogeniteit tussen hoofd-halstumoren. 
Somatische mutaties werden gedetecteerd in plasma van 67% van de patiënten, terwijl CNAs aanwezig 
waren in het plasma van 52%. HPV-DNA werd gedetecteerd in 100% van de patiënten met een HPV-positieve 
tumor. Een gecombineerde analyse verhoogde inderdaad het percentage van gedetecteerd tumor-DNA naar 
78%. Kennis van de moleculaire veranderingen in de primaire tumor verbeterde de detectie van somatische 
mutaties in plasma, maar detectie van CNAs en HPV-DNA werd hierdoor niet beïnvloed. De positieve resultaten 
uit deze studie bieden ruimte voor verdere validatie door longitudinale screening in een prospectief cohort. 

Hoewel het mogelijk lijkt om prognostische modellen te ontwikkelen op basis van biomarkers, lijken de 
prestaties van de verschillende modellen een suboptimaal maximum te bereiken. Dit impliceert dat er wellicht 
een biologische factor is waardoor de applicatie van tumorbiomarkers gelimiteerd wordt. In Hoofdstuk 
6 wordt gehypothetiseerd dat dit gerelateerd kan zijn aan intratumorale genetische heterogeniteit die 
gedetecteerd kan worden op moment van diagnose of naar voren komt door de behandeling en daardoor 
gereflecteerd wordt door genetische verschillen tussen de primaire tumor en het lokaal recidief. In deze studie 
werden inderdaad genetische verschillen gevonden tussen biopten uit verschillende regio’s van de tumor, 
maar de CNA-profielen leken sterk op elkaar. Analyses van somatische mutaties zijn wellicht superieur om 
intratumorale heterogeniteit aantonen, en dit wordt momenteel onderzocht in een vervolgstudie. Daarnaast 
werd in deze studie heterogeniteit meer uitgesproken door het vergelijken van de primaire tumor en het 
lokaal recidief na chemoradiatie. De helft van de recidief-tumoren na chemoradiotherapie leken genetisch 
niet gerelateerd aan de primaire tumor, wat impliceert dat recidief-tumoren waarschijnlijk ontstaan uit zeer 
kleine subklonen in de primaire tumor die niet worden gedetecteerd door analyse van bulk-DNA, maar die 
chemoradiatieresistent zijn. Deze bevinding impliceert ook dat de prestaties van prognostische modellen 
met biomarkers gebaseerd op bulk-DNA/mRNA tegen beperkingen aanlopen, aangezien kleine subklonen 
bepalend kunnen zijn voor het optreden van recidief en derhalve de prognose. Toekomstige studies dienen 
rekening te houden met deze bepalende factor.

In Hoofdstuk 7 worden gepresenteerde data bediscussieerd en in een breder perspectief gezet.
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DANKWOORD

Dit onderzoek wordt gedragen door de buitengewone inzet van een enorm gevarieerd team. Allen die 
betrokken zijn geweest bij de totstandkoming van dit proefschrift wil ik daarom hartelijk bedanken! Mijn 
dank is bijzonder groot voor de patiënten die tijdens een moeilijke periode ervoor gekozen hebben om deel 
te nemen aan wetenschappelijk onderzoek en zo bij te dragen aan verbetering van de kwaliteit van zorg in de 
toekomst. Tevens wil ik alle co-auteurs danken voor hun bijdrage aan de verschillende hoofdstukken.

Daarnaast wil ik een aantal mensen persoonlijk bedanken:

Prof. dr. R.H. Brakenhoff, beste Ruud, dank voor het vertrouwen in mij om dit onderzoek tot een goed einde te 
brengen. Ik ben je eeuwig dankbaar dat ik via de achterdeur alsnog mocht solliciteren op mijn droomfunctie 
als onderzoeker en toekomstig arts-assistent KNO. Aan het begin van mijn promotietraject hadden we een 
aantal hoofdstukken voor ogen, maar je hebt me ook de kans gegeven aanvullende onderzoeken op te starten 
waardoor ik met veel plezier mijn interesse kon ontwikkelen in onder meer niet-invasieve tumordetectie en 
intratumorale heterogeniteit. In het kader van het Europees onderzoek zijn we frequent aanwezig geweest 
op vergaderingen in het buitenland waarbij we stevige discussies gevoerd hebben met onze collega-
onderzoekers, maar waarna ook altijd ruimte was voor een plaatselijke speciaalbierproeverij. Je kennis en 
drive zijn altijd inspirerend geweest, alsmede je vermogen om vruchtbare samenwerkingen op te zetten en 
te onderhouden. 

Prof. dr. C.R. Leemans, beste René, ik wil u danken voor de mogelijkheid dit promotietraject te doorlopen 
en de specialisatie tot KNO-arts te volgen. Uw overtuigende woorden aan de telefoon zal ik nooit vergeten 
en hebben mij uiteindelijk over de streep getrokken om in Amsterdam aan de slag te gaan in plaats van de 
stad van uw grote voetballiefde. Tevens dank voor uw kritische, klinische blik; zowel op de artikelen als mijn 
klinische werkzaamheden. 

Dr. P. de Graaf, beste Pim, dank voor alle begeleiding in het radiologische werk binnen dit proefschrift en 
daarbuiten. De vele uren die jij vrijgemaakt hebt ondanks je drukke klinische activiteiten waardeer ik enorm. 
Jouw enthousiasme was aanstekelijk en hielp mij altijd weer verder, ook als ik even pixelmoe was van alle 
scans. Daarnaast hebben we ook altijd gezellige tijden gehad tijdens de OraMod-vergaderingen en met name 
daarbuiten. Je bent voor mij echt een rolmodel als arts die hoogkwalitatief klinisch werk weet te combineren 
met gevarieerd wetenschappelijk onderzoek.

Prof. dr. E. Bloemena, beste Elisabeth, ik ben je erg dankbaar voor de (her)beoordeling van alle histopathologie 
en de vele nuttige aanvullingen op de manuscripten. Je maakte altijd tijd vrij voor mij en mijn stapels met 
coupes en hebt me bovendien erg veel geleerd over de pathologie van het hoofd-hals plaveiselcelcarcinoom. 

Dr. E.A. Sistermans, beste Erik, ik wil je bedanken voor de hulp in het opzetten van de ctDNA-studie en de 
verdere begeleiding hierin. Wat begon met een afwijking in de NIPT-data van één van jullie patiënten, is 
uiteindelijk geëindigd in een mooie studie en een vervolgbeurs samen met Ruud. Ik houd alle vertrouwen 
in de verdere toekomst hiervan en hoop dat de hoofd-halskankerpatiënten er veel baat bij mogen hebben.

De overige leden van mijn leescommissie, prof. dr. R.J. Baatenburg de Jong, prof. dr. M.W.M. van den Brekel, 
prof. dr. P. Lambin, prof. dr. E.M.D. Schuuring, wil ik hartelijk danken voor de bereidheid om dit manuscript te 
beoordelen en voor het plaatsnemen in de promotiecommissie. 

Dan mijn collega’s van de Tumorbiologie. Om te beginnen wil ik de rol van Arjen uitlichten. Jij hebt mij vanaf 
het begin enorm geholpen met het praktische werk en later ook steeds meer met de bio-informatica, een rol 
die jij jezelf echt eigen hebt gemaakt de laatste jaren. In bijna ieder hoofdstuk was voor jou een belangrijke rol 
weggelegd. Daarnaast heb ik je leren kennen als een fijn mens met een onnavolgbare precisie. Bij eventueel 
toekomstig onderzoek hoop ik echt op een nieuwe Arjen.



Addendum

209

10

Marijke B., jou heb ik leren kennen als zeer kundig in het lab wat ik erg waardeerde, maar meer nog ben ik 
erg gesteld op jouw sprankelende persoonlijkheid. Het was altijd even lachen om bij je binnen te vallen op je 
kamer of in het (kweek)lab.

Marijke S., van jouw jarenlange ervaring heb ik veel geleerd met name met betrekking tot het histologische 
werk. Dank hiervoor. Daarnaast kon ik altijd genieten van je verhalen over het begin van de Tumorbiologiegroep 
en je escapades met de proefdieren.

Anne, ik ben altijd enorm onder de indruk geweest van je kennis en je vermogen je ergens helemaal in vast 
te bijten. Jij bezit alle eigenschappen van een goede onderzoeker en ik verwacht dan ook dat je hierin een 
mooie carrière tegemoet ziet. 

Vicky, jouw onderzoek was voor mij altijd erg tastbaar en ik ben blij voor je dat je het hebt kunnen afronden en 
je promotie binnenkort gepland staat. Daarnaast vind ik je een warm persoon met een fijn gevoel voor humor. 
Samen met Marijke was je altijd een perfect team!

Jos, jouw komst heeft een nieuwe boost gegeven aan het lab en ik ben erg dankbaar voor je bijdrage aan 
hoofdstuk 5 en 6. Daarnaast heb ik erg genoten van je droge humor. Veel succes in je verdere carrière die 
hopelijk nog lang vervolgd mag worden bij de KNO-afdeling.

Boudewijn, dank voor jouw grote hulp bij het mij wegwijs maken binnen het hoofd-hals oncologisch 
onderzoek. Jij had altijd tijd voor uitleg en om samen te sparren over nieuwe ideeën. Daarnaast vond ik onze 
microdissectiesessies fantastisch. Hopelijk heb je gevonden wat je zocht na je pensioen!

Sanne, toen ik begon, mocht ik vrijwel direct getuige zijn van jouw promotie. De toon was gezet! Daarna als 
postdoc heb ik je leren kennen als een eigenzinnige onderzoeker en gevat persoon. 

Costa, ik heb van je intelligente opmerkingen genoten tijdens de werkbesprekingen en daarbuiten. Je hebt je 
enorm moeten ontwikkelen om jouw project tot een goed einde te brengen en hier heb ik veel respect voor!

Sonja, Richard, Ana en Jantine, jullie immunologisch onderzoek heb ik altijd fascinerend gevonden. Dank voor 
het bijspijkeren van mijn kennis en voor alle gezelligheid!

Een speciale vermelding gaat uit naar de collega’s van de biostatistiek: dr. Dennis te Beest, dr. Wessel van 
Wieringen, dr. Carel Peeters en prof. dr. Mark van de Wiel. Zonder jullie hulp had de totstandkoming van dit 
proefschrift geen schijn van kans. Dennis, jij bent tijdens de OraMod-tijd degene geweest met wie ik het 
meeste heb samengewerkt en het voelde echt als een team als we samen (als botte Nederlanders) in discussie 
gingen met de overige leden van het consortium. Carel, dank voor jouw frisse blik op de radiomicsdata. Jij 
hebt deze studie echt gered. Mark, ik heb veel bewondering voor jouw vermogen om je in te leven in klinische 
vraagstukken en je creatieve oplossingen. Daarnaast zal ik je relativeringsvermogen binnen OraMod ook 
nooit vergeten. 

My dear OraMod friends, working in an international consortium with people from different scientific 
backgrounds has been very special to me. Thank you all for the opportunity to learn from you and for the 
introduction to your cultures. Hope to meet you again in science or elsewhere.

Beste mensen van de moleculaire pathologie, dr. Daniëlle Heideman, Martijn Bogaarts en Marije Doeleman, 
ik wil jullie van harte danken voor jullie hulp bij de ontwikkeling van de HPV test en de analyses hiervan. Jullie 
jarenlange ervaring op dit gebied heeft mij veel gebracht!

De radiomicsstudie zou nooit in deze vorm tot stand zijn gekomen zonder de uiterst deskundige hulp van dr. 
Floris van Velden en prof. dr. Ronald Boellaard. Dank voor al jullie werk. Specifiek wil ik Floris uitlichten die een 
berg werk verzet heeft om de radiomicssoftware geschikt te maken voor onze MRI’s en VOI’s. Daarnaast ben je 
ook altijd erg betrokken geweest bij de vooruitgang van het project wat mij erg gemotiveerd heeft. Hopelijk 
kunnen we in de toekomst nog eens een nieuw project starten, ik heb wel een aantal ideeën hiervoor!
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Daarnaast wil ik de heren danken van het UMC Utrecht voor hun bijdrage aan deze studie. Uit ervaring weet 
ik hoeveel tijd gaat zitten in het intekenen en controleren van iedere MRI-scan… Dus dr. Boris Peltenburg, 
Furkan Yaz, dr. Frank Pameier en prof. dr. Remco de Bree veel dank voor jullie werk!

Ditzelfde geldt uiteraard voor Roland Martens en prof. dr. Jonas Castelijns. Ook jullie ben ik erg dankbaar voor 
het intekenen van de MRI-scans die we gebruikten ter bevestiging van de interobserver agreement. Roland, 
succes met de laatste loodjes!

Naast Erik wil ik nog een aantal andere mensen noemen die meegewerkt hebben aan de ctDNA-studie en 
wiens bijdrage onmisbaar was. Dr. Roy Straver dank voor je analyses en aanpassingen aan het script. Prof. 
dr. Cees Oudejans, ik ben u erg dankbaar voor de conceptuele bijdrages. Daarnaast zou het OraMod-project 
zonder de TLDA-faciliteiten in uw lab een enorme uitdaging zijn geweest. Praktisch heb ik erg veel gehad aan 
de hulp van Allerdien Visser, hartelijk dank hiervoor.

Naast mijn werk als tutor, heb ik verschillende studenten begeleid met onderzoek en bachelorscripties. 
Cynthia, Joost, Joran, Leonard en Pieter, bedankt voor jullie input en de leermomenten die jullie mij geboden 
hebben. 

Mijn kamer heb ik tijdens mijn onderzoeksperiode gedeeld met Inge Braspenning, Femke Jansen, Laura 
Korsten Maarten van Loon, Irene Nauta, Annette van Nieuwenhuizen, Reinout de Roest, en Charlotte 
Schouten. Veel dank voor jullie gezelligheid, de fijne koffie- en lunchmomenten, en de wetenschappelijke 
inzichten die jullie deelden. Laura, waarmee ik gezamenlijk ben gestart, wat heb ik altijd respect gehad voor 
de manier waarop je een enorm multicenter project coördineerde. Reinout, jij kwam het artsenteam van de 
Tumorbiologie gelukkig weer versterken. Ik heb het altijd een mooie tijd met je gevonden en ben erg trots 
op onze gezamenlijke studie. Irene, fantastisch hoe jij verdergegaan bent met de HPV-assay en hoe jij je hebt 
ontwikkeld tot internationale HPV-goeroe. Voor de mensen die nog bezig zijn met hun PhD: succes allemaal 
met de laatste loodjes! Sandra Biemans, dank voor al je hulp en voor de relativerende koffiemomenten 
waardoor ik altijd weer even landde. 

De zaadjes voor mijn interesse in wetenschappelijk onderzoek zijn geplant in Rotterdam op twee afdelingen. 
Prof. dr. Jon Laman heeft mij destijds overtuigd om mijn wetenschappelijke stage in te vullen met basaal 
onderzoek naar multipele sclerose. Jouw aanstekelijk enthousiasme, oprechte interesse en scherpe analyses 
heb ik altijd bewonderd! Ook wil ik graag de overige groepsleden danken: dr. Marvin van Luijn, dr. Karim Kreft, 
Annet Wierenga-Wolf, Marie-José Melief en Marjan van Meurs. 

Toen ik vervolgens mijn keuze gemaakt heb voor de KNO-Heelkunde ben ik klinisch onderzoek gaan doen 
onder begeleiding van dr. Emilie Dronkers, dr. Marc van der Schroeff en prof. dr. Rob Baatenburg de Jong. 
Deze periode, gecombineerd met mijn tijd als oudste co-assistent op jullie afdeling, heeft me overtuigd om te 
gaan voor een promotietraject binnen de hoofd-halschirurgie en de opleiding tot KNO-arts. Ik heb me altijd 
erg welkom gevoeld en onderdeel van het team. Bedankt!

Graag wil ik alle hoofd-halschirurgen danken voor hun interesse en patiëntinclusie. Dr. Simone Eerenstein, 
dr. Jan-Jaap Hendrickx, Hakki Karagozoglu, Stijn van Weert en de verschillende fellows, zonder jullie was dit 
onderzoek nooit mogelijk geweest.

Graag wil ik de staf danken van de afdeling KNO van het Amsterdam UMC, locatie VUmc en AMC, voor hun 
vertrouwen in mij en de fantastische opleiding die ik mag genieten. Uiteraard mogen ook de KNO-artsen 
van het Diakonessenhuis Utrecht en Dijklander ziekenhuis, locatie Hoorn, niet ontbreken. Bij jullie heb ik 
een grote stap gezet in mijn chirurgische ontwikkeling waarvoor ik jullie erg dankbaar ben, de opleiders dr. 
Jasper Quak en dr. Loet Bauwens in het bijzonder. Daarnaast heb ik een hele fijne samenwerking gekend met 
alle medewerkers van de poliklinieken en operatiecomplexen op de verschillende locaties, de medewerkers 
van het audiologisch centrum, de verpleegkundigen van 1C, Trudi Limpens, Hanneke Tielens, Ton Houffelaar, 
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Jacqueline Geskus, Esther de Koster en de dames van het secretariaat op de VU: Boukje, Gerrie, Marjon en 
Vanessa.

Collegae AIOS! De opleiding tot KNO-arts is echt een prachtige tijd en dit komt voor een belangrijk deel doordat 
je alles kunt delen met een hechte groep collega’s. De ski- en assistentenweekenden waren onvergetelijk. Het 
is een beetje alsof je een tweede studententijd krijgt soms, fantastisch! Het wordt hoog tijd om weer eens wat 
te plannen, en ik hoop dat dit allemaal snel weer kan. 

Een groot deel van mijn studententijd heb ik doorgebracht in Delft, een briljante periode van mijn leven. 
VS42-ers, CGS-ers, Dopie M-ers en commissiegenoten dank voor de vele uurtjes aan de bar, weekendjes en 
ontelbare levenslessen. Nu dit werk af is hoog tijd om weer wat meer tijd in jullie te investeren, dus tot snel!

Dan een woord aan mijn paranimfen, Jeroen Kraak en Thadé Goderie. 

Beste Jeroen, vanaf het eerste uur gezamenlijk op de onderzoekskamer heb ik het enorm goed met je kunnen 
vinden. Later toen ik begon met de opleiding heb ik me altijd aan je opgetrokken en gezien als voorbeeld. 
Ik bewonder je enthousiasme en enorme inzet heel erg. De cursussen (met name de tijd daarbuiten) en 
skiweekenden waren fantastisch en de zondagavond in Groningen onvergetelijk. Dat jij je droom kunt 
naleven als toekomstig hoofd-halschirurg in Amsterdam UMC gun ik je van harte! Heel knap dat je naast je 
fulltimebaan een gezin hebt weten op te bouwen en ook nog een promotieonderzoek hebt opgepakt wat 
zich inmiddels alweer in een vergevorderd stadium bevindt. 

Beste Thadé, wij hebben een andere gezamenlijke achtergrond waarin ik je heb leren kennen als zwager ruim 
voordat de KNO als toekomstig vakgebied voor mij überhaupt speelde. Jij bent zeker één van de mensen 
die mij heeft geïnspireerd om de KNO te verkennen en ik ben je veel dank verschuldigd voor jouw ingang 
tot de sollicitaties van de VU. Daarnaast ben ik je erg dankbaar voor je coachende rol als opleider waarin 
je ook aanmoedigt om verder te kijken richting de toekomst. Ook naast het werk heb ik fijne tijden met je 
beleefd. Het skiën voorafgaand aan het KNO-skiweekend vond ik briljant en ben pas in de week daarna weer 
hersteld van de schnapsroute geloof ik. Ik hoop nog vaak te mogen genieten van dergelijke momenten met 
jou, Michelle en de kinderen.

Lieve Pieter en Tanja, dank voor alle support en het liefdevol opnemen van mij in jullie familie. Ik vind het altijd 
enorm fijn om bij jullie langs te komen en geniet van de fijne gesprekken. Pieter, veel dank voor al je werk aan 
de kaft van dit manuscript. Het is prachtig geworden! Steven en Irena, ik kan me geen fijnere schoonfamilie 
wensen en ben blij dat de jaarlijkse samenkomst met oud en nieuw een traditie geworden is. De volgende 
mijlpaal is hopelijk voor jullie in 2022!

Lieve Jolijn en Niek, jullie zijn een geweldig paar en ik heb het altijd erg naar mijn zin met jullie. Jolijn, jij bent 
de eerste van de familie met eigen drukwerk in de kast waardoor ik natuurlijk wel moest volgen. Dank voor 
je hulp met de Nederlandse teksten! Ik ben trots op jullie en hoop dat er nog vele avondjes mogen volgen.

Lieve pap en mam, jullie zijn altijd heel erg ondersteunend geweest in alles wat ik heb gedaan waarvoor ik 
jullie oneindig dankbaar ben. Vooral aan het einde van mijn middelbare school en de eerste jaren in Delft 
ben ik niet de makkelijkste geweest, maar desondanks bleven jullie altijd liefdevol en stuurden jullie me 
ongemerkt in de goede richting. Ik heb altijd geluk gehad dat ik me mocht ontwikkelen in elke gewenste 
richting en ik besef dat dit een bijzonder voorrecht is. Ondanks dat ik sinds mijn 17e niet meer thuis woon, 
voelt jullie huis altijd als thuiskomen. Dit geldt ook voor Sophia, jullie hebben haar echt deel laten voelen van 
de familie. Pap, je bent een sportief en sociaal persoon en ik bewonder je oprechte interesse in iedereen om je 
heen enorm. Mam, je bent bijzonder liefdevol en attent en jouw vermogen om iedereen bij elkaar te brengen 
en zich welkom te laten voelen vind ik erg bijzonder.

Tot slot, lieve Sophia. Ik ben enorm dankbaar om jou al vele jaren in mijn leven te hebben. Vanaf het begin 
voelt het echt alsof het altijd zo had moeten zijn. Ik kan volledig mijzelf zijn met je en voel me samen met 
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jou precies op mijn plek. Jij bent degene die mij heeft aangemoedigd om te kiezen voor de KNO en voor dit 
promotietraject en jouw discipline en doorzettingsvermogen inspireerde mij om me ook zo op te stellen 
ten aanzien van het onderzoek. Ik kan oprecht zeggen dat zonder jou dit werk nooit afgemaakt was in deze 
vorm en waarschijnlijk überhaupt nooit door mij geïnitieerd. Naast het werk moet je af en toe je stoom kwijt 
kunnen en ook die uitlaatklep ben jij voor mij. Zowel voor de haard in ons heerlijke huis in Haarlem als samen 
op het strand met onze hond. Heerlijk ook hoe ik met jou heb mogen ontdekken dat de bergen ook in de 
zomer prachtig zijn. Ik ben trots op de stappen die jij hebt gezet in je eigen carrière en kijk enorm uit naar de 
toekomst met jou!
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