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Introduction

The ear is a highly specialized organ that converts soundsignals into neural impulses
which carry the auditory information to the brain. The ear can be divided into three parts:
the ouierear, the middle ear and the inner ear (cochlea and semicircular canals), see

Fig. 1.
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Figure 1. The external, middle, and inner ears in man. From Tissues and Organs: A Text-Atlas
of Scanning Electron Microscopy, by R.G. Kessel and R.H. Kardon (W.H. Freeman and

Company).

 



The outer ear picks up a sound wave and transfers it through the ouser ear canal to

the eardrum. This is done in such a way that the sound pressure at the eardrum is
amplified in the range of frequencies that are important for speech recognition. By

changing the spectral density of the sound the outer ear provides some cues whichassist

us in localizing sound. The middle ear consists of a chain ofthree ossicles, called the
malleus, incus and stapes, that transmits the sound vibrations ofthe Aympanic membrane

(ear drum) to the oval window, the entrance to the cochlea. During this transfer the
pressure is amplified by a factor of approximately 20 which reduces the reflection

occurring when a waveis transmitted from a low-density medium such asair to the high-

density cochlear fluid. Another property of the middle ear is to protect the cochlea

against overloading. This mechanism comes into operation not only when loud sounds

enter the ear but also during one's own speech (even before that speechis initiated).
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Figure 2. (a) A cross-section of the cochlear duct. (b) A cross-section of the organ of Corti, as it

appears in the basal turn. From An introduction to the Physiology ofHearing, by J.O, Pickles

(Academic Press, San Diego).

 

As the oval window is moved (in an oscillatory way) by the stapes, a sound wave

arises in the fluid contained in the spiralling tunnel of the cochlea. The associated sound
pressure causes a partition consisting of the basilar membrane and the organ of Corti
(where the sensory cells are located, see Fig. 2) to move. As a result ofthe interaction

betweenfluid and partition a travelling wave is set up on the basilar membraneas well as

in the fluid. In the case where the stimulus is sinusoidal the amplitude of the wave

increases along the length of the partition until it reaches a maximum at a location that
depends on the frequency. Higher frequencies are mapped at locations near the stapes,

while low-frequency tones arrive at places further inside the cochlea. The reason for this

frequency mapping is that the stiffness that can be attributed to the cochlear partition

decreases from stapes to helicotrema (i.e., the other end of the cochlea). When the

stimulus consists ofmore than one component, every componentgivesrise to a travelling

wave that peaks at a different location. The cochlea thus performs some kind of

 

frequency analysis of the auditory stimulus.
In the organ of Corti two types of sensory cells are present, the 7aner hair cells and

the outer hair cells, see Fig. 2(b). During movements ofthe basilar membrane a shearing

motion between the underside of the /ectorial membrane and the topsof these hair cells

arises. This leads to excursions of the stereocilia of the hair cells and subsequent

polarization ofthe cells. In the case of innerhair cells, polarization leads to the creation

of action potentials in the auditory nerve. Polarization ofthe outerhaircells gives rise to

cell length changes that are probably involved in improving sensitivity and frequency

selectivity ofthe ear.

Before 1971 it was thought that the BM response was a purely linear function of

input level. Then, Rhode (1971) showed that for single-tone stimulation the BM

response behavesnonlinearly as a function of input level: the response is compressed for

stronger stimuli. Rhode also showed that after death the response becomeslinear. This

implies that cochlear functioning depends on the physiological state of the cochlea. Not

only is the amplitude of the response influenced by nonlinearity of the cochlea, but the

phaseis also influenced. Rhode and Robles (1974) and Sellick e¢ a/, (1982) reported an

increase of phase lag with increasing stimulus level for frequencies below the

characteristic frequency (this is the frequency for which the location under study is the

most sensitive), and a decrease for frequencies above this frequency. Corresponding

phase behaviour has been found in inner hair cell responses (e.g., Nuttall and Dolan,

1993) andin physiological responses (Anderson ef a/., 1971).

Other nonlinear phenomenahavealso been discovered. During stimulation with two

tones the response to one tone can be suppressed by the presence of the secondtone.

This phenomenon, called two-tone suppression, was first demonstrated in cochlear

microphonic recordings (Covell and Black, 1936), but later also in neural recordings

(Sachs and Kiang, 1968), inner hair cells (Sellick and Russel, 1979) and the basilar

membrane (Rhode, 1977). During two-tone suppression the phase of the probe tone

exhibits changes greatly dependent on stimulus conditions (Cheatham and Dallos, 1990,

Nuttall and Dolan, 1993): not only the frequency of the suppressing tone butalso its

input level determines the character ofthe phaseshifts.
Another nonlinear phenomenon that occurs when the cochleais stimulated with two

tones is the generation of combination tones. When humanslisten to pairs of tones they

can hear tones that are not present in the stimulus (Goldstein, 1967; Smoorenburg,

1972). Counterparts of these tones have been measured in neural responses (Goldstein

and Kiang, 1968), in inner hair cells (Nuttal and Dolan, 1990), in otoacoustic emissions

(Kemp, 1979) and also on thelevel ofthe basilar membrane (Roblesef a/., 1991).

Although several nonlinear models of the cochlea have been devised in the past (a
description of these models is given later in this section), the nonlinearities referred to

above have not yet been fully understood and replicated. The main purpose ofthis thesis

is to devise a cochlea modelthat replicates the nonlinear phenomena better than previous

models and to solve that model in such a way that insight into the mechanisms of
nonlinearity is more easily acquired than with existing solution methods.

First, a linear version of the model should be able to reproduce BM motion

measured at low levels where the cochlea operatesin its linear regime. This touches the

problem of‘activity’ in the cochlea. Actually, the older BM responses measured by, ¢.g.,
Rhode (1971) and Johnstone and Yates (1974) can be simulated very well by a passive

model (Viergever and Diependaal, 1983), i.e., a model in which no active elements are



present. However, it is harder to match the newer data showing much sharper tuning at

low stimulus levels (Sellick ef a/., 1982; Robles ef af, 1986) with such a model

(Viergever and Diependaal, 1986). As a way out ofthis dilemma the concept oflocal

activity - at certain locations along the length of the cochlea the cochlear partition injects

more energy into the system than it absorbs - was introduced by Kim ef a/. (1980). Later,

a more refined, micromechanical, model containing a secondary resonance of the TM,
was formulated by Neely (1981) and Neely and Kim (1983, 1986). In the latter paperthe

outer hair cells were modelled as pressure sources controlled by relative movements of

the tectorial membrane and the reticular lamina. This was consistent with the in vitro

observation that a hair cell is polarized when its hair bundle is deflected (Hudspeth and

Corey, 1977) and that in an outerhair cell this polarization givesrise to length changes

(Brownell ez a/., 1985). The idea of local activity was supported by theoretical evidence
(de Boer, 1983a, 1983b) that, in the class of models considered here, the sharp BM

responses as measured bySellick ef a/. (1982) could only be obtained if the resistance
part of the BM impedance was negative overa limited region of the cochlear partition.

As a critical note it should be mentioned that in the models by Kolston (1988), Kolston
and Viergever (1989), and Kolston ef a/. (1989) frequency selectivity is obtained by
changingthe stiffness ofthe partition, but this is at the expense of a reducedsensitivity.

Soon after 1971 several nonlinear cochlea models were developed that tried to
replicate Rhode's findings (1971) on nonlinear behaviour of the BM response. In these

models a nonlinear term that made the resistance increase with increasing response was
inserted in the partition impedance (Hubbard and Geisler, 1972; Kim ef a/., 1973; Hall,

1974), The model by Hall predicted in the case of two-tone stimulation the generation of
distortion products and their presence at locations where the primaries were not

detectable. This prediction was verified by Kim e7 al. (1980) at the neural level, and at

the mechanical level by Robles e¢ a/. (1991). Nonlinear cochlea models by Kim ef al.

(1973) and Hall (1977) and Zwicker's hardware model (1979, 1986) were able to

simulate two-tone suppression with suppressors with higher frequencies than the probe

frequency but not with lower frequencies. Only by postulating a second filter between the

mechanical response and neural excitation signal could Hall solve the discrepancy
between experimental and modelresults. In 1992 Ruggero ef al. observed low-side two-
tone suppression in the BM response, so the need for a model that could explain this

phenomenon on the mechanical level was felt again. Cohen and Furst (1993) gave an

example of mutual suppression in a model with an ad hoc activity distribution.
In this thesis we describe a locally-active cochlea model in which active elements

generate pressures that are added directly over the basilar membrane similarly as in the

model of Neely and Kim (1986). Our model is even simpler in that the influence of the
tectorial membrane and stereocilia on the mechanics of the cochlear partition is left out

of consideration. In line with experimental findings(cf. Patuzzi et al., 1989) we made the

pressure generated by the OHCs a nonlinear function of its input. Thus all nonlinearity is
found in the generation of active pressures by the OHCs. At the time that this model was

developed two similar models were devised by Geisler ef a/. (1993) and Neely and

Stover (1993) that were solved in the time domain.

Instead of solving our model in the time domain, which has been the standard

procedure for nonlinear models, we chose to solve the model in the frequency domain.

Weonly consider the amplitude and phase of the system variables in steady state and not

the detailed time-evolution of the variables. This has the advantage that the concept of

10

impedance can be used which enables us to monitorthe effect of response changeson the

impedance and vice versa. Also, we have used the concept of characteristic impedance to

decrease the amount ofreflection at the stapes. The quasilinear method, as we have

called it, splits the system variables into their Fourier components resulting in discrete

sets of equations belonging to these Fourier components. Thus, although the different

responses are not independent (they may suppress each other) we may solve them

separately. Separation is possible if, as in our cochlea model, at every location the basilar

membraneis etrained by the stimulus,i.e., the basilar membraneoscillates periodically

with period frequency equalto the stimulus period frequency.

In chapter 2 the cochlea model is solved with the quasilinear method undersingle-

tone stimulation. It is shown that the frequency selectivity and the sensitivity of the

velocity response of the basilar membrane are greatly enhanced by the presence of

pressure sources inside the cochleaif these have the right place-frequency dependence.

This dependenceis such thatin a limited region basal to the response peak the resistance

component of the BM impedanceis negative. Because we have represented the pressure

source as a saturating function of its input the response is a nonlinear function of the

intensity of the sound stimulus. Increasing stimulus intensity has a ‘flattening’ effect on

the response. That is, the sharpness of the response peak decreases, and thereby the

sensitivity and frequency selectivity of the ear. The flattening happens because the

responsebrings the pressure generation into saturation. As a consequence the response is

amplified less. We have called this process se/f-suppression. At high intensities the

response becomessimilar to the linear passive response, so that the input-output function

is found to be linear for input levels below 20 and above 90 dB SPL with a nonlinear

transition in between. This is consistent with results of mechanical experiments (Sellick er

al., 1982; Robles et a/., 1986).

Chapter 3 discusses the phenomenon of two-tone suppression. During this

phenomenon the amplitude of a single-tone response may decrease if a secondary tone is

added to the sinusoidal stimulus. Also the phase may change. Distinction is made

between dominant and non-dominant suppression where dominant (non-dominant)

meansthat the suppressor hasa larger (smaller) velocity amplitude than the probe at its

peak location. In experiments by Nuttall and Dolan (1993) it was found that the sign of

the probe's phase change depends on which of these two conditions is chosen. This led

Nuttall and Dolan to suggest that different suppression mechanisms exist. We show that

there is no need for such a conjecture. Furthermore, the attenuation hypothesis which

states that the addition of a suppressor has the same effect on the probe as probe level

attenuation, is rejected in this chapter. Cheatham and Dallos (1990) had already pointed

out that, under certain stimulus conditions, a mismatch exists between predictions made

by this hypothesis and experimental findings, but they did not reject the hypothesis.

In chapter 4 the experimental finding that distortion products present in evoked

cochlear emissions are ‘tuned’ as a function of frequency is replicated with the model. It

has been argued by several authors (Brown and Gaskill, 1990; Brown and Williams,
1993; Allen and Fahey, 1993) that this ‘tuning’ is the consequence ofa filtering

mechanism in the ear: distortion products in the pressure generated by the outerhair cells

are supposed to be filtered as they are coupled back to the BM. However, in our model

the pressures are notfiltered after they have been generated and still similar ‘tuning’ is

observed in the model. It is shown that the ‘tuning’ is a nonlineareffect since it disappears

11



at lowinputlevels. Furthermore, a prediction is given about the response of the 2f]-f
combination tone at its peak location as a function of primary frequencyratio.

In chapter 5 a replication of the experiment performed by Allen and Fahey (1992)is

discussed. While keeping both the frequency of the 2f}-f combination tone (CDT) and

the physiological response at the location characteristic for the CDT constant they

measured the CDT emission as a function of primary frequencies. No significant change
in emission was found. They concluded that the cochlea does not possess an amplifying

mechanism. This conclusion is challenged in this chapter. Similar results as those
obtained by Allen and Fahey were achieved with our cochlea model. It is therefore

concluded that Allen and Fahey's interpretation of their experiment is incorrect. Careful
analysis shows that they compared two stimulus conditions that were quite similar and

therefore could not be expected to give a large difference in emission. It is furthermore

explained that the relation between difference in emission and the gain of the
amplification process is much more complicated than they supposed.

Chapter 6 compares time-domain solutions with solutions obtained with the
quasilinear method. This is done for single-tone as well as for two-tone stimulation,It is

concluded that, as long as the primary components are concerned, stable nonlinear

cochlea models can be solved perfectly in the frequency domain. For combination tones

the agreement between quasilinear and time-domain solutions is less perfect but still

satisfactory.
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Self-suppression in a locally active nonlinear

model of the cochlea: A quasilinear approach»

Abstract Mechanical input-output functions of the cochlea for pure-tone stimuli are
nonlinear for frequencies around the characteristic frequency. To simulate these
functions, a long-wave modelof the cochlea containing a saturating pressure generator

(located at the site ofthe outer hair cells) is solved in the frequency domain with a quasi-

linear method. In this method distortion products in the basilar-membrane (BM)response

are treated as perturbations and the nonlinear pressure waveform is approximated by the
first-order Fourier component. Because the suaturating pressure generator forms part of

a feedback loop the solution of the model is achieved in a number ofiteration steps.

Model results show flattening of the BM response at higher input pressures; this

property, called self-suppression, is due to saturation of the pressure generator. The

resulting input-output functions display the main features of experimental curves. The

third-order distortion product in the BM velocity is always more than 25 dB below the
primary BM velocity and doesnotinfluence the results of the computation; this justifies
the use ofthe quasi-linear method.

2.1 Introduction

In 1971 Rhode showed that the mechanical response of the basilar membrane (BM)

to sinusoidal stimuli becomesless frequency-selective for stronger stimuli. This finding
was extended in more refined experiments (Rhode, 1978; LePage and Johnstone, 1980;

Sellick ef ai., 1982; Khanna and Leonard, 1982; Patuzzi et a/., 1984a; Johnstone ef al.,
1986; Robles ez a/., 1986a; Nuttal e¢ a/., 1990; Ruggero and Rich, 1991). In the last two

decades several models have been proposed to explain nonlinear phenomena in the

cochlea (Hubbard and Geisler, 1972; Kim ef al., 1973; Hall, 1974; Matthews, 1980;

Duifhuis ef al., 1985; Straube, 1985, 1986; Zwicker, 1986). Most of these nonlinear

*) Preliminary results were presented during the International Meeting on Auditory Processing of
Complex Sounds at the Royal Society in London, 1991.
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models were solved in the time-domain - none of them in the frequency domain. For
general reviews of this work on nonlinear models the reader is referred to Kim (1985)

and de Boer (1991).

Ouraim is to simulate cochlear nonlinearity in a /oca/fy-active! cochlear model. The

model we develop follows earlier active models in that it is based on a BM impedance
with a place-dependent active term that renders the BM resistance negative in a

restricied region ofthe cochlea (Kim ef al., 1980a; de Boer, 1983, 1991; Neely and Kim,

1983, 1986; Geisler, 1991). As in the models of Neely and Kim we use a secondary

resonance to achieve the proper activity distribution and a large cochlear gain. We make
sure that the modelis zero-point stable because in the healthy ear spontaneous emissions

occur at only a few frequencies (Kemp, 1979; Zurek, 1981). In the present paper we
restrict ourselves to input-outputrelations for sinusoidal stimuli,

Weassume, more specifically, that in each cross-section of the cochlear channels
outer hair cells (OHCs) generate a pressure on a cycle-to-cycle basis (Gitter and Zenner,
1988), that this pressure is added to the pressure difference across the Organ of Corti

and that the BM velocity is modified accordingly. This means that the OHCs are the

producers of local activity and form parts of a feedback system. Furthermore, it is

assumed that the pressure-generating process is nonlinear and that this constitutes the

only nonlinearity in the model. The saturating form of the nonlinearity has been inspired

by physiological experiments (Hudspeth and Corey, 1977; Ashmore, 1987; Cody and

Russel, 1987; Patuzzi ef a/., 1989). Because of the saturation the model becomesless

active, ie., de-aclivated, when the stimulus is stronger. We will refer to the effect of de-

activation on the BM response caused by increasing the stimulus input as  self-

suppression.
Because we wouldlike to gain insight into the relation between de-activation and

reduction offrequency selectivity in the BM response, we solve the nonlinear model with

a quasi-linear method which operates in the frequency domain. Another reason to use
this method is that we are mainly interested in global aspects of the BM response, and

that time-domain computations, even for simple long-wave models, are very time-
consuming.

A study of mechanical aspects of two-tone suppression (cf. Rhode, 1977; Robles e/

al., 1986b; Ruggero er a/., 1992, Patuzzi ef a/., 1984b) and combination tones (cf.

Robles ef al. 1990, 1991) is also possible with the proposed method. Results of these
applications have been reported elsewhere (Kanis and de Boer, 1993).

2.2 The quasi-linear method

The basic assumption of the quasi-linear solution methodis that distortion products

do not noticeably influence the primary components of the BM velocity. We consider the
model as driven by a sinusoidal signal and consider all system variables as split up into

Fourier components. Then, because only sinusoidal signals are involved, a linear solution

method can be used to find the variables. That the aforementioned assumptionis justified

is shown in Appendix B.

! Qur definition of local activity: At certain locations in the cochlea more acoustical poweris

produced by the cochlear partition than absorbed byit.
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The nonlinear pressure waveform that appears in our model is approximated by the

appropriate Fourier component (for instance, the one corresponding to the primary

frequency) at all locations in the cochlea, The BM velocity is solved by a linear method

with the thus-obtained pressuredistribution. Since in our model effects of activity involve

feedback, we must iterate the solution. Parameters are ‘updated’ on the basis of the

velocity distribution obtained in the preceding step, and used to solve for a new velocity

distribution. The process is repeated until the distribution does not change noticeably

between two subsequent steps. The resulting time gain with respect to time-domain

computationsis considerable. Details about the methodare given in section I, part D.

2.3 Development of the method

2.3.1 The long-wave model

The cochlea is modelled as a straight fluid-filled narrow tube in the x-direction,

equally divided into two rectangular scalae by a movable partition consisting of the

basilar membrane (BM) and the Organ of Corti. The cochlea is driven at the stapes

(x = 0) and short-circuited at the other end (at x =Xenq) by meansofa fluid connection

between the two scalae, the helicotrema. We have assumedthat all longitudinal coupling

is through the fluid.
For simplicity a long-wave modelis considered. The long-wave model accounts for

all physical aspects of cochlear models in which the fluid dynamics is considered linear

with the exception ofthe phenomenon of boundary-layer absorption (Lighthill, 1981),

virtual mass of the channel fluid (de Boer, 1982) and the transition of long to short

waves (de Boer, 1984, chapter 6). The one-dimensional fluid dynamics of such a linear

long-wave modelis described by the wave equation

Dyx (X5W) + Kk? (x:w) p(x;w)=0, (2.1)

where p(x;@) is the complex pressure in one of the scalae, and & the radian frequency.

The subscript xx denotes the second derivative with respect to x. The complex coefficient

k(x;@) has the dimension of a wavenumber, and it is defined by

—2iwp2 -k*(x;@) = ——_—_.,
am hZgm (434)

(2.2)

in which p is the density of the fluid, # the effective height of the scalae, and Zpy(x,¥)
the impedance function that describes the BM. If hZgy4(x:@) were a purely negative

imaginary constant, the coefficient 4(x;@) would be a real constant and denote the

wavenumber of the solution: 27 divided by the wavelength. When AZpyy(x:w) varies

slowly with x, k(x;/) acquires the meaning of the local wavenumber (which might be

complex).
One boundary condition needed to solve this cochlea model concerns the coupling
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to the middle ear and to the driving source, This is described in Appendix A, The other
boundary conditionis

P(%end) = 9. (2.3)

Once the wave equation has been solved, the BM velocity vpyq(x,w)is calculated from

YBM (254) =~ 2p(x;@) / 2pm (54). (2.4)

Implementation for a numerical solution is straightforward. The solution method is
the same as the one used in de Boer (1980, Appendix A which is based on Allen, 1977),
We use this method in every step ofiteration in our quasi-linear solution. The program

has been written in Turbo Pascal®. Since Turbo Pascal® does not support complex
arithmetic, a 'unit' has been developed for this purpose?. In all examples the stimulus

frequency 1s 6 kHz, so that the helicotrema can beset at 1 cm without loss of accuracy,
The length of the cochlear partition is divided into 500 sections. Using fewer than 150

sections gives an ‘impaired! response due to discretization errors.

1.3.2 The linear passive case

For the passive BM impedancefunction ZP_y4(0;/) we take the usual form

ZB(X5@) = iw + R(x) + S(x) / iw, (2.5)

with S(x) and R(x) given by

R(x) = 5 {MSp exp(-ax / 2), (2.6.a)

S(x) = Sp exp(-a@x). | (2.6.b)

The parameters are: Sg = 10/9 [kg ms}, a@=3x10% [m4], and

M = 0.5 [kg m-?]. These parameters represent the human cochlea (de Boer, 1980). The

coefficient 5 is the damping parameter and it is taken as constant: 5=0.4. The
impedance ZPpy,(x;@) takes the place of Zpnq(x;@) in Eqs. (2.2) and (2.4).

In Fig. 1 model results of the passive long-wave model are plotted as dashed lines.

Part (a) showsthe resistance component R(x) given by Eq. (2.6.b) as the thick line: the
reactance component is drawn as the thin line (we refer to the legend for details about

2 In this unit a complex arithmetic function produces upon result a pointer to a complex number,

where a complex number is defined as a record with two fields cach containing a real number 6
bytes. More detailed information about the implementation of this unit can be obtained from the

authors.
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the scaling). In part (b) the magnitude of the BM velocity computed from Eq.(2.4)is

plotted in dB relative to the stapes velocity. Note that in this, the passive, case the

response peak is broad and not well pronounced. The solid lines and the arrowsin this

figure will be referred tolater.

2.3.3 The linear locally-active case

Let us now introduce the outer hair cells (OHCs). We assume that they generate a

pressure Poyyc(x,@) that is added to the pressure difference across the BM. If we write

this pressure as

Pouce(434)= ZOHC(x;#) V¥BM (X34), (2.7)

the passive BM impedance Z?py4(x;) is modified by the feedback to the locally-active

BMimpedance Zgy4(x;W) according to

ZByg (x54) = ZBng54) - ZOHCOS#). (2.8)

One possible form of the impedance Zoyc(s,¥) is obtained by considering a

resonance ofthe tectorial membrane and thestereocilia of the OHCs (Allen, 1980; Neely

and Kim, 1986). The transfer impedance Zcy4c(x;#) then describes the space-frequency

distribution ofactivity. The expression that we have used is of a somewhatsimpler form

than that used by Neely and Kim, namely,

L+iB(x;@)

590 +18(x;w)-0% | BQx;a))
 ZQHC(X34) = CO HJoc (*) (2.9)

The resonance radian frequency of the BM, @19¢(x), follows from equating the imaginary

part of the passive BM impedance(Eq.2.5) to zero; B(x; @)is given by

B(X;W) = @ | WIgc(X). (2.10)

The numerical values of the new parameters are cy = 0.06 [kg m7], Sg¢ = 0.14 and o

= 0.7. The parameter o indicates how much the OHC resonance has been shifted with

respect to the BM resonance. For simplicity we have taken o as constant so that the

frequency-place map for the OHCsis parallel to that for the BM. The value we have

chosenfor o is based on anatomical considerations(cf. Strelioff, 1986).

Solid lines in Fig. | illustrate BM resistance (thick lines in part a), BM reactance

(thin lines in part a) and velocity response (part b) of a linear locally-active model. The

BMimpedanceis given by Eq.(1.8); in this case positive as well as negative values occur

in the resistance component. Where the resistance component is negative, energy is

injected into the system - this happensin the region to theleft of the response peak - and

the BM response is amplified, see the solid line in part (b). The effect of the OHCactivity
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on the imaginary component ofthe BM impedance is mainly that of a basal shift of the
place of resonance. We observe an enhancementofthe velocity response of nearly 40 dB
which is consistent with mechanical data found by Sellick ef al. (1982) and Johnstone e
al. (1986).
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Figure 1. Model results for a linear passive and locally-active long-wave model. Abscissa:
Location x along the BM. The dashed lines correspond to the passive model with the BM
impedance from Eq. (2.5). The solid lines belong to the locally-active model with the transfer
function from Eq. (2.9). (a) The resistance (thick lines) and reactance (thin lines) components of
the BM impedance drawn logarithmically for absolute values larger than 1x10! [ke m2 sly.
The small bars on the left and the right indicate the region within which the impedance
components are drawn in a linear way (with a slope of 0.043 to retain continuity). (b) BM
velocity responses in dB normalized with respect to the stapes velocity (the arrows are explained
in the legend to Fig. 3). Frequency 6 kHz, 500 sections.

BM location [mm]

Figure 2; Results of the quasi-linear locally-active model at four different input levels indicated
in the figure. (a) The resistance component of the BM impedance, See also legend to Fig, 1.
(b) BM velocity responses in dB normalized with respectto the stapes velocity. Frequency 6 kHz,
500 sections, 8 iterations.

 

At locations where the resistance component is negative the active structures (if
consideredin isolation) are zero-point unstable. Therefore, stability of the overall system
is checked by considering the real part of the input impedance of the model; it has to be
positive for all frequencies (if negative, energy would flow out of the model and our
cochlear model would spontaneously emit sound). With the parameters given above, the
system is stable. When cg is madelarger than 0.06, the model becomesunstable.
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2.3.4 The nonlinear locally-active case

Welet the OHC pressure become a compressive function of movements of the BM.

As a result the waveform of the BM response vgy({x,t) becomesdistorted too, and the

relation between pressure and velocity cannot be represented any morein termsof an

impedancefunction. Because we want to solve our model in the frequencydomain, we

split all system variables into their Fourier components, and treat the distortion products

as perturbations. In this section we consider only the primary components; in Appendix

B we compute the third-order componentin the BM velocity, and show that the coupling

to the primary components is minimal.

We consider OHC transduction as consisting of twoparts, a linear part according to

Eq. (2.7) which describesthefiltering ofthe BM velocity by the TM-cilia resonance, and

a nonlinear part. The output of the linear part (whichis the input to the nonlinear part),

I(x,), is the time-varying counterpart of Poyc(x;#) from Eq. (2.7) divided by the scaling

constant Py (which has the dimension of a pressure):

I(x,=|ZoHC(Os) YBo (x34)|sin(at + gy (x5) + 9Z,(x;a))/R. (2.11)

Here gy(x;v) and g7(x;w) denote the phases of vpy(r,v) and Zoyc(x),

respectively. The complex variable vgy4(x;W) (which will be called the primary BiM-

velocity response) is the first-order Fourier component of vpy4(x,)), defined by

a

vpG34) =~2i |Z ype) exptian), (2.12)
0

where 7’ is equal to 2x/w. A similar expression holds for the primary component of the

pressure. The secondstage is decribed by

POCO) = AFG) (2.13)

where PNLopc(x.0)is the nonlinear time-dependent OHC pressure, and wheref[.] is a

compressive function which is equal to the argument for very small argument values. The

parameter Py scales the transition between linear and nonlinear behaviour of the time-

varying pressurePNGc(x,/).
The first Fourier component of the OHC pressure waveform PoenL), denoted

by Ponce;/), is defined by

FE

Ponc(xse) = 21 [FE MOHC.NLC.0) explion, @.14)
0

so that substitution of Eqs, (2.11) and (2.12) into Eq. (2.14) gives
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FOHC(X;@)= 2A) exp(-i(py (x; ¢) + 9Z,(x;@)) *

Pat 2 : (2.15)
ie fZoHC(432) VBM (332) / Ay|sin(ar)] sin(@).

0

The quasi-linear impedance ZQoy;0(x;@) defined by

7Q . Ss s © ) 2 16OHCC3”) = PoHC (:4)/vBMG3), (2.16)

is used to modify the passive BM impedance from ZPgn4(x,#) to Zepag(xiw):

ZRO30) = ZBx30) - ZBOru), (2.17)

The essence of the quasi-linear method is to use ZQbpyj(x;#) in a linear frequency-
domain model. An iterative procedure must be used to solve the model because
ZQULoyc(x;W) depends on the BM velocity distribution which we do not know in
advance. To start our computations we set Z-oyc(x;W) equal to Zopyc(x:@) at all
locations x. This givesrise to aninitial BM velocity distribution. With this distribution we
adjust the quasi-linear impedance for the nextiteration step, and so on.

Although the actual OHCtransfer function is asymmetrical, we have taken forff]

the hyperbolic tangent function. We chose this symmetrical function because we wanted
to study amplitude compression. The scaling constant Pg has been given the value 2

[N m-2]. In our calculations the error in the velocity response between two subsequent

iteration steps was negligible after eight iterations; in the integration we used twenty-four

samples per period. In order to improve convergence, we averaged the velocities over

two subsequentiteration steps. Appendix B showsthat adding third-order term to Eq.
(2.11) does not noticeably influence the primary velocity response.

We developed our method on an Olivetti M28 computer (an antediluvian PC/AT
with 8 MHz clock frequency) equipped with an 80287 coprocessor. Because the method
is so fast we were able to calculate on this computer the BM response for a model with

500 sections in less than one minute. (With a 486 machine with clock frequency of 33

MHz it is a matter of seconds.)

2.4 Applications of the method

2.4.1 Nonlinear effect on the BM response pattern

Figure 2 presents results of the quasi-linear method applied to the nonlinear model
for four input pressure levels, the layout being similar to that of Fig. 1. The BM

resistance - part (a) of the figure - suffers clearly from de-activation as input level

increases; eventually it approaches the passive resistance (cf Fig. 1a). Note that de-
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activation is largest near the BM response peak. One effect of de-activation is seli-

suppression: The BM response - part (b) of the figure - flattens till it reaches the passive

response(cf. Fig. 1b). Another effect is that the peak shifts to the left as the input level

increases. Taking into account the relation between frequency and place domain, this is
in agreement with the experimental results of Johnstone e/ a/. (1986, their Fig. 4). For

intermediate input levels the BM response becomes somewhat rippled due to a

substantial retrograde wave originating from the region of the peak. Incomplete

annihilation of individual retrograde wavelets is the reason that this retrograde waveis
significant. Increasing the number of sections does notinfluence the result.

2.4.2 Input-output functions

The absolute value of the BM velocity at one location in the cochlea can be plotted

as a function of input pressure. This produces an input-output (I/O) function. Four
theoretical I/O curves obtained fromthe results of Fig. 2(b) are shownin Fig. 3; curve 1

pertains to the passive (and thus linear) model, the other curves to the locally-active (and

thus nonlinear) model. The numbered arrowsin Fig. 1(b) indicate the locations at which

the /O curves have been obtained. Arrow 1 points to the peak of the passive response
and curve 1 is the I/O curve for the passive model;it is linear, of course. Curve 2 is the

I/O function for the locally-active nonlinear model at the location of the peak; this curve
is highly nonlinear and has a slope with a minimum value of about 0.3 [dB/dB],

somewhat larger than the value of zero found by Johnstone ef a/. (1986, Fig. 5) and by

Patuzzi ef al. (1984a, Fig. 1). Curve 3 is obtained for locations to the left of the peak; in

this case the nonlinearity of the BM response is less pronounced than for curve 2.

Besides, curve 3 intersects with curve 2. These results are consistent with results of
mechanical experiments (e.g., Sellick ef a/., 1982, Fig. 5; Robles e# a/., 1986a, Figs 1 and
2) and with thoseofintracellular recordings in inner hair cells (Russell and Sellick, 1978,

Fig. 3). For locations to the right of the peak (curve 4) the I/O curveis less nonlinear

than at the peak; this does not agree with the mechanical data.

2.5 Discussion

We have described a quasi-linear method to solve nonlinear cochlear models. The

method can be applied to any stable locally-active nonlinear model if the system is linear

at low levels and saturates at high levels. We use our method to compute responses of a

long-wave model in which activity is place-frequency dependent and nonlinearity is

associated solely with activity. We believe that the quasi-linear method is more useful
than a time-domain approach for the following reasons: (a) The familiar concept of

impedance is extended to become a natural element of the quasi-linear method. The

impedance can be examined at every location in the cochlea and consequencesofits

variations can be determined or judged easily. (b) Gedanken experiments that do not
have a counterpart in the time domain are possible. For instance, impedances can be

manipulated to such an extent that the Hilbert relation between real and imaginary parts
is violated so that they become physically unrealizable (yet the model remainsstable), (c)
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In the quasi-linear method every variable can be interpreted directly but to asses

waveform distortion in the time-domain methodis difficult. (d) The quasi-linear method
is much faster than existing solution methods in the time domain. This feature makesit

easier to acquire insight into the behaviourof different locally-active models for various

parameter values. However, the time-domain method has undeniable advantages when

using multi-component, impulsive or non-stationary signals as stimuli.
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Figure 3: Four theoretical I/O functions for pure tone stimulation. The dashed curve (curve 1)

has been obtained at the response peak in the passive linear model (see dashed response pattern

and arrow | in Fig. lb), The other curves (curves 2-4) belong to the locally-active nonlinear

model, and have been obtained at the corresponding arrows a Fig. l(b). The reference value

(0 dB) of the ordinate corresponds to a velocity of 1*1 0-5 [m s” ly. Frequency 6 kHz, 500

sections, 8 iterations.

Figure 4; Primary (dashed lines) and third-order (solid lines) velocity response for two primary

inputlevels (thin lines: 70 dB SPL; thick lines: 100 dB SPL). Thereference vale of is primary
BM velocity is 1x10° [m s~!], for the third-order BM velocityit is 1x10°7 [msyy (40 dB

difference), The thin lines correspond to the ‘worst-case’ scenario in which a minimal difference

of only 25 dB between the primaryandthird-order velocity response is found. Primary frequency

6 kHz, 500 sections, 8 iterations for the primary response, 3 iterations for third-order response.

 

Wewillillustrate point (b) with an example. The theoretical I/O functions shown in

this paper have a minimal slope in the nonlinear region of about 0.3 [dB/dB]. This value

is larger than the value of zero found by Johnstonee7 al. (1986, Fig. 5) and by Patuzzi e¢
al. (1984a, Fig. 1), To achieve a zero slope in the model we need to produce a response

peak that shifts more to the left with increasing stimulus intensity than does the peak in

Fig. 1(b), This can indeed be obtained with an OHC transfer impedancethat differs from
that of Eq. (2.9). However,it turns out that the new transfer impedanceis not physically

realizable. As far as we know, a similar shift does not occur in an existing realizable

locally-active model. This Gedanken experiment would not have been possible with the
time-domain method,
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The influence of decreasing activity on the BMresponse has been examined by other

authors (Neely and Kim, 1986, Neely, 1993; Geisler, 1991). In that work activity was

made to decrease by a global factor independent of cochlear location. Our analysis is

more realistic (as far as nonlinearity is concerned) in that de-activation depends on the
(place-dependent) BM velocity distribution.

Mountain and Hubbard (1983), Patuzzi ef al. (1989) and Yates (1990) studied a

saturating nonlinearity that did not form a part of a cochlear model. Consequently, they
could only assess the local and not the global effect? of the nonlinearity on the BM

response, Neither could any one of these authors predict possible consequences on wave

reflection in the cochlea,

In the models by Hall (1974, 1977) and Strube (1986) the nonlinearity affected only
the resistance component of the BM impedance. In Hall's work damping increases with

increasing stimulation, in Strube's case it is undamping which decreases in magnitude. In

both cases the effect is independent of frequency, As can be derived from the

elaborations of de Boer (1983) this is not the right way to achieve gradual cochlear
amplification. In more modern and realistic models local activity is thought to be due to a

bi-directional coupling mechanism (Kim et al. 1980b; Weiss, 1982) which includes a
certain amount offiltering. In that case nonlinearity will modify the magnitude of the

transfer impedance involved and thus affect the imaginary as well as the real part of that
impedance. This is also true in the mode! we describe in this paper. Note that with our

technique a Gedanken experiment is possible in which the roles played by real and

imaginary parts of this impedance are separated.

The quasi-linear method can easily be extended to phenomenalike suppression and
production of combination tones. The OHC pressure will then be distorted by a

secondary tone of a different frequency. These extensions will be treated in future papers;

for an application to combination tones see Kanis and de Boer (1993). In fact, the
original reason for undertaking this work was to study the relation between two-tone

suppression and generation of combination tones.
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3 That in linear models local and global effects can be separated is apparent from the LG
approximation (Zweig ef al., 1976). The LG expression consists of two factors, a local factor
depending only on the BM impedance and a global one containing an integral of the local
wavenumber k(x) over location x. The former factor approximately describes the shape of the BM
velocity response to the left of the peak. The latter factor describes where the propagating wave
changes into an evanescent wave (cf. de Boer, 1980), We can consider an LG approximation in

every step of our iteration procedure determined by the quasi-linear BM impedance

ZBM,QL(:”)ofEq. (17). By analogy we can recognize the samelocal and globaleffects,
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Appendix 2.A: Coupling to the middle ear

Wecouple the stapes to the outside world with an impedance Zp to ensure that the

model remains stable for all frequencies. The local impedance in the cochlea can be

solved from a Riccati equation (Kaernbachef al., 1987). A good approximation to this
impedance is derived from the Liouville-Green (LG) solution (also known as WKB

solution) of the wave equation (Viergever and de Boer, 1987); it is the conjugate of this

impedance which weuse for Zp (de Boer, 1991), In this way we have optimal transfer of
acoustical power - in fact, we have modelled an ideal middle ear. The equation describing

the coupling is

& PO ~ P(0) = — ZOVstapes> (2.4.1)

where g is a scaling factor, pg the given input pressure and Ystapes the stapes velocity

which relates to the derivative p,(x) of the pressure as

Vstapes =~ Px (0) / (iwp). (2.A.2)

For the purpose of: the present paper where only one frequency (6 kHz) is

considered it is not necessary to model the middle ear in any further detail. The

coefficient g has been given a value of 3.5102: then, for an input pressure of 14 dB SPL
the velocity response of ourlocally-active model at its peak has a magnitude of 4x05

m s~! which is equal to the value obtained by Sellick ef al. (1982, Fig. 15, curve with

closed circles).

Appendix 2.B: Justification of the method

The quasi-linear approachis valid if the harmonic distortion does not influence the

primary response. To check this, we calculate the third-order velocity response (this

distortion product being ihe most important when using a hyperbolic tangent function),
and evaluateits effect on the primary response. The third-order response is denoted by

Vpm(xi3@)and given by

T
VBM (33H) =—2i [¢ vBM (2. t) exp(3iwt), (2.B.1)

0

which is analogous to Eq. (2.12) of the main text. Similarly, we define the third-order

pressure response p(x,3@) by

it
p(x:3W) =—2i {¢ p(x,t) exp@iat). (2.B.2)

0

On the assumption that only long waves exist in the cochlea, the relation between

BM velocity and pressure is given by

Prx(X;@) = - twp vp(x5@) 1h. (2.B.3)

This equation is true for any frequency; for the primary frequency W/27 it leads to the
wave equation (Eq. 2.1) and for the third harmonic to an inhomogeneous equation as we
shall see.

Third-order distortion is generated whenever the BM vibrates with such a large
amplitude that the OHC pressure becomes nonlinear. At every point in the cochlea we
define, in analogy to Eq. (2.B.2), the third-order component Poyc(x;3¥) of the OHC

pressure PNLopclx,/) [defined in Eq. (2.13)] as

T

FOHC (x; 3w) = — 21 [eS FOHCNL (&,1) exp(3iar). (2.B.4)
0

Because the OHCsalso respond to oscillations at frequency 3@/2x, the argument /(x,7)

of the nonlinear functionf].] contains two terms:

1(x,0) = |ZoHc(34) BM (134)/ Aysin(ar + gy (x34) + pz(x3)) +
2B5

ZOHC (x;3”) vBM (2330)/ A)|sinBar + py (x;3~)viet ) 

The phases gy(x;3w) and ~7(x;3w) are the phases of the third-order response and

Zonc(«;3 W), respectively. :
Forthe third-order distortion product the equilibrium over the BM is described by

280833#)YBM(0330)=~ 2p(2330) + Ponc(a;3e). (2.B.6)

Eliminating Vpyq(x;3/) from Eq. (2.B.6) with Eq. (2.B.3) evaluated at frequency 3 @/2r,
we obtain an inhomogeneous wave equation

Day (%33w)+ k2 (33a) p(xi3W) = 0.5 k2 (2330) PoHc(x:3#) (2.B.7)

The factor k2(x;3@) is defined as in Eq. (2.2) but evaluated at frequency 3@/27. The

third-order pressure response is solved from Eq. (2.B.7), and vpy4(x;3) is calculated
from Eq. (2.B.6).

It is important to realize that the solution of the inhomogeneous wave equation
proceeds with a modified boundary condition at x = 0, because for the third harmonic py

in Eq, (2.A.1) is zero. In order to evaluate Eq. (2.B.5) we need to knowthe primary as
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well as the third-order velocity response: First the primary response is computed in eight
iteration steps, and then the third-order response is computed in three iteration steps,

using the modified boundary condition as described above.
Figure 4 shows primary (dashed lines) and third-order (solid lines) velocity

responses for two primary input levels of 70 and 100 dB SPL. The third-order response
has been amplified by 40 dB with respect to the primary response. For an input level of

70 dB SPL the largest amount of nonlinearity occurs in the region of the peak of the

primary response, while for’an input level of 100 dB SPL third-order distortion is also

found at places to the left and the right of the primary peak. The maximal amount of

distortion corresponds to the minimal difference between the primary and the third-order

velocity response. For a primary input level of 70 dB SPL this minimal difference is

about 25 dB. Thus, third-order distortion is always more than 25 dB below the primary

velocity response. However, one factor has not yet been taken into account, namely, the

possible influence of the third-order response on the primary response. To assess this
influence, we modify Eq. (2.11) to accomodate the input given by Eq. (2.B.5), and use

Eqs.(2.14), (2.16) and (2.17) to solve the wave equation for the primary BM response.

The resulting BM response turns out to be indistinguishable from the first-order

responses shown in Fig. 2 (the difference is below 0.01 dB). This procedure is repeated

for fifth and higher-order distortion products which yields the same result. Thus, higher-

order products do not influence the primary response. Note that in our model the

perturbation method is valid for all intensities, since for large input levels the nonlinear

term in our system equations vanishesina relative sense.
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Two-tone suppression in a locally-active
nonlinear model of the cochlea”

Abstract In auditory nerve, inner-hair cell and basilar-membrane responses, it has
been found that the response to one tone can be suppressed by another tone. This

phenomenon, called two-tone suppression, is examined on the level of the basilar
membrane with a locally active long-wave model of the cochlea in which the active

mechanism is nonlinear. The model is solved in the frequency domain by means of a

quasilinear solution method. Several phenomena, such as difference in growth of

suppression for low-side and high-side suppressors andcritical dependence of the phase
of the probe response on suppressor parameters, have beenreplicated. The attenuation

hypothesis which states that the presence of a suppressor has the same effect on the

probe responseas attenuation ofprobe level is shownto be insufficient in explaining the

experimental data. Our model, in which suppression is simply reduction of power

amplification due to saturation of the active mechanism, is more successful in this

respect, :

3.1 Introduction

Since its discovery in cochlear microphonic recordings (Covell and Black, 1936),

two-tone suppression has been studied extensively in responses of auditory-nerve fibers
(Sachs and Kiang, 1968; Sachs, 1969; Arthur e/ al., 1971; Abbas and Sachs, 1976; Sachs

and Abbas, 1976; Javel ef a/., 1978), inner hair cells (Sellick and Russell, 1979,

Cheatham and Dallos, 1989, 1990; Nuttall and Dolan, 1993a), and the basilar membrane

(BM) (Rhode, 1977; Patuzzi et ai., 1984; Robles ef a/., 1986b; Ruggero et al., 1992;
Nuttall and Dolan, 1993a; Rhode and Cooper, 1993). During two-tone suppression the

response to a probetoneis suppressed by a secondary tonethat is present in the stimulus

to the ear but not necessarily detectable in the measured response. Suppression of a

probetone has been observed for low-side (LS) suppressors as well as for high-side (HS)

*) Preliminary results were presented during the 3d International Symposium on Cochlear

Mechanisms and Otoacoustic Emissions in Rome, 1992.
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suppressors where low-side and high-side stand for frequencies below and above the
probe frequency, respectively.

Not only the magnitude but also the phase of the probe response changes during

two-tone suppression. Several authors (Nuttall and Dolan, 1993a, 1993b; Cheatham and

Dallos, 1989, 1990, 1993) have tried to explain the experimental phase data with the

attenuation hypothesis. Sachs and Abbas (1976)introduced the concept of attenuation in

a phenomenological model for neural rate functions but Javel ef a/, (1978) were thefirst

to apply this idea also to phase measurements and to give the hypothesis its current

name, The hypothesis states that addition of a suppressor to the stimulus has the same
effect on the probe response as attenuation of probe level, with an amount that is only

dependent on suppressor level.! Although it originally applied to probe tones with
frequency equal to the characteristic frequency (CF), the hypothesis was extended to off

CF tones. In some cases the hypothesis correctly predicts response behavior, in other

cases it does not (Geisler and Sinex, 1980; Deng and Geisler, 1985; Costalupesef ai.,

1987; Nuttall and Dolan, 1993a, 1993b; Cheatham and Dallos, 1989, 1990, 1993).
We believe that any agreement of the experimental data with the attenuation

hypothesis is only phenomenological and has no physical basis. In this paper we will try

to convince the reader that two-tone suppression is described more realistically by

saturationofthe active mechanism. The ideais that a suppressor tone interferes with the
(nonlinear) active process that enhances the probe response. This may happen for HS as

well as for LS suppressors, For low-level HS suppressors the region ofinterference will

be mostly basally to the peak, while low-level LS suppressors will mainly saturate the

active process at locations at and apical to the probe peak. Theidea of relating two-tone

suppression to saturation of the active process is not new. Some authors have described

the relation qualitatively (Kim, 1986; Patuzzi e/ al., 1989; Geisler ef al., 1990; Cheatham
and Dallos; 1990; Zweig, 1991); others have incorporated saturation of activity in a
cochlea model (Zwicker, 1979, 1986; Mountain and Hubbard, 1983; Neely and Stover,

1993: Geisler e¢ a/., 1993; Cohen and Furst, 1993) but two-tone suppression has never

systematically been described with a nonlinear locally-active cochlea model.
In this paper we have examined the mechanism oftwo-tone suppression with a one-

dimensional cochlea model in which frequency-specific activity and compressive

nonlinearity both reside in the generation of pressures by outer hair cells (OHCs). To

illustrate the relation between saturation of the active mechanism and response in an

elegant way we have solved the model in the frequency domain with a quasilinear

method which treats distortion products in the BM-velocity response as perturbations.
For the purpose of this paper the model need only be solved for the primary components

in the traveling wave; the computation of harmonics or combination tones (Kanis and de

Boer, 1994) is optional because their influence on the primary components can be

neglected (cf. Kanis and de Boer, 1993b).

1 Ina model by Sachs (1969) suppression is a function of the difference between probe and
suppressor leyel, but this idea was rejected in a later study by Abbas and Sachs (1976).
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3.2 Method

We have modeled the cochlea as a rectangular box divided into two fluid-filled

scalae by a movable partition consisting of the basilar membrane (BM) and the organ of

Corti. The model is driven at the stapes which is coupled to the pressure source by
meansofa reflectionless middle ear. Pure-tone stimulation results in a travelling wave on

the BM that peaks at a location that depends on the frequency of the stimulus. For

simplicity, we approximate the cochlear waves by long waves. Since passive models do
not haverealistic tuning properties (cf. de Boer, 1991) we have included active outerhair
cells (OHCs) which locally generate sound pressures that are added to the pressure

difference over the BM. At locations basal to the resonance place the OHCs inject more

energy into a cochlear section than is absorbed by that section, at these locations the
cochlea is /ocally active. The OHC-generated pressure causes amplification of the

traveling wave which ultimately results in a 40 dB increase of the velocity response at the
peak. We madethe pressure generation by the OHCsa saturating function ofthe input to
the OHCs whichis in line with physiological data (cf. Hudspeth and Corey, 1977). Note

that this is the only nonlinearity introduced into the model.
The response ofthe modelis solved in the frequency domain by considering only the

primary Fourier components in the pressure generated by the OHCs and neglecting the
influence of other components. Because the Fourier components depend nonlinearly on

the BM responsethefinal solution is obtained after a number ofiteration steps. In each
iteration step a linear problem is solved so that the concept of BM impedance can be

used throughout. In our case this impedance includes effects of the active mechanism
(andits saturation), and for this reason we will speak of it as an effective BM impedance.

For details about the solution method, its validity, and model parameters, the reader is
referred to Appendix A ofthis paper, and to Kanis and de Boer (1993b).

3.3 Results

3.3.1 Suppression and self-suppression: BM-velocity responses

In Fig. 1 the effect of saturation of the active mechanism on the BM response is
illustrated for single-tone stimulation at 7 kHz. Model results are shown as a function of
location x (distance from the stapes) for three different input levels. Part (a) shows the

resistance component of the effective BM impedance (the BM impedance that describes

both the passive and active properties of the cochlear partition). We refer to the legend
for details about the scaling. To avoid cluttering the figure the reactance component of

the BM impedance has been omitted. Part (b) shows the magnitude of the BM-velocity

response normalized to stapes velocity, and part (c) shows the phase of the BM-velocity
response, Input levels (at the eardrum) are 30, 65 and 100 dB SPLfor the thick solid,

thin solid and thick dashed lines, respectively. At 30 dB SPL a pronounced excursion of

the BM-resistance component into the negative domain is seen. It is located basally to

the response peak. In this case the modelis almost linear. At higherlevels of stimulation
nonlinearity comes into play because the active elements are getting saturated: the

negative lobe of the BM resistance becomes less prominent and, consequently, the BM-
velocity response in the peak region is reduced. At 100 dB SPL the negative-going
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excursion has disappeared completely, and the BM response approximates that of a
passive model. The phenomenon that in the peak region the BM response suppresses
itself by bringing the active mechanism into saturation is called se/f-suppression.

It should be noted that the effective BM impedance gives a re/adive measure of the
generated pressures: the OHC-generated pressures increase for increasing input levels
(see also Cohen and Furst, 1993, Fig. 2) in spite of the fact that the negative lobe in Fig.

1(a) shrinks. Another comment concernsthe fact that the largest pressures are generated
at the peak of the response since the pressures are the product of the BM-impedance and

the velocity response [see Eq. (1.4.10) for the linear case]. Therefore, one should not
say that the region of amplification lies basally to the peak. It is only if one looks at the
energy flow, that at regions basal to the peak, where the resistance is negative, more

energy is injected into the cochlea than absorbed.
Phase behavior in Fig. I(c) at increasing input levels is that of a lag (lead) at

locations basal (apical) to the peak and no phase change at the peak location of 30 dB

SPL(in fact, the transition point lies 0.1 mm basally to the peak). Bearing in mind the
correspondence between locations basal (apical) to the peak and frequencies below
(above) the characteristic frequency (CF), we find that the phase behavior in Fig. l(c) is

in accordance with experimental data (Anderson ef a/., 1971; Rhode and Robles, 1974;

Sellick e¢ al., 1982, Fig, 16; Dallos, 1986, Fig. 7; Cheatham and Dallos, 1989, Fig. 4,

1990, Fig. 11; Nuttall and Dolan, 1993a, Figs. | and 2).
In Fig. | we have illustrated how increasing the input level results in decreased

amplification of the travelling wave. A similar decrease in amplification may occur when

a secondary tone is added to the stimulus. Three examples of two-tone suppression will
be shown, all for a 7 kHz probe presented at 30 dB SPL. Westart with a suppressor
frequency of 8 kHz in Fig. 2, then decrease it to 7.25 kHz in Fig. 4 and our last example
in Fig. 5 has been obtained for a suppressor frequency of 5.5 kHz. We will see that the
nature of suppression changes dramatically from one example to the other, while the

mechanism of saturation remains the same.

In Fig. 2 an example of high-side (HS) suppression is illustrated in a similar layout

as Fig. 1. The resistance function depicted in part (a) and the phase response in part (c)

tefer to the probe frequency. At the location of the unsuppressed probe-response peak
(thin solid lines) the 8 kHz suppressor at 60 dB SPL (thick dashed line in part b) is

smaller in amplitude than the suppressed probe (thin dashed lines). Wewill call this case
non-dominant suppression.It is seen in part (a) that in the presence of the suppressor the
negative lobe shrinks which results in a magnitude decrease (i.e., suppression) of the

probe response at and around the probe peak. Furthermore,it is seen that this magnitude

decrease results in a modest re/ease of saturation in the region from 6.9 to 7.2 mm: the
rightmost crossing of the dashed line in part (a) lies apically to the zero-crossing of the

solid line.
In part (c) we observe phase lags at and apically to the peak (this is more clearly

seen in Fig. 3 where phase shifts have been enlarged). These phase lags are consistent
with the small but significant phase lags that have been observed in many studies of
neural, inner hair cell and BM responses (Arthur ef a/., 1971; Javel et a/., 1978; Deng

and Geisler, 1985; Robles ez a/., 1989; Cheatham and Dallos, 1989, 1990; Ruggero e/

al., 1992; Nuttall and Dolan, 1993a). The phase lags at locations basal to the peak are
consistent with the lags found by Cheatham and Dallos (1989, Figs. 7 and 11) and

Nuttall and Dolan (1993b, Fig. 2b).
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Figure 1. Single-tone results. The input stimulus consists of one 7 kHz tone presented at three

different levels, Abscissa: Location x along the BM, measured from the stapes. (a) Resistance

porgenett ofthe BM impedance drawn logarithmically for absolute values larger than 10 [kg m™
2 sl). The small bars on the left and right indicate the region within which the resistance has

been plotted in a linear way(with a slope of 0.043 to retain continuity). (b) Magmitude of BM-

velocity responses normalized to stapes velocity, (c) Phase of BM-velocity responses, Inputlevels
are 30, 65 and 100 dB SPLfor the thick solid, thin solid and thick dashedlines, respectively. The

figure illustrates how the amount of activity decreases (in a relative sense) when input level

increases resulting in a flattening of the peak.

Figure 2. Non-dominant high-side suppression. (Non-dominant: at the location of the
unsuppressed probe peak the suppressor has a smaller amplitude than the suppressed probe), A 7

kHz probe at 30 dB SPL is suppressed by a 8 kHz suppressor at 60 dB SPL.Solid lines pertain

to single-tone, and dashedlines to two-tone stimulation. Thin dashed lines belong to the probe and

thick dashed lines to the suppressor. (2) BM resistance at the probe frequency. (b) Velocity
responses in dB relative to | 105 msl, (c) Phase of probe velocity response. Note in the two-

tone case the increase of the phaselag at the location of the peak and at more apical locations.
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Figure 3. BM-phase change with respect to the phase of the unsuppressed probe response at 7

kHz and 30 dB SPL (thick solid line in Fig. 1c). The thick dashed line is the phase change when

probelevel is increased to 100 dB SPL(i.c., the difference between the thick dashed and the thick

solid line in Fig. Ic). The thin dashed line is the phase change in the presence of a 8 kHz

suppressor at 60 dB (thus, the difference between the dashed andthe solid line in Fig. 2c). To the

left of x = 6.5 [mm] the suppressed phase response follows approximately the thick dashed le

since at these locations the effective BM impedance has been suppressed considerable [see Fig.

2(a)]. At locations to the right of x = 7.2 [mm] the suppressor does notaffect the effective BM

impedance, and the phase remains to the reference line. See text for the region between 6.9 and

7.2 [mm].

 

Thus, our simple long-wave model replicates the observed phase lags in the case of
(non-dominant) HS suppression successfully. According to the attenuation hypothesis

adding a suppressor to the stimulus has the same effect on the probe response as

attenuation of probe level, so that phase leads should have been observed at locations
basal to the probe peak and a transition at the peak [as can be inferred from Fig. 1(c)].

We conclude that the attenuation hypothesis fails in this example, and more examples
will follow.

Can we explain the occurrence of phase lags at the probe peak? Yes, we can. An

interesting property of our modelis that the course of the phase (or magnitude) curves is

locally related to the effective BM impedance, or (in good approximation) to the
resistance component (see Appendix B). A consequence is that at places where the

resistance is the sameas in the passive (active) case the phase follows the passive (active)
phase curve. Let us try to understand the phase course in Fig. 2(c) by looking at the

resistance component in part (a) of the figure. We see the active mechanism has been

suppressed considerably in the region basal to x = 6.5 [mm]. Accordingly, in part (c) the

suppressed phase pattern followsat these location moreor less the passive phase pattern

[which is approximately the thick dashed line in Fig. 1(c)]. This is shown moreclearly in
Fig. 3 where phase changes have been plotted relative to the phase response of the 7 kHz

probe at 30 dB SPL [thick solid line in Fig. 1(c)]. The thick dashed line indicates the

relative phase change for the 7 kHz probe response at 100 dB SPL (from Fig. 1) which
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should be compared withthe curves in Fig. 4 of Cheatham and Dallos (1989) and in Fig.

11(c) from Cheatham and Dallos (1990). The thin dashed line denotes the relative phase
change of the suppressed probe in Fig. 2. We see that the thin and thick dashed lines

more or less follow the same course at locations basal to x= 6.5 [mm]. Similarly, at
locations: apical to x= 7.2 [mm] the active mechanism is in full swing, and the thin
dashed line in Fig. 3 consequently follows the reference line with a downward shift of
about 90 degrees? The magnitude of the response in Fig. 2(b) can be analysed similarly.

A very niceillustration of our method is that in the region from x = 6.9 to 7.2 [mm] the
phase lag increase in Fig. 3 can be seento arise from the release of self-suppression in the

same region in Fig. 2(a).

The effect of HS suppression on the probe changes when, at the location of the
unsuppressed probe peak at low input levels, the suppressor becomes /arger than the

(suppressed) probe. This will be called dominant suppression. An example is given in
Fig. 4 where we have decreased the suppressor frequency to 7.25 kHz.It is seen in Fig.

4(a) that the active mechanism near the probe peak has been suppressed more than in

Fig. 2(a), while around x=5.5 [mm] in Fig. 2 the active process has been nearly

restored. Still, the response to the probe tone is suppressed much morein Fig. 4 than in

Fig. 2 because the influence of the resistance on the probe response is largest near

resonance (whichlies approximately at the same location as the peak, at least for an input

level not exceeding 30 dB SPL). Furthermore, we notice that the phase slope in Fig. 4(c)
approaches the passive curve from Fig. 1(c) at those locations, basal to x = 7.2 [mm],

where the active mechanism has been suppressed considerably. Apically to this point the

phase curve follows the active curve. Because the suppressed phase curve crosses the

unsuppressed curve with a smaller (in fact, less negative) slope than the unsuppressed

curve, a phase lead (lag) arises at locations apical (basal) to this cressing point. Similar

lag/lead behavior has been found in data on excitatory HS suppression in inner hair cells
in the apical turn (Cheatham and Dallos, 1989, Figs. 7 and 8). A phase lead was also

observed during dominant HS suppression for probe frequencies above CF by Nuttall

and Dolan (1993b, Fig. 1, curve obtained for 18 kHz probe and 18.5 kHz suppressor).

They suggested that a different type of suppression should exist for non-dominant HS

suppression than for dominant HS suppression, The model results presented in Figs. | to

4 showthatthis is not necessary.
Another example of dominant HS suppression can be obtained when an 8 kHz

suppressor (as in Fig. 2) is increased in level to 80 dB SPL.In that case phaselagsstill

occur at all locations. When suppressor level is increased to 90 dB SPL, the phase
behaviour becomes equivalent to that in Fig. 4(c), and the phase lags at and apically to
the peak disappear. Similarly, Deng and Geisler (1985) observed in physiological
responsesthat phase lags at CF disappeared when they increased HS suppressorlevel.

An example of non-dominant low-side (LS) suppression is shown in Fig. 5 where

the suppressor frequency has been decreased to 5.5 kHz. We observe that the BM

resistance at the frequency ofthe probe has now been increased mostly at and apically to

2 Cheatham and Dallos (1990, 1993) stated that the observed phase lags could be explained by

assuming that at locations basal to the peak, the velocity of the traveling wave (proportional to

the reciprocal of the derivative of phase to frequency) decreases in the presence of a suppressor,

which is true for our Fig, 2(c), However, they did not explain exactly howthis velocity decrease

was brought about.
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the probe peak. The result is a decrease of the probe response peak, a decrease of the
apical slope, and a phase lead at locations apical to the peak (except at x >8.7 [mm]

where the response will be too small to be measured). The occurrence of phase leads in

this region is consistent with mechanical and inner hair cell data [Nuttall and Dolan,
1993a, Fig. 6(f) and 7(d); Cheatham and Dallos, 1990, Figs. 3(a) and 8(a)] but

inconsistent with the attenuation hypothesis. The lag/lead transition becomes more

evident when the suppressor is increased in level (not shown). The probe tone has been
suppressed by 5 dB which is about the same as the values found by Ruggero e7 al. (1992,

Fig. 4). Note that they used a different definition for suppression so that the suppression

values in their Figs. 5 and 6 are larger than the actual decrease of the probe response
peaks.
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Figure 4. Dominant high-side suppression. (Dominant: at the unsuppressed probe peak the
suppressor has a larger amplitude than the suppressed probe). The layout and parameter values
are the sameasin Fig. 2, but suppressor frequency 1s now 7.25 kHz. Note that at locationsapical
to the peak phaseleads occurin contrast to the phase lags in Fig. 2.

Figure 5, Non-dominant low-side suppression. A 7 kHz tone at 30 dB SPL is suppressed by a
5.5 kHz tone at 55 dB SPL. Layout is the same as in Figs. 2 and 4.
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Figure 6. BM phase change in the presence of a fixed suppressor as a function of probe

frequency. The thin line is the phase change of the probe response for a fixed suppressor at 5.5
kHz (thin arrow) and the thick line for a suppressor at 8 kHz (thick arrow). Probe at 70 dB SPL,

suppressor at 80 dB SPL. Reference: unsuppressed probe response. Place of measurement: at
x= 7.0 [mm] whichis the location of the peak of a 7 kHz tone at 30 dB SPL.

Figure 7. Probe response as a function of suppressor level. Magnitude [part (a)| and phase shifts

[part (b)| of a 7 kHz probe tone (at 30 dB SPL) in the presence of an HS (8 kHz) or LS (5.5

kHz) suppressor. The phaseshifts are relative to the phase at a suppressor level of 20 dB SPL,

and the place of measurement corresponds to the peak location of a 7 kHz probe tone at 30 dB

SPL. The growth of suppression is much larger for the LS curve than for the HS curve when the
amount of suppression is smaller than about 10 dB, For larger suppression values the growth of

suppression are approximately equal. The phase shifts in part (b) for the HS case display a

transition from lag to lead as suppressorlevel is increased.

 

Wehave considered a cochlea modelthat is place-frequency invariant (see Appendix

A), so that the response patterns in our Fig. 1 can be compared isomorphically with iso-
intensity response curves obtained as a function of frequency. This invariance property,
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however, only holds for pure tones or for two-tone stimulation where the ratio of

primary frequencies is kept constant, If the primary frequency ratio is not held constant,
as in Fig. 2 and 4, phase behavior changes dramatically. Thus, we have to be careful to

use the invariance property in relation with two-tone stimuli consisting of a fixed-
frequency suppressor and a probe with varying frequency as has, for instance, been done

by Cheatham and Dallos (1989, 1990). To make a fair comparison with the experimental

data we produced Fig. 6 in which we varied probe frequency while suppressor frequency

was kept at 5.5 kHz (thick line) or at 8 kHz (thin line). This figure shows changes of

probe phase with respect to the unsuppressed condition. The curves have been obtained
at the location where a 7 kHz tone has its peak at 30 dB SPL. The two curves show a

lag/lead behavior with different transition frequencies. For probe frequencies approaching
the (above-CF) suppressor frequency from below (see thick line) the suppressor becomes

dominant and consequently a phase lead occurs (as in Fig. 4). This phase lead and the

phase lags at lower probe frequencies are consistent with findings of Nuttall and Dolan
(1993b, Fig. 2B) and Cheatham and Dallos (1989, Fig. 7). It is, however, inconsistent

with data of Cheatham and Dallos (1989, Fig. 11; 1990, Figs. 3a and 5b), presumably
because ofthe high levels used in their experiments. The thin line is similar to the curves
in Figs. 3(b) and 5(b) of Cheatham and Dallos (1990).

3.3.2 Suppression and self-suppression: Intensity functions

If one plots the magnitude of the response at one location in the cochlea as a

function of input level, an input-output (I/O) function is obtained. For linear responses

the I/O function has a slope of 1 dB/dB. In our model where responses suffer from self-
suppression (see Fig. 1), the minimal I/O slope for a pure tone is about 0.25 dB/dB

(Kanis and de Boer, 1993b). In the presence of a suppressor, experimental I/O functions
are shifted horizontally towards higher probe levels and, in addition, the I/O slope in the

compressed region has often been found to increase (Abbas and Sachs, 1976; Javel e/ al.,
1978; Robles e¢ al., 1986b; Sokolowski et a/., 1989; Ruggero et a/., 1992; Rhode and

Cooper, 1993; Nuttall and Dolan, 1993a), Thus, sel/f-suppression decreases the I/O

slope ofthe probe in the nonlinear region, and suppression increases the slope. One

could also say that suppression weakens self-suppression. This linearization effect, as it
is called, is also present in our model (not shown) and is brought about asfollows. When

there is no suppression, but only self-suppression, the minimal I/O slope of the probeis

about 0.25 dB/dB. When the probe is fully suppressed, the nonlinear element is
effectively put out of function, and the I/O slope becomes linear. For intermediate

amounts of suppression the minimal slope of the I/O curve will thus be between 0.25 and

1 dB/dB. Note that this linearization effect is inconsistent with the attenuation

hypothesis, since the attenuation hypothesis merely predicts a parallel shift of the I/O
function towards higherintensities.

A different type of intensity function is obtained when not the probe level is varied

but suppressor level. In neural, inner hair cell, cochlear microphonic and BM recordings
it has been found that suppression increases with increasing suppressorlevel and that the

growth of suppression is larger for LS suppressors than for HS suppressors (Abbas and
Sachs, 1976; Cheatham and Dallos, 1982; Javel er a/., 1983; Fahey and Allen, 1985;

Costalupesef a/., 1987; Delgutte, 1990; Ruggeroef a/., 1992; Rhode and Cooper, 1993;
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Nuttall and Dolan, 1993a), These findings are replicated by the modelresults in Fig. 7 in

which the range of suppression is fully covered (from no suppression at a suppressor

level of 20 dB SPL to about 40 dB of suppression at a suppressor level above 90 dB

SPL). This figure shows how magnitude and phase of a proberesponse at 30 dB SPL
monitored at its peak are influenced by an LS or HS suppressor. The dashed line

indicates where the probe response has been suppressed by an amount of about 10 dB

with respect to the probe-alone case. While for both HS and LS suppressors the

maximum amount of suppression is almost equal (being limited by the maximal
enhancement of about 40 dB that can be produced by the active process), the

suppression slopes are quite different for the two suppressors. For the HS suppressorthe
magnitude curve has a slope of about 0.4 dB/dB during thefirst 10 dB of suppression of
the probe, while the slope for the LS suppressor has a value of about 1.3 dB/dB. Similar

values have been found in the above-cited experiments, whereit should be noted that in
these papers different definitions of suppression have been used which makes a

quantitative comparison difficult. The reason for the different slopes is that the influence
of the resistance on the response is largest near resonance: for the LS suppressor the
region where the resistance component is affected most lies at and apical to the probe

peak [cf. Fig. 5(a)] whereas for the HS suppressorit lies mainly basally to the peak [see

Fig. 2(a)]. All this applies to the case when there is less than 10 dB of suppression. For
larger amounts of suppression the suppression slope becomes equal, orslightly larger, for

the HS than for the LS suppressor. The reason for the changing ofroles is that the
influence of the HS suppressor on the probe has spread to locations around the probe

peak, while for the LS suppressor the spread has been more to locations basal to the
peak. Note that some of the intensity curves reported by Rhode and Cooper (1993)

resemble our curves as a whole. Only these curves do not cover the whole range of about

40 dB suppression since they used a (self-suppressed) probe at 54 and at 74 dB SPL.

(See also Fig. 5 of Nuttall and Dolan, 1990). Thus, a more detailed comparison ofFig.
7(a) with BM experiments mustabide its time.

The phase leads in Fig. 7(b) for LS suppression are consistent with experimental

data (Nuttall and Dolan, 1993a, Fig. 7d). As has already been mentioned, lag/lead phase
behaviour during high-level LS suppression equals the phase behaviourin Fig. 1(c) when

probelevelis increased, Since the transition pointin Fig. 1(c) is located 0.1 mm basal to

the probe peak at 30 dB SPL,it is conceivable that during LS suppression phase leads
are recorded if the phase is being monitored at the response peak, .

In Fig. 7(b) we observe for the HS case transition from lag to lead as suppressor
level is increased, If one extrapolates the trend in the phase shifts for low probelevels in
Fig, 7(b) of Nuttall and Dolan (1993a) towards higher suppressor levels (above 70 dB

SPL), a similar transition from lag to lead seems to occur in mechanical data. For the

innerhair cell data shownin their Fig. 6(c) the slopes of the phase curves do not tend to
go up as suppressorlevel is increased. A probable reason is that the ratio of suppressor

to probe frequency is larger in their Fig. 6. Deng and Geisler (1985) found, also’ in line

with our results, that when the phase of a probe tone at CF was monitored the observed
phase lags disappeared when suppressor wasincreased.
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3.4 Discussion

The purpose of this paper has been to clarify the mechanism of two-tone

suppression with a nonlinear and locally active cochlea model. The model was solved in

the frequency domain with the quasilinear method developed by us (Kanis and de Boer,
1993b). A great advantage of this solution method compared to the time-domain

approachis that effects of saturation of the OHC pressure on the response can easily be
monitéred via the effective BM impedance. Another advantage is that the method is very
fast (Kanis and de Boer, 1993b). Any response pattern as reported here is computed in

less than one minute on a personal computer (486, 33 MHz).

We have shown that the phase behavior of the probe response is more complex

during two-tone suppression than during probe level attenuation in that it depends

critically on suppressor parameters. Phase behavior is not predicted as simply as is
suggested by the (phenomenological) attenuation hypothesis. This hypothesis states that

adding a suppressor to the input stimulus is equivalent to attenuation of the probe. For
instance, a phase lag should always occurfor probe frequencies higher than CF when the
probe response at CF decreases in magnitude irrespective ofthe cause of the magnitude

decrease.
In contrast, in our model response changes at a certain location depend upon the

dynamic state of the whole cochlea. The dynamic state, in turn, is influenced by the

presence of a suppressor, In other words, probe amplification at the peak location is

reduced when the active mechanism is brought into saturation at other locations.
A property of our cochlea model is that the slope of the phase curve is locally

related to the resistance component of the BM impedance. This relation enables us to
understand, for instance, the occurrence of phase lags during non-dominant HS

suppression.
As we havesaid earlier the phase behavior of the probe response depends critically

on stimulus conditions; for instance, a small increase in HS-suppressor level can change
the phase shift from negative io positive [see Fig. 7(b)]. Taking this into account, we

may understand why some experimenters have had difficulty in explaining their phase

data.
Other authors have described nonlinear models. Kim ef al. (1973) and Hall (1974,

1977, 1980) solved passive models in the time domain. They were not able to simulate
non-dominant LS suppression on the level of the BM. Hall could only simulate non-

dominant LS suppression onthe neural level by means of a secondfilter. Zwicker (1979,
1986) used a hardware model with a saturating feedback that wndamped the system, that

is, at all places less energy is injected by the active subsystem than absorbed(this is in

contrast to locally active models where at certain places more energy is injected than

absorbed). With his model Zwicker (1986) could not replicate non-dominant LS
suppression. Locally active models are more powerful in that respect. Cohen and Furst

(1993) have given an example of mutual (non-dominant) two-tone suppression, where

they used an ad hocactivity distribution. Models similar to the one used in this paper

were recently presented by Neely and Stover (1993) and Geisler e¢ al, (1993). However,
these authors did not systematically study two-tone suppression. Furthermore, these

models were solved in the time domain.
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Appendix 3.A: Model formulation

This section (which can be skipped by the non-mathematical reader) is the formal

counterpart of section I. Thelinear long-wave modelis described by the wave equation

Pxx (x5) + k* (x30) p(x;4) = 0, (3.A.1)

wherep(x,d) is the complex variable that denotes the pressure in one ofthe scalae and W

the radian frequency. The subscript xx stands for the second derivative with respect to x.
The coefficient k(x;@) has the dimension ofa wave number, and is defined by

-2iwp2 wsk* (x; 7) =———_.,
ae hZgm (x54)

(3.4.2)

in which @ is the density of the fluid, # the effective height of the scalae, and Zpaq(x;/)

the impedance function that describes the BM. For a passive model we take Zpyq(x:#)

equal to

ZB(434) = Moog (x) [6 + (A(x30)- 1/ B(x30))), (3.A.3)

with M =0.5[kg m~?], o=(.4, and where #(x;w) is defined as

B(x;0)= Y | WIQ¢ (x). (3.4.4)

The local resonance radian frequency ofthe BM, #j9,(x), has the form:

Woe (X) = AB exp(-a& / 2), (3.A.5)

with Sy = 10! {ke m7 s7] and a=3x107 [m~].

The cochlea is coupled to the pressure source in such a way that reflections of
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retrograde wavesat the stapes are minimized.* For the coupling impedance, Zy, we have
taken an approximate form ofthe local impedance function (de Boer, 1991, section 5.6).

The equations describing the coupling are

8P0 ~ P(0;“) = - ZQYstapes; (3.4.6)

and

Ystapes =~ Px (03) / (imp), (3.4.7)

where g is a scaling factor, py the given input pressure and Vstapes the stapes velocity. For

the frequencies used in this paper the coupling impedance is approximately constant and
real. Equations (3.4.6) and (3.4.7) form the boundary condition for the model at x = 0.

The boundary condition at the helicotrema (at x = Xenq) is described by

P(Xend 4%) = 0. (3.A.8)

Once the wave equation has been solved, the BM velocity v(x;w) is calculated from

V(X;) = ~ 2p(x;@) | ZB (x32). (3.A.9)

In all computations the helicotrema has been set equal to 1 cm (since only high
frequencies are used) and the numberofsections is 500.

Weassume that the outer hair cells (OHCs) generate a pressure Poyyc(x;)that is
added (somehow)to the pressure difference across the BM.Ifwe write this pressure as

FoHC(:#) = ZoHc(4; @) v5), (3.4.10)

the passive BM impedance ZPgyy(x;#) is modified by the feedback to the locally active
BM impedance Z4py4(x;@) according to

Zhu (034) = ZB030) - ZOHC(X4). (3.A.11)

The transfer impedance Zojjc(x;) is the same as the one used in Kanis and de Boer
(1993a, 1993b). It contains a factor G(x;W) that describes the filtering of the BM

velocity by a resonance ofthe tectorial membrane andthe stereocilia of the OHCs(Allen,

1980; Neely and Kim, 1986) followed by anotherfiltering, and a factor e9Wy9.(x) due to
electro-mechanical transduction:

3 In fact, this way of "smooth" coupling is only necessary for the computation of distortion

products, since for the primary components the retrograde waves are 40 dB smaller than the
antcrograde waves. We use it here to maintain consistency between different papers (Kanis and
de Boer, 1993a, 1993b, 1994).
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ZOHC(*}4) = €Q YJoc(X) G(x5). (3.4.12)

In our model we have

1+ iB(x30)
G(x;v) = do s

5g+ 1A(a;w) - 07 / B(x30)]
(3.4.13)

The numerical values of the parameters are dy = 1404 [kg s-!], eg = 4.28x10°5 [kg mr?
s], gc = 0.14 and o = 0.7, With this activity distribution, a 40 dB enhancement of the

velocity response is achieved, and the form of the BM-response peak is compatible with

mechanical data (cf. Sellick e# al., 1982; Robles ef al, 1986a), The Qjo value of about
6.5 is independent of frequency in our model (butit is, of course, dependent onlevel).

Wehave checkedthestability of the model by looking at the resistance part of the input

impedance at the stapes which had to be positive for all frequencies. The value of the

coefficient g in Eq. (3.A.4) has been given a value of 3.5x102 so that the BM-response
peak of the active modelis scaled to the response measured by Sellick ef al. (1982, Fig.

15, curve with closed circles).
Since the OHC potential is found to be saturating (Hudspeth and Corey, 1977), we

have assumeda linear transformation of cell-potential into pressure and have placed the
nonlinearity between G(x;W) and the electro-mechanical transduction. The generation of

the nonlinear OHC pressure PN’oy¢-(x,/) is described by

PANEA(x,0) = eoMge (x) tanh(I(x,1)), (3.A.14)

where /(x,2) is a real variable that represents the actual waveform of the input to the

OHCs. In the case of two-tone stimulation, the input to the nonlinearity consists of two

filtered primary components of the BM-velocity besides many (filtered) distortion
components. Since the distortion components are small and have negligible influence on
the primary components of the BM-velocity (see Kanis and de Boer, 1993b, Appendix

B) we can write J(x,t) as consisting of only two components:

1x,= Y|GCraR) voxjap)| sin(wgt + GCxsaK)), (3.A.15)
k=12

where W, denotes the radian frequency of component k, and g(x,W,) the phase of

G(x,@,)vQx,@;). The complex variable v(x;W,) denotes the firsi-order velocity

component with radian frequency W;; it is defined by

T
v(x;Wp) = -2if5 v(x,t) exp(-ivgt), (3.4.16)

0
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where J'is equal to the period ofrepetition ofthe waveform ofthe BM velocity v(x,2).

We want to create a linear relation between pressure and velocity so that the familiar
concept of transfer impedance can be used. Thus, instead of the nonlinear OHC pressure

PNLoyc(x,t) of Eq. (3.4.14) we use its first Fourier coefficient; it is denoted by
Pores,¢;) and given by

T
dePOHC (234K) = eOMI0¢ (*) JFtanh,))exp(-iagt. (3.4.17)

0

Dividing Poyc(@;) from Eq. (3.4.17) by v(x;w,) gives us the quasilinear OHC
impedance ZGy¢(x,W;) for the coefficient with frequency #;,/277. The thus-obtained
impedanceis used to modify the passive BM impedance asfollows:

ZBM3%) = ZB5)- ZOpCaR). G.A.18)

Theessence ofthe quasilinear methodis to use v(x,#,) and ZQL,),(x;W;) in a linear
frequency-domain model. First, eight iteration steps are used to calculate the quasilinear

response of one component alone and eight for the other component alone. Then, two
steps are used for each component to compute the effect of suppression by the other

component.It is found that the effect of adding higher-order terms in Eq. (3.4.15) on the

computed BM responses is negligibly small. The reason is that the distortion products

are not large enough to be able to suppress the primaries. Thus, omitting them in Eq.

(3.4.15) is justified. For details on the computation of distortion products we refer to
Kanis and de Boer (1993a, 1993b, 1994).

It should be notedthat the value ofdp has been chosen in such a way that the onset
of nonlinearity of a pure tone starts at about the same input level (30 dB SPL)asin

experiments. From Eq. (3.4.14) we see that egW..(0) is the maximum pressure

generated by the OHCs.It has a value of about 6 N m7 (whichfollows from our model

by dividing egWj9(0)dy by dy). Assuming a BM width of 300 4m and an OHC width of

10 4m, the maximum force for one OHC is about 2 nN. Notice that this value is

comparable to the force that can be expected to be produced by a OHC in situ (Iwasa
and Chadwick, 1992),

Appendix 3.B: Relating phase changes to saturation of the

effective BM impedance

In our cochlea model we need to know the dynamic state of the whole cochlea to

compute the phase (or magnitude) of the response at a certain location. But to compute

the phase (or magnitude) derivative at that location we need to know the effective

impedanceonly at that location. This is proved as follows. In a long-wave model the BM

responseis described reasonably well by the LG (Liouville-Green) or WKBJ (Wentzel-
Kramers-Brillouin-Jeffreys) solution (Zweig ef al, 1976):
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“i | k(x'w) dx’
v(xzw) = c(w)k2 (xa)e ’ (3.B.1)

or

xX

In(v(x;4)) = In(c(w)) + 3/2 In(k(x;)) - i f k(x’) dx’. (3.B.2)
0

The coefficient c(a) is equal to (0;w)k3/2(0;a). The coefficient A(x,W) depends on the

effective BM impedance [Eq. (3.A.18)] as described in Eq. (3.4.2). It should be noted

that Eq. (3.B.1) is only true when thereis no reflection.‘ For an input level of 30 dB SPL

the 7 kHz probein Fig. 1 displays somereflection. Also, in the presence of a suppressor,

for instance, the BM impedance might become distorted giving rise to reflections.

However, in our modelresults Eq. (3.B.1) remains a good approximation to the solution

ofEq. (3.4.1). The derivative ofthe phase with respect to location becomes:

IPy(X; 4) = Refk(x;w)} -3 4CZ) (3.B.3)
ox a

where g,(x;W) and g7(x,W) are the phases of the velocity v(x;#) and Zgm.qL,”),

respectively. The integral over k(x;#) has disappeared, so that 99,(x;W/)/Ix depends

only /ocally on the effective impedance at location x.° Thus, although the phase is a

global function of the effective impedance function, the phase derivative depends locally

on the impedance, Furthermore, the variations of the phase patterns can be predicted

reasonably well by looking at the resistance component alone. The reactance component

may be ignored since variations of the reactance componentin the region of suppression

are reflected in the resistance. This means that at places where the resistance component

of the effective BM impedance is the same as in the passive case the phase follows the

passive phase curve, and where the feedback mechanism operates in the linear regime,

i.e., where it is not saturated, the phase curve follows the phase curve belonging to the

active case. We usethis knowledge to understand the phase shifts in the model results

presented in this paper.

4 The LG approximation also breaks down in the basal turn for very low frequencies: in that

case Hankelinstead of exponential functions should be used (Zwislocki, 1948. Shera and Zweig,

1991).
5 Note that the effective impedance and, consequently, the phase derivative maystill be a global

function of x, Equation (B3) onlystates that there is a one-to-one relation between the phase

derivative and the quasilinear impedanceat location x.
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Frequency dependenceofacoustic distortion
products in a locally active modelof the cochlea»

Abstract In two-tone experiments it has been shown that acoustic distortion
products are ‘tuned! as a function of primary frequency ratio, that is, at a certain

frequency ratio a maximum in emission occurs. Several authors maintain that this 'tuning’
is caused by band-pass filtering of the distortion products as they are coupled back to the

basilar membrane. This view is challenged in the current paper. It is shown that the same
kind of ‘tuning’ is present in a cochlea model without such a filtering of distortion

products. It is argued that the observed ‘tuning’ is caused by a nonlinear mechanism
inside the cochlea situated at the location ofthe outer hair cells. This idea is supported by

several model results, and suggestions are made for future experiments in whichthis idea
is to be tested further.

4.1 Introduction

Tt has widely been accepted that outer hair cells (OHCs) are essential for the

improvement of frequency selectivity and sensitivity of the ear. The exact mechanism of
how pressures produced by the OHCsinfluence the motion of the basilar membrane is
not known, but several micromechanical models of the cochlea have been devised with

OHCsas the pressure (or velocity) generators (Geisler, 1991; Neely, 1993; Neely and
Stover, 1993). These locally active models have in common that in every cochlear

section the OHCsare imbeddedin the organ of Corti. That is, the pressures generated by

the OHCs have to work against the internal mechanics ofthe organ of Corti, so that only

part of these pressures is available to amplify the travelling wave (see also de Boer,

1991). This embedding results in afiltering of the OHC-generated pressures as they are
coupled back to the basilar membrane. Several authors have argued that this or a similar

filtering mechanism can be detected in the behaviour of distortion products (DPs) in

otoacoustic emissions when two tones with frequency f, and /, are used as stimulus

*) Preliminaryresults were presented during the 1995 Midwinter Meeting of the Association for
Research in Otolaryngology, St. Petersburg, USA.
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(Brown and Gaskill, 1990a; Brown and Williams, 1993; Allen and Fahey, 1993), Their

argumentation is based on the experimental fact that acoustic distortion products are
(band-pass) 'tuned' as a function of primary frequency ratio />//;, i.e., maximal emissions
occur at a ratio of about 1.2 (Kim, 1980; Wilson, 1980; Fahey and Allen, 1986;

Lonsbury-Martin eZ al., 1987; Harris ef al., 1988; Brown and Gaskill, 1990a, 1990b;

Gaskill and Brown, 1990; Whitehead ef a/., 1992). The increase in DP emission when the

frequency ratio is decreased from 1.5 to 1.2 is understandable if one bears in mind that
the overlap between the two primary responses increases in that case. Then, the active

mechanism is driven more into saturation, and more DP generation will occur. The

overlap becomes complete when the ratio f/f, is reduced from 1.2 to 1.0, and DP
generation becomes maximal. However, such a monotonic increase in DP emission has

not been seen in the experimental data. On the contrary: DP emission decreases whenthe
frequency ratio goes from 1.2 towards 1.0. This is whya filtering mechanism such as the

one described aboveis held responsible for the observed DP ‘tuning’: the location where
the DP is generated changes for varying primary frequency ratios so that the DP
component in the OHC pressure is 'moved' through the filter. Neely and Stover (1993)

have found similar 'tuning’ of acoustic DPs in a time-domain implementation of their
nonlinear cochlea model that contains DPfiltering.

In this paper, however, the necessity to invoke DP filtering in order to explain the
‘tuning' of acoustic DPs is questioned. It will be shown that similar ‘tuning’ can be
achieved with a nonlinear locally active model in which there is no filtering of the DP

component after it has been generated by the OHCs. (Of course, filtering remains

involved in the input path to the OHCs.) In other words, one cannot conclude from the
available experimental emission data that a DP filtering mechanism is present in the real
cochlea. We will also show that the 'tuning' disappears at levels where our cochlea model

operates more in the linear regime. Thus, we conjecture that the DP ‘tuning’ seen in

acoustic emission data is the consequence of a nonlinearity in the active process and not
the consequence of frequency-selectivefiltering.

4,2 Model and method

In macromechanical models of the cochlea the cochlear partition may be described

by an impedance consisting of a mass, a resistance, and a stiffness part. A
micromechanical model may be described by three impedances, for instance Zpy4, Zpz,
and Zoc;the first describing the mechanics of the basilar membrane (BM), and the other

two describing the mechanics of the reticular lamina (RL) and the organ of Corti (OC).

This is shown schematically in Fig. 1, where -2y denotes the (fluid) pressure difference

over the cochlear partition and vpyq and vp; stand for BM velocity and RL velocity,

respectively. When the BM and RL moverelative to each otherthe size of the organ of
Corti is changed. The difference between v4 and vpy is the velocity of the OC, voc.
Thus, in the case of Fig. 1, the total impedance of the cochlear partition consists of the

BM impedance and a parallel combination formed by the impedances of the RL and the
OC.In a different model the parallel combination might be formed by the impedance of
the TM and the impedance that describes the stereociliar coupling with the TM.

In an active cochlea model the outer hair cells (OHCs) amplify the travelling wave

by generating an extra pressure difference over the cochlear partition. Since the OHCs
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are embedded in the organ of Corti, the pressure source is to be added in series with the
impedance of the organ of Corti (at the location of the opencircle in Fig. 1), so that the
OHCpressures are filtered as they are coupled back to the BM[see Eq. (4.A.5) and

(4.4.6) of the Appendix]. Several known locally active cochlea models are ofthis kind

(Geisler, 1991; Geisler et a/., 1993; Neely, 1993; Neely and Stover, 1993). In order to
see in how far the 'tuning" is the result ofthe presenceofa 'secondfilter! we used a model

in which the OHC pressures were notfiltered after they had been generated. The model

we used wassimilar to that of Neely and Kim (1986). In their model the OHCsare not

imbedded in the organ of Corti and the effective action of the OHCsis put directly over
the cochlearpartition (at the location ofthefilled circle in Fig. 1).

”
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Figure 1. Electrical circuit for a cochlear section. The impedance Zpy, describes how the
reticular lamina (RL)are attached to the modiolus via the tectorial membrane, Zc describes the

internal mechanicsofthe organ of Corti, and Zpyy is the BM impedance. The velocity ofthe BM
is denoted by ypu, the velocity of the RL by vpz,and the velocity of amplitude changes of the
organ of Corti by vgc. The pressure Po}is the pressure generated by the outer haircells, and
-2p is the (fluid) pressure difference over the cochlear partition,

 

In the cochlea stimulation at the stapes sets up a travelling wave along the cochlear

partition. When two primary componentsare present in the input stimulus, two peaks
will occur in the velocity response of the cochlear partition with the more basal peak
belonging to the higher frequency. If both primaries are strong, they will give rise to

several DP componentsin the locally generated OHC pressure. In what follows DP will
denote only the component with frequency 2f|-f7. In our model the DP pressure
componentcan, in every cochlear section, be viewed as a pressure source (see thefilled
circle in Fig. 1) that stimulates the BM directly without being filtered. These locally-

produced DP pressure components generate a travelling wave at the frequency ofthe DP

which during its travel towards the place of resonance will be amplified by the OHCs.
Amplification occurs because the BM velocity contains components Vpm(3’pp) with
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the DP frequency. Thus, not only is a DP component generated at places where the

pressure source is pushed into saturation, but the resultant travelling wave is also
amplified by pressure sources at other locations. This meansthat the total input to the
OHCsconsists of both the two primary components and the DP component. The DP

pressure component generated by the OHCscorrespondingto this input will be called

Pouch.pp)-
In this paper the response of the nonlinear modelis solved in the frequency domain

by considering only the relevant Fourier components in the pressures generated by the
OHCs. Thus, we first compute the responses to the two primaries in a number of

iterations as described in Kanis and de Boer (1994); then we proceed with the
computation of the DP response. We assume that we may neglect the influence of the

DP response on the primaries since, for single-tone stimulation, the influence of higher-

order components on primary componentsis negligible (see Kanis and de Boer, 1993b,
Appendix B). How do wesolve for the DP response? With the two computed primary

responses we compute POoy0(x;Vpp) and ZYopc(x;Wpp), initial guesses to the
pressure distribution Poyc(x;/pp) and the active impedance at the DP frequency
Zouc(X;4pp), respectively. [If Zoyc(;@pp)is not suppressed by the primariesit is of
the form given by Eq. (9) in Kanis and de Boer (1993b).] These twodistributions lead to
the first estimate MDpy4(x;@pp) and p(x;@pp) of the velocity response vpy(x,’pp)
and pressure responsep(x;Wpp), respectively, by solving a linear problem [see Kanis and
de Boer, 1993b, Eq. (B7)]. In the seconditeration step we compute P2oyc(,/pp)

which is the local pressure generated by an OHC if both primaries and the first guess to

the DP response are used as input to the OHC, so that P@)gyc(x;Wpp) also contains
amplification effects by the DP response itself. This is a better guess to the pressure

distribution Poycl:Ypp) than POopc(x;/pp). The estimate for the impedance
function to be used in the next iteration stepis:

k) _ ALOsupp) i Bc(x;4DpP)
20obsapp) = (k-1) ,

Yam O5¢pp)
 (4.1)

where & is the iteration index, k> 1. In theory the iteration sequence can be carried on

indefinitely. In practice two iteration steps suffice to get a good estimate of

Poucs’pp), Zonc/pp), Y’gmC3/pp), and p(x;@pp). It should be noted thatin all
iteration steps we use POopc(x;@pp) as the ‘distributed excitation’ to the cochlea,
Details of the computational method are given in Kanis and de Boer (1993b) and Kanis

and de Boer (1994, Appendix A).
An additional remark concerns the notion of virtual fluid mass riding with the

cochlear partition (Neely, 1985, Appendix B), If this concept is implemented in our

model, the pressure distribution changes only somewhat near the response peak, but the
velocity response remains the same. Also, the pressure difference at the stapes computed
for different primary frequency ratios (as has been donein this paper and in Kanis and de

Boer, 1993a) is not affected since the fluid-mass term does not influence power
dissipation. To accountfor the virtual mass we have chosen the BM massasratherhigh.

The parameters of the model were equal to those used in Kanis and de Boer
(1993b). To monitor the emission of the combination tone we have considered the
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pressure at the location of the stapes, outside the cochlea,

4.3 Results

DP emission [dB]
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Fig. 2 Fig. 3
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Figure 2. DP emissions as a function of primary frequency ratio displayed for three different
primary input levels (50 dB SPL: thin solid line; 60 dB SPLdashed line; 70 dB SPL: thick solid
line). We have monitored the pressure outside the cochlea at the location of the stapes with a

reference level of 110-5 N m72- The experimental curve with the squares is taken from Gaskill

and Brown (1990, Fig 2d, dashed line). The reference level of the experimental curve is

3.17X10°8 N m2,

Figure 3. DP emissions as a function of primary frequency ratio. Same as Fig. 2 but for lower
input levels (20 dB SPL:thin solid line; 30 dB SPL dashed line; 40 dB SPL: thick solid line)..

The tuningis less than at higherlevels.

 

In Fig, 2 DP emissions computed with the model are shown as a function of primary
frequency ratio where we have held the DP frequency constant. Results are displayed for

three different primary input levels. To monitor the emission we have considered the

pressure at the location of the stapes outside the cochlea. The curves show similar

‘tuning' as the experimental curve with the squares taken from Gaskill and Brown (1990,
Fig 2d, dashed line). In Fig. 2 we have held the DP frequency constant, In many

experiments /5 is kept constant, but this gives essentially the same results. The peak in

the ‘tuning’ curves in Fig. 2 shift towards higher ratios when primary levels are increased.
This has also been found in experiments on acoustic DPs (Kim, 1980; Harris ef a/., 1988;
Lonsbury-Martin e/ a/., 1987; Gaskill and Brown, 1990).
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Figure 4. Model responses for two-tone stimulation. Abscissa: Location x along the BM,
measured from the stapes. (a) Resistance component of the effective BM im ce for the
frequency 2-42 drawn logarithmically for absolute values larger than 10 kg m” s"!. The small
bars on the left and right indicate the region within which the resistance has been plotted in a
linear way(with such a slope that continuity is retained), Part (b) shows the velocity responses of
the two primaries (thin dashed) and of the DP (thin solid). The thick solid line pertains to the DP

pressure response. Primary frequency ratio: 1.077; f); 6.5 kHz; 7: 7 kHz: primary levels both at

50 dB SPL. Parameters are such that our model reproduces the BM velocity response of the

guinea pig (Sellick et al., 1982, Fig. 15, curve with closed circles). The reference value of the

velocity is 1X 10m sl and for the pressureit is 3.16% 10-3 N m2,

Figure 5. Model responses for two-tone stimulation. Same as Fig. 4, but with a primary

frequency ratio of 1.02. We see that now the primaries are brought closer together compared to
Fig. 4, the pressure response of the DP component decreases at the stapes while the maximal
value of the DP sources approximately stays the same. Primary frequencyratio: 1.016; f{: 6.1

kHz; #9: 6.2 kHz; primary levels both at 50 dB SPL.

 

Since in the model the DPs are notfiltered after generation, the 'tuning' in Fig. 2

cannot be produced by a second filter. But then, what is the reason for this tuning? One

explanation could be reflection at the stapes. This possibility is excluded since the middle

ear in the modelis reflectionless. The most obvious explanation thenis that the ‘tuning’ is
caused by the nonlinearity in the system. To check whether this is true, we compute the

DP emission again as a function of primary frequency ratio, but at lower levels than in
Fig. 2. The result is shown in Fig. 3 for which we have used primary levels of 20, 30 and
40 dB SPL. Wesee that the DP 'tuning' has disappeared completely at the level of 20 dB

SPL.In this case the emission increases monotonically as the frequency ratio decreases

to 1,0. Because similar stimulus conditions have not yet been exploited in experiments,

we have to await future experiments to decide whether ‘tuning’ exists at low levels.
Because there is no need of a second filter to explain the 'tuning' seen at higher levels,
this makes it possible (but not strictly necessary) that there will be no ‘tuning! at low
levels.

Atthis point we have shownthat in a cochlea model without DPfiltering the ‘tuning’

of DPs is similar as that seen in experiments. Secondly, in the model 'tuning' arises at
primary levels above 20 dB SPL andis the result of the nonlinearity in the system. Now

we would like to know in how far the ‘tuning’ is caused by suppression of the active

mechanism at the DP frequency by the primaries and in how far by the saturation of the
DP generationitself.

In Figs. 4 and 5 model responses for two-tone stimulation are shown as a function

of distance x from the stapes. Part (a) illustrates the resistance componentofthe effective

CP impedance Zpyy(%,/pp) - Zopc(%;4pp) for the 2/\-/2 DP frequency. Wherever the
real part of this impedanceis negative, amplification of the DP wave occurs. Werefer to
the legend for details about the scaling. Part (b) shows the velocity responses of the two

primaries (thin dashed lines). The thick solid line pertains to the DP pressure response,
and the thin solid line to POpy¢(x;pp), the DP componentin the OHCpressure. In
Fig, 4 the primary frequency ratio is 1.077; in Fig. 5 it is 1.016, In both figures the input
levels of the two primaries are 50 dB SPL. We see that as primary frequencies are

brought closer together, the pressure response of the DP component at the stapes

decreases while the magnitude of the DP source distributions approximately stays the

same (the location where the maximum of the thin solid line occurs is shifted to the
right).

If we compare the BM impedancein Figs. 4(a) and 5(a) we find that between x =7

and 8 mm the BM impedance in Fig. 5 has been compressed so much that it has nearly

becomepassive. The reason of the compression in Fig. 5 is that the primary components
are both large near the DP resonance place and thus tend to diminish the active process

at those locations substantially. In Fig. 4 the responses of the primaries and the resulting

suppression are moredistributed.

To examine whether the suppression of the active mechanism at the DP frequency

might be the cause of the 'tuning' we have artificially removed this compression of the

active process at the DP frequency; thatis, the ‘active! impedance Zoyc(x;Wpp) is now
taken as fully active [see Eq. (9) in Kanis and de Boer (1993b)]. (Note that such an

action is only possible with our quasilinear method and not with time-domain methods.)

The result is shown in Fig. 6. Indeed, the backward travelling wave is amplified more

than in Fig, 5 so that the stapes pressure has increased with respect to Fig. 5, (If the same

procedure is applied to Fig. 4, there is hardly any difference in emission). However, the

increase is not so large that the 'tuning' has fully disappeared as can be seen fromFig, 7
where we have plotted DP emission as a function of primary frequency ratio. The solid

line is the 50 dB SPL curve from Fig. 2, and the dashed line is the unsuppressed curve

also obtained at 50 dB SPL. The fact that the 'tuning' has notfully disappeared suggests

that suppression of the active mechanism at the DP frequency is only partly an

63



explanation of the 'tuning'. Another reason is that the DP generation process saturates at
higher levels. However, saturation of the DP generation is not the whole story, since if in

a fully-active model a single source of a fixed strength (to be compared with full
saturation) is moved from the stapes to its place of resonance, the emission increases

(due to amplification of the backward travelling wave): there is no ‘tuning’. That the
dashedline in Fig. 7 still displays 'tuning' is the result of a complex interplay of wavelets
coming from different locations (see thin solid line in Fig. 5 showing the distributed

nature ofthe DP source).
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Figure 6. Effect of removal of suppression on DP response pattern. Same as Fig. 5, but now with

the suppressive effect of the primaries on the amplification of the: DP has artifically been

removed. The DP stapes pressure is now larger than in Fig. 5(b) and nearly as large as in Fig.
4(b). The reason is that the backward travelling wave has been amplified more than in Fig. 5(b).

Figure 7. Effect of removal of nonlinearity on DP emissions. The solid curve has been obtained

as a function of primary frequency ratio and is the same as the 50 dB SPL curve from Fig. 2. The
dashed curve has been obtained with the same parameters but the suppressive effect of the
primaries on the amplification of the DP has artifically been removed (see also Fig. 6). We sec
that the 'tuning' of the dashed curve is much less than for the solid curve,

 

According to Allen and Fahey (1993) emission curves of DPs ofdifferent order all
show a peak at the same frequency(if plotted as a function of its own frequency and for

J» fixed). However, the experiments by Brown and Gaskill (1990a, Fig. 4) and Brown
and Williams (1993) show otherwise. Also, in our model the frequency at which these

maxima occur tends to increaseslightly when ” increases, but the effect is not very large.

To generate the same DP frequency the primary frequency f, must be larger for higher »,

so that the suppressive influence of the /,-primary response on the cochlear amplifier at
the DP frequency becomes less. Consequently, for higher » the same amount of

suppression in the ‘tuning’ curve occurs for a slightly higher DP frequency.

DP velocity [dB]
40 

30}-

20h .

10}-

50  0 1 I !

1.0 Aad: 42 ce 1.4

Frequency ratio

 

Figure 8. BM velocity of a 6 kHz DPat its characteristic location as a function of primary

frequency ratio, The dashed curve has been obtained for the case when suppression of the active
mechanismat the DP frequency by the primaries has been removedartificially (as in Fig. 6 and
7); for the solid line suppression has not been removed. Primary levels are at 50 dB SPL.

 

Instead of viewing the pressure at the eardrum we might also monitor the BM

velocity of the DP at its characteristic location (which corresponds with the peak
location of a low-level tone at the DP frequency). This can be done by either varying

primary frequencies or primary levels. Robles e¢ a/. (1991) showed that as a function of

primary level (and for a primary frequency ratio of 1.1) the DP velocity responsefirst
increases but then decreases. The same is seen in our model and the reason is simple: the

amplification of the apically travelling wave at the DP frequency becomes less due to

suppression by the primaries. The DP velocity response might also be monitored as a

function of primary frequency ratio. In Fig. 8 the result (solid line) is shown for model
simulations, and we see again first an increase and then a decrease of response. The

reason is again: suppression of the active process at the DP frequency by the primary

responses. Indeed, the dashed curve which was obtained for the case when suppression

by the primaries has been removed artificially (as in Fig. 7) displays a monotonicincrease
in response for decreasing frequency ratios. The DP velocity response was also

monitored as a function of primary frequency ratio by Hall (1974, Fig. 6). Apart from

some sharp nulls in the amplitude curve, which were caused byreflection at the stapes,
the suppression in bis model was not large enough to reduce the DP amplitude at its

characteristic place when the primary frequency ratio approached 1.0. The sameis true
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for Zwicker's model (1981, Fig. 15). Buunen and Rhode (1978) and Webert and Mellert
(1975) obtained similar results as in Fig. 7 in a neurophysiological and psychoacoustic

experiment, respectively.
In experiments (Gaskill and Brown, 1990) it has been found that largest emissions

occur whenthe level of the fj-primary level is about 10-20 dB higher than the f>-level.
The same has been found in our model. The reason is that more overlap occurs than in

the case ofequal primary levels.

4.4 Discussion

In this paper we have demonstrated that in order to explain the ‘tuning’ of DP
emissions seen in experiments one does not need a filtering mechanism as hypothesized

by some authors (Brown and Gaskill, 1990a; Brown and Williams, 1993; Allen and
Fahey, 1993; Neely and Stover, 1993). We have replicated 'tuning' of acoustic DPs in a

cochlea model in which OHC-generated pressures are voffiltered as they are coupled

back to the BM. In our model, DP ‘tuning! is caused by saturation of the active process,

and, therefore, our model does not show DP 'tuning' at low levels. Could it be that DP

‘tuning’ is caused by another mechanism than saturation? In our model that the BM

velocity is filtered by the stereocilia before it is used as input to the OHCs. However,
irrespective ofthe place of resonanceofthis filter, maximal distortion will be generated if

both primaries overlap exactly, thus if the primary frequency ratio is 1.0. Therefore, a

filter thatis 'located' before the OHC input cannot be the cause ofDP ‘tuning’.

The evidence of DP'tuning' at low input levels is also small in the cochlea model by

Neely and Stover (1993) where DP componentsin the OHCpressuresare filtered before

they are coupled back to the BM (Neely, personal communication). However, in their
model the DP filtering cannot give rise to DP 'tuning' because the maximum ofthe filter

F(x,@) in Eq. (4.A.6) lies at the same location as the peak of the velocity response (at

least for low levels). This is not true for the locally active model by Geisler (1991). In
that model the filter peak lies at a location that corresponds with the location of the
velocity-peak of a one octave higher tone. Thus, in Geisler’s model DP ‘tuning’ at low

levels would be possible.
A future experiment performed at low levels might discriminate between a class of

models in which DPfiltering can be reflected in the acoustic distortion data and a class of
models in which that is not the case.It is a fact that the OHCs are embedded in the organ

of Corti, and it is therefore likely that the DPsare filtered before they are coupled back

on the BM, The question is what the form ofthisfilter is. If a future experiment shows
DP tuning at low levels, then the class of models to which Neely and Stover's model

belongs is not ofthe right type.
On the basis of our hypothesis that DP 'tuning' is caused by saturation we may

predict that at low levels there is no DP ‘tuning’. Experiments have not yet been
performed at low enough levels. At this moment we have to await further experiments to

give evidence in support of or against the filtering hypothesis. If DP ‘tuning’ is found in

experiments at sufficiently low levels (equal primary levels of 20 dB SPL) this is in

favour of Geisler's model (1991) in which filter is present, otherwise there is no filtering
action orthe filter cannot be detected with the paradigms used in the experiments.

Finally it is to be noted that the maximum ofthe ‘tuning’ curves shifts to higher
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frequencies for higher primary levels, This nonlinear effect happens in experiments as
well as in our simulation study. The effect would not occur if the ‘tuning’ of DPs were

solely caused by linear filtering.
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Appendix: Filtering of the OHC pressure

In the frequency domain one cochlear section of the models by Neely and Stover
(1993), Geisler (1992) and Geisler et al. (1993) can be represented by the network

shownin Fig. 1 with the active pressure source at the location of the open circle. Wewill

show in this appendix that the pressure over the BM is the sum ofthe pressure difference
in the fluid and the active pressure that is filtered as it is coupled back to the BM. The

network is described by three equations:

ZBM(*;2)VBM (*;“) + ZRL(XY)YRL (45) = — 2p(x3v), (4.A.1)

VOC(437) = VBM(@) — VRL(x5), (4.4.2)

and

ZOC(%;“)VOC (5%) ~ ZRL(%5@)VRL (54) = Pouca4). (4.4.3)

Here all variables and impedances are complex functions of location x and radian

frequency ©; Zpr(x;W) is the impedance with which the reticular lamina (RL) are

attached to the modiolus via the tectorial membrane, Zoc(x;W) the impedance of the
organ of Corti, and Zpyy(x;) the BM impedance. Furthermore, vpj4(x;@) and vpy(x;W)
are the BM velocity, and the velocity of the RL, respectively. The difference between

these two velocities is y9c(x;), the velocity of amplitude changes ofthe organ ofCorti.
For the distortion products the pressure Poyc(x;/pp), generated by the OHCs,

consists of a nonlinear term PWoyy¢(*;@pp) that is produced by the primaries, and a
term that is produced by the DPitself:

POHC(34DP) = Picos“pp) + ZO;¢DP)YRL (4; 4DP). (4.4.4)

with Zo(x;@pp) the (quasilinear) transduction impedance of the OHCs at the frequency
of the DP. The impedance Zo(x;Wpp) is influenced by the primaries and by self-
suppression. Solving Eq. (4.4.1) for vpy(¥;Wpp) leads to
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IZpM@5¢pp) + Zoc(%3¢pp)/(x;4pp)Yam (%: Ypp) =
() (4.4.5)

-2p(x;4pp) + FYpp)FoqcQ:4pp)

where /'(x;)is given by

ZRLO3“)
F(x; 4) = j 4A6ZcCs) + ZRL(sw) +29 (54) “—e

On the right-hand side ofEq. (4.4.5), /(;@)is to be interpreted asa filtering of the DPs
before they are added to the pressure difference over the BM.In the Neely-Kim model
(1986) and our model there is no such filtering of the DPs.
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The emperor's new clothes: DP emissions in a

locally active nonlinear model of the cochlea»

5.1 Introduction

Simple models of the cochlea generally do not have the tuning properties that they

should have in view of basilar membrane (BM) data(e.g., Sellick ef al., 1982; Robles e¢

al., 1986). To solve this discrepancy it has been proposed that the cochlea is /ocally

active (Kim ef al., 1980; de Boer, 1983). Davis (1983) was the first to use, in this
context, the name cochlear amplifier (CA).

The concept of active wave amplification in the cochlea was met by many with great

scepticism, and up to present times the issue does not appear to be settled. On the one
hand, several models have been conceived that produce just the right amount of activity

at the night place (Neely and Kim, 1983, 1986; Geisler, 1991; Zweig, 1991; Kanis and de

Boer, 199-a). On the other hand, researchers who developedalternative (passive) models

have had only limited success in matching model responses to modern mechanical data
(Kolston, 1988; Kolston and Viergever, 1989; Kolston ef al., 1989; Novoselova, 1987,

1989; Allen, 1988, 1991).

The battle between opinions has recently been revived by Allen and Fahey (1992) with

an ingenious experiment in which they tried to estimate the power gain in the cochlea
from otoacoustic emissions of distortion products, The emission of the cubic difference

tone (CDT) with frequency 2/4-/2 was measuredas a function of the primary frequencies

J, and fo (/o>/) while keeping both the CDT's frequency and the neural response of a
nerve fibre tuned to this frequency constant. It was found that the emissions did not

change as primary frequencies were varied. Allen and Fahey concluded that the cochlea

*) This chapter was presented at the Symposium on Hair Ce// Sensory Systems in Paterswolde,

The Netherlands.

1 Qur definition of the cochlear amplifier is: a collection of physiological devices in the cochlea

that amplifies the travelling wave by injecting more energy into a cochlear section than is

absorbed in that section. The location of the amplifier depends on the frequency of the BM
response; it is generally assumed that the cochlear amplifier lies basally from the site of the
response peak. The model considered in this paper is overall stable: power produced in the active

region is dissipated elsewhere.
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must be passive.

This conclusion is challenged in the present paper. A locally-active nonlinear model of

the cochlea is described and the experiment of Allen and Fahey is simulated. Despite a
maximum velocity (pressure) gain of more than 40 (20) dB with respect to a passive
model, the CDT emissions changed little as primary frequencies were varied over the

range used in the experiment. The reason forthis result is found andit is concluded that

Allen and Fahey's interpretation oftheir experimentis incorrect.

5,2 Estimating the pressure gain from emissions

The pressure wave with the frequency of the CDT(in this paper welimit ourselved to

the CDT with frequency 2/)-/2, fo >jf1) is mainly generated at the site where both

primary responses are large. From this place a backward and forward pressure wave

arise. The backward wavetravels to the stapes, where it leaves the cochlea and givesrise
to an emission that can be measured in the outer ear canal (cf. Kemp, 1979). The

forward wave travels to the place of resonance for the CDT where it can be measured
neurally (cf. Goldstein and Kiang, 1968) and mechanically (cf. Robles ef a/., 1991).

Twocases can be distinguished: (A) When primary frequencies are far apart (fo /f|
2), the CDT waveis generated to the left of the CA region and the backward wavewill

not be influenced by the CA. The forward wavetravels through the CA region to the

resonance place and is duly amplified. (B) When the two primary tones are very close

together in frequency (/)/7) ~ 1), the CDT wave originates to the right of the CA

region and only the backward wavetravels through the territory of the CA. On the basis

of comparing case A with case B, Allen and Fahey (1992) have designed their
physiological experiment, They measured CDT emissions in the outer ear canal while

holding both the frequency and the neural responseat the characteristic place of the CDT

constant. Although Allen and Fahey expected a difference in emission of twice the

cochlear pressure gain between the two extreme cases A and B, they found essentially no

difference. Their conclusion was that the CA is ‘as illusory as the emperor's new clothes’.
Weshall makehis clothes visible again.

5.3 Model and method

To simulate the generation of combination tones we use a locally-active nonlinear
long-wave model of the cochlea in which outer hair cells (OHCs) form the only source of
activity and nonlinearity. The frequency-place distribution of activity is achieved by a
mechanism similar to that described by Neely and Kim in their 1986 paper. The resulting
cochlear amplifier (CA) lies to the left of the velocity response peak and provides a

40 dB enhancement of the velocity response. The OHCs are assumed to have a
compressive action, described by a hyperbolic tangent function. We solve the model in

the frequency domain with a guasi-linear method (Kanis and de Boer, 1993). With this
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method distortion products in the BM-velocity response are treated as perturbations?,
and all system variables such as the nonlinear OHC-generated pressure are written as
sums of Fourier components. Then, the familiar concept of transfer impedance (defined

as the ratio of a pressure to a velocity) is used to solve the cochlear problem in the
frequency domain, and this can be done for any component we want. The ultimate

solution is obtained by iteration because the transfer impedances depend on the

magnitude ofthe BM velocity.

The method can, in principle, be used for any type of stimulus. In the case of two-tone

stimuli, the suppressing interaction between the primary tones is evaluated first. Then,
the CDT component in the nonlinear OHC pressure is computed for all locations in the

cochlea and the wave equation for the CDT component is solved. The CDT component

has negligible influence on the primary components, so we need not evaluate further
interactions between the CDT and the primaries. More details are given in Kanis and de

Boer (199-b, 199-c}.
The cochlea is coupled to the outer ear canal with such an impedance that the model

remainsstable for all frequencies and that reflections at the stapes are minimized. Forthis
impedance we have taken an approximate form of the local impedance function
(Viergever and de Boer, 1987).

5.4 Modelresults

Figures | and 2 show model results for two extreme frequency ratios that were used

by Allen and Fahey (henceforth abbreviated A&F). The CDT frequency is chosen as 5
kHz. Fig. 1 illustrates the case where primary frequencies are relatively far apart

(f2./f, = 1.55); in Fig. 2 the primary frequencies are closer together(> /f) = 1.09). Part

(a) of both figures shows the resistive component of the BM impedance for both

primaries (dashed lines) and the CDT (solid line), Negative excursions indicate local

activity (presence ofthe CA). In part (b) of both figures BM-velocity patterns of the two
primary tones (dashed lines) and of the CDT (thin solid line) are shown. The thick solid
line is the CDT pressure pattern, The arrow in part (b) indicates where the CDT is

generated at most. Note that this is where both primaries are large. In Fig. 1 the arrow

points to the left of the CA region for the CDT frequency and in Fig. 2 it points to the
middle. The intensities of the primary tones have been chosen such that the CDT velocity

peaks are of equal magnitude in both figures, just as in the experiments of A&F.
The figures show that there is not very much difference between the CDT pressures at

the stapes in Figs | and 2 (thus there will be nearly equal emissions in the ear canal). The

same was observed by A&F for these frequency ratios, but they concluded that the

cochlea is passive. Our results have been obtained with a model of the cochlea that is
locally active. This means that the clothes of the emperor are not as illusory as is

suggested by A&F. Quite possibly, he is fully dressed.

2 In mechanical experiments with pure tone stimulation it is found that, although the magnitude

ofthe BM-velocity waveform is a nonlinear function of the inputlevel, the waveform itself shows
onlylittle distortion (cf. Cooper and Rhode, 1992. Fig. 20).
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Figures 1 and 2, BM impedance and response in a locally-active nonlinear cochlea model when
the input consists of two equally loud tones at level L. In Fig. 1 the primary frequencyratio is
1.55 and primary levels are 53 dB SPL; for Fig. 2 the ratio is 1.09 and primary levels are 34 dB
SPL.(a) Resistive component of the BM impedance for both primaries (dashed lines) and the
CDT(solid line). Large excursions are shown compressed in this figure. (b) BM velocity patterns
of the two primary tones (dashedlines) and ofthe CDT (thin solid line), The thick solid line is the
CDTpressure pattern, The arrow indicates where the CDTis generated at most. The reference
valueofthe velocity is 1X 10-5 m s~!, and forthe pressureit is 3.16X 10-4 N m~2. Note that the
velocity response at the peak is the samein the twofigures.

 

5.5 Analysis and method

Allen and Fahey (A&F) expected a difference in CDT emission of twice the cochlear
gain (see our brief description in section 2), but they measured only a small difference.
Why would that be so? The first thing that strikes the eye is that Fig. 2 does not
represent case B described in section 2. Bearing in mind that Figs 1 and 2 were generated
with approximately the same frequency ratios as used by A&F,it is clear that Ad’ did
not really compare case A with case B. Due to experimental limitations they were not
able to make the primary frequency ratio much smaller than 1.09. Whether or not the
cochleais active, cannot be deducedfrom their experimental results.
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Figure 3. Same as Figs 1 and 2, but with a primary frequencyratio of 1.04 and primary levels of
40 dB SPL.

Figure 4. BM responses in a passive cochlea model whichis excited internally by one sinusoidal
pressure source with a frequency of 5 kHz. Solid lines indicate velocity responses and dashed

lines pressure responses. Forthe thin lines the source lies near the stapes (thin arrow), and for the
thick lines the sourcelies at the location of the thick arrow. The pressure has been attenuated by
60 dB with respect to the velocity response.

 

In a model the range of experimental variables can easily be extended. In Fig. 3 results

are shown when the modelis solved for a frequencyratio of 1.04. The arrow now points

to the right of the CA region;this confirms that we are really dealing with case B. When

we compare Fig. 3 with Fig. 1, we find a difference in emission of about 10 dB. This

value (whichis a prediction that can be tested experimentally)is certainly not as /arge as
A&F expected,

In order to understand why the difference is so small we analyze the course ofthe

pressure wave in a passive (and linear) cochlear model. Figure 4 shows two pressure
(dashed line) and velocity (solid line) responses in a passive model which is excited

internally by a single sinusoidal pressure source at two different locations. The thin lines
correspond to responses for which the sourcelies at the location of the thin arrow and

for the thick lines the pressure source lies at the thick arrow. To get maximal

correspondence with the nonlinear model results, the thin and thick arrows lie at the
same locations as the arrowsin Figs 1 and 3, respectively. In both cases the strength of



the source has been chosen so that the velocity is the same at the peak location for the

CDTresponsein Figs 1-3.
Ifthere would be no powerdissipation of the travelling wave, the two pressures at the

stapes location would be equal. However, dissipation does occur in the region between

the thin and thick arrow, and this amountsto a substantial difference (minus 26 dB in our
model, see Fig. 4) between the two pressures. In a /ocally-active model this dissipative

effect is also present, since the waves traverse a region where the modelis not active and

where dissipation doesplay a role. In our model the CDT emission is greatly reduced by

this effect.
When we would have placed the two arrowsin Fig, 4 at the locations ofthe arrowsin

Figs 1 and 2, the difference in emission in our model would be minus 18 dB. According
to this result, A&F would have measured a considerable decrease in CDT emission in a

passive (but nonlinear) cochlea when the primary frequency ratio were decreased from

1.55 to 1.09. As this was not the case one might conclude from their experiment that the
cochleais active.

Finally, it should be noted that the relation between the difference in CDT emissions

and the value of the CA gain is not straightforward. Several reasons can be given.First,
the CDT emissions are influenced by dissipation. Secondly, the influence of the CA on

the response depends onthetravel direction of the cochlear wave, since the phase of the
OHC-generated pressure is related with the phase ofthe cochlear wave. Furthermore, the
CA of the CDT is suppressed by the primaries when they are strong enough (see

Fig, 3b), and the CDTis generated by more than one pressure source in Figs 1-3. Thus,

it will be difficult to estimate the exact value of the cochlear gain by varying the

frequencyratio of the primaries.

5.6 Conclusions

Byreplicating the experiments of Allen and Fahey (1992) with a computer model, we

arrived at the same results as presented in their paper. Only, our results have been
obtained with a locally-active model ofthe cochlea, while Allen and Fahey surmised that
similar results could only be obtained for a passive cochlea. When we decreased in our
model the ratio of primary frequencies, first the emission of the CDT component
decreased due to dissipation, but then increased by the action of the cochlear amplifier.

Dueto dissipation this increase remained limited. For instance, when the frequency ratio
in our model was changed from 1.55 to 1.04, the difference in emission was only 10 dB.
However, it will be difficult to estimate the exact value of the cochlear gain in this way,

since the relation between the emissions and the value of the CA gain is not straight-

forward. At the present time, the frequency response of the mechanical data can only be

compatible with cochlear models that have a fair amount of wave amplification, And that
colours the emperor's clothesclearly red.
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Comment by Allen In the introduction it says: 'Simple models of the cochlea generally

do not have the tuning properties that they should have in view ofbasilar membrane

(BM)data (e.g., Sellick ef a/., 1982; Robles et ai, 1986).’
In this comment we would like to compare the responses published in Sellick e¢ al.

(1982a), Sellick ez al. (1982b) and the more recent Robles ef a/. (1986) data given in
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Ruggero e/ al. (1990, Fig, 18),
-  Sellick et af, (1982a) versus Sellick e¢ a/. (1982b). If one were to plot the 1982a
displacement against the 1982b displacement there is more than 25 dB differencethat is
systematically increasing for decreasing frequencies; at CF there is a 15-20 dB difference.
This difference is too large to attribute to experimental error. The question is, why are
they so different?
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Figure 1: Comparison between Sellick ef a/. (1982a) velocity and Sellick et ai. (1982b)
displacement.

 

In Fig. 1 we see a somewhat different comparison of Sellick ef af (1982a) with
Sellick ef a/. (1982b). The left panel compares iso-velocity data in 1982a from Fig. 10 to
iso-displacement data from 1982b, Fig. 1. The group of three curves corrspond to the
small source on the edge of the BM. This was the condition they concluded had the
smallest effect on the response curves. Large and small sources placed in the middle of
the BM, andlarge sources placed on the edge of the BM gavedifferent responses. The
right panel shows the same data except the 1982a data has been shifted by 10 dB
upward, corresponding to less sensitive condition, to give the maximum overlap ofthe
responses. Only oneofthe three 1982b curves is shown in this panel.

Seltlok and Robles, normalized by CF
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It is clear that the 1982a and 1982b data differ by a large amount, namely 6

dB/octave plus a 10 dB shift. Which data are we to believe, 1982a or 1982b? By 1982b

they had discovered that the source could influence the measurement, and they had

presumably refined the measurement technique.

-  Sellick e¢ al. (1982b) versus Ruggeroef al. (1990). In Fig. 2 we compareSellick et

al. (1982b) iso-displacement data at 0.35 nm, Fig. | to that derived from Ruggero ez al.

(1990)at 1.9 nm. The stars are the Ruggero data shifted up by 15 dB.Atfirst glance this

appearslike a nice fit as the curves have a similar frequency response. A 15 dB shift

would correspond to about 10.7 nm assuming linearity. When the two curves are

compared on an absolute scale however, they are 30 dB apart.

The source used by Ruggero et al. (1990) was 8080m2, while the sources used

by Sellick e¢ al. were 50X50 m?in 1982a and 20x50um? and 60x864m? in 1982b.

Sellick e¢ ai. found that the larger sources influenced their measurements.

In conclusion, which data should we model? None ofthe data in the literature seems

to stand the test of comparison. The responsein the'tail' region where we expecta linear

response seems equally uncertain.
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Reply It is necessary to define what we mean by ‘tuning’. Considering the cochlea as

linear, turn the measured iso-velocity. and iso-displacement curves upside down and

inspect the resulting frequency-response curves. These curves have a general trend at

low frequencies: depending on the way they have been measured, the response rises with

zero to 6 dB per octave. Imagine this trend to be continued to higher frequencies, and

observe then that the response has a high and broad peak above the low-frequency

course. In the left part of Fig. 1 the height of the peak (dashed lines) is 40 dB, for the

right-handpart it is 43 dB. For the Robleser a/. data, Fig. 2, it is smaller, 29 dB.

Peaksofthis size and shape cannot be obtained with what we have called a ‘simple

modelofthe cochlea’ [that type of model is more extensively described in section | of de
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Boer's paper (1993)]. The meaning and validity of the above statement has been the
subject of many discussions over the last ten years. Arguments pro and con have been
reviewed (albeit not exhaustively) in de Boer's paper (1993). The present paper deals
with one aspect of that discussion.
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Comment by Allen and Fahey Forthe record, Allen and Fahey (A&F)do notallude to
the "emperor's clothes". This reference is to a New York timesarticle, written by
Malcolm Brownin the Science Times of June 9, 1992, page C1, where Brown quotes
Allen as referring to the cochlear amplifier (CA) to being similar to the emperor's clothes.
Allen was more thana little surprised of this quote when hefirst read the article because
he did not remember referring to any emperors.

On a more serious note: the A&F experiment found no evidence for distributed
basilar membrane amplification, as stated in the abstract of A&E, to within '2 mm of the
place corresponding to the frequency being measured’. This is consistent with Figs. 1, 2
and 3 of Kanis and de Boer (K&DB) where the region of gain is localized to 1.7 mm
basal to the characteristic place. Indeed, these figures support the A&F measurement
strategy and K&DB showin their Fig. 3 a gain sensitivity when the DP source is well
within the amplification region, Both A&F and K&DB seem to agree that, if there is
amplification, it is local to the characteristic place, The question then becomes: Canlocal
gain model! the data? This question is addressed in Figs. 9 and 10 (of A&E) which argue
where the CA mustberelative to the CF. These arguments are based on the slope change
in the neural excitation patterns. We specifically studied where the DP source was
relative to this region, and showed that the source was inside the estimated CA region
for the smallest///, ratio, K&DB have placed their source wellinside this region, and do
not see a difference in pressure. How can this be?

The results of K&DB only consider two general locations for the source of DP
energy, near and far from the place. They also use a model with 13 dB of powerloss.It
appears that their results are a special case where the CA gain is cancelled by this 13 dB
propagation loss. In other words, the pressures shown in Figs. 1 and 2 seem to result
from the cancellation of two big numbers, the CA gain and the propagation losses. If this
is the case, then this represents a significant difference from the A&Fresults, where the
source was varied continuously from high frequencies to low. If K&DB were to move
the source continuously through the region basal to the CF, we could better see the
whole picture, as in the A&F case. A&F results, experimental measurement, and model
calculations, lead us to believe that cochlear losses are small.

But there is a much more fundamental question to be answered before modelling,
with or without cochlear amplifiers. What are we modelling, the neural responses or the
mechanical response of the cochlear partition? There seems to havearisen the belief that
these are the same. Webelieve that the experimental evidence does not support the
common assumption that the neural and mechanical tuning are the same.
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Reply It was certainly not our intention to raise the suggestion that the reference to the

emperor's new clothes was taken from A&F's paper: otherwise we would have put

quotes aroundit.
We modelled a cochlea showing a pronounced and broad response peak (see reply

to commentby Allen), and could do this with an 'active' region, 1.7 mm wide. When/y//;

equals 1.09, the effective source of the DPis inside the active region, see Fig. 2 of our

paper. It is because the major part of wave amplification occurs in the right-handpart of
this region that the DP emission pressures in Figs. 1 and 2 turn out to be nearly equal.

The loss of 26 dB occurs, as we state, in a passive model. In the active region of an

active model the loss would be more than compensated by the wave-amplification

system. The left-going pressure wave in Fig. 4 (thick dashed line) shows, outside the

active region, approximately the same course as the thick line in Fig. 3. Over this region

the loss is not zero butit remains small. It forms one of the reasons whythe ‘gain’ in DP
emission does not become as large as two times the ‘cochlear gain’ (which actually should

be: the pressure gain, not the powergain).
In the case under discussion: if the cochlea were passive, Allen and Fahey would

have measured a DP pressure that is smaller in the case f/f; = 1.09 than when f/f,

equals 1.55. It is difficult to design a passive long-wave model with a substantially

smaller loss than the 26 dB that we have in the passive version of our model. Again,
since Allen and Fahey did not observe such a reduction, we maintain that the cochleais

active,
As to your last question, we have assumed linear relation between the BM-

velocity response and the neural response; in other words, equal velocity responsesat the

DP peak give rise to equal neural responses.

Comment by Goldstein: Does your nonlinear model simulate the known data on

differences in growth of two-tone suppression for low-side and high-side suppressor

tones?

Reply Yes, it does. The reason is the following: the influence of the cochlear amplifier

(CA) on the BM response is largest for locations near BM resonance. In other words,

suppression of the CA hasless effect on the probe response when the CA suppression

occurs for a location far from the probe resonance compared to a location near probe

resonance. This also holds for changes in reductions ofthe activity (whcich occurs when

the suppressor level is changed). Since a high-side suppressor influences the CA

(belonging to the frequency of the probe) basal to the probe peak, while for low-side

suppressors the influenceis largest near the probe peak, the reason for the suppression-

slope difference you refer to becomes obvious.

 

Comparing frequency-domain with time-domain

solutions for a locally-active nonlinear modelof

the cochlea

Abstract In previous papers (Kanis and de Boer, 1993a, 1993b, 1994a, 1994b) we

have described and applied an approximation method, called the quasilinear method, to
solve stable nonlinear locally-active cochlea models in the frequency domain. The

quasilinear method consists ofsplitting the cochlear waveformsinto primary components

and higher-order components that are treated as perturbations. In order to check the

accuracy ofthe quasilinear solution method we made a comparison between frequency-
domain and time-domain solutions of a cochlea model in which all activity and

nonlinearity resides in the outer hair cells. We used the time-domain method described by
Diependaal ef al. (1987). We did the comparison for single-tone as well as for two-tone

stimulation. In most cases the match between the two solutions is excellent. Only in some
cases do the responses computed with the two methods differ, but this does not affect
the outcomeofthe analyses performed with the quasilinear method,

6.1 Introduction

In previous papers (Kanis and de Boer, 1993a, 1993b, 1994a, 1994b) we have
described and used an approximation method to solve stable nonlinear locally-active

cochlea models in the frequency domain. One advantageofthis, quasilinear, method over
existing time-domain solution methods is a substantial gain in computation time.
Another, more important, advantage is that we can use concepts from linear system

theory such as impedance and phase angle. This allows us to acquire insight into the

mechanism of nonlinearity: several phenomena that were not yet fully understood have
beenclarified now. Furthermore, we can perform Gedanken experiments that are not

realizable in the time domain. For instance, in a previous paper (Kanis and de Boer,
1994) weartificially cancelled the suppression of the active mechanism of the 2/,-/
combination tone by the primaries in order to estimate the effect of the suppression on
the 'tuning' of acoustic distortion products.
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The quasilinear method is based uponthe fact that in a stable model, for stimulation

with a periodic stimulus, the basilar membrane oscillates periodically with the same

frequency.! Thus, the basilar membrane response can be perfectly analysed at every

location in terms of its Fourier components, The same is true for the OHC-generated

pressure, In the quasilinear method only the fundamental components are carried through

the computations, the other ones are treated as perturbations. Because the Fourier
components of the OHC-generated pressure are nonlinear functions of the basilar

membrane response the model is solved byiteration. In each iteration step, we solve a

linear model for the relevant Fourier component,
In an earlier report we showed that for single-tone stimulation the higher-order

distortion components do not noticeably influence the primary response (Kanis and de
Boer, 1993b, Appendix B). This means that we do not need to consider higher-order

products in order to compute the primaries, so that a limited amountofiteration steps

suffices. We assumed the sameto betrue in our paper about two-tone stimulation (Kanis

and de Boer, 1994). In the present paper we would like to check whether these

assumptions are true by comparing time-domain with frequency-domain solutions. We

will check whether we can neglect the presence of the higher-order products in

computing the primaries. We will do the comparison for single- as well as for two-tone

stimulation, Furthermore, we will check whether the time-domain and the quasilinear

method give the same results for combination tones (see Kanis and de Boer, 1993a,

1994b). Another reason to perform the comparisonis that the success of the quasilinear
methodraises the question whether it would be useful in other cases too, when complex
stimuli, such as noise or impulse signals, are taken as stimuli. Before we dare to answer

this question we must have more quantitative data on the accuracy of the quasilinear

method.
Wewill see that the deviations between the two modelsolutions are small enough to

be certain about the validity of the conclusions made in previous papers (Kanis and de

Boer, 1993a, 1993b, 1994a, 1994b) and of possible conclusions to be made in future

papers that will discuss model behaviour for more complex signals.

6.2 Model and method

We have modelled the cochlea asa straight fluid-filled narrow tube divided into two

rectangular scalae by a movable partition called the basilar membrane (BM). It is

assumed that all longitudinal coupling is through the fluid, and that only long waves

exist. Our model is based on the model described by Neely and Kim (1986); a 'secondary

resonator’ is used to ensure the proper place-frequency distribution of OHC activity. The
time-domain implementation follows the method outlined by Diependaal e¢ al. (1987).
Thepartial differential equation that describes the BM responseis

Pxx (x,0) + Pago (x,t) /h=0, (6.1)

1 In an unstable cochlea model, such as the panergic model by Duifhuis ef a@/. (1986) and

Diependaal and Viergever (1988), spontancousoscillations with aperiodic limit cycles may arise
which renders their model unsusceptible to our method.
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where p(x,/), a function oflocation x and time ¢, is the dynamic pressure in the fluid,
agyy(x,f) the acceleration of the BM, p the fluid density (p=103 [kg m-3]) and A the
height ofthe scalae (A=10-3 [m]). The subscript x indicates the derivative with respect to
location. Equilibrium over the partition is described by

~2p(x,t)+ Pose (2,4 =

™BM @)4BM (1) + BM (~)¥BM G2) + kgm (x)upo (2,0), oe

where “py4(), “py(x), kpny(x) are the mass, resistance and stiffness of the BM, and
Vem!) and py4(x,2) the velocity and displacement of the BM. Thepressure difference
over the membrane consists of the fluid pressure difference, -2p(x), and a pressure,
Pouc(,), generated by the outer hair cells (OHC). Movements of the BM lead to
relative movements between the upper side of the OHCs and the tectorial membrane
(TM)thereby displacing the stereocilia of the outerhair cells:

¥scOt.) = ¥BMG9 ~ vm (x,0), (6.3)

where vgc(x,/) and vpyy4(x,/) denote the velocities of the stereocilia and TM,respectively.
The lever gain that exists between (transversal) movements of the BM and (radial)
movements of the cuticular plate (at the upper side of the OHCs) was taken equal to
unity. If we let apy4(x/) represent the acceleration of the TM, and ugc(x,/) the
displacementofthe stereocilia, the second equation of motion can be written as

MTM(X)QTM (X,2) = S§C(X)VSC(X.O tkgc()usc(2,d), (6.4)

where the resistance and stiffness of the stereocilia and the mass of the TM are denoted
e rgc(x), kgc(x), and mpy4(x), respectively. The OHC pressureis finally computed
rom

FOHC(X,1) = 1 (x)¥gC (x,2) + ko(xuge(x.0), (6.5)

with ko(x) a parameter with the dimension ofstiffness, and r9(x) a parameter with the
dimensionofresistance.

The parameters have been given the following values:

mBM (x) = mBM, (6.6)

TBM (X) = MBMHoc (Xx), (6.7)

kBo (x) = ™BM (xyop,. (x), (6.8)

SC) = 77BM (2), (6.9)
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kgc (x) = 07kgm (2), (6.10)

MTM (X) = BM(*), (6.11)

1 (*) = cooe7BM >), (6.12)

k(x) = cookpo (x) (6.13)

with

we(2)= BMI exe(-ax /2), 6.14)

and mpy=0.5 [kgm], the damping coefficient 5 =0.4, 7 = 0.35, Agy4(0) = 1010
[kg m? s?], 02= 0.49, € =2.5, cog = 0.11, and @ = 3102 [mr]]. The coefficent 7
indicates how much the secondary resonance has been shifted with respect to the BM

resonance. In our model the secondary resonancelies about half an octave below the BM

resonance, Notethat, if one finds the values for rgc(x), kgc(x) and mrpy4(x) too large,
both sides of Eq. (6.4) can be multiplied with a constant smaller than unity without

changing any of the following equations. This is possible because in Eq. (6.2) there is no
term that describes the parallel circuit formed by the mechanics of the TM and the OHC
stereocilia,

In what follows we will shortly describe the time-domain method developed by
Diependaal e/ al. (1987).

We would like to write Eq. (6.1) as an equation that hasonits left-hand side terms
with pressure p(x) and on the right-hand side known variables such as the velocity and

the displacement corresponding to the two degrees of freedom. Then, substitution of

82,0 = 73M (*)¥BM (2.2) + kBM(“pm9~- Fouc(.) (6.15)

into Eq. (6.1) leads to

Pxx (x,t) - (20 / hm)p(x,t) = (2p / hm)g(x,1). (6.16)

This equation can be written as a finite-difference matrix equation that has to be solved
for p(x,4) at each time instant, given the function g(x). The accelerations apyy(x,f) and
a&py(x,2) are computed from

aBM (x,t) = (—p(x,t) — g(x,2)) / m, (6.17)

and
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ary (x,t) «aMHM(8)MyOO)2?kyOCU(8wep(0)
TM MSs! myo (4)

(6.18)

respectively, Then, they are, together with vayQx,f) and vypy(x,), integrated with the
fourth-order Runge-Kutta method, After eachintegration step, g(x,/) is updated with Eq.
(6,15), substituted in Eq. (6.16), and so on,

Whensteady state has been reached we record the velocity waveform at 90 different

locations along the cochlearpartition during one or more milliseconds (depending on the

primary frequencies), In order to analyse the waveforms in terms of their Fourier
components, we need an integer number of cycles in one time frame of the Fast Fourier
Transform. We record 1 millisecond of the waveform if the stapes is stimulated by two

tones with a frequency of, for instance, 6 and 7 kHz. In the case ofstimulation by a 6.25

and 6.5 kHz tone we need to record 4 milliseconds in order to get an integer number of
cycles in one time frame. The timestep is taken equal to 1x103/NV [s]. In our
computationsit was sufficient to take N equal to 128.

The boundary conditions are similar as those described in Diependaal e7 al. (1987)

but with the middle ear given by

TmPO) ~ P(O,t) =~RmVstapes)- Mmastapes (2), (6.19)

where the lever gain 77, has the (large) value of 355 to maintain consistency with the

data ofSellick e¢ al. (1982, Fig. 15, curve with closed circles). The input pressure is

indicated by po(t), Ry = 63x103 [kg m2 s“!], Mf, = 0.197 [kg m2], and Ystapes(t) and
Astapes(4) are the velocity and the acceleration of the stapes, respectively. The values of

Ry, and M,, have been chosen so that they are comparable in magnitude with the
resistance and reactance parts of the middle ear impedance used for the frequency-

domain implementation in Kanis and de Boer (1993b). The other equation describing the
movementofthe stapes is

Px (0,t) = —pastanes(0). (6.20)

Implementation of the long-wave model in the frequency domain was described in
Kanis and de Boer (1993b). The boundary conditions are described by the frequency-
domain equivalents of Eqs. (6.19) and (6.20). In the following we will show that the

time-domain equations (6.3)-(6.5) lead to the OHC impedance in Eq. (9) of the cited
paper. In the frequency domain all variables and impedances are complex functions of

location x and radian frequency /#. The complex variable vgy4(x;@) (which will be called
the primary BM-velocity response) is the first-order Fourier componentof vpyj(x,/) and
defined by

T
d

VBM (X3#) =- 27 IS VBM (X, 4) exp(iat), (6.21)

0
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where 7is equal to 1/f), where fy is the frequency of repetition of the BM velocity.

Similar expressions hold for the primary componentof the pressure p(x,t) and Poxc(x,4)

and all other variables. If the first-order Fourier transforms of the time-domain equations

are taken, Eqs. (6.2)-(6.5) are replaced by the following equations:

-2p(x;w) + PoC s@) = Zpm050)"BM 30), (6.22)

ZTM (X34)¥EM (434)= ZgcX5#) Vgc (454), (6,23)

gc (03@) = vg(23) - VPM34), (6.24)

POHCOAS) = ZQ(%5H)SC (154) (6.25)

with the complex impedances given by

ZpM (x;@)= iampgm (x) + BM (*) + kao (2) / Ge), (6.26)

ZTM (X54)= amp(3) (6.27)

Zgc (x34) = HC) * kgc@)/ @). (6.28)

and

Zo(x3) = (x) + k(x) / (iw) (6.29)

Here Zypyy(x,\W) is the TM impedance, Zgc(x;W) the impedance of the OHC cilia,

Zpm(x;W) the BM impedance, and Zp(x;@) the impedance (with low-pass characteristic)

that is involved with the pressure generation.
By eliminating vypy(x;¥) from Eqs. (6.23) and (6.24) weget the following relation

between Vpan4(x;@) and yec(x,W):

iB(x;w)
Or

<——S

ee (x3). (6.30)

ee yo +i(B(x;w) - 07 | B(x;W))-

where

B(X;W)= 4 | Wg¢(X). (6.31)

From Eqs. (6.25) and (6.29) with the help of Eqs. (6.6), (6.7), (6.8), (6.12) and (6. 13)

follows the relation
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POHC(OS WH) = CO@oc (X)(E0 - 11 B(X5W))VgC(x;) (6.32)

so that the OHCpressure can be written as

1+i£66(x;v)

dgc ti(B;w)- 07 | B(x;0))
 POHC(%5 #) = COMIoc(*) VBM (x3), (6.33)

with cy = coger =0.085, £6 = 1, gc = HS = 0.14. This activity distribution is the

same as the one used in previous papers (Kanis and de Boer, 1993a, 1993b, 1994a,

1994b). The only difference is that co is taken somewhat smaller to reduce instabilities
occurring in the time-domain model. This results in 8 dB less amplification at the peak of

the response.
The model is made nonlinear by replacing Eq. (6.5) with

PNx,t) = Ry tanhPHC(x0) / A). (6.34)

with Py = 2 [kg mr} s-2]. In the frequency domain the relevant transformationsare given
in Kanis and de Boer (1993b).

In both the time-domain and frequency-domain computations the numberof sections

is equal to 180, and the length of the cochlea is equal to 0.012 [m]. We made the
stimulus amplitude increase as a function of time during the first five periods of the

stimulus tone (in the case of two-tone suppression the first five periods of the primary

component with the lower frequency). This reduces undesired low-frequency

components in the model response.

6.3 Results

As a first check we compare frequency-domain solutions with time-domain

responsesforsingle-tone stimulation at 7 kHz.

In Fig. 1 the BM velocity response is shown as a function of location in the cochlea
with the stapes located at x = 0. The input level of 20 dB is too small to compress the
pressure generator noticeably so that the cochlea behaves nearly linearly. In this andall

other figures the reference ofthe input level of2 [kg m7! s-2] has been chosen so that 20
dB corresponds to 20 dB SPL in previous reports by us (cf. Kanis and de Boer, 1993b,

Figure 2), Part (a) shows the amplitude of the response, and part (b) the phase. Dashed

lines indicate the quasilinear response, and solid lines refer to the first-order component
of the time-domain solution during steady state (after 4 milliseconds). The agreement

between time and frequency domain solutions is excellent. The computation time of the

quasilinear response was 10 seconds while the time-domain computation took more than
4 minutes on a 486 machine operating at 33 MHz.

In Fig. 2 BM velocity responses have been obtained for two different input levels,

60 and 80 dB,respectively. We see that the response is compressed for higher levels of

stimulation. Furthermore, the phase lag increases (decreases) at locations basally
(apically) to the peak and the phase curve exhibits a transition at the peak location. The
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agreement between the two methodis again excellent.

The agreementis also very good in Fig. 3 where the primary component (curve 1)

together with the third (curve 3) andfifth (curve 5) Fourier components are shown. The

inputlevel of the primary tone was 70 dB. This figure should be compared with Fig. Bl

ofKanis and the Boer (1993b, Appendix B).
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Figure 1. Single-tone stimulation at 7 kHz at an inputlevel of 20 dB SPL. The BM velocity

response is shown as a function of location in the cochlea. The stapes located at x = 0 [m]. Part

(a) shows the amplitude of the response, and part (b) the phase. Dashed lines indicate the

quasilinear response, andsolid linesreferto thefirst-order component of the time-domainsolution

during steady state (which is reached after 4 milliseconds).

Figure 2, Single-tone stimulation at 7 kHz for two different input levels of 60 and 80 dB SPL, as

indicated in the figure. For each quasilinear response weiterated 8 times; for the time-domain

responses we needed more than 1000iterations. Sce also legend to Fig. 1.

 

In Fig. 4 results for tvo-fone stimulation are shown. The higher tone indicated by

the label 1 has a frequency of 8 kHz and an input level of 65 dB. The lower tone of 7

kHz, labelled 2, has an input level of 30 dB. The curve labelled 3 denotes the single-tone

case when only the 7 kHz tone is present. We clearly see that when both tones are

present the lower tone is suppressed and that the phase lag shown in part (b) of the

figure has increased at locations around the peak. This figure is similar to Fig. 3 of Kanis

and de Boer (1994a). It is not identical since in the above-mentioned paper we have used
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a slightly different model?. Again the two responses overlap,
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Figure 3. Single-tone stimulation at 7 kHz at an inputlevel of 70 dB. The third-order (curve 3)
and fifth-order (curve 5) distortion product are also shown.See also legend to Figure1,

Figure 4. Two-tone suppression. The higher tone (curve 1) has a frequency of 8 kHz and an input
level of 65 dB SPL. The lower tone is 7 kHz (curve 2) has an input level of 30 dB. The curve
labelled 3 denotes the single-tone case. Sec also legend to Figure 1,

 

In Fig. 5 both primaries and three combination tones are shown when the cochlea is
stimulated by a pair of tones with frequencies /, equal to 10 kHz (curve 1) and fy equal
to 12 kHz (curve 2). Both input tones have equal levels of 60 dB. The combination tones
shown are those with frequency 2/;-/ (curve 3), 3/,-2/ (curve 4) and 4f;-3f (curve 5).
We observe a difference of 1 dB between the two solutions near the peak region of the
2A combination tone. There is also a, very slight, difference between the two
components with frequency 3/|-2/5. The small differences did not decrease when we
decreased the time step or increased the numberofsections.

The overlap between the two solutions becomes less good near the stapes when the
primary frequencies approach each other. In Fig. 6 the cochlea model has been

2 In this paper we have put the W},¢(«) function in Eq. (5.32) inside the nonlinearity in Eq.
(5.33). In Kanis and de Boer (1994a) we haveputit outside the nonlinearity,
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stimulated with two tones with frequencies of 6.25 (curve 1) and 6.5 kHz (curve 2),

Input levels are 50 dB SPL. The combination tone with frequency 2/\-/2 (6 kHz) has

been shown as the curve 3. Again the dashed lines refer to the quasilinear case, while the

solid lines correspond to the time-domain solutions. Wesee that a substantial difference

between the two solutions exists in the region from the stapes to about x= 5 mm. This

difference cannot be reduced by decreasing the time-step or increasing the number of

sections,
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Figure 5. Combination tones. Curve | and 2 denote the two primaries with frequencies of 12 and

10 kHz, respectively. Both are at an input Ievel of 60 dB SPL. Three combination tones with

frequency2f}-/) (curve 3), 3f|-2/2 (curve 4). and 4/|-3/2 (curve 5) are shown. Dashed lines

indicate the quasilinear responses, andsolid lines refer to the time-domain solution during steady

state,

Figure 6, Combination tones. Primary frequencies are 6.5 (curve 1) and 6.25 (curve 2) and input

levels are 60 dB SPL. Curve 3 denotes the 2/|-f2 combination tone. Dashed lines indicate the

quasilinear responses, andsolid lines refer to the time-domain solution during steadystate. Note

that the two combination tone responses do not overlap at the tail of the responses.

 

The difference might also be created by distortion products (of higher order than

that of the 6 kHz combination tone) that have been neglected by the quasilinear method.

For instance, the two combination tones with frequency of 5.75 and 5.5 kHz also
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generate a combination tone of 6 kHz. To check whether these two combination tones
influence the response of the 6 kHz combination tone in Fig. 6 we have computed, under
the same stimulus conditions as for Fig. 6, the 5.75 and 5.5 kHz combination tones. We
have added the responses of the two combination tones of 5.75 and 5.5 kHz to the

primary responses and these summed responses were taken as input to the nonlinear
pressure generator. We have then used the component in the OHC pressure at 6 kHz to

compute the 6 kHz componentin the velocity response. This component did not show

any deviation from the response at 6 kHz in Fig. 6. Our conclusion is that we do not
need to consider combination tones with higher order than the ones we are computing.

The reason, of course, is that these higher-order products are much smaller than the
primary components.

6.4 Discussion

In the past several nonlinear cochlea models were solved in the time-domain (Hall,
1974, 1977; Diependaal et al., 1987; Van den Raadt, 1990; Geisler et al., 1993; Neely

and Stover, 1993; Cohen and Furst, 1993). A disadvantage of using the time domainis
that it is difficult to understand why certain nonlinear effects in the cochlear response
occur, For instance, suppressed tones behave so differently under different stimulus

conditions that to some authors (Nuttall and Dolan, 1993) different mechanisms appear

to be at work. To understand the nonlinear effects more clearly we developed a method

to solve (stable) nonlinear models in the frequency domain. We reported on this method

and its solutions in previous papers (Kanis and de Boer, 1993a, 1993b, 1994a, 1994b).

In Kanis and de Boer (1993b) we have supported the statement that the quasilinear

method is valid in the case of single-tone stimulation. Further support is given in the

present paper by direct comparison of the two methods, see Figs. 1 to 3 (for single-tone
stimulation). In the case of two-tone stimulation we have never made a check on the

accuracy of the computations. Therefore, we present comparisons in Figs. 4 and 5.

Again, the difference between the primaries computed with the two methodsis too small
to be seen. Thus, the assumption that we do not need consider higher-order products in
order to calculate the primaries (as we have donein the quasilinear case)is justified.

Wehave not been able to reduce the differences between the two solutions at the

frequency ofthe combination tones. Decreasing the time step or increasing the number of

sections had no effect. If we assume that the time-domain solutions are the 'correct' ones,
we may conclude that for primary frequency ratios near 1.0 (as is the case in Fig. 6) the

emission of the 2/;-7) combination is estimated as too small when computed with the
quasilinear method. This means that the results performed in Kanis and de Boer (1994b)

are influencedslightly. However, the main conclusions remain the same.
The good performance of the quasilinear method (for most situations) paves the

way for more complex types of stimulation, e.g., in cases with noise and impulse signals.
However, it is possible that for these multi-component stimuli the computation speed

becomes smaller than that of the time-domain method. Since the quasilinear method

facilitates the acquisition of insight into nonlinear processes when compared with time-

domain methods, this is not a problem.
Tt should be noted that the nonlinearity of the active mechanism should be of the

saturating type with a linear character at low inputs. A nonlinearity with expansive terms
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like the one used by Hall (1974, 1977) does not have the proper form for our method to

be of any use (a model with this type of nonlinearity does not converge at high levels
whensolved with the quasilinear method).

With this proviso in mind we conclude that stable nonlinear models can be solved in
the frequency domain. The quasilinear method guarantees very fast computation of the

modelresults. The advantage with respect to the time domain becomesevenlargerifone

considers the numberofiteration steps. To compute the quasilinear responses in Fig. 6
weused 21 iteration steps in which we solved the model, whereas for the computation of

the time-domain responses we solved the model more than 8000 times. With this in mind,
we may understand why the use of the quasilinear method is necessary to solve nonlinear

models that already take very much time to solvein the linear case. An example is the

three-dimensional finite-element model by Kolston and Ashmore (1994), a linear model
which reflects the anatomy of the Organ of Corti more closely than previous cochlea

models. Depending on the resolution of the model, solving their model takes several

hours of CPU time on an IBM-compatible personal computer with a 80486 (66 MHz)

processor. Solving a nonlinear version of their model in the time-domain would take
several years. In the frequency domain with use of the quasilinear method the

computation time would be reduced to several days.
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Summary

The cochlea transforms movements of the stapes into excursions of the basilar

membrane.This is done in a highly frequency-selective but also in a nonlinear way. Up to
now little is known about the exact mechanism of cochlear nonlinearity. To understand

these phenomena, we have devised a model of the cochlea that is solved with a new

computational method. The emphasis of this thesis is not only on simulating these

phenomena with the model but also on gaining insight into the mechanics ofthe cochlea.
In order to establish a framework in which nonlinear processes can be examined a

one-dimensional cochlea model was developed that describes the response of the basilar

membrane (BM), We made the model nonlinearand locally-active by including elements

that generate pressures in a nonlinear way. These pressures were put directly over the
BM.Theactive elements, supposed to be the outer hair cells (OHCs), are triggered by

relative movements between the underside of the tectorial membrane and the upperside

of the OHCs. These relative movements give rise to a resonance that makes the activity
distribution along the BM place-frequency dependent in such a way that at places basal

to the peak more energy is injected into the system than absorbed by it. As a

consequence the pressure wave in the cochlea is amplified. In view of experimental
results (cf. Hudspeth and Corey, 1977; Patuzzi ef al., 1989) we have given the

nonlinearity a saturating form.
To gain more insight into cochlear mechanics we solved the model in the frequency

domain by linearization method (which wecall the quasilinear method). An important
advantage over time-domain methods is that the concepts of impedance, amplitude and

phase angle can be used to describe the mechanics and movements of the cochlear

partition. With the BM impedance we are able to analyze and clarify the effect of
nonlinearity on the phase and amplitude of the BM response. Another advantage of the
quasilinear method is that the computational speed is larger than for existing methodsin
the time-domain. This means that we were able to solve the model on a personal

computer with a good graphical interface and a debugging environment which surpasses

a similar environment on a mainframe. Furthermore, the large computational speed

facilitated the development of the cochlea model used in this thesis: suitable parameter

values had to be found for the model both to be well-converging and to give realistic

responses. This process would have taken much more time to develop with a time-
domain method.

The basic assumption that led to the development of the quasilinear methadis that,

for stimulation with a periodic waveform, the basilar membrane oscillates also

periodically with a period equal to that of the stimulus. Thus, the cochlear response can

be analysed perfectly in terms ofits Fourier components, The method then consists of
computing the relevant Fourier components of the system variables at every location of

the cochlea, and of solving the relevant Fourier components of the BM response by
iteration since these components depend nonlinearly on themselves. In every iteration

step a linear problemis solved. First, the model is solved with certain starting values of

the ‘active’ impedance at every location in the cochlea. Then, the OHC pressure

distribution and its primary components are computed. By dividing the primary pressure
components by the corresponding velocity components we obtain a new ‘active!
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impedancedistribution with which the modelis solved again to get a new estimate of the

BMvelocity response pattern. This is done a numberoftimes until the model response

has converged sufficiently. Finally, if desired, the combination tones can be computed by

solving the model with the relevant Fourier components in the OHC-generated pressure.

Tn chapter 2 we have given an outline of the quasilinear solution method with results
for single-tone stimulation under different levels of stimulation. It is shown that the

model response becomes less frequency selective and less sensitive as input level is

increased. This behaviour corresponds to that found in experiments, At levels of 40 dB
SPL the influence of the nonlinearity on the response and on the impedance of the

cochlear partition is largest near the peak. At higher input levels the nonlinear influence

extends to more basal and apical locations until a situation is reached in which the
response and BM impedanceare similar to those of the passive model. In the Appendix

we have estimated the effect of higher-order products on the primary response. This

effect is found to be negligible so that we do not need to consider higher-order products

for the computation ofthe primaries. Note that if we were to compute many higher-order
distortion products the computation time might eventually become larger than for time-

domain methods.
In chapter 3 we treat the phenomenon of two-tone suppression. This phenomenon

may occur if'a secondary tone is addedto a single-tone stimulus: the amplitude and phase
of the single-tone response may change in the presence of the second tone, In an attempt

to explain this phenomenon an hypothesis was set up by Sachs and Abbas (1976). This
hypothesis, called the atfenuation hypothesis, states that attenuating the input level of a

single tone has a similar effect on the response as the addition of a second tone.
However, in many stimulus conditions the hypothesis has proved to be wrong. It is

shown that contradictions arising from this hypothesis can be solved by considering a

cochlea model like the one used here in which nonlinearity and activity are intrinsically
linked. Also, by viewing the relation between the BM impedance and the phase of the

BM responseit can be understood why certain phase changes of the BM response occur

undercertain stimulus conditions. It has not been checked whether the primary solutions

are affected by the presence of combination tones: that subject is deferred until chapter 6.
However, it is reasonable to expect that the suppressive effect of combination tones on

the primaries is small since the combination tones are small in amplitude compared to the
primaries.

In chapter 4 we deal with emissions of the 2/)-f; combination tone where/; and /)
are the frequencies of the primaries (with f>/;). Experiments have shown that
otoacoustic emissions of distortion products are ‘tuned’ as a function of primary

frequency ratio f>/f,. That is, if primary frequencies are changed in such a waythat the

frequency of the 2/)-/) combination tone remains fixed and if primary levels are kept

fixed, maximal emissions occur at a primary frequency ratio of about 1.2 (this value
depends on the value of the primary levels). According to several authors (Brown and
Gaskill, 1990: Brown and Williams, 1993; Allen and Fahey, 1993) this ‘tuning’ would be

due to filtering of distortion products inside the cochlea. Because the OHCs are

embedded inside the Organ of Corti, the pressures generated by them can be assumed to
be filtered before they are coupled back to the BM. In the current chapter we challenge
the view that the experimentally observed ‘tuning’ is caused bythis filtering. It is shown

that the same degree of 'tuning' can be reached with the same cochlea model as used in
the previous chapters in which thereis nofiltering of distortion products. The ‘tuning’ in
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the model is found to be the consequence of saturation of the active mechanism,It is not

debated whether there exists a form of DPfiltering (which is likely because the OHCsare

embedded inside the Organ of Corti), but it is questioned whether the tuning seen in
acoustic distortion datais the result ofthisfiltering.

In chapter 5 an experiment by Allen and Fahey (1992) was replicated with our

model. In this experiment they tried to disprove the existence of the cochlear amplifier by
estimating the power gain in the cochlea from otoacoustic emissions of distortion

products. The emission of the cubic difference tone (CDT) with frequency 2/\-7 was

measured as a function ofthe primary frequencies /; and 7 (/4>/;) while keeping both

the CDT's frequency and the neural response of a nerve fibre tuned to this frequency

constant. The CDT emission was found not to vary as primary frequencies were varied

and Allen and Fahey concluded that the cochlea must be passive. This conclusion is
challenged in the current chapter. Despite a maximum velocity gain of more than 40 dB

in our locally-active model with respect to a passive model, we obtained essentially the

same results as Allen and Fahey in their experiments: the CDT emissions changed little as

primary frequencies were varied over the range used in their experiment. With this in

mind, it is concluded that Allen and Fahey's interpretation of their experiment is

incorrect. Careful analysis shows why they did not find any difference in emission: the

range over which they varied the primary frequencies was not large enough.

In chapter 6 we have compared quasilinear responses with time-domain solutions in

order to check the accuracy of the quasilinear solution method described in previous

chapters. We have donethis first for sinusoidal stimulation. It is shown that the overlap
between model solutions obtained with the quasilinear and the time-domain method is

amazing. The same maybe said for the primary responses during two-tonestimulation.It

is only (in the case of two-tone stimulation) for the 2/|-f) combination tone that
deviations between the two methods occur. These deviations are too small to modify the
conclusions from the previous chapters.

Although several nonlinear phenomena have been successfully reproduced

qualitatively and quantitatively with the model used in this thesis, the model should not
be conceived ofas final. There are several aspects that can be improved. For instance,
the modelis not entirely realistic (anatomically) in that the pressure source has not been

included in the Organ of Corti. (We have taken advantage of this aspect in our discussion

of ‘tuning’ of acoustic distortion products in chapter 4.) In our model the OHCs movethe

BM much the way Baron von Minchhausen pulled himself out of the swamp by his own

hair. By looking at the anatomy of the cochlea we find the OHCs embedded inside the
Organ of Corti so that the action of the 'cochlear amplifier' must have an effect both upon

the BM and on the cuticular plate. There are models that take this aspect into

consideration, but they have other deficits. For instance, Neely and Stover's model
(1993) does not have a 40 dB enhancement of the BM response comparedto the passive

model, and Geisler's model (1991) uses a stiffness value of the OHCcilia that is much
larger than that measured experimentally by Strelioff and Flock (1984). Furthermore,

Geisler has used stiffness value for the tectorial membranethat is about ten times larger

than that measured by Zwislocki and Cefaratti (1989). In this respect the model by de

Boer (1993) is more realistic. In his model the TM consists of twostiff parts connected
by a hinge so that the TM appears to be muchless stiff than its constituent parts if the

TM islifted from the Organ of Corti as was done by Zwislocki and Cefaratti.

Furthermore, the stiff parts of the TM couple the OHCsto the fluid in the inner spiral

99



sulcus in such a way that a proper counterforce is provided for the OHCs (cf. a tree

branch for von Miinchhausen).
Another anatomical feature that might be included in our modelis the longitudinal

tilting of outer hair cells (Vdldrich, 1983), Although several models have been devised

on this basis (Kolston, 1989; Steele e/ a/., 1993; Geisler, 1994) it is not clear whether

this idea will prove to be important for the future of cochlear modelling. The same
applies to Kolston's (1988) idea ofsplitting the BM into twoparts, the pars pectinata and
the pars arcuata, each having different anatomical properties. We should also mention

here the three-dimensional finite-element model by Kolston and Ashmore (1995) which

reflects the anatomy of the Organ of Corti more closely than previous cochlea models.

The importanceofcertain anatomical componentsand features can be assessed with their

model, and this knowledge can be used for the development of newer, more realistic

‘lumped’ element cochlea.
It is not only the anatomy that is important in cochlear modelling but also its

physiology. For instance, Brundin ef a/. (1989) found that isolated OHCs have tuning
properties that are determined by the location of the OHCs along the BM. This finding

may also have important bearing upon the development offuture models,
But what about the future of the quasilinear method? In this thesis we have only

used sinusoidal stimuli or combinations of these. This has been very successful. Using the
method for click-stimuli is also possible, but this might turn out to be cumbersome.In the

time domain solving the model will be straightforward butit still has to be examined
whether, for instance, the effective BM impedance can be computedin the time domain.

If that is the case, comparisons between the effective BM impedance and the BM

response are possible in the time-domain the way we did in the frequency domain.

Anotherfuture application ofthe quasilinear method might be in the implementation of a

nonlinear version of the above-mentioned model by Kolston and Ashmore (1995), Since

their model is computationally very slow, solving it in the time domain is not practical at
present. Therefore, a faster method of computation such as the quasilinear method is

called for.
Finally we would like to note that the conditions under which the long-wave

approximation is valid are not fulfilled at all locations in the cochlea. In fact, they are

only fulfilled at locations near the stapes. Still the one-dimensional model is a good

model in that it replicates many properties of cochlear responses. In the future,
computations with the quasilinear method should be done with two- or three-dimensional

models, Also, we might apply the method to a transmission line model that supports both

long and short waves as has been developed by Van den Raadt (personal

communication), Such a model could be used to refine the simulation of nonlinear

processes in the cochlea.
In this thesis we have shown that nonlinear models can be solved in the frequency

domain with the quasilinear method in such a way that much insight into the mechanism
of cochlear nonlinearity is obtained. Furthermore, we have shown that different cochlear

phenomenacan be simulated with a model in which activity and nonlinearity are elegantly
combined into one mechanism. These phenomena were reproduced to a better extent

than waspossible with previous nonlinear models.
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Samenvatting

Dit proefschrift behandelt verschillende aspekten van cochleaire niet-lineariteit. Het

doel is te onderzoeken of bepaalde niet-lineaire fenomenen met elkaar gerelateerd zijn,
De nadruk ligt niet zozeer op het simuleren van deze verschijnselen met een cochlea

modelals wel op het verkrijgen van inzicht in de mechanica van het binnenoor,
Het oor is een zeer gespecialiseerd orgaan dat geluidsignalen converteert in

zenuwpulsen die auditieve informatie naar de hersenen voeren, Het oor kan in drie delen

opgesplitst worden: het witwendige oor, het middenoor en het binnenoor (bestaande uit

de cochlea en de semicirculaire kanalen),. Het uitwendige oor vangt een geluidsgolf op

en leidt deze door de gehoorgang naar het frommelviies. Dit wordt zo gedaan dat de
geluidsdruk! ter hoogte van het trommelylies versterkt wordt in het frekwentiegebied dat

belangrijk is voor het spraakverstaan. Door de 'kleur' van het geluid te veranderenstelt

het uitwendige oor ons in staat om geluid (in beperkte mate) te lokalizeren. Het

middenoor bestaat uit een keten van drie gehoorbeentjes, het aambeeld, de hamer en de
sliigheugel. Deze keten geleidt de geluidstrillingen van het trommelvlies naar het ovale

venster, de ingang van de cochlea. Het middenoor zorgt voor een 20-voudige versterking

van het geluid, Deze versterking vermindert de reflektie die onstaat als het geluid van de
lucht in de gehoorgang (via het middenoor) naar de vloeistof die zich in de cochlea

bevindt gaat. Een andere eigenschap van het middenooris het beveiligen van de cochlea
tegen overmatig geluid. Dit mechanisme treedt niet alleen in werking als hard geluid het

oor binnenkomt maar ook gedurende iemands eigen spraak (zelfs voordat die spraak

begonnenis).
Als het ovale venster wordt bewogen door de stijgbeugel (op een oscillerende

wijze), ontstaat er een geluidsgolf in de vioeistof van de cochlea. De geassocieerde

geluidsdruk in die viceistof doet de partitie (die de cochlea in twee delen splitst)

bestaande uit het basilair membraan (BM) en het orgaan van Corti (waar de

zintuigcellen zich bevinden) bewegen. Door de interactie tussen vloeistof en partitie

onstaat er een lopende golf op het BM enin de vloeistof. In het geval dat de stimulus

sinusvormig is stijgt de amplitude van de golf langs de lengie van de partitie tot er een

maximum wordt bereikt op een plaats die afhangt van frekwentie. Hoge frekwenties

vinden hun maximum op plaatsen dichtbij de stijgbeugel, terwijl lagere frekwenties op

lokaties verder in de cochlea terechtkomen. De reden voor het onststaan van dit

'toonladder effect' is dat de stijfheid die toegeschreven kan worden aan de cochleaire

partitie afneemt van de stijgbeugel tot aan het felicotrema (het andere eind van de
cochlea). Als de stimulus uit meer dan één componentbestaat, roept elke component een

lopende golf in het leven die elk op een andere plaats zijn maximum heeft. De cochlea

verricht derhalve een soort frekwentie-naar-plaats analyse van de auditieve stimulus.

In het orgaan van Corti zijn twee typen zintuigcellen aanwezig, de binnenste en
buitensie haarcellen. Gedurende bewegingen van het BM onstaat er een relatieve

beweging tussen de onderkant van het tectoriaal membraan en de toppen van deze
haarcellen. Dit leidt tot uitwijkingen van de fri/haartjes van de haarcellen wat weer

polarisatie van de cellen tot gevolg heeft. In het geval van de binnenste haarcellen leidt

   

1 De geluidsdruk is het verschil tussen de druk veroorzaakt door de aanwezigheid yan een
longitudinale compressiegolf en de barometerdruk.
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polarisatie tot het genereren van aktiepotentialen in de vezels van de gehoorzenuw. Bij de
buitenste haarcellen leidt polarisatie tot veranderingen in hun eigen cellengte. Deze

veranderingenzijn hoogstwaarschijnlijk betrokken bij het verbeteren van de gevoeligheid
en de frekwentie selektiviteit van het oor.

Voor 1971 dacht men dat de BM responseenlineaire funktie van het input niveau

was. In 1971 liet Rhode echter zien dat voor sinusvormigestimulatie de BM respons zich

niet-lineair gedraagt als een functie van input niveau: de respons wordt gecomprimeerd

voorsterkere stimuli. Niet alleen de amplitude maar ook de fase van de respons wordt
beinvioed door de niet-lineariteit. Rhode en Robles (1974) en Sellick et af. (1982)

reporteerden een groter wordende fase achterstand bij een groter wordend stimulus

niveau voor frekwenties beneden de karakteristieke frekwentie (dit is de frekwentie

waarvoor de bestudeerde locatie in de cochlea het meest gevoelig is). Er zijn meer niet-

lineaire verschijnselen ontdekt. Gedurende twee-toon stimulatie kan de respons op een

toon gesupprimeerd worden door de aanwezigheid van de andere toon. Bij dit

verschijnsel, dat twee-toon suppressie wordt genoemd, vertoont de fase van de probe
respons veranderingen die zeer afhangen van de stimulus condities (Cheatham en Dallos,

1990; Nuttall en Dolan, 1993). Deze kritische afhankelijkheid is in dit proefschrift

onderzocht. Een ander niet-lineair verschijnsel dat ontstaat als de cochlea met twee tonen

wordt gestimuleerd is de generatie van combinatie tonen. Als mensen luisteren naar
toonparen kunnen ze tonen horen die niet in de stimulus aanwezig zijn (Goldstein, 1967;

Smoorenburg, 1972). Pendanten van deze tonen zijn gemeten in neurale responsen

(Goldstein en Kiang, 1968), in binnenste haarcellen (Nuttall en Dolan, 1990), in
otoakoestische emissies (Kemp, 1979) maar ook op het niveau van bewegingen van het
BM (Roblesef al., 1991).

Hoewel in het verleden verschillende niet-lineaire modellen van de cochlea zijn

ontwikkeld, zijn de bovengenoemdeniet-lineare verschijnselen nog niet geheel begrepen
en gerepliceerd. Het hoofddoel van dit proefschrift is (1) het ontwikkelen van een

cochlea model dat deze niet-lineaire verschijnselen beter repliceert dan voorgaande

modellen en (2) het oplossen van het model op zodanige wijze dat inzicht in het

werkingsmechanisme makkelijker wordt verkregen dan met bestaande oplossings-
methodes.

Om een raamwerk waarin niet-lineaire processen kunnen worden onderzocht tot

stand te brengen is een 1-dimensionaal cochlea model ontwikkeld dat de respons van en

het drukverschil over het BM beschrijft. We hebben het model niet-lineair en lokaal

aktiefgemaakt door elementen te introduceren die geluidsdrukken genereren op een niet-
lineaire wijze. Deze geluidsdrukken worden direkt over het BM gezet. De aktieve

elementen, waarvan aangenomen wordt dat het de buitenste haarcellen (outer hair cells:
OHCs) zijn, worden in werking gesteld door relatieve bewegingen tussen de onderkant

van het tectoriaal membraan en de bovenkant van de OHCs. Deze relatieve beweging

zorgt yoor een resonantie die de aktiviteitsverdeling langs het BM plaats-frekwentie

afhankelijk maakt op een dusdanige wijze dat op plaatsen basaal van de piek meer

energie in het systeem wordt gepompt dan erdoor wordt geabsorbeerd. Het gevolg is dat
de drukgolfin de cochlea versterkt wordt. Er is voor gezorgd dat de modelrespons goed

aansluit bij experimentele resultaten verkregen bij lage stimulus niveau's. Rekening

houdend met experimentele resultaten (bijv. Huspeth en Corey, 1977; Patuzzi ef al.,

1989) hebben wedeniet-lineariteit van deze OHCs cen saturerende vorm gegeven.

Om meer inzicht in cochleaire mechanica te verkrijgen hebben we het door ons
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ontwikkelde cochlea model opgelost in het freswentiedomein m.b.v. een linearisatie
methode (die we de quasi-lineaire methode hebben genoemd). Een belangrijk voordeel

boven tijdsdomein methodes is dat de concepten impedantie, amplitude en fasehoek

kunnen worden gebruikt bij het beschrijven van de mechanica en de bewegingen van de

cochleaire partitie. Met de BM impedantie kunnen wehet effeet van de niet-lineariteit op
de fase en amplitude van de BM respons analyseren en verhelderen. Een ander voordeel

van de quasilineaire methode is dat de rekensnelheid veel groter is dan voor bestaande

methodes in het tijdsdomain. Dit betekent dat we het model kunnen oplossen met een

PC, die een goede grafische omgeving ondersteunt. Verder is het ‘ontluizen' op een PC
veel handiger dan op een mainframe. De grote rekensnelheid heeft de ontwikkeling van

het cochlea model dat gebruiktis in dit proefschrift vergemakkelijkt: geschikte parameter

waarden moesten gevonden worden om het model zowel goed convergerend te maken
als goede responsen te laten genereren. Dit proces zou veel meertijd hebben gekost met

een tijdsdomein methode.
Debasis aannamedie tot de ontwikkeling van de quasilineaire methode heeft geleid

is dat, voor stimulatie met een periodieke golfvorm, het basilair membraan 06k periodick

trilt met een periode die gelijk is aan die van de stimulus. Dit betekent dat de cochleaire

respons perfect kan worden geanalyseerd in termen van zijn Fourier componenten. De

methode bestaat dan ook uit het berekenen van de relevante Fourier componenten van de
systeemvariabelen op elke plaats van de cochlea, en uit het oplossen van de BM respons

dooriteratie omdat de sterkte en fase van de Fourier componenten op een niet-lineaire
wijze afhangen van de BM respons. In elke iteratiestap wordt dan een lineair probleem

opgelost. Eerst wordt het model opgelost door de ‘aktieve' impedantie op elke plaats in

de cochlea een bepaalde startwaarden te geven. Dan worden de OHC drukverdeling en

zijn primaire componenten berekend. Door de primaire drukcomponenten te delen door

de corresponderende snelheidscomponenten verkrijgen we een nieuwe 'aktieve'

impedantie verdeling waarmee het model opnieuw wordt opgelost om een nieuwe

schatting van het patroon van de BM snelheidsrespons te bepalen. Dit wordt enkele
malen gedaan totdat voldoende convergentie is opgetreden, Tot slot, indien gewenst,

worden de combinatietonen berekend door het model op te lossen met de relevante
vervormings-componenten in de door de OHCs gegenereerde druk.

In hoofdstuk 2 worden het in dit proefschrift gebruikte cochlea model en de quasi-

lineaire oplossingsmethode beschreven. Vervolgens wordt het model opgelost met de

ontwikkelde methode. Model resultaten laten een verscherping van de cochleaire

frekwentie selektiviteit en een versterking van de BM respons zien als op de juiste manier
drukbronnetjes (lees: buitenste haarcellen) in de cochlea worden geintroduceerd. De
plaats-frekwentie afhankelijkheid is zodanig dat in een begrensd gebiedje basaal t.o.v. de

pick de weerstandscomponent van de BM impedantie een negatieve waarde heeft. Elders
is de weerstand positief om stabiliteit van het model te waarborgen, Omdat elk

drukbromnetje voorgesteld wordt als een saturerende funktie van zijn input, is de respons

een niet-lineaire funktie van de geluidsintensiteit. Versterking van het ingangsniveau

heeft een 'afvlakkende’ werking op de respons: de scherpte van de respons piek en de
frekwentie selektiviteit van het model nemen af. Dit gedrag wordt selfsuppressie

genoemd. Bij intensiteiten boven de 80 dB SPL ziet de respons er hetzelfde uit als die

yan een passief model, i.e., een model zonder drukbronnetjes. De input-output functie
van de model responsis vergelijkbaar met die gemeten in experimenten (Sellick e/ al.,
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1982; Robles ef a/., 1986). In de appendix van dit hoofdstuk is een schatting gemaakt

van de invioed van hogere-orde produkten op de primaire respons. Deze invloed blijkt

nihil te zijn zodat we de hogere-orde termen niet mee hoeven te nemen in onze
berekeningen.

Hoofdstuk 3 behandelt het verschijnsel twee-toon suppressie. Dit verschijnsel kan

plaats vinden als een tweede toon wordt toegevoegd bij een enkele-toon stimulus: de
amplitude van de enkele-toon respons kan dan kleiner worden. Tevens kan de fase

veranderen. In een poging dit verschijnsel te verklaren hebben Sach en Abbas (1976) de
verzwakkings hypothese opgesteld. Deze hypothese stelt dat verzwakking van het

ingangsniveau van een enkele toon hetzelfde effect heeft op de respons van die toon als
de toevoeging van een tweede toon. Echter, de hypothese heeft tot veel contradicties

geleid. Deze tegenstellingen kunnen worden opgeheven met het model dat in dit

proefschrift wordt gebruikt, een model waarin niet-lineariteit en aktiviteit intrinsiek
verbonden zijn met elkaar. Bovendien lost het model problemen op die uit de

experimenten yan Nuttall en Dolan (1993) volgden. Uit hun experiment bleek dat onder

bijna dezelfde omstandigheden een totaal ander fase gedrag van de gemeten respons
volgde. Hun verklaring was dat er verschillende soorten suppressie zouden moeten

bestaan die onder verschillende omstandigheden in werking zouden treden. Deze

verklaring wordt door ons model weerlegd: al het door hun gevonden fase gedrag kan

gerepliceerd en verklaard worden methet in dit proefschrift gebruikte model.

In hoofdstuk 3 behandelen we emissies van de 2/)-/, combinatietoon waarinf; en/y
de frekwenties van de primaire tonen voorstellen (met /,>7,). Experimenten hebben laten
zien dat otoakoestische emissies van vervormingsprodukten 'getuned' zijn als funktie van

de primaire frekwentie verhoudingf>/f,. M.a.w., als de primaire frekwenties op zodanige

manier worden veranderd dat de frekwentie van de combinatietoon gelijk blijfi, dan zijn
(voor gelijkgehouden primaire niveau's) de emissies maximaal bij een frekwentie

verhouding van ongeveer 1.2 (deze waardeis afhankelijk van de hoogte van de primaire
niveau's). Volgens verschillende auteurs (Brown en Gaskill, 1990; Brown en Williams,

1993; Allen en Fahey, 1993) is deze ‘tuning’ het resultaat van filtering van de
vervormingsprodukten binnenin de cochlea, Omdat de buitenste haarcellen ingebed zijn

in het orgaan van Corti, worden de door deze cellen gegenereerde drukken gefilterd
voordat ze teruggekoppeld worden naar het basilair membraan en datzelfde geldt voor de

vervormingsprodukten. In dit hoofdstuk vallen we het idee aan dat de experimenteel

gevonden 'tuning' veroorzaakt wordt door zo'n filtering. We laten zien dat dezelfde graad

van ‘tuning’ bereikt wordt in ons model waarin geenfiltering van vervormingsprodukten
plaatsvindt. Daarbij wordt aangetoond dat de ‘tuning’ het gevolg is van de in het model
aanwezige niet-lineariteit. Wanneer 7,/f; tot 1 nadert, uit de niet-lineariteit zich
gedeeltelijk in het supprimeren van het aktieve mechanisme dat de combinatietoon
versterkt en gedeeltelijk in het satureren van de generatie van de combinatietoon.

In hoofdstuk 5 staat een nabootsing van een experiment door Allen en Fahey (1992)
beschreven. Met het experiment probeerden ze het bestaan van de 'cochleaire versterker'

te ontzenuwen. Dit deden ze door een schatting te maken van de ‘power gain' in de
cochlea m.b.v. otoakoestische emissies van vervormingsprodukten. De emissie van de

combinatietoon (CT) met frekwentie 2/)-/, werd gemeten als functie van de primaire

frekwenties 7, and /) (/:>/;) terwijl de CT's frekwentie en de neurale respons van een
zenuwvezel afgestemd op deze frekwentie konstant werd gehouden. De CT emissie

bleek niet te veranderen als de primaire frekwenties werden gevariéerd en Allen en Fahey

106

konkludeerden daaruit dat de cochlea passiefis. Deze konklusie wordt aangevallen in dit
hoofdstuk, Ondanks een maximum versterking van de snelheidsrespons van 40 dB in een

lokaal-aktief model t.o.v. een passief model, verkregen we nagenoeg dezelfde resultaten
als Allen en Fahey in hun experimenten. Onze konklusie is dat Allen en Fahey's
interpretatie van hun experimenten fout is. Zorgvuldige analyse toont aan waarom ze

nauwelijks een verschil hebben gemeten: de range waarover ze de primaire frekwenties

variéerden was niet groot genoeg om een substantieel verschil in emissie te kunnen
verwachten. We hebben hun experimenten uitgebreid door bij een kleinere frekwentie

verhoudingte kijken de CT emissie te berekenen. Deze emissie bleek groter te zijn dan

de emissie gemeten bij kleinere frekwentie verhoudingen. Toekomstig onderzoek moet

uitmaken of dit ook in experimenten gevonden wordt.
In hoofdstuk 6 worden quasi-lineaire responsen met tijdsdomein oplossingen

vergeleken. Het doel van deze vergelijking is om inzicht te verkrijgen in de

nauwkeurigheid van de quasi-lineaire oplossingsmethode die in dit proefschrift gebruikt
is. Voor sinusvormige stimulatie blijkt de overlap tussen de modeloplossingen verkregen

met de quasi-lineaire en de tijdsdomein methode spectaculair goed te zijn. Voor de

primaire tonen onder twee-toon stimulatie geldt hetzelfde. Alleen voor de 2/)-/,

combinatietoon wijken de responsen verkregen met de twee methodesin lichte mateaf.
Deze afwijkingen zijn te klein om gevaar op te leveren voor de konklusies gemaakt in dit

proefschrift.
In dit proefschrift hebben we laten zien dat niet-lineaire modellen in het frekwentie

domein kunnen worden opgelost met een quasi-lineaire oplossingsmethode op een

zodanige wijze dat veel inzicht wordt verkregen in het werkingsmechanisme van
cochleaire niet-lineariteit. Verder is aangetoond dat verschillende cochleaire

yerschijnselen kunnen worden gesimuleerd met een model waarin aktiviteit en niet-

lineariteit tot één geheel is verweven, Deze fenomenen zijn met meer succes gesimuleerd

dan mogelijk is met vroegere modellen, en zijn daardoorbeter te begrijpen.
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