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1 Introduction

Cochlear implants are implantable hearing devices for individuals with severe to 
profound hearing loss. Since its introduction in the clinics in the 1980s many people have 
benefited from these devices and valuable adjustments to the design of the hardware 
and software have been implemented (Zeng et al., 2008). Over recent years however, 
in spite of considerable efforts, development of sound coding strategies has stagnated. 
The drawbacks and restrictions related to testing of new coding strategies in patients 
require innovative ways to evaluate sound coding developments. One such approach 
is the computational evaluation of sound coding in the implanted ear. The digital age, 
with its powerful computers and recent developments in information theory, provides 
all necessary means for the development of appropriate models and interpretation of 
their output. In this thesis, computational models of the implanted auditory periphery’s 
response to sound are described. This introduction will explain the basic functioning of 
the auditory system, the working mechanism of cochlear implants and the state of the art 
of cochlear implant sound coding modeling. 

1.1 The ear & hearing 
In a healthy ear, sound travels through the outer ear (pinna and ear canal) and the middle 
ear (tympanic membrane and the middle ear ossicles) to the inner ear from where sound is 
transmitted to the auditory nerve. The purpose of the outer and middle ears is to focus the 
pressure of the sound wave on the oval window, a membrane that separates the middle 
ear from the cochlear endolymphatic fluid, figure 1.1A&B. The inner ear, or cochlea, is part 
of the vestibulocochlear organ depicted in figure 1.1A. Located in the scala media of the 
cochlea is the organ of Corti, shown in figure 1.1C. This is the actual hearing organ where 
hair cells located on the basilar membrane convert mechanical energy of the resonating 
membrane to an electric signal reaching the auditory nerve through synapses. The 
cochlea is a marvelous organ, it is tonotopically organized to fulfill its frequency-analyzing 
function. It contains active elements (outer hair cells) increasing its sensitivity and 
selectivity, and has nonlinearity in both inner and outer hair cell sensitivities to efficiently 
transduce relevant sounds. By virtue of these factors, the human ear is most sensitive to 
frequencies present in human speech and is optimized to analyze the dynamic range of 
speech. The auditory nerve is just as wonderous, it preserves the frequency-selectivity by 
both place- and time coding and sophistically encodes loudness by an associated spiking 
pattern in the auditory nerve. Because of spontaneous activity in both types of hair cells 
and in the auditory neurons, the auditory system is ‘alert’ and sensitive to sudden and 
soft sounds. Although the peripheral auditory system is very intriguing, the real magic 
happens higher up in the auditory system. Different relay stations, where information is 
sorted and processed, send the signal towards the brain. The most important relay stations 
are the cochlear nuclei, olivary nuclei located in the lateral lemniscus, the inferior colliculi 
and the medial geniculate bodies (the auditory portion of the thalamus).
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After this, the signal reaches the auditory cortices. Information processing follows in a 
bottom-up approach (the afferent system), and is controlled and attuned by a top-down 
approach (efferent system). There are connections between the differently leveled and 
lateralized nuclei, which is a prerequisite for, amongst others purposes, our specific 
localization abilities. The further up in the system you go, the more complex the processing 
becomes. Attention, association, learning, memorizing and emotion, and other related 
connections with the limbic system are of essence to our perception of sound. 

Figure 1.1 Anatomy of the inner ear. A) Vestibulocochlear organ; showing the semicircular canals, 
utricle and saccule of the vestibular organ and the spiraling cochlea; B) a cross-section of the cochlea 
showing the scala media; C) zoomed in at the organ of corti visualizing the inner and outer hair 
cells and the basilar membrane [Adopted from Kandel and Schwartz (2000), copyright McGraw-Hill 
Education]
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1.2 Hearing loss and rehabilitation
Malfunctioning of (part of ) the hearing system causes hearing loss. Conductive hearing 
loss is a consequence of damage to the outer or middle ear and can lead to a hearing loss 
of up to 60 dB. Damage to the inner ear, referred to as perceptive hearing loss, manifests 
as a hearing loss with a severity ranging from mild to profound. Auditory problems 
originating higher up in the auditory system, e.g. auditory neuropathy or auditory 
processing disorders, are much less common. Prevalence of disabling hearing loss is 
estimated by the WHO in 2018 at 6.1% of the world’s population, when defined as a loss 
of more than 40 dB in the better hearing ear in adults and 30 dB in children (https://www.
who.int/pbd/deafness/estimates/en/). Congenital hearing losses are hereditary, can be 
caused by infectious diseases, or due to prenatal complications. Acquired hearing losses 
can have hereditary or infectious causes but can also, and with increasing prevalence, be 
concomitant with age or manifest as a consequence of noise exposure. 

The perception of sound is important for communication with others and for awareness 
of the world around us. Hearing rehabilitation is developed to disburden those suffering 
from hearing loss. It can come in the form of a hearing aid, a bone conduction device or 
a cochlear implant. A hearing aid amplifies sound before it enters the ear canal. A bone 
conduction device transfers the sound directly to the inner ear through mechanical 
vibration of the skull. In a cochlear implant (CI) the auditory nerve is directly activated 
through electrical stimulation by an electrode placed in the cochlea, see figure 1.2. Sign 
language provides a means of communication for those who cannot use, or are not 
sufficiently rehabilitated by a hearing device. 

1.3 Cochlear Implants
The CI is the designated rehabilitation device for those with severe to profound hearing loss. 
As of 2016 an estimated 600 000 devices were implanted worldwide (The Ear Foundation, 
UK). Currently, in the Netherlands, people with rehabilitated speech perception scores, 
scored by phonemes correct, of lower than 70% for speech presented at a level of 65 dBHL 
are considered eligible for implantation. The functional benefits brought about by CIs range 
from mere detection of environmental sounds to restoration of speech perception scores 
of over 90% in quiet surroundings. The prognosis for the functional outcome depends on 
the hearing loss history, etiology, age at implantation, cognitive abilities and electrode 
position (Holden et al., 2013), but the exact relation between patient characteristics and 
perceptual outcomes are not understood well enough to exactly predict outcomes. Due 
to this complexity, the question whether or not cochlear implantation is the optimal 
treatment for an individual patient should be carefully considered by a multidisciplinary 
team (involving an audiologist, speech therapist, ENT-surgeon, and social worker) in 
consultation with the patient.
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Figure 1.2. Configuration of the external (transmitter, microphone, speech processor) and internal 
parts (stimulator and electrodes) of the cochlear implant (Reprinted with permission of Mayo 
Foundation for Medical Education and Research, all rights reserved.)

The first attempts to restore hearing with electrical stimulation were done in the late sixties 
and early seventies (Djourno and Eyries, 1957; Doyle et al., 1964; Simmons et al., 1964) but 
due to skepticism and safety issues it was not until 1984 that Food and Drug Administration 
(FDA) approval opened up the road for development of the CIs. The House 3M single-
electrode device (House and Urban, 1973) was the first CI available on the market, and 
was followed in the years after by multichannel electrodes (Loeb, 1990). The CI consists 
of an external processor that detects and manipulates sound and a coil, connected via 
a magnet to the internal part, that sends the signal to the electrode placed in the inner 
ear (figure 1.2). Currently, CI electrodes contain between 12 and 24 electrode-contacts 
(depending on the manufacturer) located alongside one-another. Each electrode-contact 
stimulates a different part of the tonotopically organized auditory nerve, thereby making 
use of place-coding to provide frequency-specific information. 

1.4 Sound coding in cochlear implants 
The first cochlear implants used compressed analog techniques in which the electrical 
equivalent of the sound pressure was administered continuously to frequency-specific 
electrode-contacts. In 1991, the continuous interleaved sampling (CIS) technique was 
introduced, which employs consecutive stimulation of the different electrode-contacts. 
With this type of coding strategy, speech perception and safety improved and the clinical 
implementation of CIs gained momentum (Wilson et al., 1991). In CIs, the auditory nerve is 
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excited by biphasic (charge-balanced) electrical stimulation from each electrode contact. 
Loudness is encoded by either increasing the width of the phases or the amplitude of 
the transferred current. Since the introduction of CIS, numerous researchers worked on 
further improvement of perception with and usability of CIs (Wouters et al., 2015). To save 
battery-life and to minimize electrode interactions, peak-picking strategies are combined 
with CIS, e.g. MP3000. To increase the number of stimulation contacts, ‘virtual’ electrodes 
are used in HiRes, in which, via current steering, the neural region in between physical 
electrode-contacts is stimulated. CIs are designed to encode speech in an optimized 
and efficient way, for this purpose they discard fine-structure to a large extent. In Fine-
Structure Processing (FSP) strategies, the timing of stimulation is dependent on zero-
crossings of the sound signal in a particular frequency band to maintain the fine structure 
of that band. However, even for such strategies, speech understanding in noise, tonal 
perception, voice recognition and music appreciation are often unsatisfactory. Despite 
all efforts, speech perception tests show that since the introduction of CIS, new strategies 
have not led to further improvement of speech scores, which have stagnated, on average, 
around 80% (Zeng, 2004). 

Evaluation of new sound coding strategies is challenging for three reasons: it involves 
time- and energy consuming patient-testing, the study power is usually limited by group 
size, because only a restricted pool of patients is able to perform the tests and lastly a large 
patient-variability leads to negligible improvement on a group level, or may even cancel 
out opposing effects from different sub-groups. Alternatively, objective measurements, 
such as Evoked Compound Action Potential (eCAP) recordings, can also be used to test 
the performance of CIs. However, similarly to the difficulties of evaluating new coding 
strategies laid out above, the relationship between objective measures, individual 
fittings and performance are difficult to establish (de Vos et al., 2017; McKay et al., 2013). 
Parallel to the development of sound coding strategies, efforts to improve performance 
and subjective satisfaction with CIs were directed at electrode design (Dhanasingh and 
Jolly, 2017), musical therapy training (Fuller et al., 2014), bilateral implantation (van 
Schoonhoven et al., 2013), and electroacoustic stimulation (EAS) (Talbot and Hartley, 
2008). EAS systems are designed for patients with residual hearing, so that they can 
benefit from the combination of acoustic and electrical hearing in the same ear. 

1.5 Recording peripheral responses to sound segments
There are different objective measures that record the responses of the electrically 
stimulated peripheral auditory system to sound segments. Three such measures are 
introduced in this section. One example of an objective measure, in response to long 
duration electrical stimulation, is the single fiber action potential (SFAP). In the SFAP, 
responses to pulse trains in the electrically stimulated ear are recorded invasively from 
single neurons in animals. By doing so, exact spike timings of the neuron under test are 
recorded. From these spike times, average spike rates, or times between subsequent action 
potentials, can be calculated and plotted in a post-stimulus time histogram (PSTH) or inter-
spike interval histograms (IH) respectively. When periodically amplitude modulated pulse 
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trains are used, the spike times relative to the stimulus period yield the period histograms 
(PH), and modulation-following behavior can be calculated with the Vector Strength (VS). 
These responses all provide detailed information about how the neuron responds to 
stimulation. Due to its intrusiveness, the SFAP has only been recorded in animals. Animals’ 
auditory nerve fibers are morphologically and physiologically somewhat different from 
human auditory nerve fibers, for instance in diameter and myelination (Liu et al., 2015; 
Paintal, 1966; Spoendlin and Schrott, 1989). 

In contrast to the SFAP, which is recorded only from animals, the eCAP is the best available 
method to measure neural responses from human CI users. These recordings are therefore, 
very valuable to validate the simulated responses for the human situation. Moreover 
eCAP responses have been obtained in both humans and animals with different degrees 
of hearing loss. This provides the possibility to evaluate the effect of hearing loss on neural 
behavior. ECAPs in response to single or double pulses are studied extensively (Briaire and 
Frijns, 2005; Miller et al., 1999), but they can also be obtained in response to pulse trains 
(Wilson et al., 1997).

For the purpose of EAS, electrocochleography (ECochG), which goes way back as an 
objective tool in the diagnosis of hearing loss (Eggermont, 2017), recently found its place 
to objectively measure acoustic hearing during cochlear implant surgery and fitting (Koka 
et al., 2017). With this method responses of the implanted auditory periphery to acoustic 
sound segments can be recorded. In ECochG, electrical potentials generated by hair cell 
and neural activity in response to sound stimulation are recorded by an electrode, usually 
placed close to the round window. Nowadays, through the use of the reverse telemetry 
functionality of cochlear implants, ECochG could readily be recorded intracochlearly. In 
intracochlear EcochG recordings, cochlear potentials in response to acoustic stimulation 
are recorded by the cochlear implant electrode. This has recently been suggested as a tool 
to detect hair cell damage (Koka et. al., 2017b).

1.6 Modeling cochlear implant sound coding
To improve our understanding of objective measures, computational models can be used. 
Through the use of such models the effect of individual differences in the auditory system, 
perhaps related to hearing loss, can be investigated. Responses of the implanted auditory 
system can be modeled to gain more insight in interpatient-differences and to predict 
functional outcomes with different stimulation strategies. Such models can be built using 
either a biophysical or phenomenological approach.

In a biophysical model, expressions to describe behavior of physiological elements of the 
auditory neuron are based on voltage clamp recordings, usually made from laboratory 
animals. For an overview of existing models view O’Brien et al. (2016). Hodgkin and Huxley 
were the first to quantitatively describe nerve membrane behavior in response to an 
induced membrane current (Hodgkin and Huxley, 1952). Later, these differential equations 
were adjusted to describe myelinated and mammalian nerve fibers (Frankenhaeuser and 
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Huxley, 1964; Schwarz and Eikhof, 1987). To calculate responses to an external electrical 
stimulus, a cable model was required that calculates potentials at several nodes (McNeal, 
1976), that was based on a realistic nerve morphology (Frijns et al., 1994; Frijns and ten 
Kate, 1994) and described the effects of the spatial distribution of currents outside the 
membrane (Reilly et al., 1985). It was shown that a multiple non-linear node model was 
required to accurately model stimulus repetition rates, as limits to these rates were caused 
by nerve fiber conduction properties rather than by single-node frequency-following 
behavior. In the later published generalized Schwarz-Eikhof-Frijns (GSEF) model, kinetics 
were based on mammalian fibers and generalized for different diameters. In the LUMC, a 
realistic 3D model of the intracochlear potentials and a multi-nodal active-cable model 
of the auditory nerve with GSEF characteristics has been developed and validated for 
evaluation of current spread and spread of excitation in response to single pulses (Dekker 
et al., 2014; Frijns et al., 2001, 1995; Kalkman et al., 2015, 2014). The model reproduced 
deterministic threshold characteristics and refractory behavior for different pulse shapes. 
Unfortunately, biophysical models often do not include stochasticity or long temporal 
effects, which are required for modeling long duration segments of stimulation. Inclusion 
of these factors while taking a biophysical approach would require a large number of 
parameters. Moreover, calculation of responses of a large number of nerve fibers to long 
duration segments would require tremendous computational power.

Phenomenological model types predict the neural response with a simplified description 
of neural behavior. The characteristics of phenomena are deduced from single fiber action 
potential (SFAP) recordings, gross potential recordings such as eCAPs or psychophysical 
measurements. For a review of phenomenological models of responses of the auditory 
periphery to electrical stimulation see Takanen et al. (2016). Phenomena related to 
electrical stimulation include refractoriness, adaptation after long duration of spiking, 
accommodation to prolonged stimulation (irrespective of the neural response), facilitation 
(increased firing in response to specific rates), latency, jitter and stochasticity in the neural 
responses. In most of these models, initial thresholds are determined with a statistical 
process (point-process) (Goldwyn et al., 2010, 2012), or with a simple electrical network 
such as the leaky integrate-and-fire (LIF) models (Bruce et al., 1999b, 1999a; Fredelake and 
Hohmann, 2012; Hamacher, 2004; Horne et al., 2016; Macherey et al., 2007). Both point 
process and LIF models can be extended with the spike-history and stochastic effects 
described here.

For both types of models, to calculate responses of the complete auditory nerve, a 
realistic distribution of current spread within the cochlea is required. So as to simulate 
responses to pulse trains, a 3D model should be combined with pulse-dependent 
thresholds, stochastic effects and long temporal components, all preferably minimizing 
the computational power, so that speech-relevant sections of sound can be modeled with 
reasonable amounts of computation.
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2 Aims and method

The aim of the current research is to better understand how the implanted auditory 
periphery responds to sound, to

1.	 aid in the evaluation of sound coding 

2.	 gain more understanding of inter-patient differences

To do this, models of responses to sound of the implanted auditory periphery were 
developed. Models of responses to sound in cochlear implant subjects can function as 
digital test-boards for sound coding strategies and recordings from the implant, thereby 
speeding up developments in CI design. Moreover, they can be used to relate interpatient 
differences from objective recordings to differences in behavior of the auditory peripheral 
system. Requirements for such models include accurate and fast simulations in response 
to a wide range of stimuli.

In this thesis, a model of responses to electrical stimulation was developed that 
combined a biophysical and phenomenological approach. Thresholds dependent on 
current distribution and different pulse shapes were pre-calculated with the detailed 
3D cochlear model and the biophysical multi-nodal cable- neuron model and stored in 
a database. Parameters of neural behavior that required too much computational time, 
or with the biophysical model too many fitting parameters, were implemented using 
a phenomenological approach. Phenomena related to electrical stimulation include 
temporal and stochastic effects in the neural responses. The deterministic thresholds 
were adjusted according to phenomenological parameters to describe stochasticity, 
refractoriness, accommodation and adaptation. In this manner, a model that was fast 
enough to simulate responses to pulse trains, and detailed enough to simulate responses 
to all sorts of pulse shapes was developed. 

A model of responses of the implanted auditory periphery to sound was also developed. 
This model had to include hair cell activation evoked by sound and was based on a 
previously developed model (Zilany et al., 2014). In addition, spatial spread of electrical 
currents evoked by hair cell activation had to be calculated. This was done with the 3D 
model describing electrical conductivities in the auditory periphery. By combining these, 
responses to acoustic stimulation could be modeled at the electrode locations for EAS-
subjects. 

The responses of both models were validated by comparison to objective recordings. 
Recorded inter-patient differences were explored by model parameter variations.
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3 Outline of this thesis

Chapters 2 and 3 describe the neural model in detail and validate the models' responses 
to constant amplitude electric pulse trains and amplitude modulated electric pulse trains 
respectively. The work covers durations of several hundreds of milliseconds and with rates 
up to 5000 pps. Chapter 4 shows that power-law adaptation is a required adjustment to 
the model when simulations with durations of seconds up to several minutes are required. 
In chapter 5 the model is used to simulate eCAP responses to pulse trains. Previously 
published data of pulse-train recordings in humans are correctly replicated, indicating that 
the model is a reliable tool to evaluate human neural responses. Moreover, the pulse-train 
eCAP can be used as a tool to test inter-patient differences in their temporal responses. 
For the purpose of evaluating electroacoustic stimulation, and aid in the interpretation 
of ECochG recordings made intra- and post-operatively, chapter 6 shows validation of a 
model that simulates recordings with the cochlear implant of hair cell responses to sound. 
An overall discussion of the outline, results, clinical relevance and future directions of the 
presented work is given in chapter 7.
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Abstract

Cochlear implants (CIs) rehabilitate hearing impairment through direct electrical 
stimulation of the auditory nerve. New stimulation strategies can be evaluated using 
computational models. In this study, a computationally efficient model that accurately 
predicts auditory nerve responses to CI pulse train input was developed. A three-
dimensional volume conduction and active nerve model developed at Leiden University 
Medical Center was extended with stochasticity, adaptation, and accommodation. This 
complete model includes spatial and temporal characteristics of both the cochlea and the 
auditory nerve. The model was validated by comparison with experimentally measured 
single fiber action potential responses to pulse trains published in the literature. The effects 
of pulse rate and pulse amplitude on spiking patterns were investigated. The modeled 
neural responses to CI stimulation were very similar to the single fiber action potential 
measurements in animal experiments. The model’s responses to pulse train stimulation 
with respect to spatial location were also investigated. Adaptation was stronger at the 
borders of the stimulated area than in the center. By combining spatial details with long-
term temporal components and a broad implementation of stochasticity a comprehensive 
model was developed that was validated for long duration electric stimulation of a wide 
range of pulse rates and amplitudes. The model can be used to evaluate auditory nerve 
responses to cochlear implant sound coding strategies. 
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1 Introduction

Cochlear implants (CIs) are implantable devices that partially restore auditory perception 
in individuals who have severe to profound hearing loss. CIs generally provide good 
speech understanding in quiet and have become the established mode of rehabilitation 
for adults with severe to profound hearing loss (Clark and Clark, 2013). However, CI 
users still experience difficulties understanding speech in noisy (real life) situations and 
suboptimal encoding of pitch accents due to limited transfer of the fine spectrotemporal 
details of the sound (Wouters et al., 2015). Many different sound-coding strategies have 
been introduced in the last decade to overcome this challenge, but no major advances 
have been made since the introduction of the Continuous Interleaved Sampling (CIS) 
strategy (Wilson et al., 1991; Zeng et al., 2008). New stimulation strategies are commonly 
investigated in psychophysical experiments and clinical trials, which is time-consuming 
for both the patient and researcher. Alternatively, strategies can be evaluated with the use 
of computational models. The present study presents a computationally efficient model 
that accurately predicts auditory nerve responses to arbitrary CI input signals. 

A comprehensive computational model of the response of the auditory nerve to CI 
stimulation should include a realistic distribution of thresholds of all nerve fibers, and 
take into account both stochastic behavior and history effects. Stochasticity generally 
plays a role in the human sensory system (Verveen and Derksen, 1968) and is present 
in the auditory nerve’s responses to electrical stimulation (Rubinstein, 1995). Animal 
experiments have demonstrated variance in neural responses to different pulses in 
a pulse train (Bruce et al., 1999a, 1999b; Dynes and Delgutte, 1992; Miller et al., 1999a; 
Shepherd and Javel, 1997). In addition, animal experiments (Cartee et al., 2000; Litvak et 
al., 2001; Miller et al., 2008; Zhang et al., 2007) have shown a dependency of auditory 
nerve behavior on previous neural spikes and pulses, referred to as the history effects. 
Here, history effects include refractoriness, facilitation, adaptation, and accommodation. 
Refractoriness is the diminished excitability of the nerve immediately following an action 
potential. Facilitation is a threshold decrease caused by a preceding sub-threshold pulse. 
Adaptation refers to a threshold increase caused by long-term firing of the neuron. 
Accommodation refers to a threshold increase caused by a long-term stimulation current 
and occurs when the membrane slowly depolarizes due to the stimulus. Accommodation 
and adaptation recently received increased attention as important aspects in neural 
responses to long duration electrical stimulation (Hay-McCutcheon et al., 2005; Hughes et 
al., 2012; Liu and Wang, 2001; Negm and Bruce, 2014, 2008; Woo et al., 2010, 2009). Neural 
adaptation, a decrease in neural excitability during persistent stimulation, is important 
for efficient coding of dynamically varying inputs (Bohte, 2012; Drew and Abbott, 2006; 
Zilany and Carney, 2010). Although some early research was equivocal about the existence 
of auditory nerve adaptation in response to electrical stimulation (Parkins, 1989), several 
reports indicate that electrical stimulation leads to adaptation of the auditory nerve (Javel 
et al., 1987; van den Honert and Stypulkowski, 1987). Several groups have investigated the 
effects of long duration continuous or pulsatile electrical stimulation on nerve activation 
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based on single fiber action potential (SFAP) measurements of the auditory nerve (Dynes 
and Delgutte, 1992; Hartmann et al., 1984; Javel et al., 1987; Shepherd and Javel, 1997; 
van den Honert and Stypulkowski, 1987). In order to predict the performance of patients 
with CIs in discrimination tasks, the complete nerve fiber’s response has to be predicted. 
A complete cochlear model is required to investigate the responses of the auditory 
nerve in both the spatial and temporal domain. A model of the whole nerve is needed 
to investigate the influence of the spatial location of auditory nerve fibers on temporal 
response patterns.

Different types of models are available to predict nerve responses to electrical stimulation. 
A major distinction can be made between the biophysical and phenomenological type of 
models. Biophysical models quantitatively describe nerve membrane behavior in response 
to an induced membrane current and have been shown to correctly predict membrane 
responses to single pulses and reasonably predict latencies, refraction, and facilitation 
effects (Frijns et al., 1994; Frijns and ten Kate, 1994; Reilly et al., 1985; Schwarz and Eikhof, 
1987). These models can be combined with 3D volume conduction models of the cochlea 
to predict auditory nerve responses to electrical pulses as reported by Kalkman et al. 
(2015). Biophysical model parameters are based on patch-clamp single fiber recordings, 
from which high order effects, required to model responses to long duration pulse trains, 
are difficult to obtain. In addition, the calculation of responses to long duration pulse 
trains using these models requires long computational times. Phenomenological models 
directly relate empirical observations to expected neural output. Such models have been 
used to efficiently predict responses to sustained stimulation by direct implementation 
of stochastic and temporal behavior (Bruce et al., 1999a, 1999b; Chen and Zhang, 2007; 
Litvak et al., 2003a; Macherey et al., 2007; Stocks et al., 2002; Xu and Collins, 2007). All 
proposed phenomenological approaches modeled auditory nerve fibers as single nodes 
and incorporated at most 20,000 fibers. The models that included a geometric current 
spread all modeled the electrode contacts as point sources located in homogeneous 
media. Phenomenological models that simulate thresholds are only capable of dealing 
with pre-defined pulse shapes.

The goal of the current study was to develop a hybrid model that incorporates spatial and 
pulse-shape effects from a biophysical model, as well as temporal effects and stochastic 
responses from a phenomenological model. The model had to be computationally efficient 
in order to predict whole nerve responses to long duration pulse trains. By merging the 
biophysical and phenomenological approaches in a compound model, we utilized the 
merits of both methods and minimized their disadvantages. The model was validated 
by comparison with experimentally measured SFAP responses to pulse trains published 
in the literature. The model’s output with regards to discharge rate, rate variances, rate 
decreases, and pulse intervals was evaluated for pulse trains with different rates and 
amplitudes. For clarity the comparison between model predictions and animal data from 
the literature will be given directly in the results section. In the discussion section the 
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similarities and differences between predictions and data will be interpreted and analyzed 
in terms of model parameters. 

2 Materials and methods

2.1 Model
The model presented in this paper builds on the previously published 3D volume 
conduction model of the cochlea and deterministic cable model of the human auditory 
nerve (Kalkman et al., 2015). The cochlear geometry is based on micro-CT data, the 
electrode array geometry is based on the HiFocus1J, modelled in lateral position. The 
model presented in this paper extends the deterministic thresholds from active GSEF 
nerve fibers (Briaire and Frijns, 2005; Frijns et al., 2000) with stochastic behavior and history 
effects (Figure 2.1). Deterministic thresholds are obtained at 3200 spatially different 
locations using the 3D volume conduction model, an overview of the model is shown 
in Figure 2.2; for details of its implementation we refer to Kalkman et al. (2015). At each 
of these locations, 10 different nerve fibers are modeled. Thus, the model of the whole 
auditory nerve effectively incorporates a total of 32,000 different auditory nerve fibers. 
The deterministic thresholds of the 3D model are used as input to the phenomenological 
model extension; only the thresholds of entire fibers are taken into account, and not the 
individual thresholds of each Ranvier node. For each nerve fiber, stochasticity is induced by 
adding a relative spread (RS) to the deterministic thresholds. To account for refractoriness 
these stochastic thresholds are elevated depending on the time since the last spike 
relative to refractory period. Spike adaptation (SA) and accommodation are included by 
increasing the threshold after each spike and pulse. 

Figure 2.1. Model flow-chart per fiber. The deterministic threshold is input to the model that includes 
a relative spread, refractoriness, adaptation and accommodation. The final calculated thresholds are 
compared to the stimulus input to predict whether or not an action potential has occurred. 
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Electrode 8

Fiber 12000

Figure 2.2. 3D model overview. Unless stated otherwise, the simulations were done by stimulating 
the electrode located at roughly 175 degrees from the round window, here highlighted in red. Most 
of the simulations were done on fiber 12000 (fiber 1200 in the 3D model), here highlighted in green; 
fibers are counted from basal to apical cochlear locations. The tip of this fiber is located roughly at 
the same cochlear angle as the stimulated electrode.

In order to develop a model that predicts neural responses to situations different 
than the ones exactly replicated during the validation, model parameters were based 
on physiological data. For every parameter the values and references are described 
below. A distinction can be made between parameters for which the values could be 
drawn directly from the literature (refractoriness, stochasticity and the adaptation time 
constant) and parameters which were based on fits to experimental data (adaptation 
and accommodation amplitudes). Because of this approach the model predictions are 
generalizable to other experiments than the ones presented in this paper. The mean 
and variance of the model parameters RS, absolute refractory period (ARP), and relative 
refractory period (RRP) are based on the literature. For each fiber, a specific value is drawn 
from these normal distributions. For the simulations in this paper, monopolar stimulation 
with cathodic-first biphasic pulses and a pulse width of 18 µs was used and is the stimulus 
was strong enough an action potential was assumed to occur during the anodic phase. 
The model uses time steps in the size of the pulse width; in other words, in the presented 
simulations every 18 µs the model calculates which fibers are expected to fire. The 
extended temporal and stochastic model was developed in Matlab (Mathworks, Inc.). The 
configuration of stimulation and measurement in the model is shown in figure 2.2. The 
electrode contact coloured red is the stimulating contact in the simulations presented in 
the paper. Most of the recordings are done on a fiber at the location coloured green. In 
the simulations the action potential is recorded at the end of the fiber to exclude effects 
of aborted spikes (Frijns et al., 1994). Typical inputs and outputs to this extension of 
the complete model are shown in figure 2.3. Figure 2.3A shows the typical stimulation 
waveform, where in the presented simulations the Phase Duration (PD) was set to 18 µs 
and amplitudes were variable. Figure 2.3B shows an example neural excitation threshold 
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distribution as obtained using the 3D volume conduction and active nerve fiber model. 
Figure 2.3C and 2.3D show an example spike pattern and its corresponding Post Stimulus 
Time Histogram. This example is obtained by measuring the response at fiber 12000. 

Figure 2.3. Model input and output. An example of the stimulating waveform used in the current 
simulations is shown in [A]. The deterministic threshold of all fibers was calculated using the 3D 
model and the active nerve model. An example of the threshold waveform, in the spatial dimension, 
in response to stimulation of one electrode is shown in [B]. The output of the model is a spiking 
pattern. An example of spike patterns in 50 different trials to an identical stimulus (1000 pps, 150 
ms, amplitude 0.85 mA) is shown in [C] and its corresponding Post Stimulus Time Histogram in [D].
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Relative spread of thresholds
A measure of the variability of spike initiation is the RS, which is defi ned as the standard 
deviation (SD) of the underlying Gaussian distribution divided by its mean (Verveen and 
Derksen, 1968). The SD of the normal distribution around the deterministic threshold is 
defi ned as: SD = Idet ∙ RS, where Idet is the deterministic single pulse threshold for an 
individual fi ber. Idet is the minimal current required on the selected electrode to elicit 
an action potential in the fi ber that is strong enough to run all the way to the end of the 
modelled axon, regardless of the node at which the fi ber was excited initially. Idet was 
calculated using the 3D volume conduction and the deterministic nerve model. Using 
the RS, the spiking probability can be calculated using a phenomenological approach, 
similar to Bruce et al. (1999b). After each pulse, the stochastic threshold is obtained from 
the normal distribution, N(Idet,SD). The RS, an estimate of the stochastic behavior of the 
auditory nerve, is obtained from measurements of the SFAP (Bruce et al., 1999b; Javel et 
al., 1987; Miller et al., 1999a). An overview of RS values described in the literature is given 
in table 2.1. In the model, the RS is set to 0.06 with a SD of 0.04 and a minimum of 0, within 
the range of the various distributions found in the literature for comparable pulse widths.

Table 2.1. Relative Spread (RS) estimates obtained from SFAP measurements published in literature, 
PD = Phase Duration, RS = Relative Spread, SD = Standard Deviation
Author (year) Stimulus RS (SD)
Bruce et al. (1999b) from Javel et al (1987) PD 200 us, biphasic

PD 400 us, biphasic
0.12 (0.05)
0.11 (0.04)

Bruce et al. (1999b) from Dynes (1996) PD 100-200 us, cathodic 0.12 (0.06) 
Miller et al. (1999) PD = 26 us, cathodic

PD = 26 us, anodic
PD = 39 us, cathodic
PD = 39 us, anodic

0.06 (0.03)
0.06 (0.04)
0.06 (0.04)
0.07 (0.07)

Refractoriness
The ARP is the period immediately following an action potential during which the neural 
membrane is unable to fi re again. The ARP is followed by the RRP, during which only a 
greater than normal stimulus can induce a response. Refractoriness can be implemented 
as a threshold increase following an action potential. The refractoriness factor, R, is 
calculated using equation 2.1:

  

Refractoriness

stimulus can induce a response. Refractoriness can be implemen

following an action potential. The refractoriness factor, 𝑅𝑅𝑅𝑅, is calculated using 

𝑅𝑅𝑅𝑅 = 1

1−𝑑𝑑𝑑𝑑
−(𝑡𝑡𝑡𝑡−𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(equation 1)

where τARP and τRRP are the time constants for the ARP and RRP, and 𝑡𝑡𝑡𝑡

potential. Equation (4) below shows how R

ARP and RRP of the auditory nerve can be obtained directly using the SFAP 

al., 2001, 1999a), extracted from model data (I.C. Bruce et al., 1999a)

electrically evoked Compound Action Potential (ECAP) measurements 

Stypulkowski and Van den Honert, 1984)

respectively. The average values and SDs for τARP and τRRP

range of values found in the literature (Figure 4). τARP

 (Eq. 2.1) 

where τARP and τRRP are the time constants for the ARP and RRP, and t is the time since 
the last action potential. Equation 2.4 below shows how R is used to calculate the fi nal 
threshold. Estimates for the ARP and RRP of the auditory nerve can be obtained directly 
using the SFAP (Dynes, 1996; Miller et al., 2001, 1999a), extracted from model data 
(Bruce et al., 1999a) or estimated based on human electrically evoked Compound Action 
Potential (ECAP) measurements (Cartee et al., 2000; Stypulkowski and Van den Honert, 
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1984). Figures 2.4A and 2.4B show the estimates for τARP and τRRP, respectively. The 
average values and SDs for τARP and τRRP were chosen so they closely mimic the range 
of values found in the literature (fi gure 2.4). τARP is set to 0.4 ms (SD 0.1 ms) and τRRP to 
0.8 ms (SD 0.5 ms). For each of the 32,000 modeled fi bers, values for τARP and τRRP were 
randomly chosen from the normal distribution. Additional randomness is applied to the 
refractoriness by choosing the fi nal ARP and RRP at every time point from a distribution 
with a SD of 5% of the average (Hamacher, 2004). If the value obtained for one of the 
refractory parameters is less than zero, its value is set to zero. 
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Figure 2.4. Absolut e [A] and relative [B] refractory periods. The blue lines indicate the distribution 
of both model parameters as used in the proposed model. The other symbols indicate values 
published in the literature for both model parameters. If a standard deviation was also reported this 
is included as an error bar. 

Spike adaptation and accommodation
The model extension described in this paper includes both fi ring-dependent adaptation 
and stimulus-dependent adaptation, with the latter referred to as accommodation. As 
fi rst described by Litvak et al. (2001), auditory nerve responses exhibit larger adaptation in 
response to higher rate pulse trains. In order to obtain a stronger reduction in spike rates 
with higher stimulus rates, regardless of the initial discharge rate, an adapting parameter 
had to be introduced into the model that depends on pulse history, not on spiking history. 
To account for this eff ect, the accommodation parameter is included. The fi ber adapts 
after each spike and accommodates after each pulse given. The spike adaptation (SA) is 
calculated as in equation 2.2, where i are all previous spikes, t is the current time, and ti is 
the time since spike i. 

Figure 4: Absolute (A) and relative (B) refractory periods. The blue lines indicate 

parameters. If a standard deviation was also reported this is included as an error bar.  

 

Spike adaptation and accommodation 

The model extension described in this paper includes both firing-

stimulus-

Litvak et al. (2001), auditory nerve responses 

that d

The spike adaptation (SA) is calculated as in equation (2), where i 

current time, and ti is the time since spike i.  

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖    (equation 2) 

threshold and a SD of 0.6% of the threshold. 

The accommodation (acco) is calculated as in equation (3), where p 

current time, and tp is the time since pulse p.  

𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  ∑ 0.03% ∙ 𝐼𝐼𝐼𝐼 ∙ 𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) ∙ 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    (equation 3) 

 (Eq. 2.2)

The adaptation amplitude is taken from a normal distribution with an average of 1.0% of 
the threshold and a SD of 0.6% of the threshold.
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The accommodation (acco) is calculated as in equation 2.3, where p are all previous pulses, 
t is the current time, and tp is the time since pulse p. 

	

threshold and a SD of 0.6% of the threshold. 

The accommodation (acco) is calculated as in equation (3), where p are all previous pulses, 

current time, and tp is the time since pulse p.  

𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  ∑ 0.03% ∙ 𝐼𝐼𝐼𝐼 ∙ 𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒)

∙ 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    (equation 3) 

electrode is the minimum current required to elicit a spik

𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

. Thus, the accommodation is strongest at the fib

fiber. 

Dynes and Delgutte (1992) 

studied the adaptation of responses to high-rate biphasic electrical stimulation with CIs 

	 (Eq. 2.3)

The accommodation parameter is modeled as a threshold increase after each pulse as 
large as 0.03% of the given stimulus current multiplied by a spatial factor. The spatial 
factor for each fiber and electrode is the minimum current required to elicit a spike on 
any of the fibers using the concerned electrode, divided by the current required to elicit a 
spike in the simulated fiber with this electrode: 

threshold and a SD of 0.6% of the threshold. 

The accommodation (acco) is calculated as in equation 

current time, and tp is the time since pulse p.  

𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  ∑ 0.03% ∙ 𝐼𝐼𝐼𝐼 ∙ 𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒)

∙ 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    (

electrode is the minimum current required to elicit a spik

𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

fiber. 

Dynes and Delgutte (1992) 

studied the adaptation of responses to high-

. Thus, the accommodation 
is strongest at the fibers with the lowest thresholds. Both the accommodation and the 
adaptation parameter are forced to have a positive value for every fiber.

Dynes and Delgutte (1992) suggested that adaptation to electric sinusoids follows a single 
negative exponential course across several hundreds of milliseconds. More recently, 
several research groups studied the adaptation of responses to high-rate biphasic electrical 
stimulation with CIs (Litvak et al., 2001; Miller et al., 2008; Zhang et al., 2007). Litvak et 
al. (2001) found a short-term (< 150 ms) adaptation that is dependent on pulse rate. 
Investigating spike rates for pulse trains up to 5000 Hz, Zhang et al. (2007) and Miller et al. 
(2008) found asymptotic values within 300 ms of stimulation. The amount of adaptation 
was affected by pulse rates and stimulus levels and fit to an exponential decaying model 
with two different time constants: a rapid adaptation of 10 ms and a short-term adaptation 
of 100 ms. In the current model, both spike adaptation and accommodation are modeled 
as decaying exponentially with a time constant of 100 ms. 

Final threshold
For every fiber, the final adjusted threshold (Iadj) is calculated as in equation 2.4. 
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as decaying exponentially with a time constant of 100 ms.  

Final threshold 

For every fiber, the final adjusted threshold (𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎) is calculated as in equation (4).  

𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   (equation 4) 

A spike is assumed to occur if: 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 > 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, where 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 

parameter set used in the model is given in table 2.  

 

 

Table 2: Overall parameter set as used in the model 

PARAMETER VALUE (± SD) 

RS 0.06 (±0.04) 

ΤARP 0.4 (±0.1) ms  

ΤRRP 0.8 (±0.5) ms 

WITHIN REFRACTORINESS 

STOCHASTICITIY 

5% of τARP / τRRP 

ADAPTATION AMPLITUDE 1.0 (±0.6)% of threshold 

	 (Eq. 2.4)

A spike is assumed to occur if: Igiven > Iadj , where Igiven is the stimulus current. The overall 
parameter set used in the model is given in table 2.2. 

Table 2.2. Overall parameter set as used in the model
Parameter Value (± SD)

RS 0.06 (±0.04)

ΤARP 0.4 (±0.1) ms 

ΤRRP 0.8 (±0.5) ms

Within Refractoriness stochasticitiy 5% of τARP / τRRP

Adaptation amplitude 1.0 (± 0.6)% of threshold

Accommodation amplitude 0.03% of pulse current · spatial factor
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2.2 Validation
To validate the outcomes of the model, animal experiments published in the literature 
were emulated (Javel et al., 1987; Litvak et al., 2001; Miller et al., 2008; Zhang et al., 2007). 
The experiments were SFAP measurements performed in cats. Unless noted otherwise, 
the simulations were done by stimulating the electrode located at roughly 175 degrees 
from the round window. Most of the simulations were done on fiber 12000, fibers are 
counted from basal to apical cochlear locations. This fiber is located roughly at the same 
angle as electrode 8, close to its center of stimulation. Both electrode 8 and fiber 12000 
(which corresponds to fiber 1200 in the 3D model) are highlighted in figure 2.2. Because 
of the multitude of different experiments, a variety of set-ups were investigated. In 
validation experiments that included a group of nerve fibers, the model parameters of the 
different fibers were randomly drawn from the distributions given in table 2.2. In some of 
the experimental data only the recordings of a single fiber are shown. The characteristics 
of the modeled fiber used to reproduce these data were always set to the average value 
presented in table 2.2. Except for the discharge rate I/O curves, which were calculated 
by simulating a nerve one time, all outcome measures were obtained by simulating one 
fiber several times. For the interval histograms (IHs), five averages were used; for all other 
simulations 30 averages were used. 

The effect of stimulus amplitude on overall discharge rate was investigated by evaluating 
the discharge rate I/O curves using 100 ms pulse trains of different rates: 100, 200, 300, 
400, 600, and 800 pulses per second (pps), in accordance with experiments done by Javel 
et al. (1987). Average discharge rates were calculated over the whole period of stimulation. 
For this simulation, the average model parameters were used. The animal experiments 
were previously simulated using a phenomenological model by Bruce et al (1999a). Their 
results also included normalized values for the first spike of the pulse train. Similar to the 
approach of Bruce et al, the model was used to predict these by turning off all inter-pulse 
effects. The variances in the responses are also presented in the paper by Bruce et al. and 
simulated using the proposed model for rates of 200 and 600 pps. 

To emulate the data published by Zhang et al. (2007), post-stimulus time histograms 
(PSTHs) for a fiber in response to 300 ms pulse trains were modeled. Discharge rates during 
the complete stimulus, calculated as the number of spikes during small time segments, 
were plotted in PSTHs with binwidths of 1 ms. Stimulus pulse rates were 250, 1000, 5000, 
and 10,000 pulses/s. Amplitudes of 0.8, 0.9, and 1 mA were used. For this simulation, all 
model parameters were set to the average values.

In order to compare to data from Miller et al. (2008), the timing of spikes in response to 300 
ms pulse trains at different rates and amplitudes was investigated using IHs, which plot 
timings between consecutive spikes in response to a pulse train. To investigate changes 
in inter-spike timings over the duration of the stimulus IHs were obtained for simulated 
responses to 300 ms pulse trains of 250, 1000, and 5000 pps at three different temporal 
epochs; 0-12 ms, 4-50 ms, and 200-300 ms. 
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To investigate how the model accounts for adaptation and accommodation, spike rate 
decrements in response to pulse trains with different rates were calculated. Group data on 
spike rate decrements were obtained to replicate the measurements of multiple fibers by 
Litvak et al. (2001). Discharge rate decrements were obtained by calculating the difference 
between the final and initial discharge rates in response to 1200 and 4800 pps pulse 
trains for a large number of fibers. The discharge rate decreases measured for a group of 
nerve fibers by Zhang et al. (2007) were also simulated. The spike rate decrements at four 
different stimulus pulse rates (250, 1000, 5000, and 10,000 pps) were calculated. 

2.3 Whole nerve simulations
To see the effect of the 3D volume conduction model on discharge rates in the whole 
nerve, all 32.000 fibers were stimulated for a period of 200 ms. The average discharge 
rates of all fibers over the duration of the stimulus were compared to the deterministic 
single pulse thresholds obtained using the 3D volume conduction and active nerve fiber 
model. Whole nerve simulations were performed to investigate the total nerve activation 
and the effect of the spatial distribution of nerve fibers relative to the electrode on the 
temporal response. Simulations were performed with a loud (1.4 mA) continuous pulse 
train of 150 ms and 5000 pulses/s presented to the stimulating electrode. The temporal 
spiking pattern of fibers at different geometric locations was investigated.

3 Results

3.1 Spike rate growth I/O curves and variances
Simulated discharge rate I/O curves calculated for different rate pulse trains (figure 2.5A) 
mimicked animal experiments done by Javel et al. (1987) (figure 2.5B).

The discharge rate in response to the 800 pps pulse train in both simulations and 
experiments increased from 0 to 700 spikes/s when stimulus amplitude increased with 
8 dB. The slopes for lower rate pulse trains were shallower in both the animal data and 
simulations, which was most clearly visible at 100 pps. To visualize this effect an I/O curve 
at these lowest rates is obtained for a fiber with all parameters set to average, shown 
in figure 2.6. As clearly visible in this figure, the rate increases most with amplitudes for 
higher stimulation rates. In both the animal data and simulations, the I/O curves exhibit 
a rocky increase in the discharge rate with increasing amplitude. Because the absolute 
amplitudes are dependent on the electrode configuration and placement, which is very 
different in the experimental set-up and modeled situation, only relative amplitude 
differences are relevant. 
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Figure 2.5. Mean discharge rates simulated with the current model [A] and results obtained with 
animal experiments [B] (Javel et al., 1987, reprinted with permission(1987)), at pulse rates of 100, 
200, 300, 400, 600 and 800 pulses/s. Amplitudes used for the simulations ranged from 0.5 to 1.6 mA 
with a step size of 0.03 mA. Every data point was obtained from a single trial. Once the discharge 
rate equaled the stimulus rate only a few higher steps in amplitude were simulated, as was done 
in the animal experiments. Dotted lines indicate normalized values for the first spike of the pulse 
train. Similar to the approach of Bruce et al, the model was used to predict these by turning off all 
inter-pulse effects. 

The variance measures shown by Bruce et al were also simulated with the proposed model, 
results are shown in figure 2.7. Larger variance per pulse is seen for the lower pulse rates, 
especially around 0.5 discharge probability per pulse. At this discharge probability per 
pulse the variance shows a dip, as is also seen in the animal data. Changing parameters 
for RS and the refractory periods gives different variability behavior. The refractoriness, 
as suggested by the authors of the paper of Bruce et al, as well as the RS, influences the 
shape of these curves.
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Figure 2.6. I/O-curves of discharge rate increases with increased stimulus amplitude for 5 different 
pulse rates: 50, 100, 150, 200 and 300 Hz. The x-axis plots the amplitude in dB relative to 1 µA, 30 
trials were done. 
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Figure 2.7. Variance per pulse versus discharge rate probability per pulse with the here presented 
model [A] and previous recordings and models [B and C] (Bruce et al., 1999, reprinted with 
permission). In [A] simulations are shown with 200 and 600 pps, all model parameters were set to 
average, amplitudes ranged from 0.5 to 1.5 with a step size of 0.01. In [B] (200 pps) and [C] (600 pps) 
the circles represent animal recordings, the lines represent previous models.
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3.2 Post-stimulus time histograms
The PSTHs obtained using the model for two different fibers in response to a 300 ms pulse 
train for different pulse rates and amplitudes are shown in figure 2.8A. These histograms 
replicate data published by Zhang et al. (2007), which is shown in figure 2.8B.
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Figure 2.8. Post Stimulus Time Histograms. Examples of PSTHs obtained with simulations [A] and 
animal experiments [B] (Zhang et al., 2007, reprinted with permission) from the responses of an 
auditory nerve fiber (ANFs) at four different stimulus rates; 250, 1000, 5000 and 10.000 pps. Each 
column contains responses to stimulus trains of 3 different amplitudes. Amplitudes used for the 
simulations were 0.8, 0.9 and 1.0 mA. The vertical lines in the PSTH’s are response rates during bins 
with a width of 1 ms. The open circles indicate the PSTH in binwidths with increasingly large bin-
sizes: 0-4, 4-12, 12-24, 24-36, 36-48, 48-100, 100-200 and 200-300 ms. 

All model parameters were set to the average values. When stimulated with the lowest 
pulse rate (250 pps, left column), the discharge rate in both the animal and simulation 
data decreased from around 800 pps initially to approximately 400 pps at the lowest 
amplitude, from 1000 pps to approximately 600 pps within the first 100 ms for the middle 
amplitude, and from 1000 to approximately 800 after 200 ms when stimulated with the 
highest amplitude. When stimulated with 1000 pulses/s, the discharge rates decrease 
much faster, within the first 50 ms for both animal experiments and simulations. The 
discharge rates in the animal and simulation data decreased from around 400 pps initially 
to approximately 100 pps at the lowest amplitude, from 500 pps to approximately 200 
pps for the middle amplitude, and from 1000 to approximately 300 when stimulated with 
the highest amplitude. When stimulated with the 5000 pps pulse train, initial discharge 
rates were higher than when stimulated with the 1000 pps pulse train, and the decrease 
in discharge rate occurred later (around 50 ms) in both the animal data and simulations. 
However, the decrease in discharge rate was larger in the simulation than in the animal 
data. When stimulated with the highest rate pulse train (10, 000 pps) the strongest 
adaptation for all different amplitudes in both the simulations and animal experiments 
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were seen. In the animal experiments much larger stimulus amplitudes were used, 
and a different fiber was stimulated. The modeled fiber showed a smaller decrease in 
discharge rate at larger stimulus amplitudes. It was tested that by choosing a fiber with 
larger adaptation characteristics in the model, or a fiber more off-center of stimulation, a 
decrease in discharge rate similar to animal experiments is seen at these high amplitudes 
and rates. 

3.3 Interval histograms
The IHs were obtained to replicate the data from Miller et al. (2008) and are shown in 
figure 2.9. The IHs calculated from modeled responses are shown in the upper four rows, 
and those from experimental data are shown in the lower four rows. As in the PSTH 
simulations, for this IH simulation all model parameters were set to the average values 
(table 2.2). At all rates, the distributions were wider at later epochs; in the 0-12 epoch, 
especially at higher amplitudes, the intervals were mostly around 5 ms or shorter, whereas 
intervals of 10-20 ms were detected in both the animal and experimental data in the 200-
300 ms epoch. When stimulated with 1000 or 5000 pps, both animal and simulated data 
exhibited a widening of the IH distribution and lowering of the peak in the last epoch 
compared to the second epoch. When stimulated with the largest amplitude at a rate of 
5000 pps, the peak doubled from 10 to 20 intervals from the first to the second epoch and 
decreased back to 10 in the last epoch. The peak shifted from approximately 2 ms to 5 ms 
from the first to the last epoch in both the experimental and simulated data. The double 
peak at onset observed in the animal data when stimulated with the 5000 pps pulse train 
was missing in the simulations. 

3.4 Spike rate decrements: 1200 and 4800 pps
Spike rate decrement data for a group of fibers was calculated to replicate measurements 
of multiple fibers by Litvak et al. (2001). Figure 2.10 shows the modeled [A] and the 
experimental data [B] for the final discharge rate, defined as the discharge rate in the last 
bin, versus the initial discharge rate (the discharge rate in the first bin). Decrements of 
fibers stimulated with a pulse rate of 1200 pps are shown as grey diamonds and those 
stimulated with a pulse rate of 4800 pps are shown as black stars. 

Figure 2.9 (opposite). Interval Histograms. Examples of IHs obtained by simulations [A] and animal 
experiments [B] (Miller et al., 2008) by stimulating a fiber 300 ms with three different pulse rates 
(groups of columns) and four different amplitudes (rows). Stimulus levels are indicated at the left 
panel per rate and amplitude. For each different rate and level the IH at three different time windows 
are obtained, 0-12 ms, 4-50ms and 200-300 ms, labeled at the top in italic. Bin-width was set to 50 µs.
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When stimulated with 24,000 pps all modeled fibers showed complete adaptation. For the 
simulations, different fibers were used and their parameters were randomly drawn from 
the distributions. The results were visualized by plotting the final spike rate (average rate 
over 140-150 ms after onset) on the ordinate vs. the initial spike rate (in the epoch 10-20 
ms after onset) on the abscissa. The two dotted lines in the left graph show the linear fit 
through the origin and the 1200 pps data (upper line) and 4800 pps modeled data (lower 
line). As shown by the linear regression lines, the highest stimulus rate (4800 pps) caused a 
lower final discharge rate than the 1200 pps stimulus rate pulse train. This difference in the 
decrease in discharge rate was visible in both experiments and simulations. There was a 
broad distribution of final vs. initial discharge rates in both the animal data and simulations.

[B] Experimental data
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Figure 2.10. Final discharge rates. Modeled [A] and experimental data [B] (Litvak et al., 2001, 
reprinted with permission) showing the final discharge rate versus the initial discharge rate of 
different fibers in response to stimulus trains with a pulse rate of 1200 pps (grey diamonds) and 
4800 pps (black stars). The 24,000 pps stimulus train was not modeled. For the simulations different 
fibers were used, their parameters randomly drawn from the distributions. Results are visualized by 
plotting the final spike rate (average rate over 140-150 ms after onset) on the ordinate vs the initial 
spike rate (in the epoch 10-20 ms after onset) on the abscissa. The two dotted lines in the left graph 
show the linear fit through the origin and the 1200 pps data (upper line) and the 4800 pps modeled 
data (lower line). Each point in the modeled data is based on 30 averages per fiber, 10 different 
fibers (every 10th fiber from 12000 to 12100) were stimulated at amplitudes of 0.85, 0.86, 0.87 and 
0.88 mA.

3.5 Spike rate decrements: 250 to 10,000 pps
Discharge rate decreases were simulated and compared to recordings by Zhang et al. 
(2007) (figure 2.11). The spike rate decrements are plotted on the ordinate and the onset 
rate on the abscissa. 
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Figure 2.11. Discharge rate decreases. Modeled [A] and measured [B] (Zhang et al., 2007, reprinted 
with permission) rate decrements for 300 ms pulse trains with rates of 250 pps [A], 1000 pps [B], 5000 
pps [C] and 10000 pps [D]. Results are visualized by plotting the final spike rate (average rate over 
200-300 ms after onset) on the ordinate vs the initial spike rate (in the epoch 0-12 ms after onset) on 
the abscissa. The gray areas indicate a rate decrement of 90% or more of the initial discharge rate, 
thus very strong adapters. The gray circles in the animal data plotted at 1000 and 5000 Hz are the 
aveage rate decrements for the fiber evaluated by Litvak et al (Litvak et al., 2001) at 1200 and 4800 
Hz respectively. For the simulations 30 trials were done for forty different fibers (every 10th fiber 
from 12000 to 12400) of which the parameters were drawn randomly from the normal distributions. 
Amplitudes used were 0.3 to 0.9 with a step size of 0.02 mA. 
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With increasing pulse rate there was an increase in adaptation and the spike rate 
decrements got closer to the initial spike rate. This was seen in both the simulations and 
the experiments. The average spike rate decrements for pulse trains with a rate of 250 
pps were approximately half of the initial discharge rate. At a stimulus rate of 1000 pps, 
the average discharge rate decrements were higher, especially when the initial discharge 
rates were low. With a stimulus pulse train of 5000 pps, the rate decrement for trains with 
an initial discharge rate of up to about 250 pps was equal to the initial discharge rate. 
With stimulation of 10,000 pps there was almost complete adaptation for nearly all initial 
discharge rates. At all rates there was a deviation from the mean due to the variability of 
the model parameters. This variability in rate decrements was similar in the model and the 
animal experiments.

3.6 Whole nerve simulations
In figure 2.12, both the deterministic single pulse thresholds and the final discharge 
rates are plotted. In light grey (left y-axis) the average discharge rate per nerve fiber is 
shown, and the dark lines (right y-axis) indicate the deterministic single pulse thresholds. 
The discharge rates are averaged over the response to 200 ms stimulation. Every ten 
neighboring fibers have the same deterministic single pulse thresholds but different 
stochastic and temporal properties. Fibers with low thresholds had high firing rates and 
those with high thresholds had low firing rates. There was a large variability in discharge 
rates at fibers with the same deterministic single pulse thresholds due to their different 
properties. The deterministic single pulse threshold distribution had a strong effect on the 
final firing patterns. 
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Figure 2.12. Whole nerve stimulation. 200 ms stimulation at electrode 8 with a rate of 2000 pps and 
an amplitude of 0.85 mA. Light gray (left y-axis) shows the average discharge rate per nerve fiber. 
Some fibers fire with very high pulse rates, up to 200 pps, not shown in this figure. The dark lines 
(right y-axis) indicate the deterministic singe pulse thresholds as obtained from the 3D active nerve 
fiber model. Only the stimulated fibers, fiber 11500 to 12800, are shown.

Figure 2.13A shows the spike pattern of the stimulated region of the nerve in response 
to a pulse train with large stimulation amplitude. Figure 2.13B shows a color-coded plot 
of the number of spikes in bins of 25 fibers and 7 ms. Figure 2.13C shows the number of 
spikes in similar bins divided by the number of spikes in the first bin for every fiber. The 
figure shows that the fibers at the edges of the stimulated region adapted more strongly 
than the fibers in the center of the stimulated region.
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Figure 2.13. Location dependent adaptation. Nerve firing in response to a loud (1.4 mA) 150 ms 
pulse train with a rate of 5000 pps presented to electrode 8. Nerve fibers shown are 10500 to 13500, 
the center of nerve fibers stimulated by this pulse train. [A] spike raster plot showing a black dot every 
time a nerve fiber fires. [B] integrated nerve firing over windows of 25 fibers and 7 ms. Red indicates 
largest amount of firing per integration window, blue indicates no firing. The colors in the colorbar 
indicate the number of spikes in each bin. [C] The normalized firing in the integration window. In 
every window the firing is divided by the numbers of fibers firing in the window immediately after 
pulse train onset for those 25 fibers. For the normalization only fibers were taken that had more than 
15 spikes in the initial bin Where the initial numbers of firings in that bin were larger than 15, the 
normalized onset firing is equal to 1, here indicated in red. The colors in the colorbar indicate the 
normalized number of spikes in each bin.
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4 Discussion

The model described in this paper is the first to combine a detailed geometric distribution 
of nerve fibers with stochasticity, refractoriness, adaptation and accommodation. It 
accurately simulates spike timings in response to long duration pulse trains as observed 
in a variety of animal experiments. Most models predicting auditory nerve responses 
to electrical pulse trains are single node models or include a homogeneous spread of 
the current. The model presented here includes a realistic 3D volume conduction model 
and thresholds of 32000 nerve fibers calculated with an active nerve cable model. To 
accurately predict temporal behavior in response to long duration pulse trains the model 
includes long term temporal parameters. Whilst most temporal models of auditory nerve 
responses to electrical stimulation include refractoriness, the inclusion of adaptation is 
less frequently reported (Negm and Bruce, 2008; Woo et al., 2009), and we are the first 
to publish a model that also includes an accommodation component. The presented 
model is shown to predict the auditory nerve responses to constant amplitude, long 
duration, and high-rate pulse trains. The ranges of discharge rate I/O curves, PSTHs, IHs, 
and rate decrements measured in animal experiments were all very similar to predictions 
done using the proposed model. Because of the extensiveness of the presented model 
in as well the spatial as the temporal domain, it can be used to evaluate whole nerve 
responses to pulse trains. Initial results show remarkable effects of cochlear position on 
temporal behavior. Because of the efficient implementation of temporal behavior, whole 
auditory nerve responses to long duration pulse trains, and thus different CI sound coding 
strategies, can be obtained.

4.1 Model parameters
The exemplary single fiber data could all be replicated by choosing the average model 
parameters. Replication of these fibers’ responses could be improved by searching for 
a specific parameter set within the distribution of model parameters for the unique 
fibers. Group data was simulated by randomly choosing fibers from the whole nerve, 
which yielded similar distributions of fiber responses as seen in animal data. The 
model is validated by comparison with data obtained from experiments in cats. SFAP 
measurements are the most suitable measurement to compare predicted spike timings 
because SFAP is a direct measure of neural activity. A difficulty in the interpretation of 
SFAP measurements is that the exact measurement position relative to the nerve and 
stimulating electrode is unknown. As different CIs are used in the animal experiments 
and some details about the stimulation, such as voltage compliance and distance of the 
fiber from the electrode, are unknown, the absolute amplitude values are not comparable 
to the amplitudes used in the simulations. In addition, sometimes only the unexpected 
recordings of single fibers are presented in papers, making it difficult to derive model 
parameters for a model of the whole nerve. In the model presented here the distribution 
of fiber characteristics is assumed to be independent of the location of the nerve fiber 
along the basilar membrane. However, it is known that the fiber diameter varies with 
position along the basilar membrane and is related to some of the fiber properties 
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described by parameters in our model (Liberman and Oliver, 1984; Verveen, 1962). As 
suggested by Woo et al. (2010), greater rate adaptation may be associated with smaller 
auditory nerve fiber diameter. This suggestion is based on the observation by Zhang et 
al. (2007) that strong adapters have higher thresholds. As fibers with larger diameters are 
mainly located towards the cochlear apex, this could be approximated by implementing 
a cochlear location-dependent adaptation in the model. Dependency of nerve fiber 
parameters on cochlear position could be implemented in a further refinement of the 
model. Other difficulties in the interpretation of animal data arise since averaged data 
is obtained using a variable, and not always exactly reported, number of trials; Litvak 
used 20-40 trials per data point (Litvak et al., 2001), and Miller and Zhang used 30 to 
100 of trials per point (Miller et al., 2008; Zhang et al., 2007). Due to the complexity of 
obtaining SFAP measurements, statistical sampling is limited (Woo et al., 2010). The SFAP 
measurements are all obtained from cat auditory nerve fibers, which are morphologically 
and physiologically different from human auditory nerve fibers, for instance in diameters 
and myelination (Liu et al., 2015; Paintal, 1966; Spoendlin and Schrott, 1989). It would be 
preferable to relate model output to human data, as for instance human ECAPs. Because 
the model presented in this paper encompasses the whole nerve, ECAP measurements 
can theoretically be simulated. The pattern of the ECAP depends on the interplay of the 
spatial distribution and the different temporal and stochastic components in the model. 
In a follow-up study the model parameters could be optimized for the human auditory 
nerve by simulating the ECAP in response to pulse trains. The SFAP data in the animal 
experiments used for the validation was obtained in acutely deafened animals, whereas 
duration of deafness affects the neural responses (L. F. Heffer et al., 2010; Ramekers et 
al., 2015). It would be interesting to use the proposed model to simulate full nerve ECAP 
responses as well as partial nerve ECAP responses to test the theoretical effect of neural 
degeneration on ECAP measurements.

Stochasticity 
Stochasticity is implemented in various parts of the model; by using a stochastic 
distribution of thresholds over all nerve fibers, a threshold variability, an internal variability 
of the refractoriness and a distribution of model parameters over the fibers. Figure 2.12 
shows that initial thresholds have a strong effect on overall discharge rates in responses 
to long duration pulse trains. The stochastic distribution of thresholds thus causes a 
nonhomogeneous distribution of firing rates over nerve fibers in response to continuous 
pulse trains. As previously shown by Bruce et al. (1999a, 1999b), RS is an essential model 
parameter to obtain I/O curves similar to animal data in response to electrical pulse 
trains. Bruce’s model predicts smooth I/O curves, whereas animal data show rather rocky 
increases of discharge rates with stimulus intensity. We hypothesized that this rocky slope 
is a consequence of internal stochasticity. Our model used a similar approach as Bruce et 
al, but also implemented internal variations of refractoriness, and as expected produced 
rocky I/O curves. It is known from the literature that the RS depends on time since the last 
action potential (Imennov and Rubinstein, 2009; Matsuoka et al., 2001). The effect of such 
a dependency could be investigated by inclusion in a future version of the model. We 
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expect that this would lead to larger discharge rate variability at higher stimulation rates, 
and perhaps lead to a lower predicted detection thresholds as was shown by Badenhorst 
et al. (2015). In neurons there is also a stochasticity in the arrival times of the spikes, 
referred to as jitter. The proposed model is specified at fiber level and conduction times are 
neglected. Latencies and jitter can be implemented using a phenomenological approach 
for a complete fiber, similar to proposed by Hamacher et al., chapter 3.5.3 (Hamacher, 
2004). The lowest latencies and jitter occur with the highest stimulation amplitudes. The 
model could be refined by introducing a stochastic delay (latency with jitter), depending 
on amplitude of stimulation. Alternatively, jitter in the nodes of Ranvier could be picked 
up in a future refinement of the biophysical model.

Refractoriness
The effects of refractoriness interplay with the effects of accommodation and adaptation. 
The effects of refractoriness are mostly visible at short time scales, for instance in onset 
rates and initial rate decrements. Miller et al. (2008) suggested that the shape of the IHs 
are determined mostly by refractory properties. Larger refractory parameters in the model 
lead to larger inter-spike intervals in the IH. Our model shows very similar peak heights and 
timing in the IHs as the experimental data, supporting that the choice of refractoriness are 
realistic values. In the interval histograms it was observed that the double peak at onset, 
which is present in the animal data when stimulated with the 5000 pps pulse train, was 
missing in the simulations. Zhang et al saw these responses in 27% of the fibers stimulated 
with these rates and amplitudes. They hypothesize is that it is related to the combined 
effects of refractoriness and rapid adaptation. Our model does not predict these double 
peaks, it is thus an unexpected artefact of the model; parameters as included in the 
proposed model do not explain this variable.

Adaptation and accommodation 
The steepness of the slopes in figure 2.5 predicted by the model were more similar to 
the animal data published by Dynes et al. (1996) than predictions previously modeled by 
Bruce et al. A difference between this model and the model presented here is the inclusion 
of adaptation in our model, which results in a shallower slope. The accommodation effect 
is not prominent in the discharge rate I/O curves in figure 2.5, probably because only low 
rates, up to 800 Hz were used. The rate decreases in the calculated PSTHs in figure 2.8 were 
very similar to those obtained in animals by Zhang et al. (2007) for the different rates and 
amplitudes. These rate decreases occur both initially, mostly due to refractoriness, and 
at later time scales (up to 100 ms) mostly due to adaptation and accommodation. The 
accommodation effect is visible in the PSTHs in figure 2.8, where adaptation is stronger 
with increasing stimulus rate. The PSTHs published by Zhang et al. (2007) were modeled 
previously by Woo et al. (2010), who also demonstrated an effect of electrode position on 
rate adaptation. In the simulations the same fiber was used for all four different rates. In the 
experiments, the fiber stimulated with the highest pulse rate was another fiber. Despite 
of a larger stimulus amplitude used here, this fiber still shows a stronger adaptation than 
at lower rates. This can be easily simulated by modeling the fiber stimulated with 10,000 
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pps off-center of stimulation. The difference between the middle and last epoch in the IHs 
in figure 2.9 is due to adaptation. The IHs showed rate-dependent adaptation, as the rate 
decrease from the second to the last epoch was largest when stimulated with the highest 
rate pulse trains. 

The range of spike rate decrements for nerve fibers in response to different rate pulse 
trains predicted by the model’s parameters are similar to ranges of measured decrements 
as can be seen in figures 2.10 and 2.11. The rate decrement data in figures 2.10 and 2.11 
for different fibers exhibited a very similar dependency on pulse rate in the model and in 
animal experiments. The rate decrements for both pulse rates shown in figure 2.10 were 
somewhat stronger in our model than in Litvak’s data, matching the study published by 
Miller et al. (2008) in which the group data showed slightly stronger adaptation (figure 
2.11). The spread in rate decrements observed by Litvak and Miller et al. was similar to 
the spread in rate decrements predicted by our model. The spread in decrements in the 
model is a consequence of the implemented distribution of refractory and adaptation 
parameters over nerve fibers. The simulations of rate decrements fairly closely matched 
the animal data up to 10000 Hz. However, at the 24.000 pps stimulation rate our model 
predicted complete adaptation, which was not observed in animal experiments, as seen in 
figure 2.10B. Maximal adaptation could be a consequence of saturation of the underlying 
physiological system, for instance an external Potassium concentration decaying over time 
(Woo et al., 2009). The animal data show that saturation of the adaptation occurs over time 
with rates as high as 24 kpps. There would be several options to modify the parameters 
in order to have the adaptation at 24kpps fit with the physiological data. A simple option 
would be to include a maximum value for adaptation. However it would also be likely that 
there is a gradual decrease in the increase of adaptation with rate. We have chosen not to 
implement a saturation as to our knowledge this is the only experiment available at this 
rate. To investigate which one is more closely related to the biological situation more data 
at high rate electrical stimulation is needed.

The time constant in the current model is assumed to be similar for both accommodation 
and adaptation. However, from a biological perspective it would be reasonable to assume 
that these different processes decay with different time constants. Accommodation 
depends mostly on the stimulus itself and could be affected by stimulus shape, but no 
data has been published yet regarding the effect of stimulus shape on accommodation 
in auditory nerves. To find the correct dependencies of accommodation parameters on 
pulse shapes and to validate models, more animal experiments data including longer 
stimulus durations and a larger variance of stimulus rates and amplitudes are required. In 
modern neuroscience the origin and relevance of accommodation, sometimes referred 
to as sub-threshold adaptation or stimulus-specific adaptation, is subject of discussion. 
A proposed model relates voltage activated K+-current to input-dependent adaptation, 
whereas calcium activated K+-currents were related to spiking dependent adaptation 
(Prescott and Sejnowski, 2008). It has been proposed in amodel study by Negm and Bruce 
that stimulus dependent adaptation is caused by hyperpolarization-activated cation 
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channels (Negm and Bruce, 2014). Woo et al show that the implementation of a changing 
external potassium concentration based on K+ activity in a biophysical model leads to 
rate-adaptation as seen in the animal data (Woo et al., 2009).  

Facilitation 
The experimental PSTHs in figure 2.8B show an overall increase in discharge rate at 5000 
pps relative to lower stimulation rates. There is evidence in the literature that, in chronic 
deafened animals, this facilitation plays a role when the fiber is stimulated by pulse trains 
with rates of approximately 2000 Hz and low amplitudes, when it evokes low onset spike 
probabilities (L. F. Heffer et al., 2010). There is a large spread in the effect, and its exact 
dependency on pulse train characteristics such as rate and amplitude level is yet to be 
investigated more thoroughly in animal experiments. Because the effect is seemingly only 
related to a narrow distribution of pulse rates and amplitudes and is not yet very well 
understood, we have chosen not to include facilitation in the model, consequently the 
model’s predictions deviate from the animal SFAP data where the effect of facilitation is 
seen. 

Whole nerve simulation 
Since the deterministic single pulse threshold distribution has a large effect on final 
firing patterns, as shown in figure 2.12, it is of importance to include an accurate and 
realistic 3D volume conduction model. The 3D volume conduction model that we have 
incorporated includes a cochlear anatomy derived from µCT data and contains a realistic 
spatial distribution of spiral ganglion cells throughout Rosenthal’s canal (Kalkman et 
al., 2015). The electrical conductivities of the model structures were mainly obtained 
from literature (Briaire and Frijns, 2000); the conductivity values of temporal bone and 
the cochlear modiolus were obtained by an optimization process that was based on 
comparing intracochlear potential recordings from CI subjects to simulated values in 
subject-specific models (Kalkman et al., 2014). The model has been shown to accurately 
predict or describe loudness balancing curves in current steering (Frijns et al., 2009; Snel-
Bongers et al., 2013) as well as loudness growth curves for different types of multipolar 
stimulation (Kalkman et al., 2015). This paper demonstrates that spike rate adaptation is 
dependent on spatial location relative to the current source. Relative rate decreases, and 
thus the amount of adaptation, is largest at the borders of the stimulated area. Adaptation 
is expected to be related to phase-locking of amplitude modulated input. Increased 
adaptation at the borders of the stimulated area could thus lead to stronger perception 
of pitch at borders of the stimulated region. It was suggested by Laneau et al. (2004) that 
the center of the activated region are most important for pitch perception. A previous 
modeling study showed that cochlear location of nerve fibers influences initial activation 
site on the fiber (Westen et al., 2011). The fibers located in the center of stimulation receive 
larger stimulus amplitudes, which has an effect on the initial location of firing. To test 
relative contributions of center and off-center fibers to place and rate-pitch perception 
the modeled auditory nerve response to amplitude modulated pulse trains should be 
evaluated in a follow-up study. The temporal behavior of the nerve is co-influenced by 
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the amplitude of stimulation, and thus by electrode position, as shown in a modeling 
study by Mino et al. (2004). Nerve morphology will affect the outcome of cochlear implant 
stimulation and has an important role in the interplay of spatial and temporal effects. To 
take the effects of the nerve’s geometry in account and considering the strong effect of 
initial thresholds on long term nerve activation it is important to include both realistic 
spatial and temporal effects in a comprehensive model. 

Future directions 
Since the model incorporates detailed effects in both the temporal and the spatial domain it 
can be used to predict auditory nerve responses to CI stimulation. Contemporary cochlear 
implants use amplitude modulated input to convey important speech information in 
cochlear implants. Validation for amplitude modulated pulse trains as inputs has also 
been done and will be presented in a follow-up paper. Another interesting aspect is the 
neural behavior at much longer time scales, such as minutes. Modelling the adaptation 
as a power-law gives, as shown for the acoustically stimulated auditory nerve by work of 
Zilany et al. (Zilany et al., 2009; Zilany and Carney, 2010), a more realistic prediction of the 
neural behavior after longer durations of stimulation. An interesting future direction is to 
investigate power-law functions for prediction of auditory neural responses to electrical 
stimulation. As stated above, the model can be used to predict ECAP responses to pulse 
trains and compare those to data obtained directly from measurements in human. This 
output can be related to the stochastic, refractory, and adapting effects included in the 
model, and their interplay with the auditory nerve’s morphology. Because this model is 
precise in the geometrical definition, and contrarily to most other models includes as 
well accommodation as adaptation, it is applicable to predict whole nerve responses. 
Ultimately the model can be used to predict complete neural spiking patterns in response 
to CI stimulation using different stimulation strategies. The conservation of temporal 
and spatial information present in the pulse train at the stage of neural activation can be 
evaluated. Because of the efficient implementation of spatial and temporal components, 
the model can easily be used to evaluate whole nerve responses to long duration sound 
segments. This can facilitate comparison of whole nerve responses to many different 
input signals, such as varying in amplitude, amplitude modulation, pre-processing, and 
coding strategies. 

Inputs as used in perceptual patient testing such as minimal detection and identification 
tests can be used in the model. Comparison of simulated auditory nerve responses to 
perceptual data obtained from cochlear implant users will aid in the interpretation of the 
produced spiking patterns. As a next step an interpretation model of the spiking patterns 
in relation to the psychophysical perception of CI users will be built. Such an interpretation 
model could be used to evaluate complete auditory nerve responses to different sound 
coding strategies.



Conclusion
A model was developed that accurately predicts auditory nerve responses to long 
duration CI stimulation with a wide range of stimulus rates and amplitudes. The model 
is very well defined in the spatial domain and is temporally and stochastically extended. 
The model’s responses were in good agreement with animal data for continuous long 
duration pulse trains. The model accurately predicts discharge rate I/O curves, PSTHs, 
IHs, spike rate decrements, and their variances for realistically located auditory nerves 
stimulated with a wide range of amplitudes and rates. The broad implementation of 
stochastic behavior results in predictions of variances of measures comparable to those 
seen in animal data. By combining spatial details with long-term temporal components 
and a broad implementation of stochasticity, a comprehensive model is developed. It is 
validated for long duration electric stimulation of a wide range of input parameters and 
that can be used to evaluate auditory nerve responses to cochlear implant sound coding 
strategies. 
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Abstract

Cochlear implants encode speech information by stimulating the auditory nerve with 
amplitude-modulated pulse trains. A computer model of the auditory nerve’s response 
to electrical stimulation can be used to evaluate different approaches to improving CI 
patients’ perception. In this paper a computationally efficient stochastic and adaptive 
auditory nerve model was used to investigate full nerve responses to amplitude-modulated 
electrical pulse trains. The model was validated for nerve responses to AM pulse trains via 
comparison with animal data. The influence of different parameters, such as adaptation 
and stochasticity, on long-term adaptation and modulation-following behavior was 
investigated. Responses to pulse trains with different pulse amplitudes, amplitude 
modulation frequencies, and modulation depths were modeled. Rate responses as well 
as period histograms, Vector Strength and the fundamental frequency were characterized 
in different time bins. The response alterations, including frequency following behavior, 
observed over the stimulus duration were similar to those seen in animal experiments. 
The tested model can be used to predict complete nerve responses to arbitrary input, and 
thus to different sound coding strategies. 
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1 Introduction 

To optimally encode speech and music, cochlear implants (CIs) must transfer cues 
including pitch, loudness, and fine-structure. A person’s ability to perceive temporal 
fine structure correlates with music appreciation and speech understanding, especially 
in noisy environments (Lorenzi et al., 2006). In patients with CIs, modulation detection 
thresholds (MDTs) and temporal modulation transfer function (TMTF) are related to the 
attained temporal resolution, and thus to speech understanding and sound quality (Fu, 
2002; Shannon, 1992; Won et al., 2011). Sound coding strategies should aim for maximal 
transfer of temporal information from amplitude-modulated input. In addition to 
testing in animals and human subjects such coding strategies can be evaluated using 
computational models. 

A comprehensive computational model of auditory nerve responses to electrical pulse 
trains has been developed in our group (van Gendt et al., 2016). It can correctly predict 
the distribution of single-fiber responses to constant-amplitude pulse trains. This model 
incorporates spatial and pulse shape effects, as well as temporal and stochastic effects. 
Pulse shape effects are incorporated in the model by the use of a conductance-based 
3D model, which is coupled to a biophysical neural model to calculate the deterministic 
threshold. Temporal effects are influenced through the threshold, but no direct 
relationship between pulse shape and temporal effects is incorporated in the model. 
Temporal effects include short-term refractoriness, and the long-term history effects of 
adaptation and accommodation. The model is computationally efficient and can predict 
full nerve responses to long-duration pulse trains. Validation of this model was based on 
experimental measurement of single-fiber action potential (SFAP) responses to constant-
amplitude high-rate pulse trains published in the literature by qualitative comparison with 
modeled responses. As a follow-up to the previous validation of responses to constant-
amplitude pulse trains, in the current study, we investigate the model’s response to 
amplitude-modulated input. We compare the nerve’s predicted responses to amplitude-
modulated input to experimental animal single-fiber data. 

Modern CI sound processing strategies, such as CIS, encode sounds’ temporal envelope 
through amplitude modulation (AM) of the stimulating pulse train. In this process, 
most information necessary for pitch perception from firing rate is lost due to envelope 
extraction. In normal hearing, loudness is encoded by the number of fibers firing and their 
firing rates. Such loudness cues are important in sound perception (Fletcher and Munson, 
1933). In electrical hearing, the dynamic range is severely degraded. The smaller dynamic 
range necessitates compression of temporal amplitude modulations, which are required 
for speech understanding and for appreciation of musical loudness variations. 

The proposed model was validated by comparison with previously published SFAP 
measures obtained in animal experiments in response to amplitude modulated pulse 
trains. SFAP measurements are a precise tool for investigating different nerve fiber 



Chapter 3

54

responses and their variances. A properly validated neural model of long-term CI 
stimulation should adequately predict SFAP responses to continuous amplitude pulse 
trains. To predict effects of sound coding strategies relevant for CI processing, the model 
should also correctly simulate temporal envelope variations. Such a model should be 
further validated by comparison of the model’s responses to amplitude-modulated 
pulse trains with physiological data. Several experimental studies have directly recorded 
animal auditory nerve responses to amplitude-modulated pulse trains (Hu et al., 2010; 
Litvak et al., 2001, 2003a). Hu et al. (2010) used 5000-pps pulse trains of 400-ms duration, 
modulated with a frequency of 100 Hz and a 10% modulation depth. They used the 
post stimulus time histograms (PSTHs) and interval histograms (IHs) obtained from SFAP 
measurements to relate the SFAP responses to the input. Litvak et al. (2001) stimulated the 
auditory nerve using pulse trains with a 4800-Hz rate and different amplitudes. The pulse 
trains were modulated only in the last part of the signal, with a modulation frequency 
of 400 Hz and modulation depths of 1% and 10%. Litvak et al. (2003b) stimulated cat 
auditory nerve fibers with 5000-pps pulse trains of up to 10 minutes in duration, which 
were amplitude modulated with different depths (0.5–10%) and frequencies (104–833 
Hz) over the pulse train duration. They demonstrated that the use of high-rate pulse 
trains improved the temporal representation of sinusoidal modulation. Rubinstein et al. 
(1999) previously showed that a high-rate pulse train would cause de-synchronization of 
auditory nerve firing in a biophysical population model, thereby increasing the dynamic 
range and improving AM representation. If loudness is encoded by synchronization of 
firing of a group of fibers, a desynchronized fiber bundle would be able to slowly increase 
its synchrony and thus the loudness with stimulus level. Fibers showed varying responses 
to high-rate amplitude-modulated pulse trains. The sensitivity to modulations varied 
among fibers and modulation frequencies. 

Different types of models are available to predict nerve responses to electrical stimulation. 
A major distinction can be made between the biophysical and phenomenological type 
of models. Biophysical models quantitatively describe nerve membrane behavior in 
response to an induced membrane current and have been shown to correctly predict 
membrane responses to single pulses and reasonably predict latencies, refraction, and 
facilitation effects (Frijns et al., 1994; Frijns and ten Kate, 1994; Reilly et al., 1985; Schwarz 
and Eikhof, 1987). These models can be combined with 3D volume conduction models 
of the cochlea to predict auditory nerve responses to electrical pulses as reported by 
Kalkman et al. (2015). Phenomenological models directly relate empirical observations 
to expected neural output. Such models have been used to efficiently predict responses 
to sustained stimulation by direct implementation of stochastic and temporal behavior 
(Bruce et al., 1999a, 1999b; Chen and Zhang, 2007; Goldwyn et al., 2010b; Litvak et al., 
2003a; Macherey et al., 2007; Stocks et al., 2002; Xu and Collins, 2007). An overview of 
phenomenological auditory nerve models and their responses to constant amplitude 
pulse trains is given by Takanen et al. (2016).
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A biophysical neural model study by Yang and Woo (2015) investigated the effect of 
different parameters on the amplitude modulation following behavior and reported that 
with increased axon diameter the Vector Strength (VS) and fundamental frequency (F0), or 
transfer of fine temporal information, improves. Another biophysical model of a population 
of auditory nerve fibers has been used to simulate modulation detection discrimination in 
patients (O’Brien et al., 2016). It can predict modulation detection thresholds (MDTs) in CI 
users, and how they are related to stimulus intensity and carrier rate. For the population 
measures several hundreds of fibers are simulated. The human auditory nerve consists 
of around 30.000 fibers, therefore modeling the complete nerve’s response using a 
biophysical population model requires a tremendous amount of computational power. 
Phenomenological models have also been used to calculate responses to amplitude 
modulated electrical input (Campbell et al., 2012; Chen and Zhang, 2007; Goldwyn et 
al., 2010b; Xu and Collins, 2007). Goldwyn et al. used a phenomenological approach 
to a single fiber, a point process analysis, to characterize neural responses to constant 
amplitude and amplitude modulated pulse trains (Goldwyn et al., 2012, 2010b). Their 
model included a variety of phenomena, including facilitation and jitter. They showed 
interval distributions of spikes and VS in response to amplitude modulated pulse trains 
with varying modulation depths and carrier rates qualitatively similar to experimental 
data. Campbell et al. (2012) used a phenomenological approach, and included longer 
temporal components to model responses to modulated input. In the current study a 
combined biophysical and phenomenological approach is used (van Gendt et al., 2016) 
to simulate complete auditory nerve responses to modulated inputs in a computationally 
efficient manner. The model presented in this paper builds on the previously published 
3D volume conduction model of the cochlea and deterministic cable model of the human 
auditory nerve with active GSEF nerve fibers (Briaire and Frijns, 2005; Frijns et al., 2000; 
Kalkman et al., 2015). The deterministic thresholds obtained with that model are extended 
with stochastic behavior and history effects. 

We investigated phase-locking and frequency-following behavior using post-stimulus 
time histograms (PSTH), period histograms (PH), inter-spike interval distributions (ISI), 
vector strength (VS), and amplitudes of the fundamental frequency (F0). We will present 
the comparison between model simulations and experimental data in the results section, 
followed by our interpretation and analysis of the similarities and differences between 
simulations and data in terms of model parameters in the discussion section. 
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2 Materials and methods

2.1 Model
To calculate the deterministic nerve fiber thresholds at 3200 individual nerve fiber trajectories, 
we used the 3D volume conduction model and active nerve fiber model developed in 
the LUMC (Kalkman et al., 2015, 2014). This model was then extended with stochasticity, 
adaptation, and accommodation, and 10 different nerve fibers were introduced at each of 
the spatially different trajectories. Thus, the model effectively incorporated a total of 32,000 
different auditory nerve fibers. Each nerve fiber’s deterministic threshold was manipulated 
with stochasticity, and every nerve fiber was modeled with temporal characteristics. Idet was 
calculated using 3D volume conduction simulations and deterministic nerve model. Using 
the RS, the spiking probability can be calculated using a phenomenological approach, 
similar to Bruce et al. (1999b). After each pulse, the stochastic threshold was obtained from 
the normal distribution, N(Idet, SD). For each nerve fiber, stochasticity was induced by adding 
a standard deviation to the deterministic thresholds, which is obtained with the relative 
spread (RS) as in equation 3.1;

Relative spread: 
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To account for refractoriness these stochastic thresholds were elevated depending on the 
time since the last spike relative to refractory period as in equation 3.2;
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where τARP and τRRP are the time constants for the absolute and relative refractory 
period, and t is the time since the last action potential. The model includes both firing-
dependent adaptation and stimulus-dependent adaptation, with the latter referred to as 
accommodation. Spike adaptation (SA) was included by increasing the threshold after each 
spike (eq 3.3) and accommodation by increasing the threshold after each pulse (eq 3.4). 

Spike Adaptation: 

the threshold after each pulse (eq 4).  

Spike Adaptation: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖    (equation 3) 

Accommodation: 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  ∑ 0.03% ∙ 𝐼𝐼𝐼𝐼 ∙ 𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

∙ 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   (equation 4) 

Total model: 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (5)  

A spike was assumed to occur when: 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 > 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, where 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 is the stimulus current. 

For each fiber, the stochastic and temporal parameters were randomly chosen from a pre-

normal distribution, ensuring a random distribution of neural properties over the different 

trajectories. The parameters were obtained from measurements of the SFAP (I.C. Bruce et al., 

1999b; Javel et al., 1987; Miller et al., 1999a) 

(van Gendt et al., 2016). An overview of the parameters is given in table 1; 

� (Eq. 3.3)

Accommodation: 

the threshold after each pulse (eq 4).  

Spike Adaptation: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖    (equation 3) 

Accommodation: 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  ∑ 0.03% ∙ 𝐼𝐼𝐼𝐼 ∙ 𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

∙ 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   (equation 4) 

Total model: 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (5)  

A spike was assumed to occur when: 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 > 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, where 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 is the stimulus current. 

For each fiber, the stochastic and temporal parameters were randomly chosen from a pre-

normal distribution, ensuring a random distribution of neural properties over the different 

trajectories. The parameters were obtained from measurements of the SFAP (I.C. Bruce et al., 

1999b; Javel et al., 1987; Miller et al., 1999a) 

(van Gendt et al., 2016). An overview of the parameters is given in table 1; 

� (Eq. 3.4)

Total model: 

the threshold after each pulse (eq 4).  

Spike Adaptation: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖    (equation 3) 

Accommodation: 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  ∑ 0.03% ∙ 𝐼𝐼𝐼𝐼 ∙ 𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

∙ 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   (equation 4) 

Total model: 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (5)  

A spike was assumed to occur when: 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 > 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, where 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 is the stimulus current. 

For each fiber, the stochastic and temporal parameters were randomly chosen from a pre-

normal distribution, ensuring a random distribution of neural properties over the different 

trajectories. The parameters were obtained from measurements of the SFAP (I.C. Bruce et al., 

1999b; Javel et al., 1987; Miller et al., 1999a) 

(van Gendt et al., 2016). An overview of the parameters is given in table 1; 

Table 1: Overview of parameters in the model 

 � (Eq. 3.5)

A spike was assumed to occur when: Igiven > Iadj , where Igiven is the stimulus current.

For each fiber, the stochastic and temporal parameters were randomly chosen from a pre-
defined normal distribution, ensuring a random distribution of neural properties over 
the different trajectories. The parameters were obtained from measurements of the SFAP 
(Bruce et al., 1999b; Javel et al., 1987; Miller et al., 1999a) and by model fitting as described 
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in the previous paper (van Gendt et al., 2016). An overview of the parameters is given in 
table 3.1;

Table 3.1. Overview of parameters in the model

Parameter Value (±SD)

RS 0.06 (±0.04)

τARP
0.4 (±0.1) ms

τRRP
0.8 (±0.5) ms

Within refractoriness stochasticity 5% of τARP / τRRP

Adaptation amplitude 1.0% (±0.6%) of threshold

Accommodation amplitude 0.03% of stimulus current . spatial factor

τadap
100 ms

Deterministic thresholds were obtained for specific pulse shapes and pulse widths. In the 
current paper biphasic pulses with pulse widths per phase of 18µs were used. Details of 
the model are described in a previous publication (van Gendt et al., 2016). The extended 
temporal and stochastic model was developed in Matlab (Mathworks, Inc.), the code is 
available from the authors upon request.

2.2 Experiments
To validate the model, we compared its predicted responses to amplitude-modulated 
pulse trains to the neural responses from similar pulse trains in experiments performed 
in cats by Litvak et al. (2001, 2003a) and Hu et al. (2010). We selected the durations, 
pulse rates, modulation frequencies and depths, and relative amplitudes according to 
the set-ups in the published animal experiments. Here we report the following output 
measures: post-stimulus time histograms (PSTH), period histograms (PH), vector strengths 
(VS), fundamental frequency (F0) amplitudes, and inter-spike interval histograms (IH). 
All simulations were done by stimulating the electrode located at roughly 175 degrees 
from the round window. For the simulations of a single fiber, the neuron with the index 
12000 was used; fibers are counted from base to apex. This fiber is located roughly at the 
same angle, close to the center of the stimulated electrode. For the group simulations, 80 
different fibers evenly distributed over different spatial locations within the area stimulated 
by electrode 8 were simulated. In the complete model, the exact fiber thresholds were 
influenced by the pulse width of the stimulus train, because the exact stimulus shapes 
were used as inputs to the 3D conduction and biophysical model. The thus calculated 
deterministic thresholds were used in the temporal and stochastic part of the model. It 
was assumed that the temporal and stochastic properties of the model’s threshold value 
were independent of the pulse width, which was set at 18 µs for all simulations. Biphasic 
pulses with no inter-phase gap were used. The pulse width affects threshold; the absolute 
threshold value is therefore not directly comparable to animal data. The exact distance 
from stimulating electrode to the measured fiber is also not known in animal data, 
therefore exact amplitude levels are also not comparable. Furthermore, the parameters for 
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the temporal effects in the presented model are independent of pulse width; a different 
pulse width would change the threshold, but not the relative amplitude difference related 
to the temporal effects. The difference in pulse width between animal experiments and 
modeled responses is therefore not relevant. For the presented multiple-fiber data, the 
model parameters were set to the values shown in table 3.1. For the comparison with 
experimental single-fiber data, the simulations were obtained using average model 
parameters, unless otherwise noted. When statistical analysis was performed simulated 
results were compared with experimental data obtained by visual inspection of high-
resolution graphs, as were received upon request from the authors. 

2.2.1 Effect of stimulus amplitude
To mimic the experiments performed by Hu et al. (2010), we utilized AM pulse trains of 
400-ms duration, with a rate of 5000 pps. The modulated amplitude was calculated as 
shown in equation 3.5, where Au is the unmodulated amplitude, m% is the modulation 
depth in percentage and fm is the modulation frequency. 

	

the presented model are independent of pulse width; a different pulse width would change the 

th

the presented multiple-fiber data, the model parameters were s

For the comparison with experimental single-fiber data, the simulations were obtained using 

average model parameters, unless otherwise noted. When statistical analysis was performed 

simulated results were compared with experimental data obtained by visual inspection of high-

resolution graphs, as were received upon request from the authors.  

Effect of stimulus amplitude 

To mimic the experiments performed by Hu et al. (2010), we utilized AM pulse trains of 400-ms 

duration, with a rate of 5000 pps. The modulated amplitude was calculated as shown in equation 

where Au is the unmodulated amplitude, m% is the modulation depth in percentage and fm is the 

modulation frequency.  

 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = 𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢 + 𝑎𝑎𝑎𝑎% ∙  𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢 ∙ sin(2𝜋𝜋𝜋𝜋 𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡)  (equation 5) 

In the experiments of Hu et al fm was 100 Hz, and m% was 10%. 

bin-widths of 50 ms. The first experiment entailed stimulation of a single fiber with two different 

� (Eq. 3.5)

In the experiments of Hu et al fm was 100 Hz, and m% was 10%. Most responses were 
evaluated in bin-widths of 50 ms. The first experiment entailed stimulation of a single fiber 
with two different amplitudes. To mimic this in the model, we stimulated cochlear neuron 
12000 with stimulus amplitudes of 0.9 mA (supra-threshold level, causing an average spike 
rate of 152 spikes/sec over the duration of 400 ms) and 0.75 mA (near the single-pulse 
threshold level, causing an average spike rate of 44 spikes/sec over the duration of 400 
ms). We performed thirty repetitions per stimulus type, and PSTHs and PHs were obtained 
using a 0.1-ms bin-width. Interval histograms were evaluated in 50-ms bins, resulting in 
the plotting of five different epochs: 0–50 ms, 50–100 ms, 150–200 ms, 250–300 ms, and 
350–400 ms.

The second experiment involved simulating a fiber (again cochlear neuron 12000) with 
parameters set to average values (table 3.1) at stimulation amplitudes yielding initial 
discharge rates similar to those in the published animal experiments. Three different 
fibers were stimulated to obtain the animal data. The rates were based on 100 different 
trials, response rates were averaged over these trials. For the three different fibers to 
which the simulations were matched, the initial spike rates were 50, 100, 200, 250, and 
350 spikes/s for one fiber; 50, 125, 325, and 400 spikes/s for the second fiber; and 160, 225, 
300, 425, and 550 spikes/s for the last fiber. In the simulations, all these three fibers were 
modeled with average parameter settings. Output measures included discharge rates, 
discharge rate decreases per bin relative to the onset discharge rate, vector strength, and 
F0 amplitude, which were all calculated for each of the eight bins over a duration of 400 
ms. The discharge rate was calculated from the number of spikes per fiber in each bin. The 
degree of adaptation was determined as one minus the discharge rate relative to the rate 
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in the first bin. Vector strength is a measure of modulation following behavior (Goldberg 
and Brown, 1969), and calculated here as shown in equation 3.6: 

	

Vector strength is a measure of modulation following behavior 

calculated here as shown in equation (6):  

𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 =  
1
𝑛𝑛𝑛𝑛
��� sin(𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖)�

2
+ �� cos(𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖)�

2
  

(equation 6) 

In this equation, n is the number of spikes per analysis window, and θi 

the bin relative to the stimulus period (between 0 and 2π).  

F0 

Fourier transform was then obtained using the 

frequency of 55540 Hz was used, matching the step-

� (Eq. 3.6)

In this equation, n is the number of spikes per analysis window, and θi are the spike 
latencies within the bin relative to the stimulus period (between 0 and 2π). 

F0 amplitude, taken as the amplitude at the modulation frequency, refers to the fundamental 
component of the Fourier transform. For each epoch, the response was filtered with a 
periodic Hann window, using the Hann function in Matlab. This was multiplied with the 
response (spike rate). The Fourier transform was then obtained using the fft function. For 
the Fourier transform a sampling frequency of 55540 Hz was used, matching the step-
size of the model. The amplitude of the power spectrum at the modulation frequency, at 
Hu 100 Hz, was extracted as F0. For all three output measures a regression analysis was 
performed. 

The third experiment investigated the effects of refractoriness, relative spread, and 
adaptation. The performed simulation was similar to the previous experiment, but with 
variation of the model parameters under investigation. This was done to investigate the 
importance of using a stochastic distribution of model parameters and to evaluate the 
effect of the different parameters as well as to qualitatively get an indication of sensitivity 
of the responses to changes in these parameter settings. To match the initial discharge 
rates, we applied five different stimulus amplitudes to induce 160, 225, 300, 425, and 
550 spikes/s respectively. Here again cochlear fiber with index 12000 was used for the 
simulations. To investigate the effect of refractoriness, we repeated the calculations for 
one set of amplitudes with the absolute refractory period (ARP) set to 0.3 ms, and relative 
refractory period (RRP) set to 0.5 ms. The simulations were also performed using a relative 
spread value of 0.02 instead of 0.06. To investigate the effect of a lower adaptation, we 
decreased the adaptation amplitude from 1 to 0.6. These variations were all within one 
standard deviation of the model parameter’s values, as shown in table 3.1.

In both the second and third experiment statistical analyses were performed on all 
three different measures and fibers. Normalized Root Mean Squared Error (NRMSE) was 
determined by calculating the RMS of the difference between modeled and experimental 
data and normalizing it by division with the average experimental value. Generally, a 
low NRMSE belongs to a relatively good fit of that dataset. To calculate R-squared (R2) 
modeled data was plotted versus experimental data and a linear regression line was 
fitted; the regression line was forced to pass the origin. The correlation coefficient, or R, 
was calculated, with R2 indicating the amount of explained variance in the predictions. R2 
of zero means no predictive value, and R2 of one means all variance in data is explained. 
A repeated measure ANOVA was performed on the response rates of 2 different fibers to 
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five different amplitudes in 8 temporal bins. The within-subject factors in the repeated 
measure ANOVA are model versus measurements and the bin. The between subject 
factors are the stimulus amplitude and the fiber. The dependent variable is the spike rate. 
The RM ANOVA calculates whether there is an effect of model versus measurement and of 
the bin. No significant effect of model vs bin was found (F9,1=1.37, p=0.272). As expected, 
there was a significant effect of bin (F1.07,9=47.149, p=0.000). Analysis was run in SPSS.

2.2.2 Sensitivity analysis 
Two different fibers were modeled with varying parameters for adaptation amplitude, 
accommodation amplitude and adaptation time constant. The spike rates in response 
to the different amplitudes and at several epochs were compared to experimental 
data. Adaptation amplitudes were varied from 0.0 up to 2.0 with a step size of 0.25, 
accommodation amplitudes from 0 to 0.06 with a step-size of 0.01, and time constants of 
80, 100 and 120 ms were used. 

Group data and parameter distribution
We next determined the responses of groups of fibers. Different actual fibers showed 
differences in discharge rates, VS, and F0 (Hu et al., 2010; Litvak et al., 2001, 2003a); thus, it 
was important that the model fibers also represented these differences. The experimental 
data defined four different sub-groups based on the discharge rate within the first 50-
ms epoch: R1 (5–150 spikes/s), R2 (150.1–270 spikes/s), R3 (270.1–400 spikes/s), and R4 
(400.1–972 spikes/s). For the group simulations, 80 different fibers evenly distributed 
over different spatial locations within the area stimulated by electrode 8 (located 163° 
to 180°) from the round window) were simulated, which is of importance because of the 
incorporation of the detailed 3D conduction model. Simulations were repeated 30 times, 
and plotted results are averaged data over these trials. The parameters of each fiber were 
drawn randomly from the normal distribution presented in table 3.1. For each fiber in 
each different epoch, we calculated the discharge rate over time, vector strength, and F0 
amplitude. We also calculated the group average for each of these output measures, as 
was done in the paper describing the experimental results. The 80 stimulated fibers were 
classified in rate groups R1 to R4 according to the spike rate in the initial epoch. As above, 
the NRMSE and the correlation coefficient R2 were calculated over the average results in 
the groups per output measure. 

Effects of modulation frequency and depth 
Firing rates and vector strengths in response to different modulation depths were 
calculated, similar to Goldwyn et al (2012). Modulation depths were, similar as in Goldwyn’s 
simulations, set to 0, 1, 2, 5, 10 and 15%. Modulation frequency was 417 Hz, stimulation 
rate was 5000pps. Rate and vector strength were determined over the average of 10 trials, 
each with a stimulus duration of 0.4 second. VS was not calculated for non-responders, 
which were classified by Litvak et al as fibers in which rate increased to maximally 100 
spikes/sec. Both average model parameters and a manually optimized parameter set were 
used.
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The AM experiments performed by Litvak et al. (2003) were replicated by stimulating a 
nerve fiber with a 5000-pps pulse train for 1 second, with amplitude modulation over 
the last 400 ms. For each simulation, 100 trials were performed. The utilized modulation 
amplitudes were 0.5, 1, 2.5, 5, and 10%, and the modulation frequencies were 104, 417, 
and 833 Hz. Interval histograms were obtained over the response to the modulated 
period of the input. For the interval histograms and period histograms, the bin-width was 
0.2 ms. The model was used to replicate the experimental PHs and IHs of one fiber. These 
simulations were performed with all model parameters set to average. The simulations 
were repeated with varying values for RS and adaptation amplitude, within one standard 
deviation of the model, to determine whether a fiber yielding results more similar to the 
animal experiments existed within this distribution. 

Modulation onset responses 
The effect of modulation onset was simulated with a fiber with all model parameters set to 
average. After 50 ms of stimulation, modulation was started with a modulation frequency 
of 400 Hz, similar to Litvak et al. (2001). The amplitude was down-modulated, as shown in 
equation 3.7.
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two different amplitudes, with data from animal experiments by Hu et al. (2010) shown presented 
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such that the peak amplitude was equal in the modulated and the unmodulated portion 
of the stimulus. The fiber was stimulated in 30 trials over which average rates were 
calculated. The results are plotted in the PSTHs with a 5-ms bin-width. The first bin is not 
shown in the experimental results due to stimulation artefacts, and thus the first bin was 
also discarded in the simulated results.

Modulation Detection Thresholds
Similar to Goldwyn et al (2010) modulation detection thresholds were predicted using 
the Vector Strength measure. Stimuli of 400 ms were used, with a modulation frequency 
of 20 Hz and carrier pulse rate of 1000 Hz. VS was calculated in response to pulse trains 
with different stimulus levels. It was assumed the perception would be correct when VS 
was larger in response to the modulated than in response to the unmodulated stimulus 
in at least 78% of 10 trials. Spike trains with less than 3 spikes were discarded from the 
calculation. 
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3 Results

3.1 Effect of stimulus amplitude
Figure 3.1 shows the auditory nerve fiber response to modulated pulse trains of 400-ms 
duration and two different amplitudes, with data from animal experiments by Hu et al. 
(2010) shown presented side-by-side with the simulation results. 
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Figure 3.1. Single-fiber responses to a 400-ms 5000-pps pulse train modulated with a frequency of 
100 Hz and a 10% modulation depth. The left column shows the experimental data (Hu et al., 2010) 
for a large stimulus amplitude (0.9 mA;[A, B, and C]) and a smaller stimulus amplitude (0.75 mA; [D 
and E]). The right column shows the model predictions using average model parameters. [A] spike 
patterns for 30 trials when stimulated with the louder pulse train. [B] corresponding post-stimulus 
time histograms (PSTHs) obtained in bins of 0.1 ms, averaged over 30 repetitions. [C] corresponding 
period histograms (PHs) in five different temporal epochs (0–50 ms, 50–100 ms, 150–200 ms, 
250–300 ms, and 350–400 ms), calculated as the number of spikes per 0.1-ms bin relative to the 
modulation phase, averaged over 30 repetitions. [D] spike patterns for 30 trials when stimulated 
with the lower-amplitude pulse train. [E] corresponding IHs in the five different temporal epochs, 
averaged over 30 repetitions. The graphs with experimental data are adopted from the original work 
by Hu et al (2010), and are reprinted with permission.
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For the large amplitude (0.9 mA in the simulations), spike patterns are shown for 30 
repetitions (figure 3.1, row A), revealing decreased firing efficiency and increased phase-
locking over time in both the animal data and model simulations. Figure 3.1 (row B) 
depicts the PSTH obtained from this data, showing similar decreases in spike rates and 
increased phase-locking, and thus increased synchrony, over time in both the animal and 
predicted data. Figure 3.1 (row C) shows the stimulus time histogram relative to the phase 
of amplitude modulation for the five different epochs. The onset of stimulation is taken 
as a phase zero. The amplitude modulation as calculated with equation 3.1 determines 
the period. The next period thus starts one modulation phase hereafter (dependent 
on the modulation frequency). For each spike the timing between the start of the last 
modulation onset phase is taken as the value that is counted in the PH. Double peaks are 
seen at the largest amplitudes in epochs 4 and 6 and somewhat in epoch 8 in both the 
experimental results and model simulations. Over the duration of stimulation, the peaks 
sharpen in both the simulations and animal experiments, but the peaks at later epochs are 
larger in the experimental data than in the simulations. In figure 3.1, rows D and E show 
the spike patterns for 30 repetitions obtained with the lower stimulus amplitude, near the 
single pulse threshold (0.75 mA in the simulations). The simulations and experimental data 
show spiking patterns that are similar in decrease, phase-locking, and jitter (figure 3.1, row 
D). Figure 3.1, row E, depicts narrowing of the phase distributions over time, as was also 
observed with the higher stimulus amplitude. The peak is higher in the second epoch 
than in the later epochs in both the experimental and animal data. Overall, however, the 
IHs obtained in animal experiments are more narrowly distributed and have higher peaks 
compared to the predicted IHs, thus showing a stronger phase-locking. The distributions 
are shifted towards shorter spike-timing because no spiking latency is included in the 
model. 

Figure 3.2 shows the responses to 400-ms high-rate (5000-pps) pulse trains at different 
amplitudes, modulated with 100 Hz and a 10% modulation depth. Experimental results 
(Hu et al., 2010), and corresponding modeled data, of three different fibers in response 
to four or five different stimulus amplitudes are shown. For the simulations, the model 
parameters for each of the three fibers were set to average values, and stimulus amplitudes 
were chosen such that the rates in the initial bins matched the experimental data. 
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The first two columns of figure 3.2 show the discharge rate in spikes/s, indicating similar 
decreases in discharge rate over time between the animal and predicted data. Across all 
epochs, the adaptation was stronger at smaller amplitudes in both the simulations and 
recordings. In the lowest row of column 3.2A, the fiber shows complete adaptation after 200 
ms upon stimulation with the smallest amplitude in the experimental data, which was not 
replicated by the model. In the model (column 3.2B), the discharge rate plateaued after 200 
ms, while the experimental data showed a continuous decrease. R2 for the rates is relatively 
high, ranging from 0.89 to 0.98, and different for each fiber. Reported NRMSE values range 
from 0.14 to 0.39. RM ANOVA on the rates in fiber one and three yielded a p-value of 0.272, 
thus no significant difference was found between model and experimental data.

Vector strengths, seen in the middle two columns, initially ranged from 0.15 to 0.85 in both 
the measured [C] and simulated [D] data. For most fibers in both the measurements and 
simulations, vector strength increased during the first three epochs, and then reached a 
plateau. However, in the animal data, the VS continued to increase in two cases (column 
3.2C, the second largest amplitude in the upper row, and the largest amplitude in the lower 
row). For both the simulations and the measurements, the increase in VS over the complete 
duration was in the same range: from 0.5 for the larger amplitudes to over 0.9 for lower 
amplitudes. In the second row of column 3.2C, the fiber shows variability of VS over time 
when stimulated with the smallest amplitudes. While this pattern was also seen in the 
model simulations, the variability was larger in the simulated data. In the first row of column 
3.2C, the fiber shows a very steady VS at small amplitudes, whereas the model simulations 
are more dynamic. R2 values for the simulated VS ranges from 0.72 to 0.85, thus somewhat 
lower than the rate predictions, yet again dependent on the fiber modeled. NRMSE values 
range from 0.17 to 0.20.

In both the animal data and the model, the last two columns in figure 3.2, the F0 amplitude 
initially increased and then decreased when stimulated with the largest stimulus amplitudes-
specifically, when stimulated with amplitudes evoking discharge rates in the first epoch of 
350 spikes/s or greater. When stimulated with lower amplitudes, the F0 amplitude decreased 
immediately after the initial bin, potentially reaching as low as zero in both the animal 
experiments and model simulations. The lowest row of columns 2E and F shows that the 
maximal F0 amplitude for the largest amplitudes at the fiber was larger in the animal data 
than in the predicted responses. R2 values for the simulated F0 ranges from 0.55 to 0.96. 
NRMSE values were between 0.16 and 0.39.

Figure 3.3 shows that decreased refractoriness in the model led to a steeper decline in 
discharge rate, stronger degrees of adaptation, larger vector strengths, and larger F0 
amplitudes upon stimulation with pulse trains of the largest amplitude. With a lower RS, the 
discharge rates and degrees of adaptation were similar to when the fiber was modeled using 
average model parameters, but VS and F0 values generally increased. At low amplitudes, 
VS grew steadier over time in both the model and the experimental data. Although F0 
amplitudes increased, they remained smaller than in the matched fiber. With a lower 
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adaptation value, VS and F0 values were lower, and discharge rates showed a less substantial 
decrease, which was reflected in the lower degree of adaptation. For this particular fiber, 
judging from the calculated NRMSE and R2 values, the average model parameters seem to 
do the best job for rate and VS prediction, whereas the lower RS seems to better predict F0.
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Figure 3.3. Effects on model predictions of the following model parameters: refractory periods, 
relative spread, and adaptation amplitude. Amplitudes matching the initial discharge rates equal to 
the lowest row in figure 3.2 were used: 160, 225, 300, 425, and 550 spikes/s. All model parameters 
were set to average in [A], refractory periods were lowered in [B], the RS in [C], and the adaptation 
amplitude in [D]. Regression analysis between each fiber and output measure prediction and model 
is run, R2 values and NRMSE values (N) are shown in the model-plots. Graphs are adopted from the 
original work by Hu et al (2010), and are reprinted with permission.

3.2 Sensitivity analysis 
Figure 3.4 shows that the optimal parameter set is different for both fibers. Also, there is 
a relatively wide range of adaptation and accommodation values for which the average 
difference is relatively low. The average chosen parameters of an adaptation amplitude of 
1.0 and an accommodation amplitude of 0.03 is close to optimal for the fiber plotted in 
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[B]. The results plotted for the fiber in [A] show a minimum with an adaptation amplitude 
of 0.4% and accommodation amplitude of 0.02. Generally, it was seen that with the largest 
time constant the optimal values for adaptation and accommodation decreased, and 
the sensitivity to changes in these parameters increased. On the contrary, with a lower 
adaptation parameter, the most optimal accommodation parameter ought to be higher. 
Exclusion of adaptation and accommodation (the origins) causes a relatively large error for 
both fibers. Moreover, accommodation and adaptation parameters are interdependent.
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Figure 3.4. Sensitivity analysis. Normalized RMSE of spike rates (averaged over all bins and 
amplitudes) between modelled and experimental results in two different fibers. Adaptation 
amplitudes used were 0.0 up to 2.0 with a step size of 0.25, and accommodation amplitudes used 
were 0 to 0.06 with a step-size of 0.01. The black dots indicate the adaptation / accommodation 
values used in the current model, the solid black line indicates the standard deviation value as 
included on the adaptation parameter. Fiber A: fiber shown in the upper row of figure 3.2. Fiber B: 
fiber shown in the lowest row of figure 3.2. 
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Group data; parameter distribution
Since all model parameters affected the discharge rates, VS, and F0, it was important that 
the complete model covered a realistic range of model parameters. Figure 3.5 shows the 
experimental data, and the model simulations for 80 different fibers stimulated at 1 mA, 
with the data ordered in four initial rate groups (R1–R4).

The 80 different fibers were all spatially distributed over the region expected to be excited 
by the stimulated electrode in the simulations. Spread of excitation over this region 
was included, which largely contributes to the differences in (initial) firing rates. As the 
responses were ordered according to the initial rates, the onset responses (figure 3.5, first 
column) were similar for the experimental and modeled results. The degrees of adaptation 
observed over the stimulus duration were also similar for experimental and modeled data. 

With regards to the VS, the onset VS ranges were similar between the model and the 
experimental results. For all fibers, VS increased over time, similar to the animal data. 
Both experimental and predicted data showed a fluctuating VS in some fibers in R1. The 
greatest difference between the predicted and measured responses was that the VS in 
some modeled fibers in category R4 increased to 1 more rapidly than was observed in 
the animal data. Experimental and model data also showed similar ranges and behaviors 
of F0 values over time in the different rate groups. In R1, fibers that started with a low F0 
showed a less substantial decrease in F0 over time compared to fibers with an initially 
larger F0. In groups R3 and R4, this decrease was not seen. R3 showed an increase of F0 
in both the animal and model data. In R4, some modeled fibers started with F0 values 
larger than the values observed in animal data. F0 amplitude increased with rate group 
in both the experimental and modeled data. Statistical analysis yielded average R2-values 
when comparing rates VS and F0 on group level between 0.80 and 0.87, and NRMSE values 
between 0.15 and 0.27. Overall, the stimulated ranges, variability, and averages in all three 
output measures were in good agreement with the measured responses.

Effects of modulation frequency and depth 
Figure 3.6 shows rates and Vector Strengths in response to different modulation depths. 
figure 3.6A shows the experimental data, B and C are results obtained by our model, D is 
the modeled results obtained by Goldwyn et al. About half of the randomly selected fibers 
in our model were non-responders, which is similar to Litvak et al. Modeled discharge 
rates increase with modulation depth [B], this effect is seen similarly by Goldwyn et al [D]. 
In experimental data a steeper increase in rate is seen around 2-5% modulation depth. 
Using a sensitivity analysis [C] it was found that a fiber (∆) with very low refractoriness, 
RS and adaptation/accommodation displays this steeper increase. Our model predicts a 
quicker increase of VS with modulation depth than the model of Goldwyn et al., but the 
experimental data exhibits the quickest increase. To investigate the effect of pulse width 
the model was separately run with a pulse width of 32 µs. This yielded, at lower stimulus 
amplitudes, similar increases in Vector Strength and firing rate. 
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Figure 3.6. Dependency of rate and VS of a 0.4 second stimulus modulated with a frequency of 417 
Hz. [A] Experimental data, Litvak et al. (2003). [B] Modeled responses of 10 fibers, with parameters 
from the normal distribution as given in table 3.1 and locations close to the stimulated electrode. 
Stimulus amplitude is 0.75 mA, close to the average fiber threshold in that region, and the fiber 
is stimulated 10 trials over which the average rates and VS are determined. VS is only calculated 
for those fibers that elicited a rate of minimally 100 pps, in replica of the experiments performed 
by (Litvak et al., 2003a). [C] Modeled fiber responses where the model parameter set was either 
adjusted to most accurately simulate data published by Litvak et al. (Litvak et al., 2003a) (marked 
with ∆) or set to one standard deviation below all average model parameters (marked with O). The 
model parameters for ∆ were as follows; ARP = 0.2 ms, RRP = 0.2 ms, RS = 0.01, adaptation amplitude 
= 0.1, accommodation amplitude = 0.02. For these two simulations stimulus amplitude was set to 
0.8 mA, and fiber location was close to the stimulating electrode. [D] Modeled results by Goldwyn et 
al. (2012). The graphs in column D are adopted from the original work by Goldwyn et al. (2012), and 
are reprinted with permission.

We also replicated the long-duration stimulation and modulation experiments by Litvak 
et al (2003a). In our simulations, 600 ms of unmodulated stimulation was followed by a 
modulated pulse train of 400 ms. Figure 3.7 shows the period histograms for the responses 
to the modulated portions of the pulse trains, while figure 3.8 shows the corresponding 
interval histograms. 



3

Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation

71

[A
]: 

An
im

al
 e

xp
er

im
en

ts
[B

]: 
M

od
el

 p
re

di
ct

io
ns

   
   

 A
ve

ra
ge

 p
ar

am
et

er
s

[C
]: 

M
od

el
 p

re
di

ct
io

ns
   

   
 F

ib
er

 R
S 

= 
0.

02
, a

da
p 

= 
0.

6

0
20

0 0
40

0 0
40

0 0
50

0 0
10

00

10
4 

H
z

41
7 

H
z

83
3 

H
z

Ti
m

e 
[m

s]
1.

2

10
4 

H
z

41
7 

H
z

83
3 

H
z

M
od

ul
at

io
n

0.
5% 1% 2.
5% 5% 10
%

Ti
m

e 
[m

s]

10
4 

H
z

41
7 

H
z

83
3 

H
z

Ti
m

e 
[m

s]
0

2.
4

0
9.

5
0

0

15
0 0

20
0 0

40
0 0

10
00 0

20
00

0
20

0 0
40

0 0
50

0 0
10

00 0
20

00

1.
2

0
2.

4
0

9.
5

0

0
20

0 0
40

0 0
10

00 0
10

00 0

40
00

0

10
0 0

10
0 0

20
0 0

60
0 0

15
00

1.
2

0
2.

4
0

9.
5

0

0
20

0

0
40

0
0

50
0

0
20

0 0
40

0 0
50

0 0
10

00

0
20

0 0
40

0 0
40

0 0
10

00

0
20

0 0
40

0 0
50

0 0
10

00 0
20

00

0
20

0 0
40

0 0
10

00 0
20

00

Fi
gu

re
 3

.7
. P

er
io

d 
hi

st
og

ra
m

s 
sh

ow
in

g 
th

e 
sp

ik
es

 p
er

 b
in

 in
 r

es
po

ns
e 

to
 A

M
 p

ul
se

 t
ra

in
s 

in
 a

ni
m

al
 e

xp
er

im
en

ts
 [A

], 
(L

itv
ak

 e
t 

al
., 

20
03

) a
nd

 m
od

el
 

ou
tc

om
es

 [B
 a

nd
 C

]. 
M

od
el

 p
ar

am
et

er
s i

n 
[B

] w
er

e 
se

t t
o 

av
er

ag
e 

va
lu

es
: A

bs
ol

ut
e 

Re
fr

ac
to

ry
 P

er
io

d,
 0

.4
; R

el
at

iv
e 

Re
fr

ac
to

ry
 P

er
io

d,
 0

.8
; R

el
at

iv
e 

Sp
re

ad
, 

0.
06

; a
lle

 s
ig

m
a,

 0
; t

au
 a

da
p,

 1
00

; a
da

p,
 1

; a
cc

o,
 0

.0
3;

 fi
be

r, 
12

00
; a

m
pl

itu
de

 o
f 

0.
9 

m
A

 a
nd

 s
tim

ul
at

io
n 

ra
te

 o
f 

5 
kp

ps
. T

he
 r

ig
ht

 p
lo

ts
 [C

] s
ho

w
s 

an
 

im
pr

ov
ed

 m
at

ch
, w

ith
 a

n 
RS

 d
ow

n 
to

 0
.0

2 
an

d 
ad

ap
ta

tio
n 

to
 0

.6
, a

m
pl

itu
de

 is
 0

.9
. E

ac
h 

pl
ot

 w
as

 o
bt

ai
ne

d 
by

 a
ve

ra
gi

ng
 th

e 
re

su
lts

 o
ve

r 1
00

 tr
ia

ls
. G

ra
ph

s 
in

 [A
] a

re
 a

do
pt

ed
 fr

om
 th

e 
or

ig
in

al
 w

or
k 

by
 L

itv
ak

 e
t a

l. 
(2

00
3)

 a
nd

 a
re

 re
pr

in
te

d 
w

ith
 p

er
m

is
si

on
.



Chapter 3

72

040
11

8

040
11

9

040
11

9

040
12

4

0

10
0

13
7

11
7

11
9

12
3

0

10
0

13
6

0

20
0

17
0

11
7

11
9

12
4

13
6

17
4

020
84

020
88

050
10

0

0

10
0

10
8

0

10
0

13
4

85 89 10
8

0

20
0

14
4

0

50
0

20
6

86 89 10
7

14
4

0

40
0

21
5

[A
]: 

An
im

al
 e

xp
er

im
en

ts
[B

]: 
M

od
el

 p
re

di
ct

io
ns

   
   

 A
ve

ra
ge

 p
ar

am
et

er
s

[C
]: 

M
od

el
 p

re
di

ct
io

ns
   

   
 F

ib
er

 R
S 

= 
0.

02
, a

da
p 

= 
0.

6

10
4 

H
z

41
7 

H
z

83
3 

H
z

10
4 

H
z

41
7 

H
z

83
3 

H
z

10
4 

H
z

41
7 

H
z

83
3 

H
z

M
od

ul
at

io
n

0.
5% 1% 2.
5% 5% 10
%

In
te

rs
pi

ke
 In

te
rv

al
 [m

s]

020 020 040

040 0
10

0 0
50

0 0

50
0

20
00 0

010 020 050 0

10
0

50
0 0 9.

6
96

2.
4

24
1.

2
12

9.
6

96
2.

4
24

1.
2

12
9.

6
96

2.
4

24
1.

2
12

0

50
0

20
00

040 040 040

0

10
0 0

20
0040 040 040

020 020 050

0

20
0020 020 050

In
te

rs
pi

ke
 In

te
rv

al
 [m

s]
In

te
rs

pi
ke

 In
te

rv
al

 [m
s]

0

Fi
gu

re
 3

.8
. I

nt
er

sp
ik

e 
in

te
rv

al
s 

[s
pi

ke
s/

bi
n]

 in
 re

sp
on

se
 to

 A
M

 p
ul

se
 tr

ai
ns

 w
ith

 d
iff

er
en

t m
od

ul
at

io
n 

de
pt

hs
 a

nd
 fr

eq
ue

nc
ie

s. 
Pl

ot
s 

on
 th

e 
le

ft
 [A

] s
ho

w
 

an
im

al
 d

at
a 

as
 p

ub
lis

he
d 

by
 (L

itv
ak

 e
t a

l.,
 2

00
3a

). 
Pl

ot
s 

in
 th

e 
m

id
dl

e 
sh

ow
 s

im
ul

at
io

n 
re

su
lts

 w
ith

 a
ve

ra
ge

 fi
be

r p
ar

am
et

er
s 

[B
]. 

Pl
ot

s 
on

 th
e 

rig
ht

 s
ho

w
 

si
m

ul
at

io
n 

re
su

lts
 w

ith
 a

dj
us

te
d 

m
od

el
 p

ar
am

et
er

s [
C]

. A
ve

ra
ge

 m
od

el
 p

ar
am

et
er

s w
er

e 
us

ed
: A

RP
, 0

.4
; R

RP
, 0

.8
; R

S,
 0

.0
6;

 a
lle

 si
gm

a,
 0

; t
au

 a
da

p,
 1

00
; a

da
p,

 
1;

 a
cc

o,
 0

.0
3;

 fi
be

r, 
12

00
; a

nd
 a

m
pl

, 0
.9

. E
ac

h 
pl

ot
 w

as
 o

bt
ai

ne
d 

by
 a

ve
ra

gi
ng

 th
e 

re
su

lts
 o

ve
r 1

00
 tr

ia
ls

. T
he

 n
um

be
r i

n 
th

e 
up

pe
r r

ig
ht

 c
or

ne
r o

f t
he

 IS
I 

sh
ow

s 
th

e 
nu

m
be

r o
f s

pi
ke

s 
du

rin
g 

th
e 

m
od

ul
at

ed
 p

or
tio

n 
of

 th
e 

si
gn

al
. G

ra
ph

s 
in

 [A
] a

re
 a

do
pt

ed
 fr

om
 th

e 
or

ig
in

al
 w

or
k 

by
 L

itv
ak

 e
t a

l. 
(2

00
3)

 a
nd

 a
re

 
re

pr
in

te
d 

w
ith

 p
er

m
is

si
on

.



3

Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation

73

Both figures 3.7 and 3.8 show the animal data, the simulated results with an average fiber, 
and the results for a fiber that better resembled the animal data for which the parameters 
were found in the manual search (adjusted fiber). The distributions of the interspike 
intervals and the relative periods showed similar patterns and changes with modulation 
amplitudes and frequencies. At all frequencies, larger amplitudes led the histograms to 
become more peaked and to shift to shorter interspike intervals. Particularly at the middle 
and high modulation frequencies, the higher harmonics disappeared in the responses 
in the simulated data, as was observed in the animal data. The period histograms of the 
responses to 104-Hz modulated pulse trains showed a double peak, especially at large 
modulation amplitudes, in both the experiments and simulations. 

The second peak seen with the adjusted fiber was more similar to the animal data. 
The average fiber showed less phase-locking with 104 Hz and 0.5% modulation depth 
compared to in the animal data. Lowering the RS and adaptation parameter expectedly 
yielded better phase-locking. At 417 Hz, both the interval and the period histograms 
obtained with the simulations were wider than the histograms for the measured data. In 
the animal data, the responses turned out to be more strongly locked to the modulation 
phase. Decreasing the RS and adaptation value, decreased widths of the period histogram, 
such that they were more similar to the animal data. The corresponding interval histograms 
showed more pronounced peaks at the higher harmonics of the modulation frequency. 
The shift towards shorter ISIs seen in animal data was less strongly apparent in the 
adjusted fiber data, although some shortening was visible. The animal fiber appeared to 
show a stronger response to increases in modulation depth. At 833 Hz, both the average 
fiber and the adjusted fiber were similarly locked to modulation; however, the interval 
histograms for the adjusted fiber more closely resembled the animal experiments. In figure 
3.8, the numbers in the upper right corner of the ISIs show the number of spikes during 
the modulated portion of the signal. The number of spikes increased with modulation 
depth, both in the simulated data and in the animal data. Compared to the average fiber, 
the adjusted fiber showed a stronger increase in rate that was more comparable with the 
animal data.

Modulation onset responses 
In figure 3.9 the animal data showed an increased firing rate immediately following onset 
of modulation, which was not seen in the model simulations with the average fiber. 
Adjusting the parameters RS and adaptation amplitude also did not yield an immediate 
increase after modulation onset in the model simulations. 
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Figure 3.9. Post Stimulus Time Histograms of a fiber stimulated with a 4800-pps pulse train. The first 
50 ms are unmodulated. After 50 ms, the input is down-modulated with a modulation frequency of 
400 Hz and a modulation depth of 10%. The left graph shows animal experimental results (Litvak 
et al., 2001). The right graph shows model predictions using average model parameters. For the 
simulation stimulus, amplitude was set to 0.85 mA. Fiber 12,000 was simulated, and the results were 
averaged over 30 trials. The left graph is adopted from the original work by Litvak et al (2001) and is 
reprinted with permission.

Modulation Detection Thresholds
The predicted MDT’s (figure 3.10) as a function of stimulus level are very comparable with 
the predictions of Goldwyn et al. The minimal MDT, at the center of the shape, is somewhat 
lower in our model predictions. The difference in levels on the abscissa is due to a general 
difference in fiber threshold.
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Figure 3.10. Modulation Detection Thresholds (MDTs) for different (average) stimulus levels, dB re 
1mA. [A] shows the prediction produced by our model with average parameter settings, [B] shows 
the results of another model, by Goldwyn et al. The ordinate represents the logarithmic equivalent 
of m, which is the minimal detectable modulation in percentage. Modulation frequency = 20 Hz, 
carrier pulse rate 1000 Hz. All model parameters were set to average values. Duration of the stimuli 
was 400 ms. The right graph is adopted from the original work by Goldwyn et al (2010) and is 
reprinted with permission.
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4 Discussion

The results of our single-fiber model simulations generally were in good agreement 
with the data available from published animal experiments. The model is shown to 
predict responses to pulse trains with rates up to 5000 Hz and durations up to 400 ms. 
The simulations showed similar spiking patterns in response to high-rate amplitude-
modulated pulse trains, for both near- and supra-threshold stimuli, and with different 
modulation depths and modulation frequencies. Group simulations showed that 
distribution of neural behavior is very similar to that in animal data. Interval histograms 
for the simulations showed distributions similar to those from animal experiments, with 
shapes and amplitudes that varied in accordance with stimulus duration and modulation 
characteristics. Period histograms in response to amplitude modulated input were 
previously modeled by Goldwyn et al (2012, fig 3.12). Similar to their model predictions, 
our results show increased locking to the modulation phase with increased modulation 
amplitude. In contrast to their predictions our model shows a stronger phase-locking, 
strongest visible at the 1% modulation depth. The period histograms revealed that both 
the computer model and animal studies exhibited similar amounts of phase-locking in 
the responses to the amplitude-modulated high-rate pulse train. The discrepancy in exact 
timing seen in the PHs in figures 3.1 and 3.7 is probably due to the exact location along 
the auditory nerve where recordings are taken in animal experiments. Overall, there is 
a slightly stronger effect of small modulation depths in animal data than seen in the 
simulations. The model is limited in its ability to handle sudden large changes in input, 
such as the sudden off-set of amplitude modulation in figure 3.9. This may be explained 
by the fact that very fast temporal components are not yet included in the current version 
of the model. Moreover, the model still has to be validated for inputs of much longer 
durations than half a second. 

Validation challenges 
In animal experiments, it is generally not known which fiber is stimulated, nor is the 
distance between the electrode contact and the stimulated fiber. Moreover, each study 
uses different electrode contacts. Thus, the amplitude given in the experimental data 
cannot be directly compared to the amplitude given for the simulations. Single-fiber 
data (as shown in figures 3.1, 3.2, 3.5, 3.6, and 3.7) are acquired from random fibers of 
the auditory nerve. These data are replicated by the present model using average 
parameter values, which is most likely not the closest match to individual fibers studied 
experimentally. Group data can provide a reliable sense of how the different parameters 
are distributed over a randomly chosen group of fibers. As seen in figure 3.5, the randomly 
chosen range of fibers in the model showed a good agreement with the range of fibers in 
the experimental data. Notably, the experimental data was all obtained in cats. To evaluate 
whether the simulations are also applicable in the context of humans, the model’s output 
must be validated with human measurements. This could be performed by predicting 
ECAP data in response to pulse trains, and comparing these simulations to data from 
similar experiments in human CI recipients. Validation for arbitrary pulse shapes for single 
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pulses is done with the 3D geometric and active nerve model (Kalkman et al., 2014). 
The influence of pulse shape on stochasticity and temporal behavior is not evaluated in 
the presented paper. These effects could be implemented and should be validated by 
comparing the output of such a more extended version of the model with animal pulse 
train data where different pulse shapes are used. Validation against animal data with 
arbitrary pulse timing would be very relevant in order to verify the model’s ability to 
study strategies using these types of stimulation. However, animal studies on this kind of 
stimulation which are suitable to be used as verification are scarce. We therefore think that 
animal responses to pulse trains in which pulse timings are not evenly spaced would be of 
great added value for future development and validation of models. 

Refractory behavior 
Our results showed that decreasing refractoriness leads to less firing and better frequency 
following behavior (figure 3.3). The faster variations in time are easier to follow, perhaps 
due to the quicker release of refractoriness. Overall, the average model parameter setting 
gives a better appraisal of this nerve’s behavior. As refractory behavior can be studied with 
two-pulsed experiments our model uses values obtained from previous research.

Relative spread 
We found that the RS parameter did not strongly affect discharge rates or the degree of 
adaptation, but may influence the modulation following behavior (figure 3.3). A lower 
RS resulted in slightly larger VS and F0 values over time with low stimulus amplitudes. 
Running the model with larger RS values led to the opposite effect (results not presented). 
Modulation frequency following behavior, as assessed based on VS and F0 values, 
increased with a lower RS. This is logical since amplitude modulations may or may not 
cause a spike, which will be more obvious with more deterministic fiber behavior, i.e., 
when spiking is more strongly related to the exact stimulus amplitude. For the particular 
fiber shown in figure 3.3, the NRMSE and R2 for rate, VS and F0 are comparable with the 
middle and the lower values of RS. Variation of RS affected the width of the peaks in the 
interval histograms. Interval histograms and period histograms (figures 3.7 and 3.8) also 
revealed that a lower RS value was associated with stronger phase-locking. 

Adaptation parameter 
Lower adaptation resulted in a reduced decrease in discharge rate, as well as in smaller 
VS and F0 values (figure 3.3). As calculated with the NRMSE and R2-values, the lower 
adaptation parameters yield lower values for VS and F0. Thus, modulation following 
behavior was improved by adaptation in the nerve. Litvak et al. (2003a) grouped fibers 
showing a sustained response to high-rate amplitude-modulated stimulation, and fibers 
showing a transient response. It can be expected that the adaptation behavior differed 
between these two groups of fibers. The variance in model parameters is based on animal 
experiments (van Gendt et al., 2016). Similar to the refractory properties and RS, adaptation 
properties are assumed to vary among different nerve fibers. The sensitivity analysis 
visualizes the regions that produce optimal results. The optimal choices for adaptation 
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and accommodation amplitudes and the adaptation time constant are interdependent, 
and different per fiber. Because of the inter-fiber-differences, each fiber is modeled with its 
own set of parameters. Our model shows a stronger locking to the modulation frequency 
than shown by models without adaptation.

Smaller temporal components 
Litvak et al. (2001) reported that 80% of the fiber responses showed a dip in the PSTH 
directly after the onset of the modulation at 50 ms (figure 3.9). Our simulations, however, 
do not show this effect. In the experimental study, fibers were clustered as stronger and 
lesser adapters, according to their response to stimulation. The fiber used for the simulation 
had average model parameters. However, most variations of the model parameters did not 
substantially increase the resemblance. Only adjustment of the adaptation time constant 
led to alteration of the recovery timing. The adaptation time constant turned out to be 
related to the time of recovery after modulation onset. Therefore, it could be argued that a 
faster adaptation component should be included, as was suggested by Zhang et al. (2007). 

Longer temporal components 
In the study by Litvak et al. (2003a), all measurements with different stimulus settings were 
done subsequently, yielding a total stimulus duration of about 10 seconds. This sequence 
was repeated until contact with the fiber was lost, yielding stimulation durations of up 
to 10 minutes. In the simulations each measurement was done independently, the fiber 
was stimulated each time for about 1 second. To test whether the longer duration of 
stimulation in the animal experiments would affect the outcomes, we performed a few 
simulations in which the fiber was stimulated for up to 10 seconds prior to stimulation 
with the modulated pulse train. This did not alter the outcomes of the present model. 
Since the outcomes of the model were very similar to the animal data, it can be argued 
that the desynchronization required for optimal amplitude modulation following 
behavior can be obtained after just a short onset period of adaptation. For the proposed 
use of a high-frequency desynchronizing pulse train, this finding implies that 600 ms of 
desynchronization would be sufficient to result in a better representation of modulation 
frequency (Hong and Rubinstein, 2003; Imennov and Rubinstein, 2009). Figure 3.2 shows a 
constantly increasing degree of adaptation and vector strength for the loudest amplitude 
during the stimulus duration, while the model predicts a plateau after 200 ms. By adjusting 
the different parameters, it was found that this is due to the exponential time constant of 
adaptation. With an exponential adaptation of longer than 100 ms, e.g. 200 ms, the VS 
and degree of adaptation increase after longer time periods. We therefore argue that the 
observation of longer lasting effects is likely due to longer time scale effects. 

Spike timing 
As seen in the PH’s in figures 3.1 and 3.7, in the animal experiments the spike timings 
are later than in the model predictions; around 1.5 ms for the fiber in figure 3.1 (row [C] 
and [E]) and around 0.5 ms in figure 3.7. This relative temporal delay seen in the animal 
recordings can be due to either travel duration (runtime) of the action potential (AP) 
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through the nerve or rise time of the AP before it is detected in the electrophysiological 
recordings. Latencies in detection of AP’s in electric stimulation of auditory fibers in cat 
were found between 0.2 and 1.3 ms, dependent on stimulus shape and amplitude (Miller 
et al., 1999a). As the temporal differences between the experimental data and results of 
about 0.5-1.5 ms are within a similar range, they are very likely due to the latency at the 
recording site which is due to runtimes and of the AP through the fiber and risetime of 
the AP. Furthermore, latency and jitter are related to spiking probability. Including latency 
and jitter, and their dependency on spiking probability might therefore improve the 
resemblance of the exact spike timings.

Pulse shapes
As explained in the introduction, in the present model the pulse shape directly influences 
the initial thresholds. The amplitude of the pulse hereafter determines all temporal 
and stochastic properties. They are however not influenced by the pulse width of pulse 
shape. It could be argued that the pulse shape affects the temporal and stochastic 
behavior. Especially accommodation, which is directly related to the stimulus. Increased 
pulse width would lead to larger charge build-ups and thus to larger accommodation. 
Animal experiments using similar pulse rates and amplitudes, but with different pulse 
widths, measured on the same fiber, could inform us about the effect of pulse width on 
accommodation and accommodation. For stochastics we also have chosen not to include 
an effect of pulse width, even though pulse direction and pulse width are shown to affects 
the RS (Miller et al., 1999a). In our model, the ranges of RS are wider than the differences 
seen in here, however a further development could include this to make the model more 
precise in evaluating pulse trains where different pulse shapes are used. 

Implications 
Sensorineural hearing loss often results in spiral ganglion cell degeneration, and thus 
to decreasing numbers of functional auditory nerve fibers (Ramekers et al., 2014). This 
decrement reduces the auditory nerve’s effectiveness at using place coding to transfer 
pitch-related information. Furthermore, spatial spread of current in cochlear implantation 
diminishes the frequency specificity of the CI. Higher pulse rates can increase pitch 
perception among CI users, but typically only up to 300 Hz (Drennan and Rubinstein, 
2008; Zeng, 2004). Amplitude modulation of the pulse train can also induce perception 
of amplitude modulation frequency, especially in the low frequency range and with large 
modulation amplitudes (Drennan and Rubinstein, 2008). 

State of the field and future work 
The proposed model showed good agreement with the presently available animal data. 
The model’s performance compared to Bruce’s model in response to continuous amplitude 
pulse trains is given in the previous paper (van Gendt et al., 2016). The model was shown 
to correctly predict rates and interspike intervals in response to up to 400 ms constant 
amplitude pulse trains of different rates and amplitudes. The current paper investigates 
response rates, VS and F0 in response to amplitude modulated pulse trains. Results show 
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that average model parameters predicts behavior in the same ranges as in response to 
animal data. All output measures however depend differently on choice of parameters 
for refractoriness, relative spread and adaptation. For instance, decreasing the refractory 
periods, as seen in row [A] of figure 3.3, increases VS for low stimulus amplitudes. Lowering 
of the RS, as seen in figure 3.3 row [B], increases VS in response to the larger amplitude-
pulse trains. Decreasing the adaptation parameter causes a lower VS for all amplitudes, 
but the effect is strongest at lowest amplitudes.

Prediction of rate and VS in response to different modulation depths presented in figure 
3.6 was previously shown by Goldwyn et al. The average picture seen in their predictions 
is similar to ours. However, our model shows that within the fiber population, due to 
the distribution of parameters, better resembling data can be simulated. One difference 
between both models on the one hand and the experimental data on the other is a weaker 
effect of modulation depth. Therefore perhaps a shorter time constant is also involved, 
as would be the case in power-law adaptation, which might cause immediate release of 
adaptation in response to a slightly modulated input signal.

Prediction of dependency of the MDT on stimulus amplitudes by the proposed model is 
similar as that predicted by Goldwyn et al. (2010). However, a lower minimal detectable 
depth is seen at the levels yielding minimal MDTs, which might very well be an effect of 
adaptation. Adaptation brings the nerve in a state more responsive to changes, thereby 
logically decreasing the MDT. Goldwyn et al. (2010) and O’Brien et al. (2016) investigated 
the effect of temporal integration windows and the number of fibers on MDT prediction. 
Shannon et al (1992) show psychophysically that with increase of modulation frequency 
MDT’s increase. As was shown by Goldwyn et al. and O’Brien et al (Goldwyn et al., 
2010b; O’Brien et al., 2016) this can be due to jitter as large as 1-2 ms which is similar to 
temporal time constants for neural integration at interpretation level. The current paper 
demonstrates how a large distribution of model parameters is required to model the wide 
range of physiological behavior at a neural level. The distribution of behavior might affect 
the perceptual interpretation at neural level, which should preferably be evaluated with 
an interpretation model. In future research we would like to use whole nerve predictions 
to further study MDTs and other psychophysical measures.

First stage phenomenological models of auditory nerve responses to electrical stimulation 
included threshold, RS and refractoriness (Bruce et al., 1999a; Chen and Zhang, 2007; 
Xu and Collins, 2007). In addition phenomenological models have experimented with 
the inclusion of latency, jitter, RS dependency on time since pulse (related to channel 
noise) and summation (Goldwyn et al., 2012; Hamacher, 2004) or accommodation and 
adaptation (van Gendt et al., 2016). In an overview paper the temporal considerations of 
refractoriness, summation, accommodation and adaptation are theoretically entangled 
(Boulet et al., 2016). The current and previous paper (van Gendt et al., 2016) show that 
adaptation is important to model the effects of high rate pulse trains. None of the currently 



Chapter 3

80

existing models investigated responses to long duration stimulation (over 1 second), or 
recovery statistics after offset of amplitude modulation. 

For prediction of responses to cochlear implants stimulation a complete nerve model, 
consisting of a realistic number of nerve fibers and a realistic current spread has to be 
included. Future studies should test this model for evaluating complete auditory nerve 
responses to different sound coding strategies. Before design of new CI strategies can 
be evaluated using a computational model, a validated interpretation model for neural 
response patterns has to be developed. The next step in modeling research must make 
the connection between physiological outcomes (such as those obtained in animal 
experiments) and psychophysical data obtained from CI users. The presently described 
auditory nerve model can be used to compare stimulus parameters and related neural 
outcomes to detection thresholds from different discrimination tests performed in CI users. 
Such comparisons could provide insight into the relationship between neural output and 
human auditory perception. These investigations will require the development of a neural 
interpretation model as the next step in the model’s evolution. Using the comprehensive 
geometrical cochlear and auditory nerve model, including stochasticity and long-duration 
stimulation effects, in combination with such an interpretation model will provide a tool 
for evaluating developments in speech coding research.

Conclusion
The developed model can be used to predict full auditory nerve responses to amplitude-
modulated long-duration high-rate cochlear implant stimulation. The model can show 
differences between different stimulations in a manner that reflects differences observed 
in neurophysiological measurements. Therefore, the model can be used to predict firing 
patterns in response to varying electrical stimulus patterns.
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Abstract

Despite the introduction of many new sound-coding strategies speech perception 
outcomes in cochlear implant listeners have levelled off. Computer models may help 
speed up the evaluation of new sound-coding strategies, but most existing models of 
auditory nerve responses to electrical stimulation include limited temporal detail, as the 
effects of longer stimulation, such as adaptation, are not well-studied. Measured neural 
responses to stimulation with both short (400 ms) and long (10 minutes) duration high-
rate (5kpps) pulse trains were compared in terms of spike rate and vector strength (VS) 
with model outcomes obtained with different forms of adaptation. A previously published 
model combining biophysical and phenomenological approaches was adjusted with 
adaptation modeled as a single decaying exponent, multiple exponents and a power law. 
For long duration data, power law adaptation by far outperforms the single exponent 
model, especially when it is optimized per fiber. For short duration data, all tested models 
performed comparably well, with slightly better performance of the single exponent 
model for VS and of the power law model for the spike rates. The power law parameter 
sets obtained when fitted to the long duration data also yielded adequate predictions for 
short duration stimulation, and vice versa. The power law function can be approximated 
with multiple exponents, which is physiologically more viable. The number of required 
exponents depends on the duration of simulation; the 400 ms data was well-replicated 
by two exponents (23 and 212 ms), whereas the 10-minute data required at least seven 
exponents (ranging from 4 ms to 600 s). Adaptation of the auditory nerve to high-rate 
electrical stimulation can best be described by a power-law or a sum of exponents. This 
gives an adequate fit for both short and long duration stimuli, such as CI speech segments.
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1. Introduction

Cochlear implants (CIs) are implantable hearing devices for people with severe to 
profound hearing loss. CIs generally allow good speech understanding, but outcomes are 
highly variable and speech perception remains challenging in more complex listening 
situations. Many different sound-coding strategies have been introduced in the last 
decade to improve sound coding, but performance on perception tests has not improved 
significantly (Zeng, 2017). New stimulation strategies are commonly investigated in 
psychophysical experiments and clinical trials, which is time-consuming for both the 
patient and researcher and does not provide insight into physiological characteristics 
underlying the large variability in perception scores. Alternatively, strategies could be 
evaluated using computational models. A variety of models are currently available that 
can simulate responses of the auditory nerve to electrical stimulation. 

Models that simulate responses of the auditory nerve to electrical stimulation can be 
classified as phenomenological or biophysical. Biophysical models, which describe 
physiological elements of the neuron in detail, have been shown to reproduce 
deterministic threshold characteristics and refractory behavior in response to a stimulation 
of several milliseconds, with arbitrary pulse shapes (Dekker et al., 2014; Frijns et al., 2001; 
Frijns and ten Kate, 1994; Kalkman et al., 2015; O’Brien and Rubinstein, 2016). Methods to 
biophysically model more complex neural behavior, such as stochasticity and the effects of 
long temporal spiking history, have also been suggested. These methods provide insight 
into the physiological processes, but have the disadvantage of requiring many parameters 
to be fitted and consume great computational power (Negm and Bruce, 2014; O’Brien and 
Rubinstein, 2016; Woo et al., 2010, 2009). Efficient computation of the neural responses 
of all ~30,000 auditory nerve fibers is fundamental to predicting perception outcomes.  
Alternative to biophysical models, phenomenological models, that describe the behavior 
of the neuron empirically, can be used efficiently for these purposes. Stochasticity is 
such a phenomenon that can be included (Bruce et al., 1999b, 1999a), and more recently 
adaptation has been included in phenomenological models (Boulet et al., 2016; van Gendt 
et al., 2019, 2016). The effect of adaptation increases with stimulus duration and rate (van 
Gendt et al., 2017, 2016). Therefore, in simulations of neural responses to segments of 
speech, which are of long durations, adaptation becomes relevant. Contemporary CIs use 
pulse rates of 800-2000 pps, but depending on the spatial spread single neurons may be 
stimulated by higher rates. 

Single fiber auditory neuron recordings in response to long duration electrical stimulation, 
which can be used for verification, is available only for high pulse rates (5 kpps). For lower 
stimulus rates adaptation is expected to have a smaller effect. It has been suggested that 
high rate pulse trains can be used as desynchronizing pulse trains (Rubinstein et al., 1999). 
In the healthy auditory nerve there is spontaneous activity, which yields linear behaviour 
also for low stimulus levels. Electrically stimulated auditory nerve fibers, however, respond 
highly synchronized, diminishing the dynamic range. To overcome this, it has been 
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suggested to first stimulate the auditory nerve with a high-rate (e.g., 5kpps) pulse train, 
bringing all fibers in a refractory or adapted state, after which spiking will be less coherent.

Adaptation is a well-known phenomenon in general neuroscience that is particularly 
well-studied in the visual system. Adaptation has been shown to maximize information 
transmission (Barlow, 1961; Wark et al., 2007). Neural adaptation dynamics depend on the 
stimulus history (de Ruyter van Steveninck et al., 1986). Neurons not only adapt to stimulus 
gain, but to a range of stimulus statistics, so that stimuli in a dynamic environment are 
represented most efficiently (Brenner et al., 2000). Such statistics may be very different 
over different durations of stimulation. After long durations of stimulation, the dynamics 
of adaptation in neural systems in general are often better described by a power law than 
an exponent (Toib et al., 1998). In the fly’s visual system, adaptation was demonstrated 
to occur at different time scales; short time scales are necessary for optimal information 
encoding of rapid stimulus variations within an ensemble, whereas long time scales adjust 
the rate and statistics of the firing pattern to provide information about the ensemble 
of the stimulus (Fairhall et al., 2001). A power law function can be approximated by a 
combination of a large number of exponential processes with a range of time constants 
(Drew and Abbott, 2006). Many natural processes decay and grow exponentially. Although 
neurons behave according to a power law, no individual biological processes that can 
be described by a power law have been detected in neurons (Drew and Abbott, 2006), 
and the dynamics probably arise physiologically from different exponential processes. 
Because of the power law dynamics, neurons are capable of adapting their responses to 
stimulus statistics over a wide range of time scales, from tens of milliseconds to minutes. 
Thus, adaptation has been shown to play a role in efficient coding of the continuously 
(rapidly or slowly), changing sensory world. 

In the auditory system, adaptation is also a supposed mechanism for optimized information 
transmission (Clague et al., 1997; Epping, 1990). Neurons can adapt to stimulus statistics, 
such as sound level and variance (Dean et al., 2005; Wen et al., 2009). The dynamic range 
is adjusted to the range of presented sound levels, leading to high accuracy of the 
perception of differences in loudness, regardless of the large dynamic range spanned 
by the input levels. Auditory nerve responses to statistically varying acoustic input were 
well-replicated by a model that included power law adaptation (Zilany et al., 2009; Zilany 
and Bruce, 2006). This model showed that power law adaptation increases the dynamic 
range of the auditory neuron (Zilany and Carney, 2010). Auditory neurons also adapt in 
response to electrical stimulation (Heffer et al., 2010; Litvak et al., 2003; Zhang et al., 2007). 
This becomes especially apparent with stimulus durations >100 milliseconds, as is the 
case in pulse trains encoding speech segments. Thus, a model of the auditory nerve that 
simulates responses to electrical CI stimulation representative of speech should account 
for adaptation. Previously, a model combining the biophysical and phenomenological 
approaches was shown to accurately simulate spiking of the auditory nerve in response 
to electrical pulse trains of durations up to a few hundred milliseconds (van Gendt et al., 
2019, 2017, 2016). In these studies, adaptation was modeled by increasing the threshold 
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following each spike or pulse with a certain amplitude that exponentially decayed over 
time. Exponential spike adaptation and accommodation with a time constant of 100 
ms was found to explain spiking behavior in response to both amplitude modulated 
and continuous amplitude pulse trains with duration up to 400 ms. This model, with a 
single exponent, successfully replicated responses, but its success was restricted to the 
limited stimulus ranges for which its parameters were optimized. The model has not been 
validated for longer duration stimulation. In addition, no studies have evaluated whether 
a power law, a single exponent, or a sum of exponents best describes the response of the 
auditory nerve to electrical stimulation.

As speech segments have durations of up to several seconds and a large dynamic range, it 
is important that the adaptation be correctly implemented in a model of neural responses 
to speech coding in CIs. The present study evaluated which model of adaptation best 
describes the responses of the auditory nerve to long duration stimulation. For this, 
recordings of the auditory neuron’s responses to pulse trains with short and long 
durations were simulated with different models of adaptation. The used model builds on 
a previously developed computationally efficient model (van Gendt et al., 2017). 

It is plausible to expect that more than one time-component is required to model 
long duration responses. This could be modeled as multiple exponentials, or, with 
less parameters, with a power law. This study investigates how both short- and long-
term adaptation of auditory neurons to electrical stimulation can most adequately, 
physiologically realistic and computationally efficient be described and fitted.

2. Methods

Responses of the electrically stimulated auditory nerve were modeled using a combined 
biophysical and phenomenological model. 

2.1. Deterministic thresholds
First, deterministic fiber thresholds (Idet) were calculated with a 3D volume conduction 
model and active nerve fiber model developed in the LUMC (Kalkman et al., 2015, 2014). 
The cochlear geometry is based on micro-CT data, the electrode array geometry is 
based on the HiFocus1J array (Advanced Bionics, Valencia, CA, USA) in lateral position. 
Deterministic thresholds were obtained for specific pulse shapes and pulse widths. In the 
current paper biphasic pulses with pulse-widths per phase of 18µs were used.

2.2 Phenomenological threshold adjustments
These deterministic thresholds were adjusted with stochasticity, adaptation, and 
accommodation using a phenomenological approach (van Gendt et al., 2017, 2016). 
For each nerve fiber, the stochastic threshold was taken from the normal distribution, 
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N(Idet, SD), with SD calculated with a relative spread (RS) as SD= Idet ∙ RS. Subsequently, 
refractoriness (R), as calculated with equation 4.1, was added to the stochastic threshold. 

	

 𝑅𝑅𝑅𝑅 =  1

1−𝑑𝑑𝑑𝑑
−(𝑡𝑡𝑡𝑡−𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

  (Eq. 1),  

where τARP and τRRP 

the time since the last action potential. It was shown previously 

of both sustained firing, referred to as spike adaptation (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

as accommodation (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). Different models to described 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

final threshold was calculated as follows;  

𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (Eq. 2) 

A spike was assumed to occur when: 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 > 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, where 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 

(van Gendt et al., 2017, 2016)

Single exponent adaptation 

Adaptation was previously modeled with an exponential decay as in Eq. 3. 

𝑆𝑆𝑆𝑆 =  𝛼𝛼𝛼𝛼 ∙ ∑  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∙  𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔   (Eq. 3) 

𝛼𝛼𝛼𝛼 is the adaptation amplitude or the accommodation amplitude. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

adaptation, and 0.03% ∙ 𝐼𝐼𝐼𝐼 ∙ 𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

 for accommodation, 𝐼𝐼𝐼𝐼min(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒

for the fiber most sensitive to the used electrode, and 𝐼𝐼𝐼𝐼(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

particular fiber to that electrode. For spike adaptation 𝑓𝑓𝑓𝑓 ref

refers to the last stimulus pulse given.  

 

Power law adaptation  

� (Eq. 4.1) 

where τARP and τRRP are the time constants for the absolute and relative refractory period, 
and t is the time since the last action potential. It was shown previously (van Gendt et al., 
2017, 2016) that the adaptation behavior of the auditory nerve in response to electrical 
stimulation is a consequence of both sustained firing, referred to as spike adaptation (SA), 
and sustained stimulation, referred to as accommodation (Acco). Different models to 
described SA and Acco are described below. The final threshold was calculated as follows; 

	 Iadj = N(Idet,σ)·R+ SA+ Acco� (Eq. 4.2)

A spike was assumed to occur when: Igiven > Iadj, where Igiven is the stimulus current. The 
parameters for stochasticity, refractoriness, and single exponential adaptation were 
previously fitted (van Gendt et al., 2017, 2016). An overview of the parameters is given 
in table 4.1 in the appendix. The present paper determined parameters for power law 
adaptation and multiple exponentials.

Single exponent adaptation

Adaptation was previously modeled with an exponential decay as in equation 4.3:

	

 𝑅𝑅𝑅𝑅 =  1

1−𝑑𝑑𝑑𝑑
−(𝑡𝑡𝑡𝑡−𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

  (Eq. 1),  

where τARP and τRRP 

the time since the last action potential. It was shown previously 

of both sustained firing, referred to as spike adaptation (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

as accommodation (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). Different models to described 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

final threshold was calculated as follows;  

𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (Eq. 2) 

A spike was assumed to occur when: 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 > 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, where 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 

(van Gendt et al., 2017, 2016)

Single exponent adaptation 

Adaptation was previously modeled with an exponential decay as in Eq. 3. 

𝑆𝑆𝑆𝑆 =  𝛼𝛼𝛼𝛼 ∙ ∑  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∙  𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔   (Eq. 3) 

𝛼𝛼𝛼𝛼 is the adaptation amplitude or the accommodation amplitude. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

adaptation, and 0.03% ∙ 𝐼𝐼𝐼𝐼 ∙ 𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

 for accommodation, 𝐼𝐼𝐼𝐼min(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴

for the fiber most sensitive to the used electrode, and 𝐼𝐼𝐼𝐼(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

particular fiber to that electrode. For spike adaptation 𝑓𝑓𝑓𝑓 ref

refers to the last stimulus pulse given.  

 

Power law adaptation  

� (Eq. 4.3)

α is the adaptation amplitude or the accommodation amplitude. SP, a spatial factor, is 1 
for spike adaptation, and 0.03% 

 =  
1−𝑑𝑑𝑑𝑑

−(𝑡𝑡𝑡𝑡−𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)
𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

   

where τARP and τRRP are the time constants for the absolute and relative refractory period, and 𝑡𝑡𝑡𝑡 is 

the time since the last action potential. It was shown previously (van Gendt et al., 2017, 2016) that 

the adaptation behavior of the auditory nerve in response to electrical stimulation is a consequence 

of both sustained firing, referred to as spike adaptation (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆), and sustained stimulation, referred to 

as accommodation (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). Different models to described 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 are described below. The 

final threshold was calculated as follows;  

𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (Eq. 2) 

A spike was assumed to occur when: 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 > 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, where 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 is the stimulus current. The 

parameters for stochasticity, refractoriness, and single exponential adaptation were previously fitted 

(van Gendt et al., 2017, 2016). An overview of the parameters is given in Table 1 in the appendix. 

The present paper determined parameters for power law adaptation and multiple exponentials. 

Single exponent adaptation 

Adaptation was previously modeled with an exponential decay as in Eq. 3. 

𝑆𝑆𝑆𝑆 =  𝛼𝛼𝛼𝛼 ∙ ∑  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∙  𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔   (Eq. 3) 

𝛼𝛼𝛼𝛼 is the adaptation amplitude or the accommodation amplitude. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, a spatial factor, is 1 for spike 

adaptation, and 0.03% ∙ 𝐼𝐼𝐼𝐼 ∙ 𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

 for accommodation, 𝐼𝐼𝐼𝐼min(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) is the threshold 

for the fiber most sensitive to the used electrode, and 𝐼𝐼𝐼𝐼(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) is the threshold for a 

particular fiber to that electrode. For spike adaptation 𝑓𝑓𝑓𝑓 refers to the last spike, for accommodation 𝑓𝑓𝑓𝑓 

refers to the last stimulus pulse given.  

 

Power law adaptation  

 for accommodation, Imin (electrode)is 
the threshold for the fiber most sensitive to the used electrode, and Imin (electrode, fiber) 
is the threshold for a particular fiber to that electrode. For spike adaptation i refers to the 
last spike, for accommodation i refers to the last stimulus pulse given. 

Power law adaptation 

The power law function was implemented in the neural model as in equation 4.4:

	 PLA(t)= α ∙ ∑i SP ∙ (t-ti+offset)β� (Eq. 4.4) 

where i, α and SP are the same as above, offset represents a shift in the power law function, 
and β is the power component for the power law. Offset and β were assumed equal in 
both spike adaptation and accommodation.
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Power law approximation with multiple exponents

Power law adaptation can be approximated by multiple exponents (Drew and Abbott, 
2006). This was implemented here as in equation 4.5 for one exponent and equation 4.6 
for multiple (k) exponents: 

	

adaptation and accommodation. 

Power law approximation with multiple exponents 

Power law adaptation can be approximated by multiple exponents 

was implemented here as in Eq. 5 for one exponent and Eq. 6 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡)𝑘𝑘𝑘𝑘  =  𝛼𝛼𝛼𝛼 ∙ ∑  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∙  𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔   (Eq. 5) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) =  ∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡)𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  (Eq. 6), 

where 𝑓𝑓𝑓𝑓, 𝛼𝛼𝛼𝛼 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 are the same as above, and 𝜏𝜏𝜏𝜏 

adaptation.  

 

2.4 Model optimization 

The parameters for the single exponent adaptation 

2017, 2016), and the formulas and optimal parameters are given in A

adaptation model was fitted to two different data sets

of one fiber to short duration (400 ms) amplitude-

different stimulus amplitudes (Hu et al., 2010) (Fig. 2). 

recordings, st

threshold, which 

the first bin. Similar to the recordings by Hu et al. (2010), the s

� (Eq. 4.5)

	 ExpA(t)= ∑k ExpA(t)k � (Eq. 4.6)

where i, α and SP are the same as above, and τ refers to the time constant for the 
exponential adaptation. 

2.3 Model optimization
The parameters for the single exponent adaptation model were previously fitted (van 
Gendt et al., 2017, 2016), and the formulas and optimal parameters are given in Appendix 
A. The power law adaptation model was fitted to two different data sets. The first data set 
consisted of the responses of one fiber to short duration (400 ms) amplitude-modulated 
electrical pulse trains with five different stimulus amplitudes (Hu et al., 2010) (figure 4.2). 
For this short duration data, similar to the recordings, stimulation amplitudes were set to 
a certain relative amplitude compared to the threshold, which was defined as the stimulus 
amplitude that yielded a response of 100 spikes/s in the first bin. Similar to the recordings 
by Hu et al. (2010), the stimulus duration was 400 ms, bin-width 50 ms, pulse rate 5000 pps, 
modulation frequency 100 Hz, and modulation depth 10%. The second data set consisted 
of the responses of seven different fibers to long duration (600 s) continuous amplitude 
electrical pulse trains (Litvak et al., 2003). For this long duration data, the measurements 
of the seven different fibers (figure 4.1) were replicated. Stimulus levels that elicited the 
same simulated discharge rate in the initial bin as in the recordings were chosen. The 
duration was 600 seconds, the rate was 5000 pps, and bin-width was 1 second. Responses 
of fiber 1200 (located roughly 180˚ from the round window) to stimulation of the nearest 
electrode contact were simulated. 

Parameter search
Simulations were performed for both data sets using a range of parameters (table 4.1). 
Combinations of different parameter settings in the range (i.e., 432 unique parameter sets) 
were used to simulate both datasets. Refractoriness and relative spread were set to the 
average values as published by van Gendt et al. (2017). See Appendix A for an overview 
of these parameters.
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Table 4.1. Parameters for optimization
Parameter Range

Accommodation amplitude (αacco), % 0.004 – 0.014, step size: 0.002

Adaptation amplitude (αadap), % 0.00 – 0.05, step size: 0.01

Offset, ms 1, 5, 20, 40

Exponent β -1.2, -1.1, -1.0, -0.9

Minimal normalized RMS error
Values were visually extracted from the published data recordings for the measured 
discharge rates in all different bins. Differences between simulated and measured 
discharge rates were calculated using the normalized root mean square error (NRMSE), 
normalization was done by dividing by the range of the measured rates per stimulus 
amplitude. The NRMSE was calculated for each stimulus amplitude (a) as in equation 4.7:

	
𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎 =

�∑ (𝑒̅𝑒𝑒𝑒𝑎𝑎𝑎𝑎−𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎)2𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚−𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
   (Eq. 7) 

where for N bins, r is the measured rate and 𝑒̅𝑒𝑒𝑒 the simulated rate. 

The NRMSE values for all stimulus levels were averaged. For both data sets, t

minimal error was defined. These parameter sets were also used to simulate 

data set for which it was not optimized. 

found by finding the minimum of the average error of both data sets. In 

duration data, seven different fibers were used, and 

individual fiber. A sensitivity analysis was performed in which the effect of 

the NRMSE was investigated.  

2.5 Approximating the power law fit with multiple exponents 

A sum of exponents was used to match the optimal power law 

optimization. The number of exponents (n) for this fit was increased until 5 or, i

found with 5, until the NRMSE did not decrease 

limit the search space for the least squares-
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� (Eq. 4.7)

where for N bins, r is the measured rate and r ̅  the simulated rate.

The NRMSE values for all stimulus levels were averaged. For both data sets, the parameter 
set with minimal error was defined. These parameter sets were used to simulate responses 
to the other data set for which it was not optimized. An optimal parameter set, defined as 
the set yielding minimal average NRMSE of both data sets. In addition, in the long duration 
data, seven different fibers were used, and the optimal parameter set was defined for each 
individual fiber. A sensitivity analysis was performed in which the effect of parameter 
variations on the NRMSE was investigated. 

2.4 Approximating the power law fit with multiple exponents
The optimal power law parameter set was matched to a sum of exponents using least 
squares optimization. The number of exponents (n) for this fit was increased until 5 or, 
if no good fit was found with 5 exponents, until the NRMSE did not decrease more than 
10% with an extra exponent. In order to limit the search space for the least squares-
optimization of the parameters for the set of exponents, the power law kernel was divided 
into n parts of equal log-length. The longest exponent was fitted first and only on the last 
part of the power law kernel. The second longest exponent was fitted on the last two parts 
of the power law kernel taking the contribution of the longest exponent into account. 
Following this pattern, the shortest exponent was fitted last on the entire duration of 
the power law kernel taking all other exponents into account. This method ensured that 
all exponents were properly normalized. The log spacing ensured that the exponents 
overlapped equally with each other.
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3. Results

The optimal parameter set was defined as the combination of parameters that yielded the 
smallest NRMSE. Table 4.2 shows these parameter sets optimized for the short and long 
duration data and those combined (columns Short, Long and Both respectively), and for 
each of the individual fibers of the long duration data (F1 – F7).

Table 4.2. Optimal parameter sets yielding the smallest NRMSE averaged for the different stimulus 
amplitudes on the short duration data (Short), the seven different fibers used in the long duration 
data (Long), for both errors averaged (Both) and per fiber (F) in the long duration data.

Short Long Both F1 F2 F3 F4 F5 F6 F7
Offset [ms] 20 5 20 5 5 5 5 40 20 40
Exponent β -1 -1 -1.1 -0.9 -0.9 -1.1 -1 -1.2 -1 -0.9
α accommodation 
[x 10-4 % of stimulus]

10 6 8 6 4 4 4 12 6 4

α adaptation 
[% of threshold]

0.03 0.02 0.02 0.02 0.01 0.00 0.01 0.05 0.02 0.01

3.1 Comparison of model simulations to recordings

Long duration simulations
For the long duration simulations, measured and simulated spike rates over the course of 
the stimulus are plotted in figure 4.1. Data were recorded from seven different fibers from 
one animal (Litvak et al., 2003). The two units with the lowest response amplitudes stopped 
discharging after 1-2 minutes, the other five units exhibited adaptation over the first 100 
seconds followed by either slow adaptation or a steady response. For comparison, the 
simulations for the previously published model with an exponent of 100 ms is shown in 
figure 4.1A. The power law adaptation simulations with the optimal parameter set (table 
2) for the short and long duration data are shown in figure 4.1B and 4.1C respectively, 4.1D 
shows the simulations with the parameter set that yielded the minimal combined error. 
Figure 4.1E shows the power law fit when the optimal parameter set is chosen per fiber. 
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Figure 4.1. Discharge rates in response to long duration stimulation (600 s). The simulations are 
plotted in black. The visually extracted data from Litvak et al. (2003) is plotted in blue in each graph. 
The E in the upper right corner refers to the mean NRMSE for all fibers. Simulated discharge rates 
are calculated with the 100 ms exponential model [A], with the power law model optimized for the 
short duration data [B], with the power law model optimized for the long duration data [C], with the 
power law model optimized for both the short and long duration data [D] and with the power law 
model optimized per fiber for the long duration data [E].

The simulations with exponential adaptation only showed an initial, small decrease in 
spike rate, whereas all power law adaptation models demonstrated a continuous spike 
rate decrease over the course of stimulation (figure 4.1). Quantitatively, the power law 
outperformed the model with exponential adaptation, as reflected in the NRMSE value 
of 0.806 for exponential adaptation, 0.201 for power law adaptation with the parameter 
set optimized for the short duration data, 0.082 optimized for the long duration data set, 
0.090 for both data sets and 0.060 optimized per fiber. Both the parameter set optimized 
for this particular data and the parameter set optimized for the short duration data 
yielded a substantial improvement in predicting the discharge rate relative to the single 
exponent. The best replication was obtained when optimized per fiber. The only difference 
between the recordings and these per-fiber-simulations was that the dip in the spike rate 
at approximately 50 to 150 seconds was not replicated by the model.

Short duration, amplitude-modulated simulations 
To investigate which model best described the discharge rates and modulation following 
behavior in response to short duration amplitude-modulated pulse trains, the recordings 
from Hu et al. (2010) were simulated. The single exponent model and the power law 
models optimized for the short duration data and for the long duration data were used. 
For ease of comparison, recordings and simulations are plotted together in figure 4.2. 

For the spike rates, the exponential adaptation yielded an NRMSE of 0.094. The power 
law model with the parameters optimized for this data and the combined data sets had 
NRMSE’s of 0.065 and 0.068 respectively, outperforming exponential adaptation, whereas 
the parameters optimized for the long duration data only performed quantitatively worse, 
with an NRMSE of 0.134. For the VS, the single exponent model performed better than any 
of the power law models. Vector Strength measures periodicity in the neural response 
to a periodic input. The vector strength in the models is above zero but lower than the 
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recordings. This means that some periodicity is maintained in the modeled responses, but 
not as much as in the recordings.
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Figure 4.2. Simulation of responses to short duration, amplitude-modulated pulse trains. Upper 
row shows spike rates determined in bins of 50 ms in response to five different stimulus amplitudes. 
The lower row shows vector strengths obtained from the same bins. For clarity, the recorded 
data are plotted separately in [A], and in [B-E] in grey-blue in the background (data from Hu et al., 
2010, reprinted with permission). The numbers in the lower right corner in [A] indicate amplitudes 
relative to the threshold. In [B]-[E] simulations are plotted in black. Simulations were modeled with 
exponential adaptation, single exponent (100 ms) in [B], with the parameter set optimized for the 
short data in [C], with the parameter set optimized for the long duration data in [D], and with the 
parameter set optimized for both data sets in [E]. The optimal parameter sets are given in table 4.2.

3.2 Sensitivity analysis
To find the parameter sets yielding the minimal NRMSE, simulations were performed with 
a range of stimulus parameters. To investigate how the error was affected by the variation 
in the parameters, a sensitivity analysis was performed. The sensitivity to the adaptation 
and accommodation parameters was investigated by plotting them for each exponent 
and offset combination, and the sensitivity of the exponent and offset parameters was 
investigated by plotting them for each adaptation and accommodation combination. The 
resulting graphs including the optimal parameters are shown in figure 4.3. 
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Figure 4.3. NRMSEs for the short duration data (left) and long duration data (right). Color coding 
ranges from the minimal error in blue to the maximal error in yellow. The minimal and maximal 
values are included in each sub-figure. At all intersections of the dotted lines, responses were 
calculated, and between those points is interpolated. The following parameters were set so that the 
optimal value was included in each sub-figure: [A] offset = 20 ms, exponent = -1; [B] offset = 5 ms, 
exponent = -1; [C] adaptation = 0.03%, accommodation = 10 x 10-4 %; and [D] adaptation = 0.02%, 
accommodation = 6 x 10-4 %.

The patterns in figure 4.3 are different for the short and long duration data. For long 
duration data, larger accommodation values led to strong errors, which was not seen 
in the short duration data. The short duration data exhibited a combined effect of 
adaptation and accommodation amplitudes; larger adaptation amplitudes required 
smaller accommodation amplitudes for similar errors. Furthermore, we identified an 
entangled effect of offset and β in the short duration simulations that was not seen in the 
long duration simulations. In the long duration data, the exponent influenced the error 
much more than the offset.
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3.3 Fitting the power law with multiple exponents

Short duration fits with multiple exponents
The actual physiological processes underlying adaptation likely have exponential 
dynamics, but together behave in line with power law dynamics. Therefore, we investigated 
how many exponential processes would be required to explain the data. Each added 
exponent adds two new parameters to the parameter space that needs to be fitted. Fitting 
with several parameters can lead to overfitting or lack of convergence. Moreover, running 
simulations of the history-dependent neural responses with multiple exponents requires 
tremendous computational power. Alternatively, the exponential parameters can be fitted 
on the power law function that, in turn, was fitted on the data. Here, the minimum number 
of exponents needed to reliably simulate the recordings was tested. The time constants 
and weights for each number of exponents are given in Appendix B. The simulations of 
the short duration data with multiple exponents are shown in figure 4.4. 

Going from the fit with 1 exponent (τ=77 ms) to two exponents (τ1= 23 and τ2=212 ms) 
induced the largest improvement. The NRMSE decreased from 0.100 to 0.066, and a 
continuous decrease in the spike rate was seen, similar to the animal data. The VS also 
improved with the addition of a second exponent; the NRMSE decreased from 0.25 to 
0.219. When the number of exponents increased further, no additional substantial 
improvement in replication of the data was seen.

Long duration fits with multiple exponents
In a similar approach as with the short duration data, the long duration data were fitted 
with exponents. The simulations with 1, 5 and 7 exponentials are shown in figures 4.5A-C. 
The NRMSE values for up to 10 exponentials are shown in figure 4.5D. 
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Figure 4.4. Simulations with adaptation as sums of exponential functions, compared to the short 
duration data (Hu et al., 2010). Results of the simulations are shown in black, and the experimental 
counterparts as published by Hu et al. in grey-blue. The number of exponents to model the 
adaptation varied from 1 to 5. The exponential components were fitted to a power law function 
with the optimal parameters to fit the short duration data itself; beta = -1 and offset = 20 ms.

0 200 400 600
Time from onset [s]

0

200

400

600

800

Fi
rin

g 
ra

te
 [s

p/
s]

[A]: 1 exps
E = 0.257

0 200 400 600

[B]: 5 exps
E = 0.117

0 200 400 600

[C]: 7 exps
E = 0.079

10
N Exponents

0.05
0.1

0.15

0.2

0.25

0.3
[D]: NRMSEs

Time from onset [s] Time from onset [s]
0 5

Figure 4.5. Power law adaptation fitted with 1, 5 and 7 exponents in [A-C], the NRMSE compared to 
the long duration data (Litvak et al., 2003) for 1 up to 10 exponents is plotted in [D]. The results of 
the simulations are shown in black, and the experimental counterparts as published by Litvak et al. 
in grey-blue. Exponential functions were fitted to a power law function with β = -1 and offset = 5 ms.

As can be seen in figure 4.5D, with up to seven exponents the fit improved; NRMSE 
decreased from 0.257 with the one fitted exponent to 0.079 with seven exponential 
functions. With seven exponents the taus ranged from 4 ms to 600 s, with approximately 
one order size difference between each tau. The NRMSE of 0.079 as found with seven 
exponents is similar to the NRMSE found with the power law fitted on the long duration 
(0.082, figure 4.1C).
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4. Discussion

Power law and exponential models of adaptation were evaluated for their performance 
in simulating the responses of the auditory nerve to electrical pulse trains of different 
durations. Firing rates were better simulated with power law adaptation optimized on both 
data sets combined than with exponential adaptation. For both data sets, when optimized 
for the data set itself the best results were obtained. The power law parameters optimized 
for short duration data also predicted the long duration data reasonably well, but short 
duration data simulated with the parameters for long duration data yielded a fit worse 
than the exponential. Vector strength was best simulated with exponential adaptation, but 
was in all simulations smaller than in the recordings. For individual fibers, slightly different 
parameter sets were found. The power law could be fitted with multiple exponents, which 
is physiologically more realistic. When enough exponents were included, this yielded 
similar responses as with the power law. The number of required exponents depended on 
the duration of stimulation. The effect of long duration stimulation is important because 
relevant temporal segments, such as sentences, are in the order of seconds rather than 
milliseconds, and regular CI usage will last a day. With improved models of adaptation 
as suggested here, extended with an interpretation model, the effect of sound-coding 
strategies for speech segments and longer duration stimulation can be evaluated. It will 
be particularly interesting to evaluate how the adaptation in the auditory nerve alters 
loudness perception and dynamic range. In the future, this improved understanding of 
neural adaptation could be used to test the performance of sound-coding strategies in 
long duration stimulation and provide suggestions on how to integrate adaptation in 
sound-coding strategies to optimally encode the acoustic environment.

Optimal power law parameters
Here, two different data sets were used to find the optimal parameter set, and an overall 
optimum parameter set was determined. The separate data sets were best described by a 
power law with an exponent of -1, the combined optimum was obtained with an exponent 
of -1.1. These values are in line with earlier studies of adaptation mechanisms in general 
computational neurosciences, and with specific studies on adaptation of the auditory 
nerve in response to acoustic stimulation (Zilany and Carney, 2010), where the exponent 
was found to be around -1. The parameter set found by minimizing the combined error 
outperforms the single exponential model for both the short and long duration data.

Power law adaptation has been argued to result in whitening of the neural responses, 
with the power law exponent optimizing information transmission by removing both 
short-range and long-range temporal correlations in spike trains (Pozzorini et al., 2013). 
For the individual fits, the exponents varied between -0.9 and -1.2 (table 4.2). This spread 
in individual power law components suggests that the characteristic exponent depends 
on the frequency sensitivity of the neuron and the corresponding temporal correlations, 
thereby optimizing information transmission in the population of fibers. As seen in the 
sensitivity analysis for the short duration data (figure 4.3), there is a relationship between 
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offset and exponent; with a smaller exponent, a smaller offset was required to yield minimal 
error. For the long duration data, such a relationship was not as clear. When the optimized 
power law was fitted to a single exponent, the resulting time constant (77 ms for the short 
duration data, and 60 s for the long duration data) was different from the time constant 
found in previous studies (100 ms) (van Gendt et al., 2017, 2016). A possible explanation for 
this is that, in previous studies, the exponent was found by directly optimizing on the data, 
whereas in the present study the exponent was found by fitting on the optimal power law. 
Moreover, previously, the time constant of 100 ms was based on a larger number of data 
sets. Previous studies combined the power law with exponential adaptation to ensure 
that adaptation on the shortest time scales was properly modeled (Zilany and Carney, 
2010). In the model presented here, temporal neural behavior was described by both 
power law adaptation and refractory behavior, which is exponential with a time constant 
of approximately 1 ms. Parameters of the approximation with multiple exponents were 
obtained by a direct fit to the power law and minimizing the error. Alternatively, the error 
between expected output and simulated neural responses can be minimized directly, but 
requires much more computational effort. The computational effort depended mostly 
on stimulus duration and level, and was comparable for power law and exponential 
adaptation.

Biophysical origins of adaptation
The dynamics of adaptation in the auditory nerve in response to electrical stimulation, and 
more specifically the dynamics of power law adaptation, can be attributed to underlying 
phenomena with exponential dynamics. Generally, many biological processes cannot be 
described by a single exponential time constant, but rather by a sum of exponents with a 
wide range of time constants. Such a sum yields a single power law, which has been applied 
to model adaptation in neural systems (Anderson, 2001; Thorson and Biderman-Thorson, 
1974). Up to this date it is unclear which biophysical processes cause power law adaptation 
and whether this is a single process or multiple processes operating on different time 
scales (Pozzorini, 2014). It has been suggested to be related to ion channel- (Teka et al., 
2016; Toib et al., 1998), synaptic- (Fusi et al., 2005), and psychophysical dynamics (Fairhall 
et al., 2001; Zilany et al., 2009). The synaptic mechanism can be caused either by depletion 
of presynaptic neurotransmitters, or desensitization of post-synaptic receptors (Zilany et 
al., 2009). With electrical stimulation of the auditory nerve and recorded peripherally, as 
in this study, no synapse mechanisms or complex neural networks have been in place. 
Rather, the power law response in the recordings replicated here is an effect of adaptation 
in the behavior of the ion channels in the membranes of the auditory neurons. 

Ion channels can show power-law dynamics under the assumption of a large number of 
hidden states (Ben-Avraham and Havlin, 1991; Teka et al., 2016), producing anomalous 
diffusion with power-law behavior. Such behavior has been shown to accurately capture 
single channel dynamics (Goychuk and Hänggi, 2004), with phenomenological power-
law parameters relating to the transition probabilities between these hidden states. The 



4

Short and long-term adaptation are better described by a power law

99

exact parameters to be implemented in the kinetics of ion channels to yield the power law 
dynamics could be evaluated using a biophysical model.

Specific adaptation currents have been suggested in the literature, and have been related 
to different ion channels and time constants. The most well-known are the voltage-gated 
potassium (M-) currents, may cause adaptation with time constants of a few milliseconds 
(Benda and Herz, 2003). Secondly, calcium-gated potassium currents have been shown 
to cause adaptation with time constants of around 50 milliseconds (Madison and Nicoll, 
1984). A third, slower, mechanism is the slow recovery from inactivation of the sodium 
channels (Vilin and Ruben, 2001). The time constant of the slow inactivation process 
ranges from a few 100ms up to tens of seconds (Benda and Herz, 2003; Blair and Bean, 
2003). Moreover, a model study showed that hyperpolarization-activated cation and low-
threshold potassium ion channels may play a role in adaptation with a time scale around 
100 ms (Negm and Bruce, 2014). An after hyperpolarization, adaptation current may be 
generated by a cascade of exponential processes (Drew and Abbott, 2006). The number 
of relevant processes, the time scales involved, and the parameters required to couple the 
different processes depend on the duration of stimulation to be simulated. 

Implications of power law adaptation behavior
Power law adaptation provides an improved dynamic range and enhanced representation 
of stimulus dynamics (Fairhall et al., 2001; Mensi et al., 2016). The slow components of 
adaptation provide information about the context or stimulus statistics, whereas the fast 
components provide information about the rapid stimulus variations (Fairhall et al., 2001). 
Because of the slow variations, the human auditory system is sensitive to a wide range 
of stimulus levels, including levels of soft speech and loud shouting. With power law 
adaptation, auditory neurons that adapt to sound-level statistics (Zilany and Carney, 2010) 
are more sensitive to amplitude modulations in the presence of a steady background 
noise (Zilany et al., 2009) and to abrupt changes, such as those reflected in oddball 
paradigms (Antunes et al., 2010). When the neuron is adapted to a certain sound level, 
small variations are better detectable, i.e., just noticeable differences become smaller. A 
previous modeling study showed that weaker adaptation reduces the vector strength 
and vice versa, but vector strength is the results of a complex interplay of adaptation, 
stochasticity and refractoriness (van Gendt et al., 2017). Power law adaptation has been 
suggested to improve dynamic range, or precision coding in a dynamic environment. 
The question is whether long term adaptation components would come at the expense 
of short-term components, yielding the drop in vector strength. Models developed so 
far slightly underestimate vector strength of phase locking properties of the electrically 
stimulated auditory nerve (Goldwyn et al., 2010; van Gendt et al., 2017). It would be of 
great value to further investigate what neural behavior could underlie this strong phase 
locking. Future simulations with amplitude modulated pulse trains with means slowly 
varying over time could demonstrate how power law adaptation affects precision coding 
in a dynamically changing environment.
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The modulation rate of the speech envelope is 2 to 50 Hz (Rosen, 1992), and peaks at 3-5 
Hz. These slow modulations are important for speech perception. Frequency modulations, 
often referred to as fine-structure, occur on much shorter time scales. These faster 
modulations in speech (milliseconds or less) convey information about prosody, melody, 
intonation, timbre, and the quality of speech. One can expect that, because power law 
adaptation improves precision coding in a dynamic environment, it also improves the 
perception of both of these cues. This could be evaluated in a follow-up study including 
amplitude-modulated signals with different modulation rates and switching stimulus 
levels. 

In CIs, loudness is generally coded by charge, i.e., the amplitude or width of the stimulus 
pulse, by which a larger number of fibers are stimulated. For normal hearing, loudness 
increases with a compressive function of sound pressure, whereas for electrical stimulation, 
loudness increases with an expansive function for increasing stimulation (Vellinga et al., 
2017). Moreover, the dynamic range in CI listeners is much smaller than that of normal 
hearing listeners. Compression can be employed to compensate for the steep build-up 
in loudness. In addition, in contemporary CIs, matching the dynamic range of naturally 
occurring sounds to the perceptual dynamic range is improved through the automatic 
gain control (AGC). The AGC adjusts the loudness cue according to the history of stimulus 
levels averaged over a certain amount of time, thereby improving the comfortable 
audibility of a wide range of stimulus levels. These systems are generally slow- or fast-
acting or dual. Fast-acting systems aim to evoke the loudness perception most true to 
nature, whereas slow-acting systems are designed to maintain the audibility of the 
amplitude differences for the modulation rates conveying speech information (Boyle et 
al., 2009). With an ideal AGC, neural activation would replicate the situation of natural 
hearing, and the optimal dynamic range would be achieved. To further optimize existing 
AGC designs in this direction, the difference in adaptation dynamics between the normal 
hearing situation and the electrically stimulated degenerated auditory nerve could be 
established and accounted for by sound processing. The present study shows that power 
law dynamics best describe the adaptation in the electrically stimulated auditory nerve. 
Ideally, the dynamics and strength of adaptation of the auditory nerve in an individual CI 
user would be determined. Subsequently, the adaptation mechanism in the sound-coding 
strategy could be adjusted so that the stimulation pattern effectively yields activation 
similar to the normal hearing situation.

In real-life, a CI listener will wear the CI continuously. Although there will be moments 
of relative quiescence, adaptation will occur continuously to a larger or smaller extent. 
Consequently, models of the auditory nerve in response to electrical stimulation will have 
to be tuned to this. Psychophysical experiments generally start in quiet. This may lead 
to inherent changes within the duration of the experiments. This should be considered 
while designing an experiment. When one wants to use a desynchronizing pulse train to 
activate the neurons from an adapted situation (Rubinstein et al., 1999), the duration of 
stimulation must be evaluated. As can be seen from the recordings (Litvak et al., 2003), 
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most fibers fire at a constant rate after a stimulus duration of around 200 seconds. This 
suggests that here the maximum adaptation is reached.

The pulse trains simulated in the current study had pulse rates of 5 kpps. Stimulus rates used 
in contemporary cochlear implants vary from 800 to 2000 pps, with new developments 
in the lower frequency range. Because of cross-over stimulation between electrodes, 
neurons are likely to be affected by much higher rates than the stimulus rates on single 
electrodes, notwithstanding the fact that there will be a large variability of stimulus rates 
at the site of the neurons. It has been shown that the stimulus rate has an effect on the 
spike rate over time for short duration responses (Heffer et al., 2010; Zhang et al., 2007). 
Previous modelling work showed that such differences over time can be replicated with a 
single model with the same parameters (van Gendt et al., 2016). For long duration electrical 
stimulation, unfortunately, such experimental data of neural responses to a variety of 
stimulus rates is not available. Such data would enable validation of, or optimization of 
the power law parameters (alpha, beta and offset) for low rate pulse trains. To investigate 
the theoretical effect of power law adaptation on clinically used, lower rate pulse trains, 
responses to long duration stimulation with 800 and 1800 pps were simulated, results are 
shown in figure 4.6. 
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Figure 4.6.  Response rates simulated with power law adaptation (offset = 5 ms, exponent = -1, 
accommodation = 6 x 10-4 % of stimulus, adaptation = 0.02% of threshold) for long duration pulse 
trains (600 seconds) with different stimulus rates; 800 pps (black), 1800 pps (middle grey) and 5000 
pps (light grey). For all pulse trains the stimulus level was used that elicited the 720 spikes in the first 
second in response to the 5kpps pulse train. 

Figure 4.6 shows that also with lower rates the induced firing rates are expected to 
decrease over a long period of stimulation. The lower stimulation rates (800 and 1800 
pps) had higher sustained firing rates than the response to 5000 pps, in which the neuron 
was supposedly less affected by adaptation and refractoriness. The sustained firing 
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rates in response to 800 and 1800 pps are very similar.  The exact response is the result 
of a complex interplay between refractory properties, accommodation, adaptation, and 
stimulus rate, and therefore dependent on stimulus rate in a nonlinear manner. 

Limitations and suggestions for further research
The optimal parameter set was found via direct comparison of the simulated and 
recorded spike rates. However, especially for the long duration simulations, the model 
did not replicate some anomalous behavior of the recorded spike rates. Examples of this 
behavior were the dip in response rates around 50 ms and the continuous decrease in the 
strongest responding neuron. This latter observation may have been a result of continuing 
damage being done to the neuron due to the recording electrode, or displacement of 
the recording electrode. A larger number of these kinds of recordings from neural fibers 
would be required to determine whether this is an intrinsic neural behavior that should be 
modeled, or whether it is merely an effect of the recording method.

The short duration data fitted in this paper were all obtained from a single neuron. The 
other two fibers presented in Zhang et al. (2007) did not show the continuous decrease 
and were already reliably simulated by the model with a single exponent. Such inter-fiber 
differences indicate great variability between fibers in adaptation behavior. The improved 
fit on long duration data when optimized per fiber indicates that different fibers require a 
different parameter set and exhibit different neural behaviors. More experimental data is 
needed to obtain ranges for the parameters in auditory neurons. A previous study showed 
that the strength of adaptation may be related to the health of the auditory nerve (van 
Gendt et al., 2019). How the characteristics of the power law adaptation relate to neural 
health is unknown, but could be evaluated in a physiological study.

In a follow-up study, the effect of the amount of adaptation on long duration stimulation, 
especially speech segments, should be evaluated. An interpretation model that can relate 
the neural spiking to perceptual outcomes will be required. Hypotheses relating neural 
adaptation to increased dynamic range and loudness discrimination could be tested. 
In addition, the effect of diminished adaptation, in amplitude or temporal length, as 
may occur in a degenerated auditory nerve, on perceptual outcomes could be tested. 
Besides evaluating how the neural behavior can be expected to be related to perceptual 
outcomes, the model can also be used to compare different sound-coding strategies. After 
validation, new approaches to sound coding can be tested efficiently. With the model 
presented here, the performance of new designs and strategies in the perception of long 
duration speech segments can be evaluated.
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𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

 

• Total model: 𝐼𝐼𝐼𝐼𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑑𝑑𝑑𝑑ℎ =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑ℎ,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴  

 

 

Table A.1: Model parameters 

Parameter Value 

RS 0.06  

τARP 0.4 ms  

τRRP 0.8 ms 

Within refractoriness stochasticity 5% of τARP/τRRP 

Adaptation amplitude 1% of threshold 

Accommodation amplitude 0.03% of stimulus current · spatial factor 

 

	° Every pulse: adaptation amplitude is increased:
Adaptation parameter: 
ampladap= ampladap (oud) + Adaptation amplitude · threshold (initial)

	° Every spike: adaptation amplitude is increased (accommodation):
Adaptation parameter (accommodation):
ampladap= ampladap (oud)+ Accommodation amplitude · stimulus current · spatial 
factor

	° spatial factor 

A. Exponential model formula and parameters 

 

• Relative spread: 𝜎𝜎𝜎𝜎 =  𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑ℎ  ∙ 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆 

• Refractoriness: 𝑅𝑅𝑅𝑅 =  1 − 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   

• Adaptation: 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 =  ∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔  

o Every pulse: adaptation amplitude is increased: 

Adaptation parameter:  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒) +  Adaptation amplitude · 𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 

o Every spike: adaptation amplitude is increased (accommodation): 

Adaptation parameter (accommodation): 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒) +  Accommodation amplitude · 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ·

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

o Spatial factor =  𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

 

• Total model: 𝐼𝐼𝐼𝐼𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑑𝑑𝑑𝑑ℎ =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑ℎ,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴  

 

 

Table A.1: Model parameters 

Parameter Value 

RS 0.06  

τARP 0.4 ms  

τRRP 0.8 ms 

Within refractoriness stochasticity 5% of τARP/τRRP 

Adaptation amplitude 1% of threshold 

Accommodation amplitude 0.03% of stimulus current · spatial factor 

 

•	 Total model: Ifinal_th= N(Ith,σ)·R+ AF

Table A.1: Model parameters
Parameter Value

RS 0.06 

τARP 0.4 ms 

τRRP 0.8 ms

Within refractoriness stochasticity 5% of τARP/τRRP

Adaptation amplitude 1% of threshold

Accommodation amplitude 0.03% of stimulus current spatial factor
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B. Power law approximation with exponents

Table B.1: Fitted exponents and their weights to approximate the power law for short duration data. 
Exponential time constants and weights for the fit to power law with beta = -1 and offset = 20 ms.
1 exp in ms 
weight

77 

2 exps in ms
weights

23
0.72

212 
0.26

3 exps in ms 
weights

17
0.61

80
0.28

376
0.13

4 exps in ms 
weights

15
0.52

50
0.28

159
0.14

512
0.07

5 exps in ms 
weights

14 
0.45

36
0.27

93
0.16

237
0.09

606
0.05

Table B.2: Fitted exponents and their weights to approximate the power law for long duration data 
Exponential time constants and weights for the fit to power law with beta = -1 and offset = 5 ms. 
1 exp ms 
weights

6e5
2.5e-4

2 exps ms 
weights

21
0.76

6e5
1.9e-4

3 exps ms 
weights

10
0.86 

150
0.13

6e5
1e-4

4 exps ms 
weights

6.3
0.81

49   
0.25

748
0.03   

6e5
1.1e-4

5 exps ms 
weights

5 
0.71

26
 0.35

197
0.067

2.8e4
7e-3

6e5
1e-4

6 exps ms 
weights

3.8
0.61

17
0.41

88
0.11

628
0.021

7.8e3
2.3e-3

6e5
5.9e-5

7 exps ms 
weights

4
0.56

14
0.43

68
0.13

407
0.028

3608
4.1e-3

6.5e4
2.9e-4

6e5
1.9e-5

8 exps ms 
weights

3
.50

12
0.45

48
0.17

239
0.042

519
7.9e-3

134e2
1.0e-3

897e2
1.0e-4

6e5
2.8e-5

 

9 Exps ms 
weights

2.8
0.43

9.4
0.47

35
0.20

140
0.061

710
0.014

4.1e3
2.6e-3

2.2e4
4.5e-4

1.1e5
8.6e-5

6e5
2.3e-5

10 exps ms 
weights

2.4
0.35

7.3
0.47

23
0.25

82
0.089

320
0.026

1.4e3
6.6e-3

7.1e3
1.3e-3

3.1e4
2.7e-4

1.4e5
6.2e-5

6.0e5
2.2e-5
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Abstract

Electrically evoked compound action potentials (eCAPs) are measurements of the auditory 
nerve’s response to electrical stimulation. ECAP amplitudes during pulse trains can exhibit 
temporal alternations. The magnitude of this alternation tends to diminish over time 
during the stimulus. How this pattern relates to the temporal behavior of nerve fibers 
is not known. We hypothesized that the stochasticity, refractoriness, adaptation of the 
threshold and spike-times influence pulse-train eCAP responses. Thirty thousand auditory 
nerve fibers were modeled in a three-dimensional cochlear model incorporating pulse-
shape effects, pulse-history effects, and stochasticity in the individual neural responses. 
ECAPs in response to pulse trains of different rates and amplitudes were modeled for 
fibers with different stochastic properties (by variation of the relative spread) and different 
temporal properties (by variation of the refractory periods, adaptation and latency). The 
model predicts alternation of peak amplitudes similar to available human data. In addition, 
the peak alternation was affected by changing the refractoriness, adaptation, and relative 
spread of auditory nerve fibers. As these parameters are related to factors such as the 
duration of deafness and neural survival, this study suggests that the eCAP pattern in 
response to pulse trains could be used to assess the underlying temporal and stochastic 
behavior of the auditory nerve. As these properties affect the nerve’s response to pulse 
trains, they are of uttermost importance to sound perception with cochlear implants.
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1 Introduction

Electrically evoked compound action potentials (eCAPs) arise from the auditory nerve’s 
response to electrical stimulation. ECAPs are often measured in cochlear implant (CI) 
recipients, the clinical applicability is widely studied (e.g. Al Muhaimeed et al., 2010; 
Hughes et al., 2000; Mittal and Panwar, 2009) and for a review see de Vos et al. (2017). 
In the most conventional eCAP measurements, a forward masking paradigm is used to 
obtain information about the neural response to a single pulse. The N1-P2 peak in that 
response provides insight into the number and location of fibers firing in response to the 
given stimulus. In a different approach (Wilson et al., 1994), the neural response to a train 
of pulses can be measured, an example of which is shown in figure 5.1 (Hughes et al., 
2012). In the present study, this type of measurement is replicated using a comprehensive 
computational model. 

Figure 5.1. Human eCAP data in response to constant amplitude pulse trains (Hughes et al., 2012) 
Reprinted with permission.

eCAP measurements in response to pulse trains were first performed in humans by 
Wilson et al. (1994), who showed alternating eCAP amplitudes in response to certain 
stimulation rates. Such responses to pulse trains with rates up to 4000 pps were then 
studied in several groups of CI users (figure 5.1) (Hughes et al., 2014, 2012; Wilson et al., 
1997, 1994). This alternation pattern is most clearly seen at rates of 1000-2000 pps and 
is thought to be an effect of refractoriness and membrane noise. At higher rates, the 
alternating pattern disappears, probably due to asynchronous firing. The rate at which the 
alternation disappears is sometimes referred to as the stochastic resonance frequency. 
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This was hypothesized to be a desirable state of the auditory nerve as the nerve then 
may be sensitive to small input fluctuations, and could be obtained by including a noise 
conditioner (Rubinstein et al., 1999). Overall eCAP amplitudes decrease at higher pulse 
rates , which is thought to be related to adaptation and accommodation (Cohen, 2009; 
Hay-McCutcheon et al., 2005; Schmidt, Clay, and Brown, 2007). Animal studies show similar 
behavior of the pulse-train eCAP (Abbas et al., 1999; Campbell et al., 2012; Haenggeli et 
al., 1998; Jeng et al., 2009; Loquet et al., 2004; Matsuoka et al., 2000; Ramekers et al., 2015). 

Several researchers have attempted to correlate the pulse-train eCAP in response to 
psychophysical measures of temporal processing (e.g., gap detection, pitch perception, 
and loudness summation) or speech perception (Hay-McCutcheon et al., 2005; Huarte et 
al., 2014; Hughes et al., 2014; McKay et al., 2013; Zhang et al., 2013). Better pitch perception 
was shown to be related to lower alternations in responses (Carlyon and Deeks, 2015). 
There is however a large inter-patient variability in the eCAP alternation and correlations 
with psychophysical measures, which therefore up to this date remains a subject of debate. 

As sensorineural hearing loss results in a reduction in the spiral ganglion cell population 
and demyelination of the peripheral dendrites up to the central axon (Leake and Hradek, 
1988), differences in morphology and physiology of auditory neurons may be a major 
cause of the variable outcomes observed in CI users. Hearing loss and altered neural 
refractoriness have been shown to occur concomitantly. Ramekers et al. (2015) studied 
the effect of deafness on the eCAP response to pulse trains, comparing eCAP data 
to histology. Pulse-train eCAP responses in deafened animals showed an increase in 
normalized eCAP amplitude and eCAP alternation at specific rates at the end of 100-ms 
stimulation. The time course of SGN degeneration after deafness seems to be species-
dependent (Kalkman et al., 2016). For instance, in cats, Leake and Hradek et al. (1988) 
showed continuous degeneration of spiral ganglion neurons, which could progress over 
up to several years, following administration of ototoxic drugs. On the contrary, in humans 
a gradually degeneration of the peripheral processes is suggested, where possibly after 
long duration deafness only the unmyelinated terminal disappears (Snel-Bongers et al., 
2013).

Though most research on pulse-train eCAPs has focused on constant-amplitude pulse 
trains, some studies have measured responses to amplitude-modulated input, both in 
humans and animals (Abbas et al., 1999; Jeng et al., 2009; Tejani et al., 2017; Wilson et al., 
1997, 1994). Such measurements are relevant to contemporary CIs, which encode speech 
by transferring the envelope and amplitude modulations in the speech signal. Tejani 
et al. (2017) found an increased modulated response amplitude (MRA) with increased 
modulation frequency, attributing this to neural adaptation. The MRA was defined 
as the average difference between the minimal and maximal eCAP response over one 
modulation cycle. Comparing the MRA to the modulation detection thresholds in the 
same patients revealed a trend of better modulation detection, with larger MRA in the 
lower frequencies, indicating a potential role for a central limiting factor. A comprehensive 
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neural model could be used to test and better understand the effect of these modulation 
depths, as well as the effects of other parameters, such as neural adaptation and stimulus 
amplitude, on MRA. 

Biophysical models can reproduce the effect of stimulus parameters on auditory neurons 
(Dekker et al., 2014; Frijns and ten Kate, 1994; Mino et al., 2004; Reilly et al., 1985; Resnick et 
al., 2018; Woo et al., 2009). However, modeling the response of large numbers of auditory 
nerve fibers to pulse trains requires a lot of computational power. To reduce computational 
demands, phenomenological models have been developed to predict eCAP responses 
to sustained stimulation. These models have included stochastic and temporal behavior 
(I. C. Bruce et al., 1999; Chen and Zhang, 2007; Macherey et al., 2007; van Gendt et al., 
2017, 2016; Xu and Collins, 2007). Previous modeling work has shown that the alternating 
pattern may be produced by interactions between refractoriness and stimulus rate. For 
short-duration stimuli, a model that includes latency, jitter, membrane stochasticity, and 
refractoriness predicts human responses very well (Hamacher, 2004; Matsuoka et al., 
2000; Rubinstein, 1995; Wilson et al., 1994). Membrane stochasticity is described by the 
relative spread parameter (RS). RS is defined as the standard deviation of the Gaussian 
distribution of thresholds divided by its mean (Verveen and Derksen, 1968). Simulations 
showed, depending on the stimulus rate, a smaller alternation depth with larger RS. 
Campbell et al. (2012) found that inclusion of adaptation removed the overestimation 
of probability of firing after a longer duration of stimulation. Thus, patterns in the eCAP 
response to pulse trains provide insights into the temporal behavior of the auditory nerve. 
Our biophysical model is the first that combines pulse shape, geometry of current spread, 
a realistic number of auditory neurons, and phenomenological stochastic parameters of 
short-term and long-term behavior. By combining this with a unitary response, we were 
able to reproduce human whole-nerve responses to pulse trains. 

The goal of this study was twofold; firstly to validate the previously published model (van 
Gendt et al., 2017, 2016) with human data, and secondly to investigate the effect of neural 
parameters on the pulse-train eCAP. The investigated neural parameters were adaptation 
and accommodation, refractoriness, relative spread, jitter, and the number of fibers, 
which are important for sound perception with a cochlear implant. By using a model of 
the auditory nerve’s response to CI stimulation we try to understand the origin of the 
pulse-train eCAP response, inter-patient variability in those responses, their relationship 
with psychophysical measurements, and the effect of hearing loss on these responses. 
We hypothesize that neural degeneration may be related to abnormal refractoriness and 
adaptation, and that the effect of both refractoriness and adaptation are visible in the 
pulse-train eCAP responses. 
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2 Methods

2.1 Model
eCAP responses to constant-amplitude and amplitude-modulated pulse trains produced 
and detected with a CI were simulated. The modeled nerve consisted of 32,000 
stochastically independent neural fi bers at 3200 diff erent spatial locations. Electric-fi eld 
spread of the stimulus and its eff ect on neural thresholds was calculated using the three-
dimensional volume conduction model and an active nerve fi ber model (Frijns et al., 
1995; Kalkman et al., 2015, 2014). This model was extended with empirical parameters for 
refractoriness, membrane stochasticity, adaptation, and accommodation based on single-
fi ber animal studies (van Gendt et al., 2017, 2016). For each fi ber, all phenomenological 
parameters were chosen randomly from a pre-defi ned normal distribution as described 
by van Gendt et al. (2016, 2017). Deterministic thresholds were obtained for single pulses 
with specifi c pulse shapes and pulse widths. The accommodation parameter is dependent 
on the pulse width. Monopolar biphasic pulses with a pulse duration of 25 µs were used 
for the simulations. The 1J electrode array with 16 electrode contacts was placed in the 
model. The electrode contact located roughly 180° from the round window was stimulated. 
Figure 5.2 shows the threshold profi le related to this electrode based on the thresholds 
from the deterministic model for each fi ber. A description of the complete model and 
validation for single fi ber responses to constant-amplitude and amplitude-modulated 
pulse trains can be found in previously published papers (van Gendt et al., 2017, 2016). In 
addition to the previously used parameters, a spike time latency was implemented, with 
the mean latency value referring to the delay between stimulus and spike, and with the 
jitter value referring to the standard deviation of the latency. 
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Figure 5.2. Threshold profi le for electrode 8 (located 180˚ from the round window). The line shows 
the threshold for each individual fi ber. Pulse-width used is 25 µs. The fi bers have equidistant 
locations along the basilar membrane. Location #1 refers to the fi ber closest to the round window, 
#3200 is the most apically located fi ber. 
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The model is validated to predict spike timings of neurons in response to pulse trains (van 
Gendt et al., 2017, 2016). To calculate the eCAP responses, these predicted pulse timings 
were convolved with an estimation of the unitary response (Miller et al., 1999b). This 
unitary response was derived using the method proposed by Goldstein and Kiang (1958), 
who assumed that the eCAP(t) is a convolution of the compound PST histogram, P(t), and 
the unitary response U(t) as described in equation 5.1; 

individual fiber. Pulse-width used is 25 µs. The fibers have equidistant locations along the basilar membrane. Location #1 

refers to the fiber closest to the round window, #3200 is the most apically located fiber. 

The model is validated to predict spike timings of neurons in response to pulse trains (van Gendt et al., 

2017, 2016). To calculate the eCAP responses, these predicted pulse timings were convolved with an 

estimation of the unitary response (Miller et al., 1999b). This unitary response was derived using the 

method proposed by Goldstein and Kiang (1958), who assumed that the eCAP(t) is a convolution of the 

compound PST histogram, P(t), and the unitary response U(t) as described in equation 1; 

(equation 1):

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = � 𝑒𝑒𝑒𝑒(𝜏𝜏𝜏𝜏) ∙ 𝑈𝑈𝑈𝑈(𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏)
𝑡𝑡𝑡𝑡

−∞
𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏

The unitary response was obtained by deconvolving a typical eCAP waveform with a modeled post-

stimulus time (PST) histogram, assuming an equal contribution of all fibers to the neural eCAP (Miller et 

al., 1999b). The current paper uses Miller et al.’s unitary response based on a cat’s eCAP response to a 

monophasic anodic pulse of 39 µs and based on the assumption that all fibers contribute equally to the 

response. This latter assumption is validated by studies showing that fiber diameters of different regions 

of cochlear innervation are comparable (Arnesen and Osen, 1978; Liberman and Oliver, 1984). Figure 3 

shows the predicted unitary response as included in the current model (Miller et al., 1999b). The shape 

of the unitary response is a scaled version of the eCAP waveform. 
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The unitary response was obtained by deconvolving a typical eCAP waveform with a 
modeled post-stimulus time (PST) histogram, assuming an equal contribution of all 
fi bers to the neural eCAP (Miller et al., 1999b). The current paper uses Miller et al.’s unitary 
response based on a cat’s eCAP response to a monophasic anodic pulse of 39 µs and 
based on the assumption that all fi bers contribute equally to the response. This latter 
assumption is validated by studies showing that fi ber diameters of diff erent regions of 
cochlear innervation are comparable (Arnesen and Osen, 1978; Liberman and Oliver, 
1984). Figure 5.3 shows the predicted unitary response as included in the current model 
(Miller et al., 1999b). The shape of the unitary response is a scaled version of the eCAP 
waveform. 
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Figure 5.3. Unitary response used in the simulations (after Miller et al., 1999). Since a unitary 
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This unitary response is subsequently convolved with all our predicted spike timings per 
fi ber R (t) and the resulting response in time is summed over all fi bers (f ), as described in 
equation 5.2;

Figure 3: Unitary response used in the simulations (after Miller et al., 1999). Since a unitary response is assumed, the y-axis is 

directly proportional to the eCAP amplitude. 

This unitary response is subsequently convolved with all our predicted spike timings per fiber R (t) and 

the resulting response in time is summed over all fibers (f), as described in equation 2;

[equation 2]: 
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To investigate the effect of stimulus level on the eCAP response the stimulus levels were varied; levels of 

1.2, 1.5 and 1.8 mA were used. Figure 4 shows the growth in neural recruitment with stimulus level for 

different rates. The initial (deterministic) thresholds are determined by the 3D volume conduction and 

the cable model (Kalkman et al., 2014). In the deterministic model, threshold and most comfortable 

 (Eq. 5.2)
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2.2 Stimulus levels
To investigate the effect of stimulus level on the eCAP response the stimulus levels were 
varied; levels of 1.2, 1.5 and 1.8 mA were used. Figure 5.4 shows the growth in neural 
recruitment with stimulus level for different rates. The initial (deterministic) thresholds are 
determined by the 3D volume conduction and the cable model (Kalkman et al., 2014). In 
the deterministic model, threshold and most comfortable loudness levels are defined by 
the number of excited neurons, based on observations in current steering experiments 
(Snel-Bongers et al., 2013). This corresponds to 1- and 4-mm excitation along the basilar 
membrane in the 3D cochlear model, which in our current model corresponds to 1000 
and 4000 excited neurons. 
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Figure 5.4. total number of fibers firing in response to a 150-ms pulse train for pulse rates from 
100 to 3500 pps. The green solid lines show where the T- (1000 fibers, 1mm, see explanation in 
section 2.2) and M/C (4000 fibers, 4mm, see explanation in section 2.2). The red dotted lines indicate 
stimulus levels used in the other stimulations.

Despite the fact that the parameters are chosen within physiological boundaries, the 
resulting predicted thresholds of the neural cable model are much higher than those seen 
in patients, which is a known issue in cable models (Kalkman et al., 2016). Thus, while 
single-fiber electrophysiological recordings are well predicted, there are discrepancies 
with whole nerve recordings, which are not yet understood. Absolute stimulus levels used 
in our model can therefore not be quantitatively related to those used in patient studies, 
but we can interpret the levels in terms of the dynamic range (the stimulus level relative 
to T- and M/C-levels). 



5

Effect of neural adaptation and degeneration on pulse-train eCAPs: a model study

115

2.3 Variation of model parameters
The model was validated by comparing its output in response to pulse trains with existing 
human data using the standard parameters shown in table 5.1. To investigate the effect of 
adaptation, refractoriness, relative spread, and the number of functional fibers on the eCAP 
responses to pulse trains, model parameters were varied as shown in table 5.1. The values 
for RS and refractory periods were based on literature. Animal experiments have shown that 
RS is dependent on pulse shape and ranged from 0.07 ± 0.07 for monophasic to 0.12 ± 0.06 
for biphasic pulse shapes, all measured in cats (Bruce et al., 1999b; Javel et al., 1987; Miller 
et al., 1999a). To investigate both the average and very extreme cases, we have chosen to 
set the RS to 0.06 ± 0.04 in the standard parameter setting, and to 0.0 ± 0.0 and 0.12 ± 
0.08 in the extreme ranges. For refractoriness, the absolute refractory period (ARP) and the 
relative refractory period (RRP), data are available from animal experiments combined with 
computational modeling (Dynes, 1996; Miller et al., 2001). Estimated ARP values ranged 
from 0.3 ± 0.1 (Miller et al., 2001) to 0.7 ms (Dynes, 1996) and RRP values from 0.4 ± 0.2 to 
1.32. These extreme values were all characterized in cats. For humans, values were around 
0.7 ms based on eCAPs by using an exponential fit (Cartee et al., 2000). To cover the whole 
range of experimental data, our average parameter settings for ARP and RRP were set to 0.4 
± 0.1 and 0.8 ± 0.5 respectively, whereas for the extremes these values were multiplied by 
0.5 and 1.5, resulting in ARP and RRP values of 0.2 ± 0.05 and 0.4 ± 0.25 for the low refractory 
and 0.6 ± 0.15 and 1.2 ± 0.75 for the high refractory case. 

The standard adaptation and accommodation values were all based on our previous 
modeling work (van Gendt et al., 2017, 2016), where these values were derived by comparison 
of the model output with published animal data (Litvak et al., 2001; Miller et al., 2008; Zhang 
et al., 2007). To investigate the necessity of including adaptation and accommodation in a 
model of cochlear implant stimulation, the model was also run without these effects. To 
test the sensitivity of the response to the chosen values, the parameters were varied to the 
extreme high adaptation/accommodation scenario. These extreme values are double the 
average values, chosen as such because of the large standard deviation on the adaptation 
parameter as determined in the previous modeling work.

The model has 32,000 fibers, which closely matches the number of type I auditory nerve 
fibers in the normal-hearing human situation. As an extreme case of neural degeneration 
a uniformly distributed neural survival of 10% was chosen. In some simulations jitter and 
latency were implemented using the parameters reported in cats (Miller et al., 1999a). For 
the simulations, both constant-amplitude and amplitude-modulated pulse trains were used.

Table 5.1. Model parameter variations.RS = relative spread, ARP = absolute refractory period, RRP = 
relative refractory period, Adap = adaptation, Acco = accommodation, # fbrs = number of fibers, Lat = 
latency, Jit = jitter

RS ARP, ms RRP, ms Adap Acco # fbrs Lat, ms Jit, ms

Standard 0.06 ± 0.04 0.4 ± 0.1 0.8 ± 0.5 1 ± 0.6 0.03 32,000 0 0
Low 0 0.2 ± 0.05 0.4 ± 0.25 0 0 3200 - -
High 0.12 ± 0.08 0.6 ± 0.15 1.2 ± 0.75 2 ± 1.2 0.06 - 0.7 0.07
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Experiment A: short-duration pulse trains
To validate the model with human data, human recordings as published by Hughes et 
al. (2012) were simulated with standard parameter settings as listed in row 1 of table 5.1. 
To evaluate the effect of neural parameters these simulations were replicated with the 
model parameters as indicated in rows 2 and 3 of table 5.1. In each of these simulations, 
one parameter was varied to either the low or high extreme value. To replicate the 
recordings by Hughes et al., constant-amplitude pulse trains with rates of 900, 1200, 1800, 
2400, and 3500 pps were used. Stimulus amplitude was set to 1.5 mA. The effect of neural 
degeneration was tested by comparing 10% neural survival distributed evenly over the 
cochlea with the 100% neural survival situation (32,000 fibers). Responses to the first 20 
pulses were simulated, the total stimulus duration was thus dependent on the rate. Results 
were normalized to the amplitude obtained in response to the first pulse. The alternation 
depth was calculated as the difference between the average normalized response to the 
odd and even pulses from pulse numbers 2 to 21. 

Experiment B: short-duration, low-rate pulse trains
eCAPs in response to 100-ms, low-rate, pulse trains as measured in CI listeners by Carlyon 
and Deeks (2015) were simulated for comparison to human data and to investigate the 
effect of neural parameters and stimulus amplitude. Alternation depth was defined as the 
ratio between the responses to the odd and even pulse numbers. Responses to stimulation 
rates of 100, 130, 200, 270, 300, 400, and 500 pps were simulated, and stimulus levels of 1.2 
and 1.5 mA were used. For the stimulus amplitude of 1.2 mA, varying model settings were 
evaluated. In the experiments done by Carlyon and Deeks (2015) stimulation rates up to 
500 pps were used, whereas in the experiments by Hughes et al. (2012) rates of 900 pps 
and higher were used. To investigate whether the simulations of the two studies would 
have been the same when the same rates were used, the simulations were repeated with 
a stimulus rate of 900 pps.

Experiment C: long-duration pulse trains
Predicted eCAP responses to 100-ms pulse trains were compared to animal data 
published by Ramekers et al. (2015) in order to investigate the temporal and stochastic 
effects on responses to longer duration pulse trains. Stimulus rates were set to 125, 250, 
500, 625, 1250, 1667, and 2500 pps. The stimulus amplitude was 1.2 mA. The responses 
were predicted with the standard parameter settings and the parameter variations listed 
in table 5.1. Uniformly distributed neural survival rates of 100% and 10% were tested. 

Experiment D: amplitude-modulated pulse trains 
Responses to 100-ms amplitude-modulated pulse trains were simulated and compared to 
previously published animal data (Jeng et al., 2009). The amplitude used was 1.5 mA, and 
different model parameter settings were evaluated. The modulation depth was set to 10% 
and modulation frequency to 25, 50, 100, 200, 300, and 400 Hz. The carrier rate was 1000 pps.
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Experiment E: Short-duration amplitude-modulated pulse trains
Responses to 15-ms amplitude-modulated pulse trains were simulated and the resulting 
modulation response amplitudes compared to published human data (Tejani et al., 2017). 
Stimulus amplitudes of 1.5- and 1.8-mA were used to mimic patient measurements. 
At the lowest amplitude and 30% modulation depth, both complete and partial (10%) 
neural survival was simulated. Full nerve simulations were performed with all parameter 
settings as shown in table 5.1. The modulation depth was set to 10%, 20%, and 30% and 
modulation frequency varied to 125, 250, 500, and 1000 Hz. As in the experiments with 
humans, the carrier rate was 4000 pps. Tejani’s detection of modulation as a function of 
MRA was used to evaluate the modulation following behavior, with a larger MRA implying 
increased modulation following behavior of the auditory nerve. These simulations were 
performed to investigate whether the modulation following behavior was determined 
mostly by stimulus parameters, or by the neural properties as suggested by Tejani et al.

3 Results

3.1 Experiment A: Short-duration pulse trains
The responses to short-duration pulse trains are shown in figures 5.5 and 5.6, with 
summary data shown in table 5.2. Simulated eCAP responses obtained with four different 
model settings when stimulated with pulse trains of 1.5 mA are shown in figure 5.5. 
Removal of adaptation did not change the auditory nerve’s response to this stimulation. 
With a shorter refractory period, the alternation pattern was stronger at higher stimulus 
rates, and the decrease in average response amplitude from the first to the last pulse 
was somewhat smaller for all rates than when standard parameter settings were used. 
Removal of RS, i.e., making the fibers deterministic, led to enhanced alternation and did 
not affect the preferred stimulation rate for alternation. With lower stimulus amplitudes 
(data not shown), similar behavior was observed, though a slightly larger relative decrease 
occurred quickly after the onset of stimulation at the lowest two rates. When only 10% of 
the fibers were modeled, the results were very similar to when 100% of the neurons were 
included in the model and are therefore not plotted. 

Table 5.2. Summary of the effects of each model perturbation on both the eCAP alternation depth 
and the eCAP response amplitude, as shown in more detail in figure 5.6;
Model perturbation: eCAP alternation depth: eCAP response amplitude:
Short refractoriness Decrease for low rates

Increase for high rates
Increase

Long refractoriness Minor decrease at rates 1200 & 1800 pps Decrease
Deterministic Increase Minor decrease
High RS Minor decrease at rate 900 pps Minor increase
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The average eCAP alternation depth and relative eCAP amplitude for each of the model 
parameter settings are shown in figure 5.6 for stimulation with 1.5-mA pulse trains. The 
results are plotted as lines overlaying the figure published by Hughes et al. (2012). By 
changing neural parameters, the predicted alternation depth and amplitude exhibit 
variability similar to that seen in the experimental data. As visible in figure 5.6A, the 
maximum alternation depth occurred from 900 to 1800 pps with the standard model 
parameters, which matches the human data. In both the human and simulated data, the 
alternation depth decreased when stimulated with rates of 2400 and 3500 pps. Removal 
of RS shifted the eCAP alternation depth at all stimulus rates tested. Both the standard 
parameter set and the sets with adjusted threshold stochasticity exhibited response 
amplitudes within the range of one standard deviation of the human data. Decreasing 
the refractory period increased the rate at which maximum alternation depth was visible 
from 900 pps in the standard model to 1800 pps, which matches the human data better. 
However, with this decrease the alternation depth was underestimated at 900 pps and 
overestimated at the highest two stimulation rates. Figure 5.6B shows that the normalized 
eCAP response amplitudes decreased with rates in all simulation modes, as well as in the 
human data. Increasing and decreasing the refractory periods caused a decrease and 
increase, respectively, in the normalized amplitude for all rates. Changing the adapting 
behavior of the neuron did not change the alternation depth or amplitude in these short 
duration experiments and was therefore not plotted in figure 5.6.
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Figure 5.6. Average alternation depths [A] and eCAP amplitudes [B] for a stimulus amplitude of 1.5 
mA. Normalization is achieved by dividing the eCAP amplitudes by the amplitude in response to the 
first pulse. Colors indicate the model setting used. Background image in grayscale shows the human 
data published by Hughes et al. (2012). Reprinted with permission
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3.2 Experiment B: Short-duration, low-rate, pulse trains
In figure 5.7 the results obtained with the standard parameter settings and two different 
stimulus amplitudes (1.2 and 1.5 mA) are compared. Both amplitudes evoked eCAP 
modulations similar to the lower range of modulations seen in human data by Carlyon and 
Deeks (2015). Some patients’ eCAP responses exhibited much larger alternations, up to 
30% at 500 pps. This could be achieved in the model by increasing the refractory periods, 
or by using a deterministic model by omitting the threshold stochastics. The removal of 
threshold adaptation of the neuron did not change the predicted alternation amplitudes. 
The modulation amplitude increased with refractory period at low stimulus rates. It 
decreased at short refractory periods compared to the standard parameter setting, as 
similarly seen for the low rates in figures 5.5 and 5.6. The minor differences in alternation 
amplitude between the 900-pps simulations in figure 5.6 and 5.7 can be explained by the 
fact that stimulus levels and durations slightly differed. This was necessary because we 
intended to replicate the experiments performed in human subjects
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Figure 5.7. Percentage eCAP modulation in simulated responses to 100-ms pulse-trains. Responses 
predicted to 100, 130, 200, 270, 300, 400, and 500 pps for two different stimulus levels and varied 
parameter settings, which were compared to human data from Carlyon and Deeks (2015), which 
appears in grey as a reference. Also, stimulations with 900 pps are included to allow comparison 
with the data by Hughes et al (figure 5.6).
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3.3 Experiment C: Long-duration pulse trains
Figure 5.8A-C show simulated normalized responses to 1.2-mA, constant-amplitude, 
pulse trains, at the last 10 pulses of stimulation. Results for the standard parameter setting 
and two model settings, namely one with longer refractory periods and one where the 
adaptation property was removed from the model, are shown in the respective figure 
5.8A-C. Figure 5.8B shows that elongating the refractory periods by multiplication with 
a factor of 1.5 did change the eCAP response pattern by less than 10% compared to the 
standard parameter setting. The average eCAP amplitude at the end of the pulse train 
was slightly lower at longer refractory periods than in the standard parameter setting. 
Removal of adaptation (figure 5.8C) caused more alternation at the end of the pulse 
train for pulse rates of 500 to 1250 pps. The average response amplitude increased up to 
about 100% when adaptation was removed (e.g. 1667 pps, figure 5.8C). Both increased 
eCAP alternation and increased eCAP amplitude were also seen in the animal data after 
deafening (figures 5.8E and F). Figure 5.8D shows the predicted alternation amplitudes 
for the three different model settings, when stimulated with different IPIs. The largest 
alternation was seen when the adaptation property was removed (yellow line). Figure 
5.8G shows the measured maximum alternation on a group level, where the largest 
alternations are visible after 6 weeks of deafening (black line).

Removal of RS also led to increased alternation amplitudes, but with average response 
amplitudes comparable to the situation with RS set as in the standard parameter setting. 
Unlike these predictions, data from deafened animals showed an increased normalized 
response amplitude at the end of the pulse train. Runtimes of the action potential, as 
investigated by inclusion of latency and jitter, as well as the number of fibers, did not 
affect the shape of the pulse-train eCAPs. 
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3.4 Experiment D: Long-duration amplitude-modulated pulse trains
The responses to amplitude-modulated pulse trains of long duration are shown in figure 
5.9. Note that, in these responses, the absolute amplitudes are evaluated, whereas 
previous simulations looked at relative decreases in amplitude. 

Modulation is followed correctly in both the experiments and the simulations. With the 
standard parameters, simulated responses exhibited similar behavior as in the animal 
experiments. However, using the standard parameter setting the eCAP amplitude 
never came as close to zero as the data, especially not when stimulated with the lower 
modulation rates. This stronger decrease in eCAP amplitude in experimental data was 
only replicated by the model when a strong adaptation was included, as visible in figure 
5.9C. Increasing the refractoriness yielded slightly lower eCAP responses over the course 
of the stimulus, and a larger initial decrease in eCAP amplitude. Changing the RS had no 
visible effect on the eCAPs in response to amplitude-modulated pulse trains (data not 
shown).
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3.5 Experiment E: Short-duration amplitude-modulated pulse trains
Simulated MRAs in response to pulse trains modulated with different frequencies and 
modulation depths are plotted in figure 5.10. The simulated responses show an increased 
MRA with modulation frequency and modulation depth, which was also observed in 
human data (Tejani et al., 2017). Stimulus level and the number of fibers modeled largely 
influenced the MRA, with more fibers and larger pulse amplitudes leading to larger 
MRAs. Variation of adaptation and RS parameters did not affect the responses. The only 
parameter that, though to a small extend, affected the response was the refractoriness, 
with a shorter refractoriness leading to larger MRAs, which was best seen at the lower 
modulation frequencies. All model settings are physiologically viable based on a 
comparison to human data from Tejani et al (2017). 
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Figure 5.10. Modulated response amplitudes to modulated pulse trains with modulation 
frequencies of 125, 250, 500, and 1000 Hz. [A] Effect of stimulus amplitude and modulation depth. 
Modulation depths were varied from 10 to 20 and 30%, with mean amplitudes of 1.2 and 1.5 mA. 
[B] Effect of neural parameters. MRA responses obtained with standard and adjusted parameter 
settings are shown. Grey areas indicate the data as obtained from human experiments by Carlyon 
and Deeks (2015).
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4 Discussion

Predicted pulse-train eCAP responses to both short- and long-duration stimuli and both 
animal and human studies were validated by comparison to different sets of measurement 
data (Carlyon and Deeks, 2015; Hughes et al., 2012; Jeng et al., 2009; Ramekers et al., 
2015; Tejani et al., 2017). The model predictions were reproducible with variation of the 
temporal and stochastic behavior of the nerve within physiological ranges, explaining 
the large inter-patient variability in experimental studies (Hay-McCutcheon et al., 2005; 
Huarte et al., 2014; Hughes et al., 2014, 2012; McKay et al., 2013; Wilson et al., 1997, 1994; 
Zhang et al., 2013). Different aspects of eCAP responses to pulse trains were predicted. 
The main findings of the study are that, for constant-amplitude stimuli, refractoriness 
affects the frequency of maximum alternation, RS affects the maximum depth of the 
alternation, and adaptation affects the average response amplitude and alternation depth 
after long durations of stimulation. As we hypothesized, the eCAP responses to pulse 
trains were related to adaptation, as simulations with diminished adaptation explained 
data obtained from deafened animals. Thus, the model showed that patterns in the eCAP 
response to pulse trains provide insight into both the temporal and stochastic nature of 
the auditory nerve. The model, as a tool of interpretation, provides additional insights 
into the temporal and stochastic behavior of the nerve, which is expected to be related 
to auditory performance in patients with a CI, from pitch discrimination and amplitude 
modulation detection to speech perception.

Model validation with human data
Experiments A and B show that on a group level, all eCAP alternation depth predictions 
are within the range of physiological data for short duration stimulation with rates up to 
2400 pps. For the highest rate simulations, the short refractory and deterministic setting 
predict a too large alternation depth. Our predictions of eCAP alternation depths were 
unaffected by the inclusion of latency and jitter. The latency merely caused a slightly 
delayed response. Spike jitter, or variability in spike timing, can theoretically cause smaller 
eCAP amplitudes, due to reduced synchronous fiber responses. However, the included 
mean jitter was approximately 70 µs and the unitary response width approximately 1 ms, 
and hence the jitter effect was predicted to be too small to be visible in the predictions. 
Overall, we conclude that our standard parameter settings, or longer refractory periods 
combined with a larger stochasticity, would describe the group behavior of the alternation 
depth best.

In both short duration experiments (A and B), the eCAP amplitudes as predicted by the 
standard parameter settings are well within the standard variation of patient data. The 
final amplitude was lower when higher stimulus rates were used. This steeper decrease 
has been attributed to adaptation and accommodation (Hughes et al., 2012). Our model 
shows however that removal of adaptation did not affect the final amplitude in the 
short-duration, high-stimulation-rate, experiments, but was merely dependent on the 
refractoriness. 
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Our simulations show that the nerve’s refractory period alters the rate at which the 
maximum alternation is seen; with larger refractory periods, the stimulus rate at which 
the alternation depth is largest decreases. Two-pulse-eCAP paradigms provide a measure 
of the mean refractory behavior of an auditory nerve (Miller et al., 2001). On the basis of 
the results presented here, we provide an alternative method for deducing the refractory 
behavior of the nerve. To apply this alternative method, the alternation depth has to be 
measured as a function of pulse rate per individual, and not averaged over the group 
as in the study by Hughes et al. (2012). By finding the stimulus rate at which the eCAP 
alternation is maximal, the average refractory period of the nerve can be estimated. After 
obtaining jitter, RS and refractory periods, by using long duration stimulations for the 
same fiber, also a value for adaptation can be estimated. 

Neural behavior and short duration pulse-train eCAP responses
As mentioned, the implemented variations of parameters describing the neural 
behavior result in a variability in pulse-train eCAPs similar to that seen in human data. 
The underlying biophysical phenomena causing differences in eCAP responses could be 
related to size, myelination and the number of sodium channels in the auditory nerve. 
Neuronal degeneration that follows deafness leads to axonal shrinkage, demyelination 
and a progressive retraction of the peripheral axon (Leake and Hradek, 1988). Stochasticity, 
or the RS of the threshold, was shown in a model study to depend on the myelination 
of the nerve, with demyelination reducing RS (Resnick et al., 2018), though in another 
study no relation between deafness and dynamic range of the auditory neurons was 
found (Sly et al., 2007). Our model showed that decreased stochasticity (i.e. reduced RS) of 
the nerve can lead to increased alternation depths independent of stimulus rate. Several 
studies have shown that refractory periods are longer in animals with hearing loss than 
in control animals (Rubinstein, 1995; Shepherd et al., 2004; Shepherd and Javel, 1997; Sly 
et al., 2007; Walton et al., 1995; Waxman and Ritchie, 1993). Prolonged refractory time-
constants have been observed in demyelinated neurons (Waxman and Ritchie, 1993), 
of which the chronically deafened auditory nerve is an example (Leake and Hradek, 
1988). Demyelinated nerve fibers have relatively fewer potassium channels, which might 
result in a leakage of internodal potassium currents into the nodal regions and thus 
cause a prolongation of refractory time constants. Our simulations show that increased 
refractoriness and decreased stochasticity can cause this increase in eCAP modulation. 
Thus, measurement of the pulse-train eCAP alternation could provide a measure related 
to hearing loss. A psychophysical study by Carlyon and Deeks (2015) showed that 
patients with larger alternation depths in their eCAP responses performed worse on rate 
discrimination tasks. Our data suggests that patients with better rate discrimination have 
auditory neurons with short refractory periods and strong stochastic behavior. 

Neural behavior and long duration pulse-train eCAP responses
Our model shows that a decrease in adaptation magnitude produced the increased 
alternation of eCAP amplitude and response amplitude as seen in deafened guinea 
pigs in the study of Ramekers et al (2015). In their study an increased alternation depth 
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of pulse-train eCAP in chronically deafened animals was hypothesized to be related to 
altered refractoriness or jitter in hearing impaired animals. Our study shows that the 
only parameter adjustment that can cause both the increased alternation depth and 
increased eCAP amplitude is removal of adaptation. Some earlier studies investigated the 
relationship between hearing loss and neural adaptation in both animals and humans, and 
attempted to investigate the relationship between adaptation and deafness on different 
neural levels (Abbas, 1984; Haenggeli et al., 1998; Kidd et al., 1984; Kotak, 2005; Scheidt et 
al., 2010; Walton et al., 1995; Wojtczak and Oxenham, 2010; Xu et al., 2007; Xu and Collins, 
2007; Zhang et al., 2010). Apart from the study by Ramekers et al. (2015) there are to our 
knowledge no other studies that describe the relation between hearing loss and pulse-
train eCAP alternation depth in response to long-duration pulse trains. Such data could 
be extracted from existing studies. For example, from the study by Hay-McCutcheon et al. 
(2005) the adaptation could be calculated as the final decrease versus the initial decrease 
in eCAP amplitude, and subsequently be related to deafness. 

Neural behavior and MRA
The MRA was suggested by Tejani et al. (2017) to be related to neural adaptation. However, 
changing the adaptation parameter in our model did not affect the predicted MRAs, 
suggesting that the MRA in response to these stimuli is not a good measure of the nerve’s 
adaptive behavior. The only neural parameter variation that, and only to a small extend, 
affected the MRA was the refractory period. Electrophysiological recordings of chicken 
auditory nerve fibers have shown that refractoriness in the auditory nerve potentially 
enhances entrainment in response to sound stimuli and, thus, is important for temporal 
coding (Avissar et al., 2013). Our simulations confirmed these conclusions, as the simulation 
with shorter refractory periods yielded larger MRAs, implying that longer refractoriness due 
to hearing loss causes lower modulation response amplitudes. As amplitude modulations 
are important aspects of speech, we hypothesize that the increased refractory periods lead 
to lower modulation response amplitudes and decrease the intelligibility of speech for CI 
users. However, as Tejani et al. showed, the MRA increases with modulation frequency, 
whereas the psychophysical measure of modulation detection deteriorates. This suggests 
that more central factors also play a role, possibly limiting the detection of amplitude 
modulations. The modeled MRA responses were unaffected by adaptation or RS. ECAP 
responses to amplitude-modulated stimulation slightly depend on the nerve’s behavior 
(refractoriness), but are more strongly affected by the stimulus modulation-depth and 
frequency. No model perturbation reproduces the large modulation response amplitude 
at 500 and 1000 Hz modulation reported by Tejani et al. (2017). The patient showing the 
largest MRA was also stimulated with the largest modulation depth, 35%. An additional 
simulation, with this modulation depth, yielded an MRA of around 500 µV for 1000 Hz 
modulation, very similar to the experimental results. Therefore, we conclude, in line with 
the observations by original authors, that there is a strong correlation between the MRA 
and modulation depth (Tejani et al., 2017), and that interpatient differences in MRA are 
mostly a consequence of modulation depth and stimulus amplitude used rather than the 
neuronal status.



5

Effect of neural adaptation and degeneration on pulse-train eCAPs: a model study

129

Model improvements
In some experiments, increased eCAP amplitudes over the stimulus duration were 
observed (He et al., 2015). This is thought to be caused by integration effects, which were 
not included in our current model. Huarte et al. (2014) and Schmidt, Clay, and Brown 
(2007) recorded eCAPs in response to minute-long stimulations in humans and saw the 
eCAP amplitude decrease over longer periods of time. To reproduce such long-term 
effects, temporal adaptation components longer than 100 ms will have to be included 
in the model or be modeled using a power-law as shown previously for the response of 
auditory neurons to sound (Zilany and Carney, 2010).

The unitary response used is based on cat data (Miller et al., 1999b). We have repeated 
all our simulations with the unitary response published by Versnel et al. (1992). These 
altered simulations did not yield changes in the predicted normalized pulse-train eCAP 
responses. Some studies suggest that the unitary response is an oversimplification of the 
actual contribution to the eCAP for all different fibers, especially for high stimulation levels 
(Briaire and Frijns, 2005; Westen et al., 2011). Doucet and Relkin (1997) showed that when 
the total area of neural activation spans more than three octaves, location effects also 
become significant. A more elaborate version of our 3D model could be used to study this 
issue in more detail. Not only the exact site of activation can be predicted using the active 
cable model, but also the propagation of the action potentials along these fibers, and their 
contribution to the SFAP (Briaire and Frijns, 2005). Differences in fiber kinetics, neuron 
myelination, size, and morphology between the cochleae of different species influence 
the shape of the unitary response. An important factor is for instance that in humans the 
soma is unmyelinated, which effectively adds a large capacitance to the human auditory 
nerve, leading to altered spike propagation times along the nerve. For prediction of 
the human eCAP, a unitary response derived especially for the human situation would 
be desirable. Deconvolution of the human eCAP with modeled predictions of the spike 
responses, including latency distributions, can provide insight into the variations in the 
contributions of different human auditory nerve fibers (Schoonhoven, Stegeman, and 
van Oosterom, 1988). One could potentially use a deconvolution method as suggested by 
Strahl et al. (2016), to include the optimization of the shape of the human unitary response 
while fitting recorded human eCAP data (Dong et al., 2018). The active cable model used 
in the current paper contains a human morphology, described as the new human soma, 
combined with GSEF kinetics (Kalkman et al., 2015). Kinetics more based on the human 
situation as described by Schwarz and Reid (Schwarz et al., 1995) are being implemented 
in a newer double cable version of the model that we hope to use in future research. 
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ABSTRACT

Intracochlear electrocochleography (ECochG) is a potential tool for the assessment of 
residual hearing in cochlear implant users during implantation and of acoustical tuning 
post-operatively. It is, however, unclear how these ECochG recordings from different 
locations in the cochlea depend on the stimulus parameters, cochlear morphology, 
implant design or hair cell degeneration. In this paper a model is presented that simulates 
intracochlear ECochG recordings by combining two existing models, namely a peripheral 
one that simulates hair cell activation, and a three-dimensional (3D) volume-conduction 
model of the current spread in the cochlea. The outcomes were compared to actual 
ECochG recordings from subjects with a cochlear implant (CI). The 3D volume conduction 
simulations showed that the intracochlear ECochG is a local measure of activation. 
Simulations showed that increasing stimulus frequency resulted in a basal shift of the 
peak cochlear microphonic (CM) amplitude. Increasing the stimulus level resulted in wider 
tuning curves as recorded along the array. Simulations with hair cell degeneration resulted 
in ECochG responses that resembled the recordings from the two subjects in terms of CM 
onset responses, higher harmonics and the width of the tuning curve. It was concluded 
that the model reproduced the patterns seen in intracochlear hair cell responses recorded 
from CI-subjects.
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1 INTRODUCTION

Clinically, extracochlear electrocochleography (ECochG) is an established tool in the 
objective diagnosis of hearing loss, Meniere’s disease and retro-cochlear pathologies 
(Davis et al., 1958; Ferraro et al., 1985; Gibson, 1983; Gibson et al., 1977; Morrison et al., 
1976; Schoonhoven et al., 1996). In ECochG, electrical potentials generated by hair cell and 
neural activity in response to acoustic stimulation are recorded by an electrode, usually 
placed close to the round window. The ECochG response is recorded in response to both 
condensation and rarefaction stimuli, which are then subtracted to obtain the difference 
response or added to obtain the summed response. The difference response reveals the 
cochlear microphonic (CM). The CM is defined as the amplitude in the difference response 
at stimulus frequency. The difference response consists mostly of hair cell, but also some 
neural activity. The latter is referred to as the auditory nerve neurophonic (ANN) (Fontenot 
et al., 2017; Forgues et al., 2014; Tasaki et al., 1954). The summed response contains the 
summating potential (SP) originating from hair cell activity, and the compound action 
potential (CAP) and ANN originating from neural activity (Dallos, 1986, 1985, 1984; Davis 
et al., 1958; Durrant et al., 1998; Forgues et al., 2014; Russell and Sellick, 1977; Tasaki et al., 
1954). 

Nowadays, ECochG can readily be recorded intracochlearly through the use of the reverse 
telemetry functionality of cochlear implants. Intracochlear ECochG recordings are different 
from the widely described extracochlear ECochG recordings in the sense that they are 
recorded much closer to the source and can hence be higher in amplitude. Moreover, 
they can be recorded by electrodes along the length of the array. Intracochlear ECochG 
can be used to detect hair cell damage during cochlear implantation surgery (Calloway 
et al., 2014; Campbell et al., 2017; Choudhury et al., 2012; Harris et al., 2017; Helmstaedter 
et al., 2018; Koka et al., 2017b), allowing for direct feedback to the surgeon (Campbell 
et al., 2015; Dalbert et al., 2015; Koka et al., 2017b; Mandalà et al., 2012). Sudden drops 
in CM amplitudes are hypothesized to be related to hair cell damage during insertion 
(Giardina et al., 2019; Koka et al., 2018). Feedback of the CM amplitude is believed to lead 
to more controlled insertions, which can reduce the risk of cochlear damage. This risk is 
particularly relevant for patients with ski-slope hearing losses, which can be treated with 
electric and acoustic stimulation (EAS) (Gantz and Turner, 2010). EAS allows the high-
pitched sound perception induced by electrical stimulation to be complemented with 
low acoustic frequencies delivered by a hearing aid. 

Intracochlear ECochG can also be used postoperatively, to measure residual hearing 
objectively. This procedure is particularly relevant for recipients where acoustic thresholds 
are difficult to obtain subjectively (e.g., young children). Intracochlearly recorded CM 
amplitudes were shown to correlate to the frequency-specific audiometric thresholds 
(Koka et al., 2017b, 2017a). Additionally, the acoustic tuning of the electrodes can 
be determined postoperatively, allowing for the matching of acoustic and electrical 
frequencies in the EAS system (Campbell et al., 2017). 
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The number of studies reporting recordings of intracochlear ECochG responses from CI-
subjects during surgery (Calloway et al., 2014; Dalbert et al., 2015; Giardina et al., 2019; 
Harris et al., 2017; Koka et al., 2018) or post-operatively (Tejani et al., 2019) is increasing. 
However, at present, it is unknown how the response depends on exact intracochlear 
recording position and how it is affected by stimulus- and patient-specific factors. Such 
knowledge is vital for the interpretation of intracochlear ECochG recordings during 
insertion or post-operatively along the array. 

The potentials arising in the cochlea in response to sound depend on stimulus 
characteristics and cochlear health (Dallos and Cheatham, 1976; Davis et al., 1958). 
Sensitivity of the recording electrodes at different positions in the cochlea to these 
potentials depends on the distance, cochlear morphology, electrode design and electrical 
properties of the cochlear tissue. The exact location of the implanted electrode, and related 
the distance from current sources such as hair cells to the implanted electrode, depends on 
cochlear morphology and electrode design(van der Jagt et al., 2017). Electrical properties 
of the tissue also affect the sensitivity of the electrode to the different current sources. 
Previously, modeling studies have been used to estimate the electrical attenuation along 
the basilar membrane. However, these studies have yielded incongruent estimates, with 
reported values ranging from 2 to 30 dB/mm (Ayat et al., 2015; Charaziak et al., 2017; Davis 
et al., 1958; Dong and Olson, 2013; Fridberger et al., 2004; Mistrík et al., 2009; Tasaki and 
Fernández, 1952; Teal and Ni, 2016; v. Békésy, 1952, 1951; Whitfield and Ross, 1965).

A detailed 3D model of the cochlea, that is verified for its simulations of electrical 
conductivities for the implanted electrode, could provide accurate simulations. The 
combination of the electrical potentials arising in the cochlea in response to sound 
stimulus and how they are conducted in the cochlea determine the ECochG response at 
each different location. 

The goal of the current study was to aid in the interpretation of intra- and postoperative 
ECochG recordings, by modeling these responses. In such a model, both the potentials 
arising in the cochlea in response to sound and the attenuation of potentials within the 
cochlea must be included. To accomplish this, a model of the auditory periphery predicting 
hair cell responses was combined with a 3D model of current spread. Effects of stimulus 
frequency and level, recording electrode, cochlear morphology, electrode design and hair 
cell damage were tested. The model was compared to intracochlear ECochG recordings 
from two CI-subjects. 
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2 METHODS

Intracochlear ECochG hair cell responses were simulated with a combined model of 
inner hair cell (IHC) and outer hair cell (OHC) activation throughout the cochlea (Zilany 
et al., 2014; Zilany and Bruce, 2006) and of current spread in the cochlea (Kalkman et al., 
2015, 2014). The following sections describe the model. Section A describes how hair 
cell potentials are simulated. Section B describes how electrical attenuation, for different 
cochlear morphologies and electrode designs, is modeled. Section C describes how both 
models were combined to calculate the intracochlear ECochG response. Hearing loss was 
modeled by including different types of hair cell degeneration, the approach hereto is 
described in section D. Lastly, section E describes how subject recordings were performed. 

2.1 Modeled hair cell responses
The voltages over the IHC and OHC membranes were calculated with a model of the 
auditory periphery developed by Zilany et al. (Bruce et al., 2018, 2003; Carney, 1993; 
Zhang et al., 2001; Zilany and Bruce, 2006). The model is freely available on the internet. A 
schematic diagram of the model is shown in Figure 6.1.

VOHC

VIHC

Figure 6.1. Schematic diagram of the auditory-periphery model used to calculate the intracellular 
voltages. The stimulus is the sound pressure waveform in Pa and the outputs used in the current 
paper are the intracellular voltages VIHC and the VOHC for the inner hair cell (IHC) and outer hair cell 
(OHC) respectively. These potentials are extracted immediately after the Non-Linearity (NL) and the 
Low-Pass Filter (LP), as indicated by the red arrows. The model includes a middle-ear filter, inner hair 
cell (C1 and C2) and outer hair cell (control) pathways, a synapse and spiking model. COHC and CIHC 
are scaling constants that control OHC and IHC status. CF: characteristic frequency, INV: inverting 
nonlinearity. [from Zilany and Bruce, 2006, reprinted with permission]

The auditory periphery model included a middle ear filter, inner hair cell and outer hair cell 
pathways, a synapse model and a spike generator. Human cochlear tuning was used (Shera 
et al., 2002). Each hair cell had a scaling constant (‘C-factor’) that described its physiological 
health. The C-factor could be adjusted from 1 for healthy hair cells, to 0 for complete 
functional loss for IHCs and OHCs separately. The COHC had an effect on the bandwidth of the 
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inner hair cell pathway. The potentials over the hair cell membranes were extracted at the 
output of the cochlear pathways. This auditory peripheral model was previously validated 
by comparing spiking behavior in auditory nerve (AN) fibers generated by the model to 
physiological data from single fiber and membrane voltage recordings in cats (Bruce, 1997; 
Bruce et al., 2018; Zhang et al., 2001; Zilany et al., 2014, 2009; Zilany and Bruce, 2006). It 
was shown that level- and frequency-dependency of auditory nerve fiber responses were 
correctly simulated by the peripheral model. 

There were two modifications included in the analysis of the hair cell output for the current 
implementation; 1) scaling of outer hair cell contributions and 2) converting from membrane 
voltages to extracellular currents. The OHC voltages in the auditory peripheral model were 
originally applied only as a qualitative measure. For the current study, however, both inner 
and outer hair cell responses were needed. In animal recordings the responses of IHCs to 
stimulation with a tone of 800 Hz and 15 dB were four times larger than the responses of 
OHCs (Dallos, 1986, 1985). In the current study, the simulated OHC responses were scaled, 
such that the IHC Alternating Current (IHC-AC) response was four times larger than the IHC-
AC response to acoustic stimulation at 800 Hz and 15 dB. OHC responses at other CFs, and 
in response to other stimulus frequencies, were scaled with the same factor. Comparison of 
the scaled simulations to previously published recordings from animal data (Dallos, 1986, 
1985) (appendix A) showed that relative dependency of IHC and OHC intracellular hair cell 
potentials on stimulus level and frequency was qualitatively described by the model.

The original hair cell model simulates potential differences across the hair cell membranes. 
However, to model the ECochG, extracellular currents corresponding to these hair cell 
voltages were needed, which depend on the capacitive and conductive behavior of the 
hair cell membranes. Resistances across the apical membrane of the hair cell are modulated 
by the opening and closing of voltage-gated channels (Housley G.D. and Ashmore, 
1992; Mammano and Ashmore, 1996). These resistances depend on the voltage over the 
membrane. The voltage-dependent conductance (G) can be fitted with the Boltzmann 
equation (Johnson et al., 2011):
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� (Eq. 6.1)

where V0.5 is the voltage at the 50% point on the Boltzmann curve; Gmax the maximum 
conductance; and VS is the slope at the 50% point on the Boltzmann curve. For IHCs, 
the Gmax = 470 nS, V0.5 = −31 mV, VS = 10 mV, and a resting potential Vrest of −55 mV. For 
OHCs, the V0.5 equals −60 mV and is independent of characteristic frequency (CF). All other 
parameters depend on the CF. A linear fit performed on the data presented by Johnson et 
al. (2011) yielded: Gmax(CF) = 0.02 x CF + 40, and Vs(CF) = 8 exp-4 x CF + 8.5. The same paper 
showed that the hair cell membrane capacitance induced first-order low-pass filtering, 
with an IHC time constant τ = 0.26 mV (F0 = 610 Hz). For OHCs, the cut-off frequencies were 
shown to be higher than estimated previously, and increased linearly with the cells’ CF, 
with a slope of nearly 1; the F0 = CF and τ = 1/2pF0. 
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2.2 Volume conduction model
Intracochlear potentials resulting from hair cell currents were calculated using a volume 
conduction model of the implanted human cochlea (Kalkman et al., 2015, 2014). This 
volume conduction model, which uses the Boundary Element Method, was previously 
validated by comparison to clinically recorded intracochlear impedances (Kalkman et al., 
2015, 2014). In the current study, electrical impedances from currents induced by hair cell 
activation to electrodes at different cochlear positions were calculated. 

A B

C D

C1 MS

C1 1J

C2 MS

C2 1J

Figure 6.2. Cochlear morphologies C1 and C2 based on human histological sections implanted with 
1J (straight, lateral wall) or MS (pre-curved, mid-scalar) electrodes in the scala tympani, which are 
plotted in grey with black electrode contacts. [A]: cochlea 1, electrode 1J; [B]: cochlea 2, electrode 1J; 
[C]: cochlea 1, electrode MS; [D]: cochlea 2, electrode MS.

To infer to which extent cochlear morphology and electrode placement caused inter-
patient variability, two different cochlear morphologies and electrodes were implemented, 
figure 6.2. The cochlear morphologies and cross-sectional hair cell positions were based on 
individual histological sections of human cochleae, and differ for instance in their relative 
height and shapes of the different scalae. Two different electrode array designs were used 
for the simulations: a lateral wall, straight, HiFocus1J (Advanced Bionics) electrode (figure 
6.2), and a pre-curved, HiFocusMS (Advanced Bionics) electrode, located in a mid-scalar 
position. The HiFocusMS electrode contacts were placed approximately equidistant from 
the basilar membrane, whereas the 1J electrode contacts were placed closer to the basilar 
membrane on the apical end and further from the membrane on the basal end. 
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3200 sets of hair cells were evenly distributed along the length of the basilar membrane, 
one row of IHCs and three rows of OHCs. Among these locations, 2840 sets of hair cells had 
CFs above 125 Hz. For those hair cells the auditory peripheral model could simulate voltage 
responses. Hair cells were considered dipoles, because of their anisotropic morphology 
and properties, and in line with a previous modeling study (Teal and Ni, 2016). The bottom 
pole of the current source of each hair cell was located in the basilar membrane, and the 
top pole of the current source was located in the scala media, as shown schematically 
in figure 6.3. The lengths of the dipoles varied throughout the geometries ranging from 
roughly 30 µm at the base of the cochlea to 70 µm at the apex (Pujol et al., 1992). In the 
cochlear geometries, the CF at a given position along the cochlea was determined by the 
Greenwood map (Kalkman et al., 2014). Simulated electrical potentials generated by the 
inner and outer hair cell dipoles and measured at the modeled recording contacts were 
divided by the dipole current amplitudes to obtain electrical impedance values for each 
dipole-contact pair.

SV

SM

ST
IH1

IH2

OH1

OH2

OH3

OH4

OH5

OH675°
10 µm

RM

BM

Figure 6.3. Mid-modiolar cross-section of the cochlea, centered around the scala media (SM), 
showing the hair cell positions of the three different rows of hair cells. SM = Scala Media, ST = Scala 
Tympani, SV = Scala Vestibuli, BM = Basilar membrane, RM = Reissner’s membrane, IH1 = inner hair 
cell bottom, IH2, inner hair cell top, OH1, 3, 5 = outer hair cell bottoms in three different rows and 
OH 2, 4, 6 = outer hair cell tops in three different rows. A line drawn through the current dipoles 
was situated at an angle of 75° relative to the basilar membrane, with the IHCs and OHCs leaning 
towards each other. The three OHC dipoles were exactly parallel to each other and were positioned 
10 µm apart, in the lateral direction along the basilar membrane.

The distances between individual dipoles were much smaller than the dimensions of 
the model’s surface elements; therefore, some discretization/interpolation artifacts were 
present in the simulated electrical potentials. These artifacts were smoothed by applying a 
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spatial low-pass Butterworth filter to the potentials along the basilar membrane, induced 
by each row of 3200 dipoles.

2.3 Simulating intracochlear hair cell ECochG responses
The ECochG response for a recording electrode, e, was calculated as follows; 
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Where Ihc, refers to all hair cell (hc) contributions, ZVC(hc, e) to the electrical impedance froe 
hair cell to the recording electrode as calculated by the Volume Conduction (VC) model 
(Kalkman et al., 2015, 2014). For each stimulus, the total ECochG response is calculated 
as the sum of contributions from all hair cells in time. Simulated sound stimuli were tone 
bursts with frequencies of 250, 500, 1000, 1500, 2000 and 4000 Hz with stimulus levels 
of 20- to 110-dB sound pressure level (SPL) with increments of 10 dB. The tone bursts 
had stimulus durations of 50 ms and rise and fall times of 0.5 ms. For all simulations, the 
sampling frequency was 100 kHz. The summation and difference response were obtained 
from the simulations of responses to condensation and rarefaction stimuli. The CM 
amplitude was calculated as the amplitude at the stimulus frequency in the difference 
response, obtained from the Fourier transform, over the response between 25 and 50 ms, 
to remove the onset response from this analysis. 

2.4 Modeling hearing loss
Sensorineural hearing loss was simulated by lowering the number of surviving hair 
cells and by decreasing the C-factor. Six hypothetical types and degrees of hair cell 
degeneration were tested, namely: 

•	 Only IHCs) All C-factors to 1, only responses from IHCs are considered

•	 Only OHCs) All C-factors to 1, only responses from OHCs are considered

•	 Hearing Loss (HL)-A) Equally distributed hair cell degeneration: hair cell survival 
10%, C-factor of 1; 

•	 HL-B) Equally distributed hair cell degeneration: hair cell survival 10%, C-factor of 0.1; 

•	 HL-C) Sloping hair cell degeneration: hair cell degeneration decreased with CF 
from 100% apically to 0% in the base. The C-factor was related to the hair cell 
degeneration. This resulted in 100% survival in the apex combined with a c factor 
of 1, 50% survival and C-factor of 0.5 in the middle, and 0% survival and C-factor of 
0 in the base; 

•	 HL-D) Dead basal region: No hair cell degeneration in the basal 1/3rd of the cochlea, 
and 10% survival elsewhere combined with a C-factor, of 0.1.
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An overview of the parameters in the six types and degrees of hair cell degeneration is 
given in table 6.1.

Table 6.1. Overview of parameters in the six different hair cell degeneration
HL Shape Survival rate c-factor
ihc Flat 100% 1
ohc Flat 100% 1
A Flat 10% 1
B Flat 10% 0.1
C Sloping 100% apical to 0% basal 1 apical to 0 basal
D Dead region 10% apical and mid, 0% basal 0.1 apical and mid, 0 basal

2.5 Subject recordings
Intracochlear ECochG responses were recorded in two subjects with CIs with residual 
hearing in the implanted ear. Data on the hearing loss and implants of these subjects is 
given in table 6.2.

Table 6.2. Audiograms and subject information for the two subjects (ID-1 and ID-2). Audiogram 
values are the thresholds (dBHL) at each frequency
Pt         Audiogram Frequency, Hz Subject information

125 250 500 1000 2000 CI use Ear Age Cause Device
ID-1 25 40 50 55 50 3 yrs R 57 SNHL Advantage, HiFocus MS

ID-2 55 60 70 75 >100 3 yrs R 85 SNHL Advantage, HiFocus MS

Acoustic stimulations were done with 50 ms tone bursts, with 1 cycle each for the ramp up 
and the ramp down, with a Hanning window. In the recordings a bin-width of 36 Hz was 
achieved with a rate of 9280 Hz and 512 samples. The signal was defined as the amplitude 
of the Fourier transform at the stimulus frequency. The initial stimulus amplitude was 
110 dB SPL and was decreased in 10-dB steps until the signal-to-noise ratio was below 
18 dB. Noise amplitude was defined as the average amplitudes of 4 to 6 bins flanking 
the stimulus frequency. Alternatively, in the absence of a distinct peak at the stimulus 
frequency, up to 40 averages were registered.
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3 RESULTS

Simulated attenuation of currents within the cochlea, or modeled current distributions, 
are shown in section A. Section B reports on recordings and simulations of intracochlear 
ECochG potentials, both in the time- and frequency- domains. Section C investigates how 
the CM amplitude in response to different stimulus frequencies and amplitudes changes 
with exact recording position, and how it is affected by cochlear morphology, electrode 
design and hearing loss. 

3.1 Electrical attenuation simulated by the volume conduction model
The simulated inner hair cell impedance curves are plotted in figure 6.4 for different 
cochlea-implant configurations. 
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Figure 6.4. Electrode impedances in response to inner hair cell activities, modeled at 3200 different 
locations and 16 different electrode positions. Calculations were performed for the following 
configurations; [A] cochlea 1 - 1J; [B] cochlea 2 - 1J; [C] cochlea 1 - MS; [D] cochlea 2 -MS; [E]
Exponential model; [F] impedance function for the most apical electrode contact from cochlea 2 
- MS. Dotted lines in F indicate the sensitivity-peaks. Each curve corresponds to impedance values 
from all individual inner hair cells, measured at specific recording contact; hair cell locations are 
indicated along the x-axes as a function of insertion angle, measured from the round window.

Impedances between electrodes were more consistent in the MS array than in the 1J 
electrode. In the latter, impedances varied by as much as a factor of 3 between the least 
and most responsive electrode. In C2 the electrode contacts showed a moderately larger 
impedance to hair cells in the basal region. Figure 6.4F clearly demonstrates the double 
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peak in sensitivity to hair cell activation, in the exemplary impedance function for the 
most apical electrode in the C2-MS configuration. The regions of the peaks are almost 400 
degrees apart, i.e., close to a complete turn (dotted lines), indicating cross-turn sensitivity.

3.2 Single electrode ECochG responses
This section describes ECochG responses simulated and recorded at the most apical 
electrode contact. 

Single electrode recordings
ECochG summed and difference responses from two different subjects are shown in Figure 
6.5. A temporal onset response was seen in the difference recording in subject ID-2, but 
not in the recording from subject ID-1. Higher odd harmonics in the spectral domain were 
also only seen in recordings from subject ID-2. In the summed responses recordings from 
subject ID-2 showed the first harmonic, whereas in subject ID-1 the even harmonics did 
not exceed the noise floor. There was no large direct current component in the recordings, 
probably due to high-pass-filtering of the recording set-up. 

-40

0

40

Am
pl

itu
de

 [
V]

Summed, Temporal

0

2

4

Summed, Spectral

-50
0

50

Difference, Temporal

0
10

20

Difference, Spectral

Recording - ID-1

0
Time [ms]

-20
0

40

500 1000 2000
Frequency [Hz]

0

2

4

Time [ms]

-50
0

50

500 1000 2000
Frequency [Hz]

0

10

20 Recording - ID-2

10 20 30 40 50 0 10 20 30 40 50

 

Figure 6.5. recorded ECochG responses to a 50-ms, 500-Hz, 100-dB SPL tone burst from subjects 
ID-1 and ID-2. The recordings were obtained from the most apical electrode contact.

Ef﻿fect of hair cell damage on single electrode simulations
Figure 6.6 shows modeled ECochG summed and difference responses for different hair 
cell configurations. The amplitude of the AC component in the summed response varied 
among the different configurations of hair cell degeneration. The largest amplitude was 
seen in the healthy cochlea, and the smallest in hearing loss configuration B. The onset in 
the difference responses as observed in the recording of subject ID-2 was seen in some of 
the simulations; with the complete cochlea, with HL-A and with HL-C. The configurations 
used in these three simulations all included healthy inner and outer hair cells (in which 
COHC equals 1). The second harmonic was visible in almost all simulations, except for the 
simulation with only IHCs surviving, and was largest in again the complete cochlea, HL-A 
and HL-C. Difference responses from the simulations with only IHCs and only OHCs had 
nearly opposing phases, and the corresponding CM amplitudes were larger than from the 
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intact, complete cochlea. With any of the four HL simulations, amplitudes were around 
five times smaller than when all hair cells survived. Comparison to the subject recordings 
show that subject ID-1 best resembled the simulations without OHCs or HL-B or HL-D, 
since in these simulations no onset response was seen and higher harmonics were absent 
or small. Recordings from subject ID-2 closely matched the simulations with the complete 
cochlea, HL-A and HL-C, as these all showed a strong onset and higher harmonics. 
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Figure 6.6. Simulated summed and difference responses for different hair cell configurations 
in both the temporal and the frequency domain. The top three rows show the responses from a 
cochlea when all hair cells, only the IHCs, or only the OHCs are taken into account, respectively. The 
other rows show responses for modeled hearing loss, namely 10% survival, c=1 (HL-A); 10% survival, 
c=0.1 (HL-B); sloping survival, sloping c (HL-C); no basal hair cells, other regions 10% survival and 
c=0.1 (HL-D). 

3.3 CM along the array
This section explores the effects of stimulus configurations, cochlear morphology and 
electrode design, and hair cell survival on the CM amplitudes along the implanted array.

Effect of stimulus configuration
Figure 6.7 shows the recorded (two top rows) and simulated (two bottom rows) CM 
responses. The two bottom rows show CM simulations from the intact C1 cochlea with 
an MS array, stimulated with low (20 to 60 dB) and high (70 to 100 dB) stimulus levels 
respectively.

In both subjects as well as in the simulations, the response amplitudes increased as 
the stimulus intensity increased, and the peak-response shifted basally as the stimulus 
frequency increased. Subject ID-1 showed a narrow tuning. In subject ID-2, a second peak 
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appeared basally at most stimulus frequencies, when stimulated with 100- or 110-dB SPL. 
Simulated responses to low stimulus levels (figure 6.7, third row) showed narrow tuning, 
similar to the recordings from subject ID-1 (figure 6.7, first row). In response to higher 
stimulus levels, the simulated response amplitudes increased and the response became 
wider (figure 6.7, fourth row), which more closely resembled recordings from subject ID-2 
(figure 6.7, second row). 
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Figure 6.7. Intracochlear ECochG along the array. Top rows: measurements in the two different 
subjects, first and second row representing subjects ID-1 and ID-2 respectively. The recording 
electrode number on the x-axis varies from 1 (the most apical) to 15 (the most basal). Recordings 
were done at the odd electrode contacts only. Lowest rows: modeled CM responses (in µV) at 16 
electrode positions for the C1 - MS configuration in response to low stimulus levels (20 - 60 dB SPL, 
third row) and high stimulus levels (70 - 100 dB SPL, fourth row). Each column shows the response 
to a different stimulus frequency (250-4000 Hz). Grey scale indicates stimulus level, increasing from 
light to dark.

Effect of cochlea and implant on the response along the array
To investigate effects of cochlear morphology and implanted electrode design, CM 
responses to 90 dB SPL were modeled for each cochlea-implant configuration (figure 
6.8). The electrode location where the maximum response was recorded was slightly 
different for each configuration. In response to 250 or 500 Hz stimuli, a second peak was 
recorded basally in all configurations. The exact location and size of this second peak 
however differed per configuration. In response to 1000 Hz only the response in the C2-1J 
configuration showed a double peak. The 4kHz CM amplitudes along the array exhibit a 
jagged response in configurations B, C and D.
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Figure 6.8. Modeled CM responses for the different cochlea-implant configurations, in response to 
a stimulus of 90 dB SPL. Each graph shows the response to a different stimulus frequency (250-4000 
Hz). Each color shows a different configuration; [A]: cochlea 1, 1J in red; [B]: cochlea 2, 1J in green; [C]: 
cochlea 1, MS in blue; [D]: cochlea 2, MS in purple. X-axis denotes the electrode location. 

Effect of hair cell type and degeneration on the response along the array
ECochG responses from IHCs and OHCs were simulated separately to evaluate how hair 
cell type affected the intracochlear pattern. Simulations of how different types of hair cells 
contributed to the intracochlear CM response are shown in figure 6.9. The peak of the 
response originating from IHCs was narrower than the response originating from OHCs. 
Response amplitudes increased faster with stimulus levels for IHCs than for OHCs. The 
OHC responses showed double peaks, especially in response to higher stimulus levels. 
This was also seen in the recordings from subject ID-1 in figure 6.7. 
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Figure 6.9. Effect of hair cell type; Simulated intracochlear CM responses along the electrode array 
originating solely from IHCs (top row) and originating solely from OHCs (lower row). Simulations were 
done with the intact cochlea. Hair cell survival rate was set at 100% and c-factors at 1. Simulations 
show responses to stimulus levels of 80- to 110- dB SPL and stimulus frequencies of 250- to 4000 Hz.

To investigate the effect of hair cell damage on the intracochlear CM, responses are 
simulated for four different degrees of hair cell degeneration. Results are shown in figure 
6.10. CM responses were very similar when hair cell damage was equally distributed 
(hearing loss degrees HL-A and HL-B). Sloping hair cell damage, as in HL-C, resulted in 
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smaller response amplitudes to high stimulus frequencies on the basal electrodes, 
compared to HL-B. A basal dead region (HL-D), resulted in minimal activation at the 5 most 
basal electrode contacts (electrode number 11 – 15) in response to stimulus frequencies 
of 1 kHz and higher. 
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Figure 6.10. Effect of hair cell survival; Simulated intracochlear CM responses along the 
electrode array in cochleae with different configurations of hair cell survival. The different hair cell 
configurations are referred to as HL-A, HL-B, HL-C and HL-D. Simulations show responses to stimulus 
levels of 80- to 110- dB SPL and stimulus frequencies of 250- to 4000 Hz.

4 DISCUSSION 

A model was developed that replicated characteristics seen in intracochlear ECochG 
recordings in the temporal, spectral and spatial domain. Simulations with different degrees 
and size of hearing loss yielded similar results as recordings from two different subjects. 3D 
volume conduction simulations showed that the intracochlear ECochG is a local measure 
of activation. This local sensitivity was reflected in the steep fall-off of impedances with 
distance along the basilar membrane (figure 6.4). In line with the theory of place-coding, 
and the level-dependency of hair cell activity, increasing stimulus level resulted in wider 
tuning curves. The peaks shifted basally with increasing stimulus frequency. The exact 
location on the array of the peak CM amplitude depended on cochlear morphology and 
implant type. Double peaks were seen in response to the highest stimulus levels. These 
double peaks could be either attributed to cross-turn sensitivity or wide tuning of the 
hair cells. The width of the tuning was different in both subjects. Simulations showed 
that different tuning width could results from different stimulus levels, morphologies and 
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degrees and types of hearing loss. Differences in hearing loss could explain differences 
between the recordings from the two subjects in terms of CM onset responses, higher 
harmonics, and the width of the tuning curve. Concluding, the model reproduced 
intracochlear hair cell responses recorded from CI-subjects and can be used to investigate 
effects of individual differences.

Cochlear morphology and electrode design 
While the impedance curves in Figure 6.4 are primarily determined by the distance 
between the recording electrode contacts and the individual hair cells, they are also 
affected by other geometric factors such as the relative orientations of the recording 
contacts and hair cells, as well as the size and positioning of the electrode array’s silicon 
carrier. In the models of the 1J array, the silicon carrier can be pressed up close to the 
basilar membrane at various points (e.g. see inset of figure 6.2A), which partially insulates 
the recording contacts from the current generated by the hair cells. This results in a 
more irregularly shaped set of impedance profiles for the 1J compared to the MS arrays 
(compare the peak impedance values in figures 6.4A&B to 6.4C&D), since the MS array’s 
mid-scalar positioning offers a clearer and more consistent current pathway from hair 
cell to electrode through the scala tympani. Counter-intuitively, this also leads to lower 
peak values in the impedance curves for the 1J at certain insertion angles, despite the 1J 
being positioned closer to the basilar membrane than the MS (e.g. compare peak values 
between the 1J and MS at around 180° in figures 6.4A and 6.4C). 

The jagged responses in the CM recordings along the array in response to 4 kHz originate 
from the OHC responses (figure 6.9), which had a much wider activation than IHCs. The 
OHC responses to 4 kHz showed a relatively quick change in phase along the basilar 
membrane, and as a consequence, the way these responses add to a CM-signal on an 
individual electrode is highly influenced by the exact phases of the OHC-responses in its 
neighborhood.

Hearing loss and the intracochlear ECochG 
Different degrees of hair cell degeneration yielded responses that mimicked characteristics 
of recorded responses, in the temporal and spectral domain (cf. figures 6.5 and 6.6) and in 
the spatial domain (cf. figures 6.7, 6.9 and 6.10). In the summed response recorded from 
subject ID-1 no AC component was above noise floor (figure 6.5). Simulations showed 
lower AC components in the summed response when only IHCs were modeled or in HL-B. 
Recorded difference responses in subject ID-1 (figure 6.5) showed a clear CM, but no onset 
response and no harmonics. In the simulations this is seen when only IHCs or only OHCs 
were modeled, or when low c-factors were applied (0.1 or less in the models HL-B and HL-
D). Recordings from subject ID-1 showed narrow tuning curves, which was replicated in 
the model by removing OHCs, but retaining all the IHCs. The simulations therefore suggest 
that subject ID-1 suffered from (near-)complete OHC loss or large functional damage to 
the OHCs. In line with this observation, subject ID-1 had a flat audiogram and relatively 
good audiometric thresholds. 



Chapter 6

148

In subject ID-2 the second harmonic was present in the summed response, which was 
seen in most simulations except in the simulation HL-B. In the difference response the CM 
was large and a prominent onset response was observed. Higher harmonics were clearly 
visible in the spectral domain. Onset responses and higher harmonics were seen in the 
HL-A and HL-C simulations or in a healthy cochlea. These simulated conditions all had 
high c-factors, up to 1 in the apical regions. The onset response was not seen when only 
IHCs or OHCs were modeled. This suggests that it is an interaction effect caused by phase 
differences between the IHCs and the OHCs at onset. The width of the responses along 
the array in subject ID-2 is most similar to the widths in HL-A and HL-B, where hair cell 
degeneration was equally distributed along the basilar membrane. The simulations thus 
suggest that subject ID-2 has good functioning IHCs and OHCs, but that their numbers are 
reduced equally throughout the cochlea. 

IHCs and OHCs contribute differently to the intracochlear ECochG
Evaluating the separate IHC and OHC contributions (figure 6.9) showed that the 
intracochlear ECochG CM response is dominated by OHCs, especially in response to 
high stimulus frequencies. OHC domination of the ECochG response is consistent with 
animal experiments (Dallos, 1986, 1985, 1983; Dallos et al., 1972; Dallos and Cheatham, 
1976; Davis et al., 1958; Russell et al., 1986). Modeled electrical impedances were similar 
between IHCs and OHCs, and hence impedance differences cannot explain the difference. 
OHC voltages as produced by the hair cell model are generally four times smaller than 
the IHC voltages. OHCs are about three times larger in number than IHCs. Both those 
facts combined would expect equal total contributions from IHCs and OHCs. A possible 
explanation for the larger OHC contribution is a difference in low-pass-filtering membrane 
properties between IHCs and OHCs. The low-pass filtering cut-off frequencies for the IHCs 
are generally lower than those of the OHCs(Johnson et al., 2011), which results in a relative 
insensitivity of the ECochG to the IHC AC voltages. 

Animal studies correlating post-mortem histological counting of the hair cells to 
audiometric thresholds have shown that hair cell degeneration generally starts in the base 
and then proceeds to the apex. Laterally positioned hair cells are more vulnerable than 
those medially positioned. Hence, it is believed that degeneration generally progresses 
from base to apex, and affects lateral OHCs first and the medially positioned IHCs last 
(Dallos et al., 1972; Eric Lupo et al., 2011; Stebbins et al., 1979; Van Ruijven et al., 2005, 
2004). Synaptic or retro-cochlear pathologies might cause hearing loss regardless of the 
status of hair cells in the cochlea (Hill et al., 2016). 
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Limitations of the model and future research
A challenge in modeling hair cell membrane behavior is the relatively sparse animal 
data available. In the present study the dependency of conductance parameters on 
the CF was determined from a few different data points only (Johnson et al., 2011). A 
wider range of data showing how the hair cell conductance depends on CF is desirable. 
Another limitation is the unusually large IHC responses to stimulus levels above 80 dB SPL 
compared to animal data (see appendix). Lastly, from the auditory peripheral model, only 
responses to hair cells with a CF higher than 125 Hz could be obtained, although hair cells 
with lower CFs might also contribute to the ECochG response. The current study focused 
on the CM response. Instead, the SP could perhaps also be used as a diagnostic marker of 
electrode position (Helmstaedter et al., 2018). This could be further evaluated with the here 
presented model. The model can also be extended with neural firing to simulate CAP and 
ANN responses, to disentangle these from hair cell responses. The model of the auditory 
periphery does include a nerve fiber model, which could simulate spiking, and hence, CAP 
and ANN responses could be modeled as well. For this purpose, single fiber contributions 
to the ECochG would have to be estimated first. The model developed here could also be 
used to predict extracochlear recordings, close to the round window. Effects of often used 
stimulation patterns, such as chirps or tone bursts, or newly suggested patterns such as 
partially noise-masked tones (Chertoff et al., 2012), could be modeled. By using the 3D 
model for this, also complex projections from the hair cells to the extracochlear electrode 
are taken into account. 
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APPENDIX

Comparison of simulated and recorded membrane voltages
Previously, it was shown that the relative dependency of IHC voltage on stimulus level and 
frequency is correctly predicted by the hair cell model (Zhang et al., 2001). In addition, 
this appendix shows qualitative similarities and discrepancies between simulated and 
previously recorded IHC and OHC voltages. 
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Figure 6.11. Measured [A&C] and simulated [B&D] input-output functions of intracellular responses 
to acoustic stimuli presented at 800 Hz. AC and DC responses are plotted for both IHCs [A&B] and 
OHCs [C&D]. AC responses were defined as the peak value of the fundamental component derived 
from the tone burst responses, while DC responses were defined as the mean of the response in the 
second half of the stimulation in both model and physiological data. The physiological recordings 
were obtained from Dallos (1985) [reprinted with permission].
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Figure 6.12. recorded [A] and simulated [B] max receptor potentials showing peak AC receptor 
potentials as a function of peak sound level, in response to stimulation at characteristic frequency 
(800Hz). The fit for simulations was done piecewise polynomial with constraints to the endpoints, 
the fit for the recordings is unknown. The physiological recordings were obtained from Dallos (1986) 
[reprinted with permission].

Figure 6.11 shows that the ratio between AC and DC response amplitudes is correctly 
simulated. The amplitudes of the simulated and recorded AC and DC components in 
both IHCs and OHCs increase with sound pressure level, but saturation is stronger in the 
recordings than in simulations. Figure 6.12 shows that the model successfully reproduces 
nonlinear behavior in both IHCs and OHCs. In both simulations, the absolute levels were 
comparable in response to the low stimulus levels, but up to a factor four larger in the 
simulations in response to high stimulus levels. An explanation for this is that the absolute 
response amplitudes are dependent on placement of the reference electrode. Overall, 
qualitative behavior of potentials of both types of hair cells in response to different 
stimulus levels is well described by the model. 
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Two models that can simulate acoustic responses of the implanted peripheral auditory 
system were presented in this thesis. One model describes responses of the auditory nerve 
to electrical stimulation, the other describes how responses to acoustic stimulation are 
recorded in a cochlear implant. In the first section of this discussion, both model designs 
are discussed. In the following section, the different outcome measures are discussed: 
single fiber action potential (SFAP), evoked compound action potential (ECAP). The SFAPs 
and ECAPs were calculated with the neural model, ECochG recordings were calculated 
with the cochlear model. In the section thereafter, the most important model parameters, 
and how they affect outcomes of objective measures are discussed. Limitations and 
suggestions for improved model design are discussed in the next section. The concluding 
sections describe alternative model applications and future research directions. 

Model design

Neural response to electrical stimulation
With the first model responses of the auditory nerve to electrical pulse trains were 
simulated. It was built on an existing model of the cochlea and auditory nerve that 
simulates deterministic initial fiber thresholds in response to single pulses (Kalkman et al., 
2015, 2014). The model was extended so that responses to pulse trains can be simulated. 
In the previous model, the initial thresholds were calculated with a realistic 3D geometric 
model of the cochlea and a biophysical active multi-nodal cable-neuron model of 32,000 
nerve fibers (Frijns et al., 1994; Frijns and ten Kate, 1994; Kalkman et al., 2015). Thresholds 
could be calculated in response to predefined electrode configurations, pulse shapes, 
sizes and amplitudes, irrespective of spiking and stimulation history. In the current 
model, these initial thresholds were pre-calculated and stored in a database. To calculate 
responses to pulse trains, stochasticity and temporal components have to be described 
in a computationally efficient manner and with a limited parameter space. To achieve 
this, the pre-calculated thresholds were adjusted temporally and stochastically using a 
phenomenological approach. To accurately simulate temporal behavior in response to 
long duration pulse trains, long-term-adaptation components were introduced in the 
new model. it was shown that both a spiking-dependent adaptation and a stimulus-
dependent adaptation (or accommodation) are required to correctly predict spike 
patterns. The resulting model is the first of its kind to include a combination of adaptation 
and accommodation. Stochasticity was implemented in the model as a relative spread 
(RS) on the threshold, by stochastic distributions of parameters over the fibers and by 
stochastic variation of the parameters in time. In a further refined version of the model, 
latency and jitter were implemented in the phenomenological part of the model. By 
having combined a biophysical approach with a phenomenological approach, this model 
can deal with both spatial and temporal effects in a computationally efficient manner. 
Because of this, single fiber action potentials (SFAPs) can be simulated for all nerve fibers 
in response to pulse trains. All single fiber responses together yield the pulse-train evoked 
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compound action potentials (ECAPs). To simulate these, the spike patterns were convolved 
with their contributions to the potentials recorded at each electrode contact.

Cochlear implant recordings of hair cell activity
The second model simulates how the implanted electrode records hair cell activity in 
response to sound, the intracochlear electrocochleography (ECochG). This model is a 
combination of two existing models; a model of hair cell activation (Zilany et al., 2014) 
and a 3D electrical conduction model (Kalkman et al., 2015) of the cochlea. Intracellular 
hair cell voltages were calculated with the hair cell activation model. The thus calculated 
intracellular voltages were similar to recordings from animal studies. Extracellular currents 
are calculated based on hair cell membrane resistances and capacitive low-pass filtering 
properties of the membrane. The 3D volume conduction model is used to calculate 
electrical impedances between hair cell dipoles at 3200 spatially different locations along 
the basilar membrane and each electrode contact. For the implanted electrode array two 
different designs and cochlear morphologies were used. Combining the extracellular hair 
cell currents with the impedances yielded simulations of the intracochlearly recorded 
ECochG.

Model outcomes

Responses of the peripheral auditory system either to acoustic or electrical stimulation 
can be recorded objectively with SFAP, ECAP and eCochG recordings, as elaborated in 
the introduction. Here, the ability of the models to simulate such recordings is evaluated. 
Single Fiber Action Potential (SFAP) recordings are made from individual neurons and can 
therefore be directly compared to simulated spike timings. The model of neural responses 
accurately simulated discharge rate I/O curves, post-stimulus time histograms (PSTH), 
period histograms (PH), and inter-spike interval histograms (IH), and their variances 
obtained from SFAP recordings (Bruce et al., 1999a; Javel et al., 1987; Litvak et al., 2001; 
Miller et al., 2008; Zhang et al., 2007; chapters 2 and 4) and in the case of amplitude 
modulated (AM) pulse trains also vector strengths (VS) and fundamental frequency (F0) 
amplitudes (Hu et al., 2010; Litvak et al., 2003b, 2003a; chapter 3). The simulated responses 
were in good agreement with animal data for continuous and amplitude modulated long-
duration, pulse trains over a wide range of stimulus rates and amplitudes. The modulation 
detection thresholds, as interpreted by an ideal observer, inferred from the VS, yield 
realistic upper bounds when compared to data from human experiments (Shannon, 1992; 
chapter 3).

Simulated pulse-train-ECAP responses, to both short and long duration stimuli (chapter 
5), replicated studies in both animals and humans (Carlyon and Deeks, 2015; Hughes et al., 
2012; Jeng et al., 2009; Ramekers et al., 2015; chapter 5). Pulse train ECAP recordings show 
an alternation, which is replicated by the model. Modeled pulse train ECAPs showed that 
with the standard parameter settings, or with longer refractory periods when combined 
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with a larger stochasticity, describe the human data very well. Interpatient differences can 
now be explored with the model by investigating how parameters affect the pulse train 
ECAP response.

In chapter 6, intracochlear ECochG simulations were compared to recordings from two 
different subjects. The model replicated characteristics seen in intracochlear ECochG 
recordings in the temporal, spectral and spatial domains. Impedance calculations with 
the 3D volume conduction simulations demonstrate that the intracochlear ECochG is a 
local measure of activation, although possibly sensitive to neighboring cochlear turns. In 
response to high stimulus levels, double peaks may occur which can either be contributed 
to cross-turn sensitivity, or to broad hair cell activation within the cochlea. Simulations of 
the hair cell response showed that increasing stimulus frequency results in a basal shift of 
the peak cochlear microphonic (CM) amplitude. The exact location on the array of the peak 
CM amplitude depended on cochlear geometry and electrode array type. Simulations of 
phase recordings showed that the recorded pattern becomes unreliable when the special 
sampling is too low. 

Model parameters

As discussed in the previous section, the models and their average parameters are well 
equipped to replicate the different objective recordings of the auditory periphery to 
acoustic or electrical excitation. This section describes how recordings are affected by 
specific model parameters and how the parameters, and thus differences in recordings, 
might be related to hearing loss. 

Neural adaptation and accommodation
Chapters 2 to 5 showed that adaptation must be implemented to correctly model 
auditory neuron spike rates in response to pulse trains. Adaptation decreased the 
discharge rate over time, and improved modulation following behavior. Only a few 
models of auditory nerve responses to electrical stimulation include adaptation (Negm 
and Bruce, 2008; Woo et al., 2009). Those models take a biophysical approach, where 
adaptation behavior is implemented in specific ion channels. Such models are important 
to provide further understanding of the origin of adaptation, but are too slow to be used 
to simulate spike trains in response to sound segments in a complete auditory nerve. 
Implementing adaptation using a phenomenological approach enabled fast simulations 
of neural responses to pulse trains. Spike-adaptation alone did not describe the long-term 
behavior; stimulus-dependent adaptation, sometimes referred to as accommodation, or 
sub-threshold adaptation, also had to be implemented. The time constant was assumed 
similar for both accommodation and adaptation. Biophysical studies have shown that 
there are at least a few different ion channel-types in spiral ganglion cells; fast voltage-
gated sodium (Nav) and delayed rectifier potassium (Kv) channels (Hodgkin and Huxley, 
1952), but also low-threshold potassium (KLT) channels and hyperpolarization-activated 
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cation (HCN) channels (Negm and Bruce, 2008). These different channels invoke different 
currents flowing over the neural membrane which all may result in different forms of 
adaptation with different time scales. Because biologically it might very well be that 
different mechanisms underlie accommodation and spike-adaptation, different time 
constants for both processes could perhaps be physiologically more viable. Adaptation 
over different time scales can be modeled by a power-law. Power-law adaptation is 
suggested in general neuroscience (Fairhall et al., 2001) and is implemented in models 
of acoustic stimulation of the auditory periphery (Zilany et al., 2009; Zilany and Carney, 
2010), but not in models of electrical stimulation. Chapter 4 shows that the adaptation 
is best described by a power-law, especially for long duration data. As suggested in 
literature, this power-law adaptation can be approximated with multiple exponentials, 
and the number of exponentials required to fit the data depended on the duration of 
stimulation to simulate. Chapter 5 shows that decreasing the magnitude of adaptation in 
the model produced increases in alternation of ECAP amplitude and response amplitude, 
as seen in deafened guinea pigs (Ramekers et al., 2015). In their study, Ramekers et al 
see an increased alternation depth of pulse-train ECAP in chronically deafened animals 
that is hypothesized to be related to altered refractoriness or jitter in hearing impaired 
animals. In chapter 5 this hypothesis was tested and it was shown that instead, decreasing 
the adaptation amplitude better reproduced recordings from the deafened animals. Thus, 
measurement of the pulse-train ECAP’s alternation can provide a measure of adaptation, 
which might be related to hearing loss. Generally, explanations for the relation between 
hearing loss and neural behavior can be sought in axonal shrinkage, demyelination and 
progressive retraction of the peripheral axon (Leake and Hradek, 1988). To date, however, 
there is no exact biophysical explanation for any relation between hearing loss and 
decreased adaptation.

Refractoriness
Refractoriness has, by the use of two-pulse paradigms, been much more extensively 
studied than adaptation. Simulations in chapters 2 and 3 show that for longer duration 
stimulation, effects of refractoriness interplay with effects of accommodation and 
adaptation. Effects of refractoriness were mostly visible at short time scales, such as SFAP 
onset rates and initial rate decrements. Larger refractory parameters in the model lead to 
larger inter-spike intervals in the SFAP interval histograms. ECAP simulations showed that 
refractoriness affects the frequency at which alternation is maximal, alternation depth 
and, for short duration simulations, also the final response amplitude. Several previous 
studies show that refractory periods are longer in animals with hearing loss than in control 
animals (Rubinstein, 1995; Shepherd et al., 2004; Shepherd and Javel, 1997; Sly et al., 2007; 
Walton et al., 1995). Prolonged refractory time-constants are observed in demyelinated 
neurons (Waxman and Ritchie, 1993), of which the chronically deafened auditory nerve is 
an example (Leake and Hradek, 1988). Demyelinated nerve fibers have fewer potassium 
channels than myelinated fibers, which might result in a leakage of internodal potassium 
currents into the nodal regions and thus cause a prolongation of refractory time constants.
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Stochasticity
Stochasticity was implemented in various parts of the neural model by using: a stochastic 
distribution of thresholds over all nerve fibers, a threshold variability, an internal variability 
of the refractoriness and a distribution of model parameters over the fibers. The relative 
stochasticity (RS) and the internal variability of the refractoriness were essential model 
attributes to obtain I/O curves similar to animal data in response to electrical pulse trains. 
Variation of RS affected the width of the peaks in the interval histograms obtained from 
simulated SFAPs. A lower RS resulted in slightly improved modulation following behavior 
and stronger phase-locking over time in response to low stimulus amplitudes. This can 
be explained by a more deterministic fiber more strongly relying on the exact stimulus 
amplitude to determine whether it fires or not. The model presented here shows that 
decreased stochasticity (i.e., reduced RS), or increased refractoriness of the nerve, may 
lead to increased alternation depths in the temporal ECAP, independent of stimulus rate. 
A psychophysical study by Carlyon and Deeks (2015) shows that patients with larger 
alternation depths in their ECAP responses perform worse on rate discrimination tasks. The 
simulations presented in chapter 5 suggest that CI wearers with better rate discrimination 
have auditory neurons with short refractory periods and strong stochastic behavior. 
Biophysically this can be understood as that stochasticity, or the RS of the threshold, 
depends on the myelination of the nerve, with demyelination reducing RS (Resnick et al., 
2018).

Latency and jitter
For the SFAP simulations, latency and jitter were not implemented. This resulted in slightly 
later spike timings in the animal experiments than in the model simulations, visible in the 
post-stimulus time histograms. In the ECAP simulations latency and jitter were included. 
An increased latency induced a small delay in the ECAP responses. Jitter did not affect 
any of the output measures. Latency and jitter are important parameters when exact 
spike timing is of interest, such as in a model of ITD differences. Spike timing is, however, 
also affected by adaptation (Prescott and Sejnowski, 2008), and the exact location of the 
auditory neuron relative to the stimulus (Mino et al., 2004). 

3D model
Both the neural model’s responses to electrical stimulation and the hair cell model’s 
responses to acoustic stimulation include a 3D model of the cochlea. It is demonstrated 
in chapter 2 that spike rate adaptation depends on the spatial location of the nerve fiber 
relative to the current source. Relative rate decreases, and thus the amount of adaptation, 
was largest at the borders of the stimulated area. The deterministic single pulse threshold 
distribution thus has a large effect on final firing patterns. The local sensitivity of the 
intracochlear ECochG, as obtained with the 3D volume conduction model, was in line with 
a previous modeling study using a finite element approach (Teal and Ni, 2016) and with 
measurements made close to the hair cells (Dong and Olson, 2013; Fridberger et al., 2004), 
but contradicting other beliefs of wider fall-offs (Ayat et al., 2015; Charaziak et al., 2017; 
Davis et al., 1958; Tasaki and Fernández, 1952; v. Békésy, 1952, 1951; Whitfield and Ross, 
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1965). This local sensitivity implies that the intracochlearly located electrode contact is 
most sensitive to a small region of hair cells, located in closest proximity to the recording 
location. As a result of this local sensitivity of the intracochlear ECochG, it is possible to 
measure acoustic tuning in the cochlea. For both types of models, it is thus of the utmost 
importance to include an accurate and realistic 3D volume conduction model.

Hair cell degeneration
In the intracochlear ECochG simulations of chapter 6, different forms of hearing loss were 
modeled by implementing different degrees and types of hair cell degeneration. CM 
phase changes, as recorded with the intracochlear ECochG, are suggested to indicate hair 
cell damage (Giardina et al., 2019; Koka et al., 2018), and most, but not all, data seems 
consistent with this theory (Tejani et al., 2019). Simulations with hair cell degeneration 
resulted in ECochG responses that better resembled the recordings from subjects in terms 
of CM onset responses, higher harmonics, and the width of the tuning curve. Changes in 
the ECochG recording in the temporal, spectral, and spatial domains were thus related to 
the degree and type of hair cell degeneration. Hence, it is concluded that the intracochlear 
ECochG recording has the potential to elucidate on the type and degree of hair cell 
degeneration. Simulations show that OHCs are the main contributor to the intracochlear 
ECochG response, in line with previous recordings from animal studies (Dallos, 1986, 
1985, 1983; Dallos et al., 1972; Dallos and Cheatham, 1976; Davis et al., 1958; Russell et 
al., 1986). Animal studies correlating post-mortem histological counting of the hair cells 
to audiometric thresholds show that hair cell degeneration generally starts in the base 
and then proceeds to the apex. Laterally positioned hair cells are more vulnerable than 
those medially positioned. Hence, degeneration progresses from base to apex, and affects 
lateral OHCs first and the medially positioned IHCs last (Dallos et al., 1972; Eric Lupo et al., 
2011; Stebbins et al., 1979; Van Ruijven et al., 2005, 2004). Despite this, the exact relation 
between audiogram and hair cell degeneration, especially in humans, remains unknown. 
Synaptic or retro-cochlear pathologies might cause hearing loss regardless of the status of 
hair cells in the cochlea (Hill et al., 2016). To verify the relationship between intracochlear 
ECochG responses and hearing loss, further studies relating hair cell degeneration in 
humans to degree and etiologies of hearing loss are necessary. 

Model design suggestions

Neural model parameters
Temporal and stochastic parameters are known to depend on fiber diameter and pulse 
shape (Liberman and Oliver, 1984; Miller et al., 1999a; Resnick et al., 2018; Verveen, 
1962; Woo et al., 2010; Zhang et al., 2007). These factors have not yet been included 
in the parameters of the phenomenological model, but could be included in a further 
refinement of this model. The RS was assumed to be independent of the time since a spike 
occurred, whereas some data suggest that RS depends on time since spike (Imennov and 
Rubinstein, 2009; Matsuoka et al., 2001). In response to some stimulation rates, SFAP 
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recordings may exhibit an increased sustained firing rate (Zhang et al., 2007), which can 
be hypothesized to be a result of integration effects, also referred to as summation or 
facilitation. In some ECAP recordings, increased amplitudes over the stimulus duration 
were observed (He et al., 2015), probably also related to integration. Such temporal 
integration was not implemented in the current model, because its exact dependency on 
pulse train characteristics such as rate and amplitude level needs to be investigated more 
thoroughly. 

Hair cell model parameters
A challenge in modeling hair cell membrane behavior is the relatively sparse animal data 
available. Pujol et al. show that the outer hair cell length is correlated to the characteristic 
frequency in different species (Pujol et al., 1992). In the present study the dependency of 
conductance parameters on the characteristic frequency was determined from relatively 
sparse data (Johnson et al., 2011). A wider range of data recording how the hair cell 
conductance depends on characteristic frequency would be desirable. A limitation of the 
hair-cell model for the current application is the non-physiologically large IHC responses 
to stimulus levels above 80 dB SPL. From the auditory peripheral model, only responses 
to hair cells with a characteristic frequency larger than 125 Hz can be obtained, although 
hair cells with characteristic frequencies below 125 Hz might also influence the ECochG 
response. 

ECAP and the Unitary response
The exact unitary response, or contributions from each individual nerve fiber to the ECAP 
is unknown, especially for humans. Simulations in this thesis were done with a unitary 
response based on cat data (Miller et al., 1999b). Differences in fiber kinetics, neuron 
myelination, size and morphology between the cochleae of different species influence 
the contribution of each action potential. An important species-dependent factor is, 
for instance, that in humans the soma is unmyelinated, which effectively adds a large 
capacitance to the human auditory nerve: leading to altered spike propagation times along 
the nerve. For simulation of the human ECAP, a unitary response derived especially for the 
human situation would be desirable (Dong et al., 2018). To test sensitivity to the shape 
of the unitary response, simulations were repeated with an alternative unitary response 
(Versnel et al., 1992). With this different unitary response, the simulated normalized pulse-
train ECAP responses were similar, thus such differences in shape of the unitary response 
would not influence the results reported in chapter 5. 

Model applications

Recording adaptation in humans
The pulse train ECAP can be used as a measure of adaptation based on findings in 
chapter 5, as a decrease in adaptation magnitude produces an increased alternation and 
response amplitude in long duration simulations. First, the average refractory period of 
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the auditory nerve should be estimated based on a two-pulse paradigm ECAP recording, 
or by identification of the stimulus rate at which the ECAP alternation is maximal. After 
adjusting the model parameters of refractoriness accordingly, the adaptation amplitude 
can be altered so that recorded responses are best replicated. This will yield an indication 
of the adaptation amplitude. From such recordings, data on adaptation levels in patients 
can easily be obtained. This can be used to investigate the relationship between neural 
adaptation and outcomes on functional tests. Ultimately, information about the level 
of neural adaptation in an individual can be used to optimize settings in sound coding 
strategies.

Simulating other ECochG responses
The model of the eCochG responses presented in chapter 6 mainly investigated CM 
responses, but it can also be used to simulate intracochlear SP. With such simulations the 
eligibility of the SP as a diagnostic measure can be established and the origin of the SP 
response can be further elucidated on (Dallos and Cheatham, 1976; Davis et al., 1958; 
Durrant et al., 1998). In a similar approach to the ECAP simulations discussed above, 
after implementing neural responses, this eCochG model could also simulate compound 
action potential (CAP) and auditory nerve neurophonic (ANN) responses. This can be 
useful to evaluate how stimulus shape affects the intracochlear CAP response and ANN. 
The ANN is often believed to be reflected in the AC potentials in the summed response. 
Contrasting with this, the simulations presented in chapter 6 with only hair cells and no 
neurons simulated, also show an AC potential in the summed response. As another future 
application, the ECochG model developed here can be used to simulate the much more 
common extracochlear, round window, recordings. Responses to different stimulation 
patterns, such as chirps, clicks or tone bursts (Schoonhoven et al., 1995), or masked 
noises (Chertoff et al., 2012) could be modeled to better understand how these responses 
potentially differentiate between different types and degrees of hair cell degeneration. By 
combining simulations of the auditory periphery with simulations of the neural model, 
while incorporating electro-acoustic interactions, responses to an EAS system could also 
be simulated in future.

Towards model-based evaluation of sound coding strategies

Owing to the efficient implementation of spatial and temporal components, the model 
of responses to electrical pulse trains can be used to evaluate whole nerve responses to 
long duration sound segments. Simulated spike patterns in response to different stimuli, 
coded with different stimulation strategies, or from both ears in binaural stimulation, 
can now be compared. From these simulated neural responses, CI users’ performance on 
tests as used in perceptual patient testing, such as minimal detection and identification 
tests, could be inferred with an interpretation model. Such simulations, whether with a 
basic interpretation, or a more complex perceptual interpretation model, can evaluate 
responses to different stimulation patterns, or sound coding strategies. Moreover, the 
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simulations could be used to investigate how inter-subject differences in auditory nerve 
characteristics will affect interpretation. These patient specific neural parameters, and 
related performance expectations, could yield patient specific recommendations for 
sound coding strategies. Whether used for optimizing sound coding strategies in general, 
or for personalization, the simulated spike trains have to be interpreted. In other words, 
spike trains have to be decoded to give information about the underlying stimuli. There 
are different approaches to evaluation of the information in, or to decode, these simulated 
spike trains.

One way to interpret spike trains would be to define a metric that can be calculated 
directly from the spike train, that quantifies embedded information. This outcome can be 
related to a stimulus. For example, a simple measure of modulation following behavior 
is the vector strength, which can be used to simulate modulation detection thresholds 
(Goldwyn et al., 2010; O’Brien et al., 2016; Xu and Collins, 2007; chapter 3). Another example 
of a metric that can be used to compare spike trains is cross-correlation, or coincidence 
counting (Heinz et al., 2001; Heinz and Swaminathan, 2009). Such measures can be very 
well used to compare binaural coincidence neurons for their interaural differences (Dietz, 
2016). The cross-correlation metric does however, not take into account spatial effects, 
since only two neurons are compared. In modeling speech perception this will generally 
not suffice, because the whole nerve contains information about the stimulus. Also, for 
modeling localization in cochlear implant users, these metrics will probably not suffice. 
Due to differences in electrode placement and neural survival binaurally, the binaural 
coincidence neuron will receive unequal information. The cochlear implant recipient 
might use other cues for localization. Another example of a metric based on the spike 
pattern is using averaging in the spatial and temporal domains. For this, first an internal 
representation of a stimulus over time is defined from the spike patterns by a spatial 
averaging over all neurons and temporal windowing (Fredelake and Hohmann, 2012; 
Hamacher, 2004; Hines and Harte, 2012). Hereafter, this internal representation over 
time is compared to a reference representation by calculating the shortest Euclidean 
distance from the signal to the reference stimulus (Chiba and Sakoe, 1978). The temporal 
integration can be done by calculating average discharge rates over a steady or moving 
rectangular or asymmetric window, e.g. a running exponential integration window (McKay 
and McDermott, 1998). Instead of using time warping averaged spatially over all neurons, 
similarity can be assessed of the 2D representation. Here, the spatiotemporally averaged 
spike pattern is treated as an image, with the structural similarity index (Wang et al., 2004). 
In both metrics, representation with the smallest difference with the representation of 
the reference stimulus has the largest chance to be perceived as similar to the reference 
stimulus. All the metrics described here define a specific attribute of the spike train that 
should be evaluated. Its ability to predict psychophysical outcomes is largely dependent 
on the stimulus. 

An alternative approach to interpreting spike patterns is the use of a neural network (Kell 
and Mcdermott, 2019).  Neural network models have already been found useful in 
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speech recognition  (Graves and Jaitly, 2014). For auditory sciences, neural networks 
often use  spatiotemporally averaged spectrograms as inputs.  From these,  image 
classification  features are extracted  and used as inputs to the neural  network.  In a 
neural network,  there are weights and layers connecting different aspects of the input 
to each other and to the output. In supervised learning,  the weights of the different 
units that relate the output to the inputs are adjusted to minimize the error on a training 
set. This training set relates spectrograms to specific outputs. With this set, for example, the 
neural network can be trained to distinguish between two different sounds. Because in 
the training stage the desired output is known, this is referred to as a supervised learning 
deep neural network.  Performance of deep learning neural networks is increasingly 
enhanced by introducing different levels of complexity such as multiple layers, pooling of 
input and optimized filtering operations. A specific class of neural networks, the spiking 
neural network, includes a temporal component  and can be trained directly on spike 
trains simulated at the level of the auditory nerve (Paugam-Moisy and Bohte, 2012). Even 
though this is more directly applicable to the spike trains simulated in this thesis, its 
implementation is not straightforward because a more  complex learning algorithm is 
required.  So, it can be seen that there is a vast and growing variety of neural network 
designs, and there are many factors to consider when designing one for the current 
purpose.  

Future perspectives

With an interpretation model, simulated spike trains can be compared for evaluating the 
effect of neural health, sound coding strategies, or binaural implants on the perceptual 
outcomes for cochlear implant users. This model can be used to test new sound coding 
strategies and to evaluate its performance in general.  Sound coding strategies can be 
optimized for their expected performance on speech discrimination tasks, minimal just 
noticeable difference and detection tasks and optimal directional hearing.  Moreover, 
patient specific performance, due to inter-individual differences in cochlear morphology 
and neural health, can also be modeled. Settings of the cochlear implant, its design, and its 
sound coding, can then be adjusted to realize an optimal performance for each individual. 
With this kind of modeling, the development of sound coding can be boosted, so that CI 
wearers will benefit more from their implants in the future. 
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In deze thesis zijn twee computermodellen ontwikkeld waarmee responsies op geluid 
na cochleaire implantatie kunnen worden nagebootst. Het eerste model simuleert het 
vuren van de gehoorzenuw in respons op elektrische pulstreinen. Het tweede model 
simuleert responsies van het perifere gehoororgaan op geluid zoals gemeten met een CI. 
Beide modellen kunnen gebruikt worden om geluidsoverdracht en objectieve metingen 
hiervan in CI-gebruikers te simuleren.

Cochleaire implantaten (CIs) zijn elektrische implantaten in het binnenoor waarmee het 
gehoor verbeterd kan worden bij mensen die geen of nog maar zeer weinig restgehoor 
hebben. De werking van deze implantaten in relatie tot het gehoororgaan wordt 
beschreven in hoofdstuk 1. Zoals ook in dat hoofdstuk beschreven wordt zijn sinds de 
introductie van de CI- resultaten met betrekking tot geluidsperceptie sterk verbeterd, maar 
recente ontwikkelingen hebben helaas niet geleid tot verdere verbetering. Het proces 
waarmee nieuwe ontwikkelingen kunnen worden getest is traag. Hieraan ten grondslag 
ligt dat het testen erg tijdrovend en vermoeiend is voor de patiënt en dat, ten gevolge 
van de relatief lage aantallen patiënten en de grote heterogeniteit van de populatie, 
het moeilijk is om een voldoende grote en representatieve testpopulatie te vinden. Om 
het proces te bespoedigen zou het gewenst zijn als nieuwe ontwikkelingen ook via een 
computersimulatie getest kunnen worden. Op deze manier zou veel sneller onderzocht 
kunnen worden of, op theoretische gronden, nieuwe ideeën voor geluidscodering, 
metingen en het ontwerp van het CI, kans van slagen hebben. 

In hoofdstukken 2 en 3 wordt een computermodel gepresenteerd waarmee simulaties 
van vuurpatronen van de gehoorzenuw in reactie op continue-amplitude (hoofdstuk 
II) en amplitude-gemoduleerde (hoofdstuk III) elektrische pulstreinen kunnen worden 
verkregen. In dit model is een driedimensionaal-volumegeleidingsmodel, eerder 
ontwikkeld in het Leidsch Universitair Medisch Centrum, uitgebreid met stochastiek, 
adaptatie en accommodatie. Dit complete model omvat zowel spatiële als temporele 
karakteristieken van de cochlea en de gehoorzenuw. Het model is gevalideerd door 
simulaties van single fiber action potentials (SFAPs) te vergelijken met gepubliceerde 
dierexperimenteel verkregen metingen. Pulstreinen met verschillende amplitudes, puls-
frequenties, modulatiefrequenties en modulatiedieptes werden gebruikt. Het effect 
van neurale adaptatie- en stochastiek-parameters op vuurfrequentie en modulatie-
specifiek volggedrag werd onderzocht. Gesimuleerde vuurpatronen toonden goede 
overeenstemming met de in dierexperimenten gemeten patronen. Dit toont aan 
dat het model karakteristiek gedrag van de zenuwvezels in respons op continue en 
amplitudegemoduleerde pulstreinen goed weergeeft. Het effect van spatiële locatie van 
de zenuwvezel werd ook onderzocht. Daarbij werd gevonden dat adaptatie sterker is aan 
de rand van het gestimuleerde gebied dan in het centrum. Het gebruikte model is zeer 
compleet, het bevat zowel spatiële als (lange-duur) temporele elementen, en stochasticiteit 
op verschillende niveaus. Het model is gevalideerd voor pulstreinen van lange duur en 
een brede variatie van stimulusfrequenties, amplitudes en modulatieparameters. Het 
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model kan daarom gebruikt worden om zenuwresponsies op arbitraire input, en dus 
verschillende geluidscoderingsstrategieën, te evalueren. 

In hoofdstuk 4 is het model gebruikt om SFAPs te simuleren in reactie op pulstreinen met 
een lange duur. Hierbij is onderzocht welke wiskundige benadering van adaptatie het 
beste de werkelijke adaptatie van de gehoorzenuw op elektrische stimulatie beschrijft. 
Het is aangetoond dat in respons op pulstreinen van lange duur, een power-law functie 
de adaptatie beter beschrijft dan exponentiële functies. Deze power-law kan theoretisch 
benaderd worden door een som van exponenten, welke gefit kan worden op de power-
law in een laag-dimensioneel parametrische ruimte. Hoe langer de duur van de stimulus, 
hoe meer exponenten benodigd zullen zijn voor een adequate fit; een simulatie van 400 
ms vereiste minimaal 2 exponenten, een simulatie van 10 minuten vereiste 7 exponenten.

De eerder beschreven SFAP kan slechts worden gemeten in een enkele zenuwvezel, 
terwijl de gehoorzenuw uit ongeveer 30.000 zenuwvezels bestaat. De electrically 
evoked compound action potential (ECAP) is de respons van de complete gehoorzenuw 
op elektrische stimulatie. In hoofdstuk 5 wordt deze ECAP in respons op pulstreinen 
gesimuleerd. Het is bekend dat deze pulstrein-ECAP een alternerend patroon laat zien. 
Hoe dit patroon precies afhangt van stimulus- en neuron-parameters is onbekend. Om 
dit te onderzoeken zijn responsies op pulstreinen met verschillende rates en amplitudes 
gesimuleerd, voor vezels met verschillende eigenschappen. De gesimuleerde responsies 
lieten een goede gelijkenis zien met gepubliceerde data uit mens- en dierexperimenteel 
onderzoek. Ook het patroon van alternaties werd correct gesimuleerd, deze laatste werd 
duidelijk beïnvloed door de eigenschappen van de vezel. Deze informatie zou gebruikt 
kunnen worden om uit de pulstrein-ECAP te distilleren wat de temporele en stochastische 
eigenschappen van de gehoorzenuw zijn. Zulke eigenschappen zijn mogelijk gerelateerd 
aan de functionele staat van de zenuw en hebben invloed op hoe de zenuw reageert op 
pulstreinen, en zijn daarmee van groot belang voor optimaal horen met een CI. 

In hoofdstuk 6 is het tweede model gepresenteerd, waarmee electrocochleography 
(ECochG) metingen, zoals intracochleair gemeten, gesimuleerd kunnen worden. Met de 
intracochleaire ECochG kunnen responsies op akoestische stimulatie gemeten worden. 
Het is tot op heden onbekend hoe gehoorverlies en bijvoorbeeld de morfologie van 
de cochlea en het elektrode design zich verhouden tot deze meting. Om hier meer 
inzicht in te krijgen werden deze factoren getest met een computermodel. Dit model 
bouwt voort op twee bestaande modellen; een eerder ontwikkeld haarcel model, en het 
driedimensionaal volumegeleidingsmodel van de cochlea. Deze twee modellen werden 
gecombineerd om de potentialen uit te rekenen zoals gemeten zouden worden op de 
verschillende locaties van de electrode-contacten. Simulaties werden vergeleken met 
intracochleaire ECochG metingen van twee CI-dragers. Bij zowel simulaties als metingen 
resulteerde een hogere stimulus frequentie in een meer basale locatie van de maximale 
amplitude. De simulaties toonden aan dat de intracochleaire ECochG vooral gevoelig 
is voor dichtbij gelokaliseerde haarcellen, maar ook voor haarcellen die ongeveer een 
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winding hoger in de cochlea liggen. Door verschillende niveaus van haarceldegeneratie 
te modelleren konden verschillen tussen metingen in beide CI-dragers verklaard worden. 

Tot slot worden de belangrijkste resultaten bediscussieerd in hoofdstuk 7. De invloed 
van model parameters op gesimuleerde responsies op geluid of pulstreinen wordt 
besproken. Aanbevelingen voor verbeteringen en ideeën voor klinische toepassingen 
van de gepresenteerde modellen worden gegeven. Daarnaast wordt beschreven welke 
route bewandeld zou kunnen worden om de voorspelde vuurpatronen klinisch te 
interpreteren. De modellen gepresenteerd in deze thesis zullen hier de input voor kunnen 
leveren doordat hiermee de responsies van de gehoorzenuw op geluid gesimuleerd 
kunnen worden. 
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