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General introduction

In this thesis wavelet coding of sound is used as a tool to study the
auditory system. The type of wavelet coding used is important.
Parameters of the wavelet analysis should be tailored to the auditory
system. Therefore, in the first part of this thesis, a perceptually relevant
wavelet analysis and synthesis scheme is developed. In the second part,
this scheme is used as a front-end signal processing ool for studying
which auditory coding deficits impair speech perception in hearing-

impaired listeners.

I. WAVELET CODING

Wavelets are “little waves that start and stop” (Strang, 1994). Sounds can be decomposed
into wavelets, just as sounds can be decomposed into sines and cosines, as is done in
Fouricr analysis. A wavelet can be considered to represent a time-frequency window.
Each wavelet originates from one prototype analysis function, the mother wavelet. A
basis of wavelets is constructed by compression (or stretching) of this prototype function
to cover the frequency domain, and by shifting of this prototype function to cover the
temporal domain. Wavelet coding will be explained in more detail in Chapter 3 of this

thesis, but discussing the mother wavelet briefly here secms useful. In Fourier analysis,
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one is bounded to use sines and cosines. However, in wavelet analysis, one can choose
among different mother wavelets. The choice of the mother wavelet determines the shape
of the corresponding spectro-temporal analysis window, thus determining the temporal
and spectral resolution of the wavelet analysis. As a result, a different choice of the
mother wavelet will result in a different spectro-temporal representation of sound. Thus,

the choice of the mother wavelet 1s important.

II. WAVELET CODING OF SOUND AS A TOOL FOR
STUDYING THE AUDITORY SYSTEM?

In the field of signal analysis, the decomposition of a signal in wavelets is a recent
development. When applied to sound, the wavelet approach results in a type of time-
frequency representation that matches, to some extent, the properties of sound coding in
the auditory system. The spectral resolution of the auditory system is roughly constant
on a logarithmic frequency scale. Wavelet analysis uses a logarithmic frequency scale as
well. In contrast, in Fourier analysis, spectral resolution is constant on a linear frequency
scale. In the past, short-time Fourier analysis was used successfully in the study of the
auditory system. Simulating more closely the spectral resolution of the auditory system.

wavelet analysis promises to work even better.

III. AIM OF THE THESIS

The aim of this thesis is to investigate how wavelet coding can be used as a tool in
psychoacoustics, more specifically, as a tool to study speech perception. Since the type
of wavelet coding used is important, first it will be determined which wavelet expansion
characterizes auditory spectro-temporal coding as closely as possible. This wavelet
coding can be considered a representation of sound that mirrors the properties of auditory
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coding. The wavelet coefficients that result from the wavelet coding can be manipulated,
introducing specific malformations of the characteristics of sound. Specific artificial
distortions introduced in the wavelet coded sounds can be used to study the relevance of
certain aspects of auditory coding for speech perception. For instance, the perceptual
consequence of a reduced acuity in auditory intensity coding may be simulated by
artificially distorting the modulus of wavelet coefficients. In such a way, wavelet coding
may provide a powerful tool for studying the relevance of (simulated) changes in certain
aspects of auditory coding on sound perception. In this thesis, wavelet coding will be
used to study how impaired auditory coding degrades speech perception of hearing-

impaired listeners.

IV. DISTORTION-SENSITIVITY MODEL

Roughly speaking, hearing impairment can have two manifestations: (1) reduced
audibility, and (2) distortion of perceived sounds (see Plomp, 1978). Because of reduced
audibility, sounds have to be presented at higher sound pressure levels than normal to be
audible. Because of distortion, sounds that are well above the hearing threshold are
subject to some type of distortion process in the ear. The term ‘distortion’ may recall
associations with nonlinear processing. However, the term distortion 18 not used in this
sense in this thesis. Here, it is defined as some kind of deviation from the processing in
a normal-hearing listener which is not simply related to an elevated hearing threshold.
This auditory distortion leads to so-called suprathreshold auditory deficits that hinder
speech processing. The effect of audibility on speech perception is understood well and
can be estimated, for example, by the Speech-Intelligibility-Index model (ANSI, 1997).
The effects of suprathreshold deficits on speech perception are less clear.

In this study, the effects of distortion of auditory coding on the perception of speech
are examined under the so-called distortion-sensitivity model. This model will be
explained in more detail in Chapter 4. In the distortion-sensitivity model, performance is
measured as a function of some type of artificial distortion. The comparison of the

sensitivitics to the distortion by normal-hearing and hearing-impaired listeners provides
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interesting information, because artificial distortion of cues that are not perceived by the
hearing impaired will probably not affect their performance. Thus, if hearing-impaired
listeners are less sensitive to the distortion under study than normal-hearing listeners, that
type of artificial distortion may relate to the impaired auditory speech coding.
Suprathreshold deficits can express themselves in a distorted processing of intensity,
temporal, and spectral information. For example, a deficit that is related to distorted
processing of intensity information is impaired loudness perception. Excessive forward
masking, i.e., non-simultaneous masking in which a signal is masked by a preceding
sound, is an expression of distorted processing of temporal information; excessive upward
spread of masking, i.e., simultaneous masking in which a signal is masked by spectral
components of lower frequency, is an expression of distorted processing of spectral
information. In this thesis, the distortion-sensitivity model will be used to gain insightinto
the role of a distorted representation of these three types of information for speech

perception.

V. OUTLINE

This thesis consists of two parts. In part I (Chapters 2 and 3). the parameters of the
wavelet decomposition and recomposition scheme are defined. As explained above, the
spectro-temporal shape of the mother wavelet is important for simulating the spectro-
temporal resolution of the auditory system. The initial experiment of this thesis was
performed to guide the proper choice of the mother wavelet. The results are used to
develop a perceptually relevant wavelet analysis and reconstruction method. In part II
(Chapters 4 and 5), the wavelet-coding and reconstruction scheme is applied to study the

auditory system.
A. Part I: Auditory wavelet coding

The experiments of Chapter 2 aim to characterize the time-frequency window that the

normal-hearing ear uses while analyzing sounds. This is done by means of intensity-
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discrimination experiments for a specific type of stimulus: a Gaussian-shaped tone pulse.
The spectro-temporal shape of this Gaussian tone pulse is varied from narrow-band and
long-duration, to broadband and short-duration. Results confirm that auditory spectro-
temporal analysis can be modeled well by a wavelet analysis. These results are used to
define a mother wavelet that matches the auditory time-frequency window. In Chapter
3. using this mother wavelet, a decomposition and recomposition method is developed,
resulting in a perceptually relevant spectro-temporal coding algorithm, 1.e., a sound
coding method that mirrors, to some extent, the properties of peripheral auditory coding.
This method will be used as a front-end signal processing tool for studying the perceptual

relevance of (simulated) changes in auditory coding in part IL.
B. Part II: The effect of impaired auditory coding on speech perception

Using the perceptually relevant wavelet coding method developed in part I, impaired
processing is studied by distortion of the wavelet coefficients between wavelet
decomposition and recomposition. When applying this method in a listening experiment,
specific manipulations of the wavelet coefficients may be used to simulate specific
changes in auditory coding. Thus, the importance of various aspects of auditory coding
for speech perception can be investigated.

[n Chapter 4, the distortion-sensitivity model is used to study one dimension of
auditory coding, i.e., intensity coding. The intensity coding of sound is distorted by
random perturbations in the modulus of the wavelet coefficients. Speech intelligibility is
measured as a function of this intensity distortion. The aim of this chapter is to investigate
if distortion of the intensity information can (partly) explain the reduced speech
perception of hearing-impaired listeners.

In Chapter 3, three dimensions of auditory coding, i.e., intensity, time, and frequency,
are considered. While Chapter 4 was only concerned with local manipulations in the
time-frequency representation of a sound relating to the intensity-coding acuity, in
Chapter 5 also spread-of-excitation types of manipulations are studied. This relates 1o a
decrease in the acuity of the spectro-temporal representation of a sound. Temporal and
spectral information of sound were distorted by randomly shifting the position of the
wavelet coefficients along the time or frequency axis, respectively. The experimental

questions are (1) what degrees of distortions are detectable, and (2) how do these
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distortions affect speech perception (distortion-sensitivity model). Data with respect to
the first question provide information on the acuity of a subject’s auditory coding. Data
with respect to the second question may give some insightinto the practical consequences
for speech perception when this acuity is (artificially) reduced. The aim of this chapter
is to estimate how impaired auditory coding affects speech perception of hcaring-

impaired listeners.

In the last chapter of this thesis, a general discussion is given. We will discuss how
useful our wavelet coding tool was in revealing the importance of the studied types of
information for understanding the suprathreshold deficits underlying poor speech

perception by the hearing impaired.

VI. RELATED FIELDS

This thesis aims at a better understanding of the auditory system, especially that of speech
perception of hearing-impaired listeners. The typical nature of its approach relates it to
several applied topics. For instance, efficient coding and transmission of speech signals
is an important area of research. The relatively novel wavelet coding is considered a
serious candidate for sparse coding. Our data with respect to detection of coding
distortion are related to the minimum number of bits required for speech coding. Our data
with respect to the effect of distortion on speech perception may be useful to estimate the
reduction in speech intelligibility when speech is sparsely coded.

Insight into how impaired auditory coding affects speech perception may provide
important information for the ficld of speech enhancement. In this field, sound processing
algorithms are developed to improve speech intelligibility of hearing-impaired listeners.
Insight into what is wrong with auditory coding of hearing-impaired listeners may help
to find algorithms that can relieve the speech perception problems caused by degraded
auditory coding. The tool developed in this thesis (an auditory-relevant scheme for sound
coding and reconstruction) might also be useful for implementation of advanced strategies

of signal processing in the time-frequency domain.
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Intensity discrimination of Gaussian-
windowed tones: Indications for the shape

of the auditory frequency-time window

The just-noticeable difference in intensity jnd(I) was measured for 1-
kHz tones with a Gaussian-shaped envelope as a function of their
spectro-temporal shape. The stimuli, with constant energy and a constant
product of bandwidth and duration, ranged from a long-duration narrow-
band “tone” to a short-duration broadband “click.” The jnd(I) was
measured in three normal-hearing listeners at sensation levels of 0, 10,
20, and 30 dB in 35 dB(A) SPL pink noise. At intermediate sensation
levels, jnd(I) depends on the spectro-temporal shape: at the extreme
shapes (tones and clicks), intensity discrimination performance is best,
whereas at intermediate shapes the jnd(l) is larger. Similar results are
observed at a higher overall sound level, and at a higher carrier
frequency. The maximum jnd(I) is observed for stimuli with an effective
bandwidth of about 1/3 octave and an effective duration of 4 ms at 1
kHz (1 ms at 4 kHz). A generalized multiple-window model is proposed
that assumes that the spectro-temporal domain is partitioned into
“internal” auditory frequency-time windows. The model predicts that
intensity discrimination thresholds depend upon the number of windows

excited by a signal: jnd(T) is largest for stimuli covering one window.

Journal of the Acoustical Society of America 105: 3425-3435, 1999
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INTRODUCTION

This study addresses a fundamental psychoacoustical question: how does the auditory
system extract spectro-temporal information while processing complex sounds? To obtain
information about both the spectral and the temporal structure of a signal, the auditory
system performs a frequency-time (f-t) analysis. The result of an f-t analysis is a
spectrogram, showing the distribution of signal energy over frequency and time. In the
spectrogram, the signal energy at a given point is determined by an integration over a
specific frequency-time window. The shape of this f-f analysis window determines which
characteristics of the sound are displayed. It 1s commonly assumed that the peripheral
auditory system carries out an f-t analysis with its own specific f-t window. This study
seeks to characterize the auditory f-t window.

An f-t analysis window cannot be restricted arbitrarily both in time and in frequency.
The minimum area of an f-t window 1s unity 1f this area 1s defined as the product of the
effective bandwidth and the effective duration (see Stewart, 1931; Gabor, 1947). The
lower bound is attained by the Gaussian function (see Gabor, 1947). Given this
restriction, the shape of an f-t analysis window can vary. Different f-t analysis windows
will display different details in the f-t representation.

In this study we use a psychophysical approach to gain an insight into the shape of the
f-t window underlying auditory sound analysis. Before explaining the experimental
paradigm, we will briefly review some current ideas on spectral and temporal resolution
in the auditory system and their relation to the auditory f-t window.

In psychoacoustics, the partition of the frequency axis into critical bands is a basic
concept. Roughly, the auditory filters have a constant relative bandwidth of 1/3 octave
(see, e.g., Scharf and Buus, 1986). This suggests that the spectral width of the auditory
f-t window 1s about 1/3 octave.

In the time domain, however, the picture is less clear. Recall that, for a given
bandwidth, the smallest possible temporal width is defined by the minimum window area.
Thus the temporal width of the auditory f-t window must be at least as long as the
minimum temporal width possible, given a specific spectral width. Taking into account

psychoacoustical arguments for defining a temporal width, there is no complete
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consensus. Plack and Moore (1990) discuss the problem of describing the temporal
resolution of the auditory system with a single value. They note that the integration time
constant appears to decrease with increasing frequency (see also Gerken ef al., 1990;
Florentine ef al., 1988). This suggests that the temporal width of the auditory f-t window
decreases with increasing frequency. Viemeister and Waketield (1991) are interested in
the “resolution-integration” paradox: Models describing temporal resolution use short
time constants, whereas models describing the improvement in detection and
discrimination with increasing signal duration are based on a process of long-term
temporal integration. Their conclusions favor the short time constanis (roughly 3 ms for
1-kHz sinusoids). Although temporal integration data (time-intensity trade in detection)
can be explained easily by an energy-detector model (single look) with an adjustable time
window matched to the signal duration (see, for example, Dai and Wright, 1995), the
multiple-look model of Viemeister and Wakefield with short time constants can account
for both the data on temporal resolution and temporal integration. In general, temporal
resolution experiments suggest that the temporal width of the auditory f-t window is
about 3 ms at 1 kHz and smaller at higher frequencies. This is very close to the minimum
duration possible if the bandwidth of the auditory f-t window is 1/3 octave.

The present research evaluates the auditory f-t window by assessing just-noticeable
differences in intensity for stimuli with different spectro-temporal shapes. By varying the
spectro-temporal shape, the number of “internal” (auditory) f-t windows excited by the
signal can be varied. Our hypothesis is that this variation affects the just-noticeable
difference in intensity. The basis for this hypothesis can be found in the existing models
with respect to intensity discrimination.

An important model that describes intensity discrimination performance is the so-
called multiband excitation-pattern model (see, e.g., Florentine and Buus, 1981; Durlach
etal.. 1986: Buus, 1990; Buus and Florentine, 1994). This model operates in the spectral
domain. The idea is that the excitation pattern induced by the signal is divided into
several spectral bands, and the content of each band is processed individually.
[nformation can be combined across bands to come to an overall percept. Alternatively,
psychoacoustical data with respect to temporal mechanisms can be accounted for, at lcast
qualitatively, by the multiple-look model (see Florentine, 1986; Viemeister and
Wakefield, 1991). The multiple-look model divides the signal into short-duration

segments. As in the multiband model, the information in different segments or “looks”
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1s considered statistically independent. A combination of different looks will result in
more information and therefore in lower thresholds. Conceptually, of course, the
multiband model and the multiple-look model are very similar, one operating in the
speetral domain and the other in the temporal domain. Durlach ef al. (1986) note that the
frequency channels in their model for discrimination of broadband signals can refer to
time intervals as well.

The rationale of the hypothesis of this study is a generalization of these “multi-
channel models” (multiband and multiple-look models), which in this paper will be called
the “multiple-window model” in the f-t domain. Our hypothesis is the following: the
auditory spectro-temporal domain is partitioned into “internal”” auditory frequency-time
windows. So, the “internal” f-t representation of a signal can be characterized by the
number of f-t windows covered by the signal. As in the multiband excitation-pattern
model (Florentine and Buus, 1981), the multiple-window model assumes that the
discriminability within a window is independent of excitation level (Weber’s Law). Thus
intensity discriminability for a given signal depends on the number of independent
auditory f-t windows covered by the signal: the just-noticeable difference in intensity
jnd(Z) will be smaller if more windows are involved.

Evaluation of intensity discrimination thresholds for a range of stimuli with well-
defined variations in spectro-temporal shape may reveal the shape of the auditory f-t
window. By manipulation of the spectro-temporal shape of the stimuli the number of
auditory f-t windows covered by the signal can be varied. We are looking for the signal
for which the “internal” auditory representation best matches the auditory f-t window . For
that purpose we used sinusoids with a Gaussian-shaped temporal envelope. Consequently,
it can be shown that the spectral envelope i1s Gaussian shaped as well. A Gaussian-
windowed signal was chosen because of its minimum effective f-t area. Another
appealing property is its symmetry in frequency and time. A series of amplitude
discrimination experiments was performed for a range of these stimuli in which only one
variable was changed, the so-called shape factor, which determines the effective' number
of periods included under the Gaussian envelope. By varying the shape factor, the

representation of the signal in the f-t plane was systematically varied while keeping its

'The effective number of periods is defined as the effective duration divided by the period of
the carrier frequency of the Gaussian-windowed sinusoid. This is equal to the reciprocal of the

shape factor of the signal (1/a).
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FIG. 2.1. A schematic representation in
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area constant, ranging from a long-duration narrow-band “tone” to a short-duration
broadband “click” (see Fig. 2.1). A tone, corresponding to a small shape factor, will
excite many f-t windows along the time axis; a click, corresponding to a large shape
factor, will excite many f-t windows along the frequency axis; somewhere between tone
and click fewer windows will be excited. Thus the number of auditory f-t windows
excited by the signal varies as a function of the shape factor according to an U-shaped
curve.

The multiple-window idea states that jnd(/) varies with the number of f-t windows
involvedin the discrimination task. The more elementary f-t windows which are involved,
the smaller the jnd(/) will be. This implies that the signal with the largest jnd(/) covers
the minimum number of windows. The shape factor corresponding to this signal will be
called the “critical” shape factor. Thus the signal with the critical shape factor 1s most
successful in exciting only the minimum number of f-t windows; the “internal”
representation of this signal is most closely related to the elementary f-t window. Within
the context of the multiple-window idea, the shape of the f-t representation of that signal
best matches the shape of the elementary f-t window in (peripheral) auditory coding. The
aim of the experiments is to test the multiple-window hypothesis by examining whether
ind(/) varies with a varying spectro-temporal shape of the stimuli. If jnd(/) varies as a
function of shape factor, the critical shape factor gives some insight into the auditory f-t

window,
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In the first experiment, the relation between intensity discrimination and shape factor
was determined for 1-kHz sinusoids at various sensation levels (0,2 10, 20, 30 dB SL) in
35-dB(A) SPL pink noise. Low sensation levels were used to avoid spread of excitation
as much as possible. In the second experiment, intensity discrimination performance was
measured at 4 kHz. Finally, in the third experiment, intensity discrimination performance
was measured at a 20-dB higher level for both noise and signal.

I.METHOD

A. Stimuli

The stimuli s(?) consist of Gaussian-windowed tones, defined by

s(1)=AyJofsin( 2/ +%)exp( R CT D 2.1)

These are sinusoids with carrier frequency f, and a gradual onset and offset (see Fig. 2.1).
The shape factor o determines the effective number of sinusoidal periods, equal to 1/a,
contained within the Gaussian envelope. If « 1s small, the number of periods is large
(tone). If ¢ is large, the number of periods is small (click). Throughout the experiments
the independent variable 1s the shape factor a (0.0375, 0.075,0.15, 0.3, 0.6, and 1.2). The
effective duration of the Gaussian signal is A =1/(qf;). The effective bandwidth is A =af,.

The amplitude of the signal 1s defined by AM . The amplitude difference is
produced by increasing the amplitude constant 4 from A4, to Ay+AA4. By introducing the
phase factor n/4 the energy of the signal is independent of o and f,. As a result, the total

energy I of the signal is (y2/4)4% , only depending on the amplitude constant 4.

*The intensity discrimination task at 0 dB SL 1s 77of equal to a detection task, because each
interval contains a signal. However, if the reference stimuli are presented at 0 dB SL, the signals
are not always audible. When, in a trial, one or two of the stimuli are not audible this is perceived
by the subject as a mixture between an amplitude discrimination task and a detection task. Hanna
et al. (1986) also measured jnd(/) at 0 dB SL.
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As already mentioned in the Introduction, in this study the temporal and spectral
domain are investigated in combination. Therefore, the set of stimuliin this study consists
of stimuli that cover more critical bands along the frequency axis and only one look
(about 3 ms at 1 kHz) along the time axis, stimuli that cover only one critical band and
more time looks, and stimuli in between. In Table 2.1, the bandwidth, duration, and
effective number of periods of the stimuli used in the experiments can be found. The
column labeled “# f-t windows” gives the estimated number of f-t windows covered by
the 1-kHz tone, assuming a Gaussian auditory {-t window with a shape factor of 0.23,
corresponding to a bandwidth of 1/3 octave and a duration of 4 ms at 1 kHz and a

duration of 1 ms at 4 kHz.

TABLE 2.1 The effective duration A,, the effective bandwidth A the effective number of periods, and the
estimated number of -t windows for stimuli with different shape factor o and carrier frequency f, as used

in the experiments,

a 5 A, A, # periods # f-t windows
0.0375 1000 Hz 27 ms 33 Hz AT 7
4000 Hz 6.7 ms 150 Hz 27 7
0.075 1000 Hz 13 ms 75 Hz 13 3
4000 Hz 3.3 ms 300 Hz 13 3
0.15 1000 Hz 6.7 ms 150 Hz 6.7 2
4000 Hz 1.7 ms 600 Hz 6.7 2
0.3 1000 Hz 3.3 ms 300 Hz 33 1
4000 Hz 0.83 ms 1200 Hz 3.3 1
0.6 1000 Hz 1.7 ms GO0 Hz 1.7 3
4000 Hz 0.42 ms 2400 Hz ) 9
;2 1000 Hz 0.83 ms 1200 Hz 0.83 6

4000 Hz 0.21 ms 4800 Hz D8R3 6
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B. Apparatus

Stimuli were generated digitally at a sampling frequency of 40 kHz and were played out
over TDT (Tucker Davis Technologies) System II hardware. Because Gaussian-
windowed signals do not have compact support,” the signals were cutoff at frequencies
corresponding to their 60-dB down points. A Wandel und Goltermann RG-1 analog noise
generator produced the continuous pink noise. Signals and noise were attenuated (TDT
PA4) separately, and subsequently summed (TDT SM3). The stimuli were presented
monaurally through Sony MDR-CD999 headphones. Masking noise levels were measured
on a Briiel & Kjar type 4152 artificial ear with a flat-plate adapter. The entire experiment
was controlled by an IBM PC-compatible computer. Subjects were tested individually in

a soundproof room.

C. Procedure

Intensity discrimination performance was measured using an adaptive, three-interval,
three-alternative forced-choice paradigm (31, 3AFC). Each trial consisted of three
observation intervals. The time between the onset of the three stimuli was always 500 ms,
but the duration of the stimuli differed with different shape factors. Taking into.account
the cutoff at 60 dB below the top, the total duration of the longest signal was 80 ms. Two
intervals contained the reference signal (with amplitude constant 4,) and one interval
contained the incremented signal (with amplitude constant A,+AA). The incremented
signal occurred randomly in one of the three observation intervals. Each observation
interval was marked by a visual display. The onset of the stimuli coincided with the onset
of the display. The noise was presented continuously. The subject’s task was to indicate
the interval that contained the incremented signal by pushing the appropriate button on
a PC keyboard. There was no response time limit. Immediately after the response,
feedback was provided. After the response, 500 ms elapsed before a following trial

started.

“A function f(t) has compact support if it is zero outside the interval <t AT -
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In obtaining a threshold estimate, the adaptive procedure was started at an increment
amplitude AA4, several steps larger than the anticipated threshold. In the adaptive
procedure, the transition from increasing to decreasing difficulty, and vice versa, defined
a turnaround. Adaptive thresholds were determined with a one-down/one-up procedure
followed by a two-down/one-up procedure after four turnarounds. The steps in the
amplitude increment were accomplished by multiplication or division of A4 by a factor

p(p<l): A, =A,+uAd ,, or A =4, +(U/p)A4 , ,respectively. As aresult, the amplitude

step in dB gets smaller as the difference in amplitude A4 between reference signal and
incremented signal gets smaller. For the initial steps, p was 0.66; after four turnarounds,
1 was set to 0.8. A run was ended after 24 turnarounds and the geometric mean of the A4
values of the last 16 turnarounds was used to estimate the threshold A4, ,, theoretically
cquivalent to 70.7% correct (Levitt, 1971). Assuming unbiased responses, the threshold
in this paradigm corresponds to a sensitivity d ' of about 1.265 (see, e.g., Versfeld ez al.,
1996). For each subject each condition was repeated six times. The test order of the
conditions was balanced according to a Latin square.

Discrimination thresholds were expressed as the just-noticeable difference in

intensity, jnd(/) in decibels:

A,+AA4 L
j}?d())=2010ngj ; (2.2)
0

where A4, indicated the amplitude increment yielding 70.7% correct responses.
Beforehand, to set sensation levels for individual subjects and conditions, masked

detection thresholds were determined in a similar manner as described above (3 AFC

adaptive procedure). Thus, the detection threshold was defined as the threshold at which

70.7% of the stimuli was detected correctly by the listener.

D. Subjects

Three subjects (23-25 years), including the first author, participated in the experiments.
All had normal hearing (absolute thresholds better than 15 dB HL at octave frequencies
from 125 Hz to 4 kHz and at 6 kHz). Subjects were given practice to stabilize their
performance. On the average this took 30 min of practice for five successive days. As a

result, practice effects were negligible during the actual experiment.
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E. Data analysis

The data analysis was performed on the logarithms of the jnd(/) to make sure that the
variance was approximately independent of the size of the jnd(/) (see Florentine, 1983;
Florentine et al., 1987). Therefore, the average jnd(/) was calculated as the geometric
mean of the individual data in decibels. An analysis of variance (ANOV A) for repeated
measures was used to examine the statistical significance of the effects. Differences were

considered significant when the tests indicated a probability less than 0.05.

II. EXPERIMENTS

A. Experiment I: Intensity discrimination as a function of shape factor and

sensation level

The carrier frequency was 1 kHz. The level of the pink masking noise was set at 35
dB(A) SPL. The masked detection threshold of the stimuli was essentially constant as a
function of shape factor (see the Appendix and Fig. 2.A3b for further discussion). The
sensation levels of the stimuli were varied from 0 to 30 dB, in 10-dB steps.

Fig. 2.2 shows the discrimination threshold jnd(/) as a function of shape factor and
sensation level for the individual subjects and the averaged discrimination thresholds
across subjects. Error bars indicate the standard error of the mean.

The three listeners show similar behavior. At intermediate levels, i.e., at 10 dB SL for
all subjects and at 20 dB SL for subjects JK and NS, jnd(/) varies as a function of the
shape factor. When the shape factor is increased from 0.0375 to 0.15, intensity
discrimination performance deteriorates (higher thresholds): at 10 dB SL, jnd(/) increases
by a factor of 1.7 when the shape factor is quadrupled. When the shape factor is changed
from 0.3 to 1.2, intensity discrimination performance improves (lower thresholds): at 10
dB SL, jnd(/) decreases by a factor of 1.4 when the shape factor is quadrupled. The

maximum jnd(/) (poorest performance) occurs at 10 dB SL for shape factors of 0.15 and
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0.3. At lower and higher levels (0 and 30 dB, respectively) the jnd(/) does not vary with
the shape factor. When the sensation level is increased from 0 to 10 dB, an increase in
jnd(/) of about 1 dB is observed for a shape factor of 0.15 and 0.3.

The trends shown in Fig. 2.2 are supported by the statistical analysis. A three-way
repeated measures ANOVA [sensation level (4) X shape factor (6) X subject (3)] on the
individual data shows a significant effect of both the sensation level [F(3,6)= 5.58;
p=0.036] and the shape factor [F(5,10)=11.33; p<0.001]. Also the interaction between
level and shape factor is significant [/(15,30)=2.78; p<0.01]. The latter result is probably
introduced because, at 10 and 20 dB SL, jnd(/) reaches a maximum at a shape factor of
0.15 or 0.3, while at 0 and 30 dB SL jnd(/) does not vary systematically as a function of
the shape factor.

Two additional experiments (I1 and IIT) were conducted to investigate in more detail

how the threshold behavior varies with the shape factor.
B. Experiment II: Intensity discrimination at 4 kHz

To examine whether the 10 dB SI. maximum is also present at other carrier frequencies,
the 10 dB SL condition was repeated with a carrier frequency of 4 klHz. The results are
displayed in Fig. 2.3. Again, a maximum jnd(/) is reached at a shape factor of 0.15 or 0.3.
ind(/) increases by a factor of 1.7 when the shape factor is quadrupled from 0.0375 to
0.15, and jnd(/) decreases by a factor of 1.7 when the shape factor i1s quadrupled from 0.3
to 1.2.

The trends are confirmed by a three-way repeated measures ANOVA [carrier
frequency (2) X shape factor (6) X subject (3)] on the individual data from this
experiment (4 kHz) combined with the 10 dB SL results from the first experiment (1
kHz). The analysis shows a significant main effect of the shape factor [#(5,10)=19.29;
p<0.0001], but no significant effect of carrier frequency nor a significant interaction of

frequency and shape factor.
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C. Experiment III: Intensity discrimination for a higher overall level [pink noise:
55 dB(A) SPL]

To examine whether the observed trends really depend on sensation level and not on
overall level, we increased the background noise level to 55 dB(A) SPL and repeated the
experiment with Gaussian-windowed tones of 1 kHz at 10 dB SL.

For the higher overall level, the discrimination thresholds obtained for each subject
and for the mean of the three listeners are shown in Fig. 2.4. Again a maximum was
reached for a shape factor of 0.15 or 0.3. jnd(/) increases by a factor of 1.8 when the
shape factor is quadrupled from 0.0375 to 0.15 and decreases by a factor of 1.7 when the
shape factor is quadrupled from 0.3 to 1.2.

A three-way repeated measures ANOVA [overall level (2) X shape factor (6) X
subject (3)] on the individual data of this experiment [55 dB(A) SPL] combined with the
10 dB SL data of experiment 1 [35 dB(A) SPL] shows a significant main effect of the
shape factor ([F(5,10)=33.51; p<0.000 01]. The effect of overall level and the interaction

between shape factor and overall level are not significant.

111. DISCUSSION

The results show that the just-noticeable difference in intensity jnd(/) of Gaussian-
windowed tones may vary as a function of the shape factor. For 1-kHz tones at sensation
levels of 10 and 20 dB SL in 35 dB(A) SPL pink noise, jnd(/) reaches a maximum at a
critical shape factor of 0.15 or 0.3 (sec Fig. 2.2). At both lower and higher sensation
levels, jnd(/) is relatively constant for different shape factors. For a 4-kHz carrier
frequency, a similar variation in jnd(/) with the signal shape is obtained: again, at a shape
factor of 0.15 or 0.3 a maximum is observed (see Fig. 2.3). Also, after increasing the
overall level [noise level: 55 dB(A) SPL] the variation in jnd(/) persists (see Fig. 2.4).
In this study the spectro-temporal shape of the stimuli ranged from a relatively long-

duration tone to a very short-duration click. As the signals vary from tone to click. two
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processes occur: temporal shortening and spectral widening. First, as the signal decreases
in duration and increases in bandwidth, the primary effect 1s temporal shortening. This
causes an increase in the jnd(/) until the bandwidth reaches the critical band. At this point
the second process, the increase in bandwidth, becomes important, serving to reduce the
jnd(Z). These two processes are addressed more or less separately in literature.

With respect to the effect of temporal shortening, Florentine (1986) and Buus and
Florentine (1992) have done extensive research measuring intensity discrimination for
pure tones as a function of duration. They found that intensity discrimination improves
with increasing duration. Our results show the same behavior: at low levels (10 and 20
dB SL) jnd(/) decreases toward smaller shape factors, corresponding to longer durations.
Also, quantitatively, the rate of improvement measured in this study agrees with the rate
found by Florentine (1986) and Buus and Florentine (1992).

At some point, separating the effect of temporal shortening and the effect of the
increase in bandwidth is not possible. Studying jnd(/) as a function of duration, Florentine
(1986) omitted durations of 4 ms and less from the fitting procedure because these data
deviated from a linear function [in a double logarithmic plot of jnd({) versus duration].
She noted that this may have been due to the spectral splatter. Our data also show this
effect, a flattening of the curve for small durations, at a shape factor between 0.15 and
0.3. Our explanation is, analogous to Florentine’s remark, that at this point the bandwidth
of the Gaussian-windowed signal exceeds the width of the auditory filter. From this point
on, the spectral width of the signal determines the discrimination threshold, i.e., the
process of increasing bandwidth becomes important.

With respect to the effect of the increase in bandwidth, Buus (1990) measured
intensity discrimination as a function of bandwidth. He found that jnd(/) is independent
of bandwidth when the stimulus bandwidth is less than the width of the auditory filter.
For larger bandwidths, at low levels, a decrease in jnd(/) with increasing bandwidth was
found. Our data also show this trend: jnd(/) decreases for shape factors larger than 0.3,
at sensation levels of 10 dB and 20 dB.

In quantitative terms, an optimum detector predicts a decrease of jnd(/) by a factor of
2 (in decibels) when the bandwidth or the duration is quadrupled. In the multiple-window
model the two processes of the variation in bandwidth and the variation in duration are
combined in the variation of the number of -t windows covered by the signal. Then, in

the multiple-window model jnd(/) is expected to decrease by a factor of 2 when the
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number of f-t windows is quadrupled. We found a decrease by a factor of 1.7 instead of
2, somewhat less than predicted by the multiple-window model. Florentine (1986) also
found smaller improvements (a factor 1.5 when the duration was quadrupled). Possible
explanations for this small deviation from the model improvement predictions are a
reduced discriminability in the individual f-t windows as the number of f-1 windows
increases, a suboptimal combination of the information of the different windows (see also
Buus and Florentine, 1992) or that the windows are not totally statistically independent.

The most important finding of this study is that, for intermediate sensation levels, the
data qualitatively agree with the generalized multiple-window hypothesis put forward in
the introduction. As a result, we can identify a “critical” shape factor, for which intensity
discrimination performance is worst. This “critical” shape factor has a value between 0.15
and 0.3, both at a carrier frequency of 1 kHz and 4 kHz, at an overall level of 35 dB(A)
SPL and 55 dB(A) SPL. So, in the proposed auditory spectro-temporal representation, a
Gaussian-windowed sinusoid with a bandwidth of about 1/3 octave and an effective
duration of about 4 ms at 1 kHz and 1 ms at 4 kHz (including effectively about four
sinusoidal periods) can be considered an approximation of the “elementary” f-t window
of the perceptually relevant auditory spectrogram. These values are in line with the idea
of the critical band of the multiband excitation-pattern model (Florentine, 1986) and with
the temporal constants of the multiple-look model, i.e., about 3 ms for 1-kHz tones and
decreasing toward higher center frequencies (Viemeister and Wakefield, 1991).

Having discussed the main issue of the paper, i.e., the relation between jnd(/) and the
shape factor, as observed at 10 or 20 dB SL, in terms of the multiple-window model, a
few aspects of the data deserve some further discussion. (1) The masked detection
threshold is virtually constant as a function of shape factor. (2) At 0 dB SL. jnd(/) does
not depend on shape factor. (3) For the critical shape factor, jnd(J) increases about 1 dB
when the sensation level increases from 0 to 10 dB SL. (4) At higher sensation levels (30
dB SL), intensity discrimination again is a constant as a function of the shape factor.
First, the role of the internal noise versus the external noise in the multiple-window model
will be addressed. This will help to clarify points 1 and 2. Then, points 3 and 4 will be
discussed.

The noisy representation of intensities in the auditory system that underlies the
observed intensity discrimination thresholds is formed as the sum of external and internal

variance. The external variance is mediated by the external background noise added to
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the signal in the experimental procedure. The internal variance is introduced in the
anditory system itself, for example resulting from the variance in the neural coding
process. If the signal-to-external-noise ratio is not too low, the internal noise dominates
intensity discrimination performance. Following Weber’s Law it is assumed that the
variance due to internal noise is proportional to the signal energy. Thus the signal-to-
internal-noise ratio is independent of the excitation level. Therefore, when the energy of
the signal is distributed over several windows rather than concentrated within a single
window, the “quality” within each individual window in terms of signal-to-internal noise
ratio does not change. As a result, the combination of several windows will yield a better
performance, for the internal noise is independent between windows. This forms the basis
for the improvement predicted by the multiple-window model. These predictions are
consistent with the results found at 10 and 20 dB SL. i

However, at very low signal-to-external noise ratios the external noise dominates.
Thus to clarify point 1 (masked detection thresholds) and point 2 [jnd(/) at 0 dB SL], the
role of the external noise needs to be discussed. Contrary to the internal noise, the
external noise in each window is signal independent. Therefore, when the energy of the
signal is distributed over several f-t windows, the signal-to-external-noise ratio in each
window decreases. This poorer quality in each individual window is counterbalanced by
the combination of the information across several windows. The net cffect is a constant
threshold as a function of the number of f-t windows for the optimum detector. Thus the
explanation for the constant masked thresholds (point 1) and the constant jnd(/) at 0dB
SL (point 2) is a trade off between the increase in the number of f-t windows covered by
the signal and the decrease in the signal-to-external-noise ratio in each individual
window. This might imply that masked detection thresholds cannot be used to assess the
shape of the auditory f-t window.

The third point to be addressed is the observed increase in jnd(/) when the sensation
level is increased from O to 10 dB. We believe that this is due (o a two-stage strategy
listeners will use in an intensity discrimination task at 0 dB SL: a detection stage followed
by a discrimination stage. At 0 dB SL not all stimuli are detectable; the stimulus with the
incremented amplitude has a higher probability of being detected. Detecting a stimulus
in a particular interval is a one-interval process; discriminating among the stimuli 18 a
three-interval process. Thus due to the difference in memory load (Durlach and Braida,
1969), assuming that listeners benefit from the detection cue at 0 dB SL seems rcasonable
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(see also the Appendix). As a result jnd(/) is smaller at 0 dB SL than at 10 dB SL.
Because most studies regarding jnd(7) as a function of level report a decreasing jnd(/) as
a function of level, our results, the increase in jnd(/) when the sensation level increases
from 0 to 10 dB, might seem a little unexpected. However, in most studies (see, e.g.,
Jesteadt ef al., 1977, Florentine, 1983; Florentine et al., 1987, Ozimek and Zwislocki,
1996) the lowest sensation level at which the jnd(/) is measured 1s 5 or 10 dB SL; At this
level the effect of the detection strategy has probably disappeared. The only study known
by the authors that measured the jnd(/) at 0 dB SL was a study by Hanna et al. (1986).
Unfortunately, their results can neither confirm nor disprove our results.

Regarding the last point (i.e., 4), spread of excitation is important. In the spectral
domain, it is well known that spread of excitation, i.e., the growth of the excitation
pattern with increasing level, occurs. As a result, jnd(/) is independent of bandwidth at
high sensation levels. This effect was found by, for instance, Buus (1990) and is also
accounted for by the multiband excitation-pattern model (Florentine and Buus, 1981;
Buus and Florentine, 1994). In the multiple-window approach, spread of excitation is
anticipated both in the temporal and in the spectral domain: The higher the sensation
level, the larger the area on the f-t plane excited by the signal. Therefore, at 30 dB SL,
probably even for the critical shape factor the internal signal representation may already
cover many elementary f-t windows. This may explain why jnd(/) becomes independent
of the shape factor at higher levels.

To substantiate the qualitative arguments of the multiple-window idea, and the role
of external and internal noise as described in the preceding paragraphs, a simple detection
and discrimination model was developed. We refer to the Appendix for a description of
the model. The aim of the model is to simulate the trends observed in the data: the
dependence of the discrimination threshold on the shape factor at 10 dB SL, whereas at
0 dB SL the discrimination threshold is a constant as a function of shape factor; the
constant detection threshold as a function of shape factor; the slight increase in jnd(/) at
a shape factor of 0.3 when the sensation level increases from 0 to 10 dB SL. The
simulated trends (see the Appendix) agree with the observed trends in the data.

The results of this study point to an auditory -t window with a constant relative
bandwidth and a duration inversely related to frequency: at low frequencies the spectral
width of the f-t windows 1s small and the duration long, whereas at high frequencies the

spectral width of the f-t windows is broad and the duration short. This perceptually



The effect of intensity perturbations on
speech intelligibility for normal-hearing

and hearing-impaired listeners

Hearing-impaired listeners are known to suffer from reduced speech
intelligibility in noise, even if sounds are above their hearing thresholds.
This study examined the possible contribution of reduced acuity of
intensity coding to this problem. The “distortion-sensitivity model” was
used: the effect of reduced acuity of auditory intensity coding on
intelligibility was mimicked by an artificial distortion of the speech
intensity coding, and the sensitivity to this distortion for hearing-
impaired listeners was compared with that for normal-hearing listeners.
Stimuli (speech plus noise) were wavelet coded using a Gaussian
wavelet (1/4 octave bandwidth). The intensity coding was distorted by
multiplying the modulus of each wavelet coefficient by a random factor.
Speech-reception thresholds (SRTs) were measured for various degrees
of intensity perturbation. Hearing-impaired listeners were classified as
sutfering from suprathreshold deficits 1t intelligibility of undistorted
speech was worse than predicted from audibility by the Speech
Intelligibility Index model (ANSI, 1997). Hearing-impaired listeners
without suprathreshold deficits were as sensitive to the intensity
distortion as the normal-hearing listeners. Hearing-impaired listeners
with suprathreshold deficits appeared to be less sensitive. Results
indicate that reduced acuity of auditory intensity coding may be a factor

underlying reduced speech intelligibility for the hearing impaired.

Submiited to the Journal of the Acoustical Society of America
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at 10 dB SL will be simulated. In the simulation this translates into the dependence of the
discrimination threshold on the number of elementary f-t windows covered by the signal.
Then, analogous to the points addressed in Sec. 2.1II, the following trends will be
simulated: (1) the detection threshold as a function of the number of f-t windows covered
by the signal; (2) the discrimination threshold as a function of the number of windows at
0 dB SL; (3) for one f-t window, the discrimination threshold at O and 10 dB SL.

In the simulations the 3AFC two-down one-up adaptive procedure (see Sec. 2.1C) is
adopted: in each trial three intervals are presented; a decision algorithm decides which
interval contains the signal in case of detection or the incremented signal in case of
discrimination. Thus in the model a human observer is mimicked and the simulated
thresholds can be compared directly to the experimental data.

All signals have total energy E. If a signal covers just one f-t window of the auditory
system, this f-t window contains the total energy E. If a signal extends over a number of
N f-t windows, the N f-t windows contain each 1/N part of E. In Table 2.I a rough
estimate of the number of f-t windows corresponding to the stimuli used in the
experiments can be found. This estimate is based on an f-t window with a shape factor
of 0.23 (about the “critical” shape factor), corresponding to a Gaussian-windowed
stimulus with a bandwidth of 1/3 octave. The external noise that enters each f-t window
1s modeled as (Gaussian noise with spectral density N,. This noise having a random phase
and an amplitude taken from a Rayleigh distribution is added to the signal. In the model,

the external noise of the different f-t windows is assumed to be uncorrelated.
A. Detection

In the simulated detection experiments, one interval contains the signal plus external
noise and the other two contain only external noise. In Fig. 2. Ala a scheme of the
detection model is plotted. If the signal covers more than one f-t window (in case of small
and large shape factors), the energy of the signal within an interval is divided over the
proper number of f-t windows. In a detection task where stimuli are not always audible,
assuming that the auditory system is unable to focus exactly on the f-t windows covered
by the signal seems reasonable. Therefore, 50 f-t windows are considered for all shape
factors, comparable to, for example, an integration time of 200 ms (50 times 4 ms). On

this internal auditory representation, detection decisions are based. Detection performance
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is limited by the external noise N, and the total number of f-t windows (set at 50)
considered.* This classical decision algorithm “picks out” the interval containing the

highest sum of the internal representation of sttmulus level of the f-t windows.

B. Discrimination

In the simulated discrimination experiments, two intervals contain the reference signal
and one interval contains the signal with the incremented amplitude. In Fig. 2.A1b a
scheme of the discrimination model is plotted. In some of our experimental conditions the
stimuli are very close to the detection threshold (0 or 10 dB SL), and as a result the
stimuli are not always audible. Therefore, the decision strategy for the discrimination
experiment is divided into two stages: a detection stage followed by a discrimination
stage. In the detection stage the decision is made whether the signal i1s audible or not.
Only, if an interval contains an audible signal, this is forwarded to the discrimination
stage. Finally, the decision has to be made which of the audible stimuli is the one with
the incremented amplitude. This two-stage approach agreed with the experience of the
listeners at low sensation levels in the discrimination experiment: the listeners’ strategy
was to select only between audible stimuli. According to the listeners’ experience, the
decision strategy in the simulations was as follows: If two or all of the stimuli were
audible, the interval containing the highest sum of the internal representation of stimulus
level over the f-t windows was chosen; if only one interval contained an audible signal,
this interval was chosen; if none of the stimuli was audible, randomly one of the three
intervals was picked.

In the detection stage, audibility of the signal is defined with respect to the energy
distribution of the external noise. In the model, a signal in noise 1$ audible (detectable)
if the sum of the internal representation is higher than 3. The constant B is chosen such
that the probability that noise alone will have a total energy higher than [ 18 1%e. AS In

the detection simulations, in the detection stage the total of 50 f-t windows is considered.

* The fact that the total energy of 50 windows was considered for all stimuli is an essential
part of the detection model, and will affect the detection threshold as a function of the number of

f-t windows.
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In the discrimination stage where the signal is always audible, assuming that the
listener can focus exactly on the f-t windows covered by the signal seems reasonable.
Therefore, only the f-t windows containing the signal are considered. “Coding” noise 18
added to the internal representation. From the literature (see, e.g., Buus and Florentine,
1991) it is known that, in discrimination tasks, the sensitivity ¢’ is roughly proportional
to the difference limen in intensity: d’=k+log,((E+AE)/E) . Therefore, the variance of
the internal “‘coding” noise component in the discrimination stage was taken to be
proportional to the energy of the signal (constant variance in dB, Weber’s Law): The
noise was taken from a Gaussian distribution with a standard deviation ¢. Considering the
range of the jnd(/) of our results, o = 4 dB was taken as a reasonable value. The mternal

noise is uncorrelated across the f-t windows [see Durlach ez al. (1980)].
C. Results of the simulations

The simulated discrimination threshold as a function of the shape factor at 10 dB SL 1s
plotted in Fig. 2.A2. On the top axis of Fig. 2.A2 the number of f-t windows used to
simulate the different shape factors is shown. The shape factors and the corresponding
estimate of the number of f-t windows can also be found in Table 2.1. At 10 dB SL, jnd(/)
has a maximum for the critical shape factor or, alternatively, for one f-t window. jnd(7)

decreases for smaller and larger shape factors, or, alternatively, as the number of -t
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windows increases. These trends are also observed in the data (see Figs. 2.2, 2.3, and
2.4}

The simulated detection threshold as a function of the number of f-t windows covered
by the signal is plotted in Fig. 2.A3a. The figure shows that the detection threshold E/N,
is independent of the number of f-t windows. In Fig. 2.A3b, the mean of the informal
detection threshold data at 1 kHz is plotted as a function of shape factor. The data are
expressed in decibels re: an arbitrary reference. The data show a slight increase in the
detection threshold as the shape factor and, as a result, the bandwidth increases. This
trend was also observed by Van den Brink and Houtgast (1990) for signals with constant
spectro-temporal area. Because no maximum (nor minimum) can be observed in our data,
it is concluded that, essentially, the detection threshold does not depend on the number

of f-t windows covered by the signal. Experimentally observed and simulated trends

agree.
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The simulated discrimination threshold as a function of the shape factor at 0 dB SL
is shown in Fig. 2.A4. On the top axis of the figure the number of f-t windows used to
simulate the different shape factors 1s shown. Please see also Table 2.1. The jnd(/) at 0
dB SL does not depend on the shape factor, or, alternatively, the number of f-t windows.
The simulated trends agree with the data (see Fig. 2.2). Comparing Fig. 2.A2 (10dB SL)
and Fig. 2.A4 (0 dB SL), it can be seen that for the “critical”” shape factor (or one f-t
window) the jnd(/) increases with about 1 dB when the sensation level increases from 0

to 10 dB SL. This trend was also observed in the data (see Fig. 2.2).
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Wavelet analysis

Since wavelet analysis plays an important role in this thesis, a short
explanation about this joint time-frequency analysis will be given in this
chapter. The similarities between wavelet analysis and auditory analysis
will be addressed. This chapter will go into the basic parameters of the

wavelet tool that will be used in the following chapters.

INTRODUCTION

In this thesis, wavelet coding is used as a tool for studying the auditory system. Different
perspectives with respect to this topic are possible. Since this thesis deals with acoustic
signals, a sound processing point of view will be taken. Then, wavelet analysis can be
considered an analysis in which both temporal and spectral information of the signal are
obtained, just as in auditory sound analysis. In this chapter, some general aspects of
wavelet analysis will be explained. Also, the differences between wavelet analysis and
short-time Fourier analysis will be discussed (Sec. 3.1T). We will focus on the similarities
between auditory analysis and wavelet analysis, and on how the parameters of the
wavelet analysis can be tailored to the auditory system (Sec. 3.III). The result is a
perceptually relevant sound coding, that will be called auditory wavelet coding (Sec.

3.V). This auditory wavelet coding will be used as a front-end signal processing tool to
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study the auditory system in Chapters 4 and 5. When no references are given, the text of
this chapter is based on Rioul and Vetterli (1991), Vetterli and Kovacevic (1995), and

Strang and Nguyen (1996).

I. BASICS OF WAVELET ANALYSIS

A. Wavelets

As the name suggests, wavelet analysis is an expansion by means of wavelets. Wavelets
are little waves. In Fig. 3.1a, an example of a wavelet is shown. Wavelets are oscillatory
and decay to zero quickly. In acoustics, a wavelet is equivalent to a time-frequency
window. It is localized in time and in frequency and does not have a DC component. All
wavelets in a particular wavelet analysis are based on a fundamental prototype analysis
function, i.e., the mother wavelet. Many different mother wavelets are possible, a
constraint being that they should integrate to zero. Different wavelets within one analysis

scheme are scales and shifts of this mother wavelet @y

1 =1, +
(p({):—(-pﬁf(_;}‘_) aer ’ IOER (3 1)
d

in which a is the scaling parameter, {, is the shifting parameter, and 1//a normalizes the
energy of the wavelets.

In Fig. 3.1, examples of scales and shifts of the mother wavelet are shown. Scaling is
compression or stretching in time of the mother wavelet (Fig. 3.1b). The smaller the scale,
the more compressed the wavelet. By scaling, wavelets with different positions along the
spectral axis are obtained. [In the example of Fig. 3.1, the carrier frequency f, of the
wavelet is inversely proportional to the scale (s<1/a).] Scaling also affects the temporal
and spectral width of the wavelet. This aspect will be discussed in the next section. For
all wavelets, the number of oscillations within the temporal envelope is constant. By a
shift of the mother wavelet, a wavelet with a different position along the temporal axis
is obtained (Fig. 3.1c). Thus, by scales and shifts of the mother wavelet the whole time-

frequency range can be spanned.
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B. Scale

Several times, the term ‘scale’ was mentioned. Scale plays a central role in wavelet
analysis. Signals are analyzed at different scales obtained by compression or stretching
of the mother wavelet. By compression, a wavelet at a small scale is obtained. This
contracted wavelet can be used to analyze detailed aspects, i.e., the high frequencies, in
a signal. It is very localized in time, but less localized in frequency. Thus, at higher
frequencies, the spectral resolution of wavelet analysis is reduced, but the temporal
resolution is increased. By stretching the mother wavelet, a wavelet at a large scale 1s
constructed. This wavelet has a long duration and can be used to analyze long-term
trends, i.e., the low frequencies, in a signal. This wavelet is not so much localized in time,
but very localized in frequency. Thus, at lower frequencies, spectral resolution is good,

but temporal resolution is poor.

a) example of mother wavefet b) scales' different positions along the frequency axis

e -

¢) shifts: different positions along the time axis

FIG. 3.1. Wavelets
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In summary, wavelet analysis uses short windows at high frequencies and long
windows at low frequencies. As a result, for increasing frequencies temporal resolution
gets better, but spectral resolution gets poorer. The spectral resolution of a wavelet
analysis is inversely proportional to the scale; it is proportional to the carrier frequency
of the wavelets. Therefore, wavelet analysis has a constant relative spectral resolution.
The zooming-in property, to analyze according to scale, is fundamental to wavelet
analysis.

C. Uncertainty principle

Important characteristics of a time-frequency analysis are its temporal and spectral
resolution. The uncertainty principle states thatit is not possible to get an arbitrarily good
resolution both in time and in frequency (see Landau and Polak, 1964). Maximum
spectral resolution is obtained by long-term Fourier analysis, but then, no temporal
information is available. Maximum temporal resolution is provided by the time signal
itself, but then, no spectral information is available. By application of a time-frequency
window both temporal and spectral information of the signal can be obtained. However,
a bound exists on the maximum joint resolution in time and frequency. The product of
temporal and spectral width of an analysis window cannot be smaller than this bound, the
uncertainty limit. This limit is attained by the Gaussian window. The product of the
effective duration (Gabor, 1947) and effective bandwidth of the Gaussian window equals
1. Thus, when using another analysis window than the Gaussian window, the combined
time-frequency resolution of the analysis will be worse than this lower bound.

In wavelet analysis, the joint time-frequency resolution is determined by the mother
wavelet, that will be discussed in detail later in this chapter. As already mentioned,
scaling the mother wavelet affects the time-frequency shape of the resulting wavelet: for
increasing frequencies, good spectral resolution is traded off for good temporal
resolution. However, the product of bandwidth and duration is constant and always larger

than or equal to the uncertainty limit.
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D. Scalogram

The scalogram is the time-frequency representation of the energy of a signal analyzed by
means of wavelets (Rioul and Flandrin, 1992). It is similar to the spectrogram of the
short-time Fourier transform (to be discussed in the next section). A wavelet expansion
results in wavelet coefficients. A wavelet coefficient has a modulus and a phase. It
corresponds to a specific wavelet in the expansion. The square of the modulus of the
coefficient represents the energy of the signal at a particular time and frequency. In Fig.
3.3b. an example of a scalogram is plotted. Presented is the energy distribution over time
and frequency of a signal consisting of a sinusoid added to a spike. The scalogram 18
shaded proportionally to the energy. The time-frequency plane is covered by so-called
time-frequency tiles. The term time-frequency tile of a particular wavelet is used to
designate the time-frequency position and width of that analysis function ( Herley et al.,
1993). In the scalogram, the tiles are symbolized by rectangles. In Fig. 3.2 amore realistic
representation of an elementary tile corresponding to a Gaussian wavelet is shown. The
tiles of the scalogram represent the time-frequency shape of the analyzing wavelets,
expressing the temporal and spectral resolution. As can be observed in Fig. 3.3b, the
spectral resolution is not constant nor 1s the temporal resolution. However, the area, ie.,

the product of temporal and spectral width of the wavelets, is constant.

FIG. 3.2. An elementary tile corresponding to a Gaussian wavelet.
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II. THE WAVELET TRANSFORM VS. THE SHORT-TIME
FOURIER TRANSFORM

Classically, the short-time Fourier transform is used for time-frequency analyses. The
wavelet transform has recently gained interest as an analysis tool for acoustic signals. The
short-time Fourier transform is a Fourier transform on short-time segments of a signal.
First, the signal is windowed using a fixed temporal window. Then, each sound segment
is transformed to the Fourier domain using a basis of sines and cosines. The spread of the
energy over time and frequency is represented in a spectrogram.

Just like the wavelet transform, the short-time Fourier transform is a joint time-
frequency analysis, but the analysis windows of the short-time Fourier transform and the
wavelet transform are very different. In Fig. 3.3 this is illustrated by a schematic
representation of a scalogram and a spectrogram. In a wavelet analysis, different
frequencies are obtained by scaling of the mother wavelet. By compression, the envelopes
of the wavelets are narrowed for higher frequencies. The number of oscillations under a
window is constant. The short-time Fourier transform uses analysis functions of constant
duration. As a result, for higher frequencies, an increasing number of oscillations are
present under the envelope. In a short-time Fourier transform, spectral information is
analyzed by sines and cosines windowed by a fixed temporal window. As a result, the
spectral resolution of the short-time Fourier transform is independent of time and
frequency. For the wavelet transform, spectral information is analyzed by scales of the
mother wavelets. As a result, spectral resolution is proportional to frequency: it is
constant on a logarithmic frequency axis.

Auditory coding 18 a tme-frequency coding with a spectral resolution roughly
proportional to frequency (Scharf, 1970). Wavelet coding has this same property.
Moreover, the results of Chapter 2 show that the initial stages of the auditory system have
wavelet-like characteristics: the spectral width of the peripheral auditory window
increases for higher frequencies, whereas temporal width appears to decrease. Therefore,
wavelet analysis provides an interesting alternative to the short-time Fourier Transform

to model and understand time-frequency coding of the auditory periphery.
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FIG. 3.3. A schematic illustration of the energy distribution of a click at time ¢, added to a sinusoid of
frequency 7, In panel (a) the result of a short-time Fourier analysis is plotted (spectrogram), and in
panel (b) the result of a wavelet analysis (scalogram) is plotted. On the right side of the figures,
examples of the corresponding analysis windows of the short-lime Fouriet analysis and wavelet

analysis are shown.
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ITI. IMPORTANT PARAMETERS OF WAVELET CODING

Wavelet coding has two important parameters: (A) the mother wavelet, and (B) the time-
frequency tiling. Both will be explained in this section. These parameters can be used to

design a wavelet analysis algorithm.

A. The mother wavelet

The mother wavelet plays an important role in wavelet coding. It is the prototype analysis
function from which all wavelets in a particular wavelet analysis are derived by scales
and shifts. Unlike Fourier analysis, which is based on sines and cosines, wavelet analysis
can use mother wavelets of a rather wide functional form. A constraint is that they should
integrate to zero. This allows freedom in the choice of the mother wavelet. It can be
smooth, based on a simple mathematical expression, or based on a simple associated
filter. The mother wavelet can be made to fit or model a specific application or

phenomenon.

FIG. 3.4. Mother wavelets: (a) Haar wavelet; (b) Daubechies 7 wavelet: (¢c) Gaussian wavelet.
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An important class of mother wavelets is that with compact support in time. Compact
support means that the mother wavelet is zero outside a certain interval. Numerically, this
is an attractive quality. The Daubechies wavelets, named after their inventor, have
compact support in time. The first and most simple wavelet out of the class of Daubechies
wavelets, i.e.. Daubechies 1, was already known longer. It is also called the Haar wavelet
(see Fig. 3.4a). The Haar wavelet was named after Haar who, in 1910, was the first one
to construct a basis, not by sines and cosines, but by scales and shifts of this step
function. Having extremely compact support the Haar wavelet is very localized in time,
but it is not well localized in frequency. Its spectrum has many large sidelobes. In Fig.
3.4b, the Daubechies 7 wavelet is shown. Daubechies wavelets with a higher number are
less localized in time, but better localized in frequency. The mother wavelet used in this
thesis, i.c., the Gaussian wavelet, does not have compact support in time, but it is
spectrally very smooth (Fig. 3.4c).

Different mother wavelets have different time-frequency shapes. This shape
determines the spectral and temporal resolution of the wavelet analysis. Therefore, the
choice of the mother wavelet has great impact on the display of the time-frequency
characteristics of the signal under investigation. As already mentioned, the uncertainty
principle puts a lower bound on the product of temporal and spectral resolution.
However, above this bound one is free to choose an adequate joint time-frequency
resolution.

As explained before, the periferal auditory time-frequency window looks a lot like
that of a wavelet. The question remains what mother wavelet most closely resembles the
auditory time-frequency window. The results of Chapter 2 suggest that a Gaussian-
windowed sinusoid with a shape factor between 0.15 and 0.3 roughly matches the
auditory time-frequency window. Thus, a Gaussian mother wavelet may be a reason able
choice for a wavelet coding that is similar to peripheral auditory coding. The Gaussian

wavelet is a complex sinusoidal carrier with a Gaussian envelope. It is described by
s() = \Jafy expli2nfy(t-1,)) exp(-n(efy(t-1)) (3.2)

in which f, is the carrier frequency, a is the shape factor, and /af, normalizes the
energy of the analysis function. As shown in equation 3.1, wavelets are constructed by
scales and shifts of this mother wavelet. Since f, is inversely proportional to scale,

different scales are obtained by varying f;. Different shifts are obtained by varying /,. This
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frequency-time window has an effective bandwidth of A~=af,, and an effective duration
of A=1/(af,) (Gabor, 1947). A numerical drawback of the Gaussian mother wavelet is that
it does not have compact support’ in time. However, its fundamental advantage is
smoothness both in time and in frequency. In contrast to many other mother wavelets, it
does not have spectral sidelobes. Its bandwidth and duration can be adjusted to fit the
bandwidth and duration of the auditory time-frequency window.

Another option would be to use an asymmetric time-frequency window, because the
auditory time-frequency window is probably not symmetrical (see, e.g., Irino and
Patterson, 1996). For example, the asymmetric gammatone may provide a better
approximation of the auditory time-frequency window than the symmetric Gaussian
wavelet (Irino and Patterson, 1997). A drawback of the gammatone is that it is
numerically less efficient than the Gaussian wavelet, because one side of the gammatone
envelope decays more slowly than the other one. An appealing property of the Gaussian
wavelet is its similarity in time and frequency. Moreover, it satisfies minimal uncertainty
in the joint time-frequency representation. Since the Gaussian wavelet can be considered
a first order approximation of the gammatone and to keep computations simple, in this
thesis, a Gaussian mother wavelet was chosen for auditory wavelet coding. In Chapters
4 and 5, the effective bandwidth of the Gaussian wavelet is set to ¥4 octave [roughly equal
to the auditory critical band (Scharf, 1970)]. This corresponds with a shape factor o of
0.1735. As a result, the effective duration of the frequency-time window 1s 5.76 mg at 1
kHz (1.44 ms at 4 kHz). The effective number of sinusoidal periods within the Gaussian

envelope equals 5.8 (i.e., /o).
B. Time-frequency tiling

The scalogram of Fig. 3.3b showed that the time-frequency plane is covered by tiles, 1.e.,
time-frequency windows. The time-frequency tiling is related to the sampling in time and
frequency of a wavelet expansion, because it indicates where wavelets are localized in
time and frequency (Herley et al., 1993). Adequate sampling is important for tworeasons.
First, in undersampled time-frequency representations not all information of the signal

is available. After wavelet coding, a signal can be reconstructed by a linear combination

'A function f{2) has compact support if it is zero outside the interval 7 <r<7 +AT |
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of the wavelets, where each wavelet is multiplied by its coefficient (overlap-add
procedure). However, undersampled wavelet expansions may lead to far from perfect
reconstructions. The second reason is that modifications to undersampled time-frequency
representations of sound are affected by the shape of the time-frequency window (Allen
and Rabiner, 1977). Interactions between window shape and modification will lead to

unwanted byproducts. In this section, different time-frequency tilings will be discussed.

® Continuous wavelet analysis

The continuous wavelet analysis is a continuous time-frequency representation: a wavelet
coefficient is calculated at every scale and time. Thus, information is available for all
times and frequencies. For the continuous wavelet analysis, the sampling density 1s
(theoretically) infinite. As aresult, the continuous wavelet analysisis very redundant, and
calculation is very time-consuming. Often, it is possible to sample the continuous time-
frequency representation and still have essentially all information available, thus being
able to reconstruct the original signal. The analysis is still performed in the continuous
domain, but it is discrete in the sense that information is available at discrete points in the
time-frequency plane. In Chapters 4 and 5 a sampling of the continuous time-frequency
plane is used. For adequate sampling in time and frequency, the Nyquist sampling
theorem can be used (Allen, 1977; Allen and Rabiner, 1977). For simultaneous time-
frequency sampling the Nyquist sampling theoremis applied twice. The samplinginterval
is based on the temporal and spectral range over which the wavelets are essentially

different from zero, meaning that the parts outside this range can be neglected.

@ Discrete wavelet analysis

The continuous wavelet analysis, whether sampled or not, is performed in the continuous
time domain. In contrast, the discrete wavelet analysis is performed in the discrete time
domain. Like for the sampled continuous wavelet analysis, this results in information at
discrete points in frequency and time. However, the calculation of the discrete wavelet
analysis is very different from the calculation of the continuous wavelet transform. The
discrete wavelet analysis is calculated by means of successive application of a highpass
and a lowpass filter, followed by downsampling by a factor 2. In Fig. 3.5a, such a cascade
algorithm is shown. The corresponding scalogram (Fig. 3.3b) shows that for each step,

the lower frequency range is divided in 2. This operation improves the spectral resolution
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of the lower frequencies. The result is an octave analysis. For each step j (j: integer),
going toward lower frequencies, the scale gets a factor of 2 larger. Thus, this operation
corresponds to wavelets with scale factor 2. However, due to the downsampling
operation, the temporal resolution gets a factor of 2 worse in each step. Thus, the
temporal shift 7, is equal to ke2' (k: integer), in which k is a counter to cover the whole
time range. All information of the signal is available in the resulting wavelet coefficients;
the coding is not redundant. This is a very useful property for data compression. A

wavelet analysis with Daubechies wavelets can be calculated this way.

LP ¥2
HP V2
HP ¥2
] O
HP Y2
LE Y2
b LP V2

FIG. 3.5. Cascade algorithm of (a) discrete wavelet transform; (b) example of
wavelet packet transform. HP: Highpass filter; LP: Lowpass filter; |2:
downsampling by factor 2.
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® Wavelet packet analysis

If a spectral resolution of one octave is not good enough, a wavelet packet analysis can
be used. The wavelet packet analysis is based on the discrete wavelet analysis. However,
in a wavelet packet analysis not only the low-frequency part of the signal is analyzed in
a cascade algorithm, but also the high-frequency part (Fig. 3.5b). In this way, an arbitrary
frequency split can be obtained (see, e.g., Herley et al., 1993). The price paid 1s that the
joint time-frequency resolution of a wavelet packet analysis is worse than of the discrete
wavelet analysis. The analysis functions of a wavelet packet analysis are usually not
smooth. Moreover, because of the different succession of highpass and lowpass filters,

the resulting analysis functions are not equal (o scales and shifts of a mother wavelet.

In this thesis, a Gaussian wavelet was chosen as a mother wavelet. The Gaussian
wavelet can only be used in a continuous wavelet transform. Therefore, the Nyquist
sampling theorem was used to select an adequate tiling for the Gaussian wavelet. The
Gaussian wavelet does not have compact support in time nor in frequency. Therefore, the
range between the 25-dB down points was taken as the range over which the window is
significantly different from zero (about twice the effective duration and effective
bandwidth). This criterion leads to a sampling of one wavelet per three periods of the
wavelet carrier frequency along the time axis, and eight wavelets per octave along the
frequency axis. It should be noted that, using this time-frequency sampling, the
reconstructed signal will not be perfect, because only when the sampling density 1s
infinite, the difference between an original and a reconstructed signal will be zero.
However, this sampling density was considered sufficient for its purpose: the difference
between original and reconstructed signals was very small and not noticeable to the

listeners.
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IV. APPLICATIONS

The last ten years, basic wavelet theory has been developed. The territory of applications
is less explored. Wavelets can be used for many different applications, from solving
partial differential equations to the generation of musical tones. In this section, some
applications useful in acoustics will be described: (1) signal analysis, (2) data
compression, (3) noise reduction.

The first application of wavelet analysis is in signal analysis. Since wavelet analysis
uses short-duration, high frequency wavelets, it is well suited for transient detection
(Mallat and Hwang, 1992). It has proven to be useful for high resolution seismic analysis.
Since wavelet analysis has important similarities with auditory time-frequency analysis,
wavelet analysis is also used to model auditory analysis (Yang et al., 1992; Evangelista,
1993; Irino and Kawahara, 1993; Agerkvist, 1994, Wang and Shamma, 1995; Agerkvist,
1996; this thesis).

Another important application of wavelet analysis is data compression. Using wavelet
analysis, it is possible to approximate data with sharp discontinuities by a relatively small
number of wavelet coefficients. Especially for image compression, sparse coding by
means of wavelet analysis is very successful. In 1993, the US Federal Bureau of
Investigation (FBI) adopted a wavelet standard for compression and storage of
fingerprints. The 30 million sets of fingerprints are compressed at a ratio of 26:1. Only
experts can tell the difference between an original and a compressed fingerprint. Wavelet
coding is also used for compression of acoustic signals (Benedetto and Teolis, 1993;
Sinha and Tewfik, 1993; Wannamaker and Vrscay, 1997).

A third application of wavelet analysis is the de-noising of noisy data. In a de-noising
algorithm, the wavelet coefficients are subjected to a nonlinear threshold operation. In a
hard-thresholding operation, all coefficients with a modulus less than a certain value are
set to zero. In a soft-thresholding operation, coefficients with modulus less than a certain
value are attenuated. The idea is that coefficients with few energy probably do not
contain the important information of the signal, but noise. By making these zero or by
attenuation, this noise may be reduced. With respect to sounds, wavelet analysis has been

used for speech enhancement (Drake er al., 1993; Pintér, 1996; Whitmal er al., 1996;
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Nishimura et al., 1998). Another example of de-noising is the removal of scratch noise
in old recordings (Montresor et al., 1990). Then, the zooming-in property of wavelet

analysis is successful in the detection of the scratches (edge detection).

V. AUDITORY WAVELET CODING

In this chapter, the similarities between wavelet coding and peripheral auditory coding
were discussed. By choosing a Gaussian mother wavelet with a bandwidth of V4 octave,
the joint time-frequency resolution of the wavelet coding was roughly matched to that of
the auditory system. Given this mother wavelet, an adequate time-frequency tiling is eight
wavelets per octave along the frequency axis, and one wavelet every three periods along
the time axis. This wavelet coding can be seen as a perceptually relevant wavelet coding,
and is taken as a model of normal peripheral auditory coding. In the following chapters,
a distortion of the wavelet coding will be used to model distorted peripheral auditory

coding in hearing-impaired listeners.
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The effect of intensity perturbations on
speech intelligibility for normal-hearing

and hearing-impaired listeners

Hearing-impaired listeners are known to suffer from reduced speech
intelligibility in noise, even if sounds are above their hearing thresholds.
This study examined the possible contribution of reduced acuity of
intensity coding to this problem. The “distortion-sensitivity model” was
used: the effect of reduced acuity of auditory intensity coding on
intelligibility was mimicked by an artificial distortion of the speech
intensity coding, and the sensitivity to this distortion for hearing-
impaired listeners was compared with that for normal-hearing listeners.
Stimuli (speech plus noise) were wavelet coded using a Gaussian
wavelet (1/4 octave bandwidth). The intensity coding was distorted by
multiplying the modulus of each wavelet coefficient by a random factor.
Speech-reception thresholds (SRTs) were measured for various degrees
of intensity perturbation. Hearing-impaired listeners were classified as
suffering from suprathreshold deficits if intelligibility of undistorted
speech was worse than predicted from audibility by the Speech
Intelligibility Index model (ANSI, 1997). Hearing-impaired listeners
without suprathreshold deficits were as sensitive to the intensity
distortion as the normal-hearing listeners. Hearing-impaired listeners
with suprathreshold deficits appeared to be less sensitive. Results
indicate that reduced acuity of auditory intensity coding may be a factor

underlying reduced speech intelligibility for the hearing impaired.

Submitted to the Journal of the Acoustical Society of America
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INTRODUCTION

Speech recognition (or intelligibility) in noisy environments is a problem for many
hearing-impaired listeners. This problem may result from inaudibility of part of the
speech spectrum. However, even if sounds are above hearing thresholds over the whole
frequency range, some hearing-impaired listeners still have problems perceiving speech
in noisc. Their speech processing is not as good as that of normal-hearing listeners due
to suprathreshold deficits (Moore, 1996; Noordhoek ez al., in press). Examples of
suprathreshold deficits are reduced spectral resolution (frequency selectivity), reduced
temporal resolution, impaired frequency discrimination, or impaired loudness perception.

This study examines a deficit related to impaired loudness perception, i.c., reduced
intensity coding. Reduced intensity coding may be thought of as a less accurate intensity
representation in the auditory periphery. This may be due, for example, (o a loss of
auditory nerve fibers, resulting in a more noisy intensity coding. Reduced intensity coding
may lead to higher just-noticeable differences (jnd’s) in intensity or less jnd's. A few
studies suggest that intensity coding may be disrupted for some listeners with cochlear
damage (Florentine et al., 1993; Buus et al., 1995; Moore, 1995). Reduced intensity
coding acuity is likely to affect speech intelligibility. However, the literature does not
report any attempts to relate intensity coding to speech intelligibility.

The main question in this study is whether poor auditory intensity coding is at least
partly responsible for the observed poor speech intelligibility in noise by hearing-
impaired listeners. This is examined by introducing an artificial distortion in the
intensities of speech. The distortion simulates the effect of reduced acuity of auditory
intensity coding on speech perception. Speech-reception thresholds (SRTs) for various
degrees of the applied artificial distortion are compared for normal-hearing and hearing-
impaired listeners in order to clarify the contribution of reduced auditory intensity coding
acuity to impaired speech intelligibility. This type of experiment may be called a
“distortion-sensitivity approach” (Houtgast, 1995).

Under the distortion-sensitivity model, a specific type of distortion is applied to
combined speech and noise stimulus. Intelligibility tests are administered in order to

determine whether the artificial distortion is or is not related to the suprathreshold deficit
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of hearing-impaired listeners. Therefore, intelligibility is measured as a function of the
degree of the distortion, and sensitivity to the distortion is compared for normal-hearing
and hearing-impaired listeners. Fig. 4.1 is a schematic illustration of the possible
outcomes of such an experiment.

In the undistorted condition, using the original, unmodified speech, hearing-impaired
listeners usually recognize speech more poorly than normal-hearing listeners. When
comparing speech intelligibility by normal-hearing and hearing-impaired listencrs as a
function of the degree of distortion, essentially, two different trends may be hypothesized.
First, performance of the normal-hearing and hearing-impaired listeners converges (dotted
line). Second, performance of the normal-hearing and hearing-impaired listeners docs not
converge (dashed line).

In the convergence case, the performance difference between normal-hearing and
hearing-impaired listeners becomes smaller as a function of the distortion level. For high
levels of distortion, performance becomes essentially equal. Thus, hearing-impaired
listeners are less sensitive to the distortion than normal-hearing listeners. In statistical
terms. this is an interaction between listener groups and level of distortion or, stated
differently, between hearing deficit and distortion. In terms of interpretation, the effect
of the artificial distortion is smaller for hearing-impaired listeners because the hearing
deficit already affects the speech processing in a similar way. Thus, the specific type of
artificial distortion for which convergence is observed, hints at the suprathreshold deficit

causing the speech intelligibility problems of the hearing impaired.
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In the no-convergence case, performance by normal-hearing and hearing-impaired
listeners does not come close together. Hearing-impaired listeners are just as sensitive to
distortion as normal-hearing listeners. This suggests that the effects of this type of
artificial distortion are not related to the suprathreshold hearing deficits causing impaired
speech intelligibility. It should be noted that, as the type of suprathreshold hearing deficit
may be listener dependent, studying the results of individual listeners is important.

The distortion-sensitivity model can be illustrated by a simple example. Let us assume
that a hearing-impaired listener suffers from a severe high-frequency hearing loss. The
applied artificial distortion is lowpass filtering of the speech signal. Speech intelligibility
1s measured as a function of the cutoff frequency of the lowpass filter. Lowpass filtering
reduces the speech intelligibility. Compared with normal-hearing listeners, the hearing-
impaired listener is less sensitive to the lowpass filtering. This is because the high
frequencies in the broadband signal are not perceived anyway. Convergence of the
performance of normal-hearing and hearing-impaired listeners suggests that lowpass
filtering relates to the problem experienced by the hearing-impaired listener, i.e., the
listener misses some part of the high-frequency spectrum.

In this study, arificial distortion of the intensity coding tries to mimic poor quditory
itensity coding. To simulate poor intensity coding, a model of ‘normal’ auditory
intensity analysis is required. Auditory analysis is a spectro-temporal analysis. This is
modeled by wavelet decomposition. Wavelet analysis is used for mimicking auditory
time-frequency analysis because of its logarithmic frequency scale (see, e.g., Rioul and
Vetterli, 1991). In Chapters 2 and 3 it was shown that auditory spectral and temporal
resolution are roughly matched by using a Gaussian-shaped mother wavelet (prototype
analysis function) with a bandwidth of 1/4 octave. Using this perceptually relevant time-
frequency analysis, specific manipulations of the wavelet coefficients may be used to
simulate specific changes in auditory coding. Therefore, a reduced acuity in auditory
intensity coding may be simulated by introducing random perturbation in the intensity of
the wavelet coefficients.

In summary, the aim of this study is to investigate if reduced speech intelligibility by
hearing-impaired listeners may be explained by reduced intensity coding. This question
is addressed by a “distortion-sensitivity model” in which an artificial distortion of the
intensities in a speech-plus-noise stimulus between wavelet decomposition and

recomposition is applied. Intelligibility is measured as a function of the degree of
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distortion, and the sensitivity of hearing-impaired and normal-hearing listeners is
compared. The rationale behind the distortion-sensitivity model is that when a hearing-
impaired listener is less sensitive to the intensity distortion than normal-hearing listeners
this may indicate that poor auditory intensity coding is causing part of the speech

intelligibility problems.

I. METHOD

A. Distortion of wavelet coded intensities

In this study, intensity coding of sound is distorted to mimic the effects of poor auditory
intensity coding. By means of the Speech-reception threshold test (SRT; for an
explanation, see Sec. 4.1 D2), speech intelligibility of sentences is measured as a function
of the degree of applied artificial intensity distortion. In order to simulate auditory
intensity coding, a perceptually relevant spectro-temporal analysis method has been
developed.

To model auditory spectro-temporal coding, sounds were described in the time-
frequency domain by means of a wavelet transform. Compared with the short-time
Fourier transform., the wavelet transform matches auditory system coding more closely
because it uses a logarithmic frequency scale (e.g., Rioul and Vetterli, 1991). In this
study, the criterion for the choice of the mother wavelet is its spectral (and temporal)
resolution. Results of Chapter 2 suggest that a Gaussian-windowed sinusoid with a shape
factor between 0.15 and 0.3 roughly matches the auditory time-frequency window.
Therefore, as the prototype analysis function, a complex sinusoidal carrier with a

Gaussian envelope was chosen. This Gaussian wavelet is described by
s(t) = Jofy expi2nfy) exp(-n(efy)’) (4.1)

in which £, is the carrier frequency, a is the shape factor, and ,/of, normalizes the
energy of the analysis function. This time-frequency window has an effective bandwidth
of A=of; and an effective duration of A=1/(0f;) (see Gabor, 1947). The shape factor o
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was set to 0.1735. Thus, the effective bandwidth of the analysis function was 14 octave
[about the auditory critical band (see Scharf, 1970)]. As a result, the effective duration
of the time-frequency window is 5.76 ms at 1 kHz (1.44 ms at 4 kHz). The effective
number of sinusoidal periods contained within the Gaussian envelope equals 5.8 (i.e.,
1/a).

This Gaussian wavelet is used to construct a wavelet decomposition that covers the
time-frequency plane. Shifts of this prototype function cover the temporal domain; scales
of the prototype function cover the spectral domain. The scaling is controlled by varying
the carrier frequency f,. For simultaneous sampling in time and frequency the Nyquist
sampling theorem was used (see Allen, 1977; Allen and Rabiner, 1977). This theorem is
based on the bandwidth and duration of the analysis function. Because the Gaussian
wavelet does not have compact support' in time nor in frequency, the 25-dB down points
were taken as an estimate of the upper limit of bandwidth and duration of the analysis
functions. This leads to a sampling of one wavelet per three periods of the wavelet carrier
frequency along the time axis, and eight wavelets per octave along the frequency axis.
The theoretical number of complex coefficients needed to describe the signal is about 2
per input sample (see Allen, 1977). In this study, the information of the signals was
limited to the frequency range from 250 to 4000 Hz. As a result, the number of
coefficients computed per input sample could be limited to about unity. Thus, one second
of speech (sampling frequency: 15625 Hz) was described by 16%10° complex wavelet
coefficients in which no information below 250 Hz and above 4 kHz was preserved.

Using these coefficients, sounds can be reconstructed by an overlap-add procedure.
Theoretically, the reconstruction is not perfect. However, using the above described time-
frequency tiling, differences between the original signal and the reconstructed signal are
very small and not noticeable to a listener.

After the wavelet analysis, the modulus of each wavelet coetficient was perturbed to
mimic the effect of a reduced accuracy in intensity coding. This was achieved by
multiplying each individual complex wavelet coefficient by a random factor. As a result,
silence will still be silence after perturbation. The random perturbation factor ¢ (in dB)
was chosen from a uniform distribution with zero mean and boundaries -Pmax and

+Pmax. Thus, the modulus of each individual coefficient was multiplied by a different

'A function f2) has compact support if it is zero outside the interval 7 <t<7+AT .
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random factor 10%°. After perturbation, the energy contained in each frequency band over
the whole sentence was scaled to equal the original energy in this band.

The perturbation of the intensity coding was applied to the combined speech and noise
signal. This probably simulates impaired auditory processing more realistically than a

procedure in which speech and noise are processed separately and then combined.

B. Subjects

Twenty-five sensorineurally hearing-impaired listeners participated in the experiment.
They were all native Dutch speakers, aged 24 to 70 years with a mean age of 41 years.
Their intelligibility scores for monosyllabic words in quiet were at least 75% correct.
Thresholds in the better-hearing ears averaged over 0.5, 1, and 2 kHz (the pure-tone
average, or PTA) ranged from 7 to 58 dB HL,, with a mean PTA of 38 dB HL. The pure-
tone. air-conduction thresholds in the better-hearing ears were at least 30 dB HL at one
or more frequencies between 250 and 4000 Hz.

Twenty-two normal-hearing listeners (aged 19 to 29 years with a mean age of 22
years) served as a control group. All were native Dutch speakers. Pure-tone air-
conduction thresholds of the normal-hearing listeners did not exceed 15 dB HL at any

octave frequency from 250 to 4000 Hz.

C. Stimuli and apparatus

Speech material consisted of lists of 13 everyday Duitch sentences of eight to nine
syllables read by a female or a male speaker (Plomp and Mimpen, 1979; Smoorenburg,
1992). The masking noise was spectrally shaped for each speaker individually according
to the long-term average spectrum of all sentences.

Signals were generated by TDT (Tucker Davis Technologies System II) hardware.
Stimuli were presented in the middle of the dynamic range of each listener by frequency
shaping using a programmable filter (TDT PF1). The stimuli were presented monaurally
through Sony MDR-V900 headphones. To avoid the risk of cross-hearing, the listener’s
better-hearing ear was tested. For calibration, noise levels were measured on a Briiel &

Kjer type 4152 artificial ear with a flat-plate adapter. The entire experiment was
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controlled via a personal computer. Subjects were tested individually in a soundproof

TO0111.

D. Procedures

First, the dynamic range of each listener was determined. Then, speech intelligibility was
measured, in which combined speech and noise were presented in the middle of the
dynamic range. These tests are described below. To familiarize the subjects with the
procedure, a training session preceded data collection. All conditions were measured
twice to determine test-retest reliability. An essential part of the distortion-sensitivity
model is the comparison of the performance of individual hearing-impaired listeners with
that of normal-hearing listeners. Therefore, for all listeners, the same order of conditions

was used. In addition, a different but fixed sentence list was used in each condition.

® Dynamic Range

The dynamic range of cach listener was estimated by measuring the hearing threshold and
the uncomfortable loudness level (UCL) for narrow bands of noise. The UCL was
corrected for broadband stimulation, as described below.

Thresholds and UCLs were measured with 1/3-octave noise bands with center
frequencies at 250, 500, 1000, 2000, and 4000 Hz. Hearing thresholds were measured
using a Békésy tracking procedure (300-ms noise bursts; repetition rate 2.5 Hz; step size
1dB). The measurement was ended after eleven reversals. The average of all but the first
reversal level was taken as the hearing threshold. Narrow-band UCLs were measured with
noise bursts presented increasing in level by 3 dB for each presentation (300 ms noise
burst; repetition rate 1.4 Hz). Listeners were asked to push a button when the noise bursts
became uncomfortably loud. Then, the level of the noise burst was immediately
diminished by arandom amount between 21 and 30 dB, and the ascending procedure was
repeated until six responses were obtained. The average of the levels at which the button
was pushed was taken as the narrow-band UCL.

To correct the UCL for broadband stimulation, a 4-second broadband noise burst was
presented, spectrally shaped according to the narrow-band UCLs and starting 40 dB
below the narrow-band UCLs. The level of the broadband noise burst was gradually
increased in steps of 5 dB. After each presentation the listener was asked whether the
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signal was experienced as uncomfortably loud. If this was the case, the corresponding
level was taken as the broadband UCL.

® Speech intelligibility

Speech-reception threshold in noise for an adapted spectrum (SRTa)

The speech-reception threshold (SRT, Plomp and Mimpen, 1979) was used to measure
speech intelligibility. The SRT in noise is defined as the signal-to-noise ratio (SNR) at
which 50% of sentences are reproduced correctly. The speech level 1s varied in an
adaptive, up-down procedure with a step size of 2 dB. Speech and noise are adapted to
fit in the dynamic range of individual listeners. The adapted speech-reception threshold
is called SRTa. In the SRTa tests in this study, all stimuli were bandpass filtered from 250
to 4000 Hz. The SRTa was mecasured as a function of intensity perturbation.

The aim of this study is to assess the effect of a reduced auditory intensity coding
resulting from artificial perturbations of the intensity coding of the speech-plus-noise
stimulus. Because of the applied intensity perturbations, the auditory system is not
provided with accurate intensity information. However, the applied intensity
perturbations also introduce spectro-temporal fluctuations. To study the effects of
distorted intensity coding, it is important 1o ensure that spectro-temporal effects do not
dominate the speech intelligibility of hearing-impaired listeners. Therefore, in the present
study speech intelligibility was measured for intensity perturbations that only slightly
affect performance. Preliminary data were collected to determine the appropriate range
of intensity perturbations to apply.

The SRTa was measured as a function of the degree of intensity perturbation (0, 10,
20, 30, and 40 dB) for 10 normal-hearing listeners. Fig. 4.2 presents the results. Mean
data for the normal-hearing listeners are indicated by open symbols. Error bars indicate
the standard error of the mean. A typical example of the performance of a hearing-
impaired listener is indicated by filled symbols. For the normal-hearing listeners at 10 dB,
the SRTa is slightly affected (difference with no perturbation: 1.3 dB). For more severe
perturbations, the SRTa increases almost linearly with perturbation, ranging from-0.9 dB
when Pmax is 10 dB to 6.6 dB when Pmax is 40 dB. The hearing-impaired listener
appears to be hardly affected by the 10 dB intensity perturbation; the decrease in
performance compared with the reference condition (no perturbation) is only 0.3 dB.

However, for larger degrees of intensity perturbations, speech intelligibility deteriorates



64 Chapter 4: Intensity coding and speech perception

more quickly than observed for the normal-hearing listeners. Linear regression lines were
fitted through the SRTa data at 10, 20, 30, and 40 dB of intensity perturbation. The slope
of the hearing-impaired listener was steeper than the 95-percent upper boundary of the
slopes of the normal-hearing listeners.

These data suggest that severe degrees of intensity perturbation affected this hearing-
impaired listener more than the normal-hearing listeners. This may be explained by the
effect of the perturbations on loudness perception. Since the dynamic range of the
hearing-impaired listener was markedly smaller than that of the normal-hearing listeners,
the same intensity perturbation did not result in the same loudness perturbation. This
hearing-impaired listener was probably subjected to higher degrees of loudness
perturbation than the normal-hearing listeners. Another cause may be the spectro-
temporal fluctuations introduced by the artificial intensity distortion. These fluctuations
in the combined speech and noise may result in additional masking in the temporal
domain, i.c., forward and backward masking, and in the spectral domain, 1.e., upward and
downward spread of masking. Hearing-impaired listeners are known to suffer from
excessive masking. [For review, see Moore (1995).] For large amounts of intensity
perturbations these unwanted spectro-temporal byproducts may even dominate the speech
intelligibility of hearing-impaired listeners, causing performances for normal-hearing and

hearing-impaired listeners to diverge.

12 - 7 FIG. 4.2. Average SRTa as a function of
intensity perturbation for ten normal-
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To recapitulate, a small but consistent effect on speech intelligibility was observed for
intensity perturbations of 10 dB. To avoid the risk of spectro-temporal effects of the
intensity distortion algorithm, the range 0-10 dB was measured in the speech
intelligibility experiment. As a measure for the sensitivity to the intensity distortion, the
SRTa at 10 dB minus the SRTa at 0 dB is used.

Speech-Reception Bandwidth Threshold (SRBT)

To classify the hearing-impaired listeners into a group “with” and “without”
suprathreshold deficits, the Speech-Reception Bandwidth Threshold (SRBT) was
measured. The SRAT is a measure of speech intelligibility introduced by Noordhoek ez
al. (1999). The SRBT is highly sensitive for suprathreshold deficits, as is shown in a
recent study of Noordhoek e al. (in press).

The SRAT procedure is similar to the SRT procedure, except that the bandwidth
(center frequency 1 kHz) of speech sounds is varied instead of their levels when
estimating the 50% intelligibility threshold. Complementary bandstop noise is added to
the bandpass-filtered speech. Both speech and noise are presented in the middle of the

listener’s dynamic range.
E. Speech intelligibility index

As a measure for the quality of speech processing, the SRTa and SRBT data were
converted to a Speech Intelligibility Index. The Speech Intelligibility Index (SII) (ANSI,
1997) is a physical measure of how much information of the speech is available to the
listener. The SII model accounts for hearing threshold, self-masking in speech, upward
spread of masking and level distortion at high presentation levels. To calculate the SII,
speech spectra, noise spectra and hearing thresholds must be known. Therefore, sound
pressure levels of speech and noise (divided in 1/3-octave bands) were measured with the
headphone positioned on a Briiel & Kjer type 4152 artificial ear with a flat-plate coupler.

These levels were converted to equivalent free-field levels.
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II. RESULTS AND DISCUSSION

A. Suprathreshold deficits

In the speech intelligibility tests (SRTa and SRBT) sounds were spectrally shaped to fit
in the dynamic range of individual listeners. A comparison of the results for normal-
hearing and hearing-impaired listeners provides insight into the speech intelligibility
performance of the hearing impaired when sounds are presented above hearing threshold.

For the normal-hearing listeners, the average SRTa was -2.1 dB (standard deviation
0.9 dB); for the hearing-impaired listeners, the SRTa ranged from-2.0 dB to 6.8 dB, with
an average of 0.4 dB. The individual standard error (test-retest) averaged over all listeners
was 1.1 dB.

For the normal-hearing listeners, the average SRBT was 1.44 octave (standard
deviation 0.18 octave); for the hearing-impaired listeners, the SRBT ranged from 1.25 to
3.49 octave, with an average of 1.94 octave. The individual standard error (test-retest)
averaged over all listeners was 0.16 octave.

The upper limit of the one-tailed 95% confidence interval of the data for the normal-
hearing listeners was used to distinguish the hearing-impaired listeners with difficulty of
listening in noise. Relative to this boundary, the SRTa was eclevated for 15 of the 25
hearing-impaired listeners; the SRBT was elevated for 13 of the 25 hearing-impaired
listeners. This indicates that a substantial number of the hearing-impaired listeners has
problems recognizing speech in noise, even if sounds are presented in the middle of the
dynamic range of the listeners.

Speech intelligibility problems may be due to suprathreshold deficits. However, other
possible explanations are inaudibility of part of the speech spectrum (if the dynamic range
of a listener is very small) or high presentation levels causing extra upward spread of
masking and level distortion. Therefore, to investigate the effect of suprathreshold deficits
on speech intelligibility, individual SRTa and the SRBT data were converted into SII
units. An elevation of the SII-values of a hearing-impaired listener compared with that of
the normal-hearing listeners indicates the presence of suprathreshold deficits. The higher
the SII, the more serious the speech processing deficits. Fig. 4.3 shows the individual SII
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FIG. 4.3. Speech Intelligibility Index (SII) versus SRTa and SRBT for normal-hearing
listeners (open circles) and hearing-impaired listeners (filled circles). Solid lines represent the
upper boundaries of the one-tailed 95% confidence intervals for normal-hearing listeners.
Dashed lines represent the maximum SII when the audibility of the speech is not influenced
by the hearing threshold, upward spread of masking, and level distortion.

values of the SRTa and SRBT test for the normal-hearing listeners (open circles) and the
hearing-impaired listeners (filled circles). The SII values are plotted as a function of the
individual results on the two speech intelligibility tests. The upper limit of the one-tailed
95Y% confidence interval of the SII's of the normal-hearing listeners is chosen as the
boundary between normal and elevated SII. This is indicated by a horizontal solid line.
The boundary between normal and elevated SRTa or SRBT is indicated by a vertical solid
line. The dashed lines in Fig. 4.3 represent the maximum SII value when the audibility
of the speech is not influenced by the hearing threshold, upward spread of masking, and
level distortion. 10 of the 25 hearing-impaired listeners have a higher than normal S1I-
SRTa and 11 have a higher than normal SII-SRBT; of the latter group. 7 also have a
higher than normal SII-SRTa. These results show that a substantial number of hearing-
impaired listeners have speech intelligibility problems because of suprathreshold deficits.
In Sec. 4.11 B hearing-impaired listeners are divided into groups with and withoul

suprathreshold deficits.
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The relation between the occurrence of suprathreshold deficits and hearing loss 1s
illustrated in Fig. 4.4. SII-SRBT and SII-SRTa for the hearing-impaired listeners are
plotted as a function of PTA. The horizontal line is the 95% confidence limit of the SII’s
(SII-SRAT and SII-SRTa combined) for the normal-hearing listeners. Figure 4.4 shows
no correlation between hearing loss and SII. This indicates that some hearing-impaired
listeners with only a mild hearing loss experienced hampered speech perception due to
suprathreshold deficits. In contrast, some hearing-impaired listeners with a severe hearing
loss did not suffer from suprathreshold deficits. This finding agrees with the results of
Noordhoek er al. (in press).

B. The distortion-sensitivity model

The distortion-sensitivity model compares speech intelligibility as a function of the
degree of distortion for normal-hearing and hearing-impaired listeners. The aim is to
determine whether artificial distortionrelates 10 a suprathreshold deficit causing impaired
speech perception. The hypotheses underlying this model were schematically illustrated
in Fig. 4.1. In Fig. 4.5 the results of this study are depicted.

The average results of the normal-hearing listeners are represented by the open circles.
The hearing-impaired listeners are divided into two groups: (1) without suprathreshold
deficits and (2) with suprathreshold deficits. The division is based on the SII-SRBT
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because the SII-SRBT is independent of the values plotted in Fig. 4.5 and, as was
mentioned in Sec. 4.1 D2, the SRBT test is highly sensitive to suprathreshold deficits.
This resulted in a group of 14 listeners without suprathreshold deficits, of which the
average SRTa-values are represented by downward pointing triangles, and a group of 11
listeners with suprathreshold deficits, of which the average scores are represented by
upward pointing triangles. Not all listeners were tested at 5 dB of intensity perturbation.
Data points in this condition are for 12 normal-hearing listeners, and for 5 hearing-
impaired listeners with suprathreshold deficits and 8 without. The error bars represent the
standard error of the mean.

Compared with normal-hearing listeners, hearing-impaired listeners without
suprathreshold deficits show SRTa measures that are shifted upwards by 1 dB. No
convergence of the data is observed. A student t-test with unequal variances comparing
the “sensitivity to the distortion’ (SRTa at 10 dB minus SRTa at 0 dB) of normal-hearing
and hearing-impaired listeners did not show significant convergence either. This group
of hearing-impaired listeners is just as sensitive to the distortion as the normal-hearing

listeners.
FIG. 4.5. SRTa as a function of intensity
perturbation for normal-hearing listeners
(open circles) and hearing-impaired listeners.

Hearing-impaired listeners are divided into

two groups: with (upward pointing triangles)

oL . and without (downward pointing triangles)

} suprathreshold deficits. Data points in
conditions 0 and 10 dB intensity perturbation
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The performance of the hearing-impaired listeners with suprathreshold deficits does
converge toward the performance of the normal-hearing listeners for increasing amounts
of perturbation. This implies that the hearing-impaired listeners with suprathreshold
deficits are less sensitive to the distortion than the normal-hearing listeners. A student t-
test with unequal variances confirmed this (p<0.05).

Thus, the hearing-impaired listeners without suprathreshold deficits are as sensitive
to the intensity perturbations as the normal-hearing listeners. This is not surprising since
the SII model shows that their speech intelligibility problems can be explained solely on
basis of audibility. Their suprathreshold speech processing is as good as that of normal-
hearing listeners. However, the hearing-impaired listeners with suprathreshold deficits are
less sensitive to the intensity distortion. As already mentioned in Sec. 4.1 D2, the same
degree of intensity perturbation will result in a larger degree of loudness perturbation for
hearing-impaired listeners than for normal-hearing listeners, because the hearing-impaired
listeners have a smaller dynamic range than the normal-hearing listeners. However, the
conversion of the intensity factor to a loudness perturbation factor for each listener will
result in a more pronounced convergence of performance for normal-hearing and hearing-
impaired listeners. In conclusion, along the lines of the distortion-sensitivity model, the
results suggests that the artificial intensity distortion is related to the suprathreshold

speech-processing problems of hearing-impaired listeners.
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The division of the hearing-impaired listeners into two groups showed that hearing-
impaired listeners with suprathreshold deficits are less sensitive to the intensity distortion
than normal-hearing listeners, whereas the group without is just as sensitive as the
normal-hearing listeners. To explore this relation between suprathreshold deficits and
distortion sensitivity further, it is interesting to look at the individual results. As
mentioned in Sec. 4.1 D2, the difference in SRTa between 10 dB and O dB intensity
perturbation was taken as a measure of the individual sensitivity to the distortion. In Fig.
4.6, this sensitivity is plotted as a function of the SII-SRBT. Open symbols represent the
data for normal-hearing listeners, the filled symbols those for hearing-impaired listeners.
The individual standard error of the SII-SRBT (test and retest) averaged over all listeners
was 0.029; the individual standard error of the sensitivity to the distortion (test and retest)
averaged over all listeners was 1.3 dB. The error bars indicate plus and minus one
individual standard error. For some listeners, sensitivity to the distortion was negative,
suggesting that performance improved when intensity perturbation was applied. However,
the negative sensitivity may be explained by order and list effects. As indicated before,
to allow comparison between listeners, subjects listened to the same lists in each
condition, in the same order. As a result, order and list effects may be present in the data
across tests.

Even though the individual standard errors are large, a trend can be observed in Fig.
4.6: a decrease in sensitivity as the SII-SRBT increases. A linear regression analysis on
the data of the hearing-impaired listeners showed a significant correlation of -0.54
(p<0.05). From this it may be concluded that the higher the SII (more severe speech
processing deficits) the less sensitive the hearing-impaired listeners are to the intensity
distortion.

In summary, the results provide evidence that speech intelligibility for the group of
hearing-impaired listeners with suprathreshold deficits is affected less by intensity
perturbation than for normal-hearing listeners. Moreover, looking at the individual results
of all hearing-impaired listeners, the sensitivity to the intensity perturbation correlates
negatively with the SII-SRBT. In other words, the larger the etfect of suprathreshold
deficits on speech processing, the less sensitive a hearing-impaired listener is to intensity
perturbation. Under the distortion-sensitivity model, this implies that distortion of

intensity coding relates to the effects of suprathreshold deficits underlying the poor



72 Chapter 4: Intensity coding and speech perception

speech intelligibility in noise. The underlying deficit might be poor auditory intensity

coding.

I1I. SUMMARY AND CONCLUSIONS

In this study, speech intelligibility was measured as a function of intensity perturbation
of speech-plus-noise stimuli. The sensitivity to the distortion by hearing-impaired
listeners was compared with that by normal-hearing listeners. The data on the speech
intelligibility tests were converted to Sll-values. An elevation of the SII of a hearing-
impaired listener, as compared with the SII’s of normal-hearing listeners, indicates a
suprathreshold speech processing deficit; the higher the SII, the more speech intelligibility
is affected by suprathreshold deficits. The hearing-impaired listeners were divided into
two groups on the basis of their SII-SRBT: a group with and a group without
suprathreshold deficits. This classification did not relate to hearing loss: some listeners
with a severe hearing loss did not show suprathreshold deficits, whereas some listeners
with a mild hearing loss showed severe suprathreshold deficits. Data revealed that
hearing-impaired listeners without suprathreshold deficits were just as sensitive to
intensity perturbations as normal-hearing listeners; hearing-impaired listeners wiih
suprathreshold deficits appeared to be less sensitive to intensity perturbations than
normal-hearing listeners. The convergence for increasing degrees of intensity perturbation
suggests that the applied artificial distortion relates to the suprathreshold deficit causing
speech intelligibility problems. A small but significant correlation between the SII-SRBT
of hearing-impaired listeners and the sensitivity to the intensity distortion was observed.
It is concluded that intensity perturbation may partly characterize the effect of a
suprathreshold deficit causing a reduced speech intelligibility in noise. The underlying

hearing deficit may be a reduced acuity of auditory intensity coding.



References =

REFERENCES

Allen, J. B. (1977). “Short term spectral analysis, synthesis, and modification by discrete
Fourier transform,” IEEE Trans. Acoust. Speech Signal Process. 25, 235-238.

Allen, J. B., and Rabiner, L. R. (1977). “A unified approach to short-time Fourier
analysis and synthesis,” Proc. of the IEEE 65, 1558-1564.

ANSI (1997). ANSI S3.5-1997, “American national standard methods for calculation of
the speech intelligibility index” (American National Standards Institute, New York).

Buus, S., Florentine, M., and Zwicker, T. (1995). “Psychometric functions for level
discrimination in cochlearly impaired and normal listeners with equivalent-threshold
masking,” J. Acoust. Soc. Am. 98, 853-861.

Florentine, M., Reed, C. M., Rabinowitz, W. M., Braida, L. D., and Durlach, N. L.
(1993). “Intensity perception. XIV. Intensity discrimination in listeners with
sensorineural hearing loss,” J. Acoust. Soc. Am. 94, 2575-2586.

Gabor, D. (1947). “Acoustical quanta and the theory of hearing,” Nature (London) 159,
591-594.

Houtgast, T. (1995). “Psycho-acoustics and speech recognition of the hearing impaired,”
in Proceedings of the European Conféerence on Audiology, Noordwijkerhout, The
Netherlands, pp. 165-169.

Moore, B. C. . (1995). Perceptual consequences of cochlear damage, (University Press,
Oxford).

Moore, B. C. J. (1996), “Perceptual consequences of cochlear hearing loss and their
implications for the design of hearing aids,” Ear Hear. 17, 133-161.

Noordhoek, I. M., Houtgast, T., and Festen, J. M. (1999). “Measuring the threshold for
speech reception by adaptive variation of the signal bandwidth. I. Normal-hearing
listeners,” J. Acoust. Soc. Am. 105, 2895-2902.

Noordhoek, I. M., Houtgast, T., and Festen, J. M. (in press). “Measuring the threshold
for speech-reception by adaptive variation of the signal bandwidth. II. Hearing-
impaired listeners,” to appear in J. Acoust. Soc. Am. .

Plomp, R., and Mimpen, A. M. (1979). “Improving the reliability of testing the Speech
Reception Threshold for sentences,” Audiology 18, 43-52.



74 Chapter 4: Iniensity coding and speech perception

Rioul, O., and Vetterli, M. (1991). “Wavelets and signal processing,” [EEE Signal Proc.
Mag. October, 14-38.

Scharf, B. (1970). “Critical bands,” in Foundations of Modern Auditory Theory, edited
by J. V. Tobias (Academic, New York), Vol. 1, pp. 157-202.

Smoorenburg, G. F. (1992). “Speech reception in quiet and in noisy conditions by
individuals with noise-induced hearing loss in relation to their tone audiogram.” J.
Acoust. Soc. Am. 91, 421-437.

van Schijndel, N. H., Houtgast, T., and Festen, J. M. (1999). “Intensity discrimination of
Gaussian-windowed tones: Indications for the shape of the auditory frequency-time
window,” J. Acoust. Soc. Am. 105, 3425-3435.



Effects of degradation of intemnsity, time, or
frequency content on speech intelligibility
for normal-hearing and hearing-impaired

listeners

Many hearing-impaired listeners suffer from distorted auditory
processing capabilities. This study examines which aspects of auditory
coding (i.e., intensity, time, or frequency) are distorted and how this
affects speech perception. The distortion-sensitivity model is used: the
effect of distorted auditory coding of a speech signal is simulated by an
artificial distortion, and the sensitivity of speech intelligibility to this
artificial distortion is compared for normal-hearing and hearing-impaired
listeners. Stimuli (speech plus noise) are wavelet coded using a complex
sinusoidal carrier with a Gaussian envelope (% octave bandwidth).
Intensity information is distorted by multiplying the modulus of each
wavelet coefficient by a random factor. Temporal and spectral
information are distorted by randomly shifting the wavelet positions
along the temporal or spectral axis, respectively. Measured were (1)
detection thresholds for each type of distortion, and (2) speech-reception
thresholds (SRTs) for various degrees of distortion. For spectral
distortion, hearing-impaired listeners showed increased detection
thresholds and were also less sensitive to the distortion with respect to
speech perception. For intensity and temporal distortion, thresholds and
sensitivity both were normal. Results indicate that a distorted coding of
spectral information may be an important factor underlying reduced
speech intelligibility for the hearing impaired.

Submitted to the Journal of the Acoustical Society of America
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INTRODUCTION

The difficulty hearing-impaired listeners have to perceive speech in noise has been the
subject of many investigations, but is still not entirely understood. Although audibility
plays an important role, several studies have shown that this cannot explain the whole
problem [sce, for example, Moore (1996) or Noordhock ef al. (in press)]. These studies
have demonstrated that factors apart from reduced audibility, called suprathreshold
deficits, degrade speech processing. Suprathreshold deficits can distort the auditory
processing of either intensity, time, or frequency information, or a combination of these
types of information. For example, excessive forward and backward masking are
consequences of suprathreshold deficits that may be reduced a single factor of distorted
temporal coding; excessive upward and downward spread of masking may be related to
distorted spectral coding. Impaired loudness perception probably relates to a distorted
representation of intensity information. This study evaluates these three types of
information. The aim is to investigate how reduced speech intelligibility relates to
distorted coding of intensity, time, or frequency.

Auditory coding cannot be manipulated directly. However, one can investigate the
differences in auditory functions among hearing-impaired subjects on specific auditory
tests related to accuracy of intensity, time or frequency coding, and correlate these with
their speech perception performance. In several studies this correlation approach was
applied, concentrating on the role of reduced temporal or spectral resolution. The role of
reduced temporal resolution in reduced speech intelligibility in noise is not yet clear. In
some studies a significant correlation between speech intelligibility and temporal
resolution was found (Tyler er al., 1982; Dreschler and Plomp, 1985; Moore and
Glasberg, 1987); in other studies this was not so (Festen and Plomp, 1983; van Rooij and
Plomp, 1990). With respect to reduced spectral resolution, in most studies a significant
correlation with speech intelligibility was found (Patterson er al., 1982; Festen and
Plomp, 1983; Dreschler and Plomp, 1985; Horst, 1987). On the other hand, this was not
the case in a few other studies (van Roo1j and Plomp, 1990; Smoorenburg, 1992).

The correlation approach results in statistical relations between reduced speech
perception and suprathreshold deficits. A drawback of this approach is that one cannot
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exclude that an underlying common factor causes the observed correlation. For example,
if a correlation between speech intelligibility and spectral resolution is observed, an
underlying common factor can be the hearing threshold. Then, higher hearing thresholds
instead of reduced frequency selectivity may cause reduced speech perception. In
different studies, underlying factors probably had different effects, which may explain
the different results. Relations between distorted auditory coding and speech perception
can be investigated in a more direct way using the distorti on-sensitivity model (Houtgast,
1995; Chapter 4 of this thesis).

Under the distortion-sensitivity model (Fig. 5.1), the relation between speech
intelligibility and a distorted auditory coding is studied by simulating the effect of the
auditory deficit by artificial distortion of the speech signal. The idea is that removing
cues that are not perceived by the hearing impaired will not affect their performance.
Performance is measured as a function of distortion, and compared for normal-hearing
and hearing-impaired listencrs. Two trends may be observed: convergence (dotted and
solid lines) or no convergence (dashed and solid lines). In the convergence case, hearing-
impaired listeners are less sensitive to the distortion than normal-hearing listeners. Then,
it may be concluded that the artificial distortion relates to distorted auditory coding that
impedes performance. The artificial distortion affects the sound characteristics in the
same way as the auditory deficits. In the no-convergence case, hearing-impaired listeners
are as sensitive o the distortion as normal-hearing listeners, indicating that the artificial

distortion has no relation to hearing deficits causing difficulties in speech perception. A
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few studies (Duquesnoy and Plomp, 1980; ter Keurs ez al., 1993; Turner ef al., 1995;
Chapter 4 of this thesis) used the principles of the distortion-sensitivity model so far, but
they did not explicitly explain their results in terms of the model, except the last study.

In Chapter 4 of this thesis the distortion-sensitivity model was used with respect to the
coding of intensity information. It was concluded that reduced intensity coding accuracy
may partly explain impaired speech perception.

With respect to the coding of temporal information, Duquesnoy and Plomp (1980)
measured speech reception of normal-hearing and hearing-impaired listeners as a function
of reverberation time. Their results show that hearing-impaired listeners are as sensitive
to reverberation as normal-hearing listeners. In terms of the distortion-sensitivity model,
this leads to the conclusion that speech perception problems are not caused by a deficit
that introduces a delay to parts of the speech energy, as distorted temporal coding may
do.

With respect to coding of spectral information, ter Keurs er al. (1993) compared the
effect of reduced spectral contrast on speech perception in normal-hearing and hearing-
impaired listeners. They concluded that “limited resolution of spectral contrast is only
loosely associated with hearing loss for speech in noise.” Turner ef al. (1995) compared
speech reception of hearing-impaired and normal-hearing listeners for unprocessed
speech and for speech in which spectral cues were removed. For the original speech,
hearing-impaired listeners had lower speech-intelligibility scores than the normal-hearing
listeners. However, for speech without spectral cues, hearing-impaired listeners
understood as well as normal-hearing listeners. In terms of the distortion-sensitivity
model, this convergence indicates that the reduced speech intelligibility by hearing-
impaired listeners is related to a degraded processing of spectral cues. It should be
mentioned that this is our interpretation of the data. Turner er al. were interested in the
ability of hearing-impaired listeners to use temporal cues. Their conclusion, not in
conflict with ours, is that the temporal accuracy of speech coding of hearing-impaired
listeners 1s not impaired in terms of speech recognition.

The studies mentioned above obtained data that can be analyzed in terms of the
distortion-sensitivity model. The effects of distortion of intensity, time, and frequency
information on speech perception were studied in 1solation, although these three domains
are not completely independent. Manipulation in one domain will affect the other

domains. For example, spectral smearing introduces temporal smearing and vice versa.
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In Sec. 5.1 A, this will be illustrated. Being aware of these unwanted byproducts of the
speech processing algorithm is important. Therefore, in the present study, the
interdependency of the intensity, time, and frequency domains was taken into account.

In short, this study addresses which domains in auditory coding (i.e., intensity, time,
or frequency) cause speech-perception problems for hearing-impaired listeners. First, it
is investigated which sound domains are less clearly perceived by hearing-impaired
listeners. For this, detection thresholds for artificially applied distortions of intensity,
time, or frequency are measured. If a particular type of information is less clearly
perceived by hearing-impaired listeners, the detection thresholds for the distortion of this
information will probably be higher. The influence of distorted coding on speech
perception was investigated by means of the distortion-sensitivity model. Speech
intelligibility is measured as a function of the degree of artificial distortion of intensity,
time, or frequency information. Comparison of the performance for normal-hearing and
hearing-impaired listeners may provide insight into the role of reduced accuracy in
auditory coding as a possible explanation for the degraded performance of the hearing

impaired.

I. METHOD

A. Degradation of intensity, time, and frequency information

In this study, a sound processing algorithm is used to degrade artificially the intensity,
time, and frequency content of speech. The degradation is intended to simulate the effects
of distorted auditory coding. By means of the speech-reception threshold test (SRT, Sec.
5.1D3), speech intelligibility of sentences was measured as a function of applied artificial
distortion. In order to simulate auditory coding, a perceptually relevant spectro-temporal
decomposition and recomposition method was developed. This method was also used in

Chapter 4, and is described below.
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® Spectro-temporal decomposition & recomposition

Tomodel auditory spectro-temporal coding, sounds were described in the time-frequency
domain by means of a wavelet transform. Compared with the short-time Fourier
transform, the wavelet transform matches auditory system coding more closely because
it uses a logarithmic frequency scale (e.g., Rioul and Vetterli, 1991). An important
criterion in the choice of the mother wavelet is its spectral and temporal width. Results
of Chapters 2 and 3 suggest that a Gaussian-windowed sinusoid with a shape factor
between 0.15 and 0.3 roughly matches the auditory time-frequency window. Therefore,
as the prototype analysis function, a Gaussian wavelet was chosen. The Gaussian wavelet

is a complex sinusoidal carrier with a Gaussian envelope:
s(7) = 1/“'_]:] exp(i2nf,t) exp(-m(efy!)") . (5.1)

in which f; is the carrier frequency, a is the shape factor, and y/“_ﬂ} normalizes the
energy of the analysis function. This time-frequency window has an effective bandwidth
of A=af; and an effective duration of A=1/(u/s) (Gabor, 1947). The effective bandwidth
of the analysis function was set to ¥ octave [roughly equal to the auditory critical band
(Scharf, 1970)]. This corresponds with a shape factor 0=0.1735. As aresult, the effective
duration of the time-frequency window is 5.76 ms at 1 kHz (1.44 ms at 4 kHz). The
effective number of periods contained within the Gaussian envelope equals 5.8 (i.e., 1/0).

This Gaussian wavelet was used to construct a wavelet decomposition that covers the
time-frequency plane. Shifts of this prototype analysis function cover the temporal range:
scales of the prototype function cover the spectral range. The scaling is controlled by
varying the carrier frequency f;,. The decomposition results in complex wavelet
coefficients, which can be characterized by a modulus, a phase, and a position in the
time-frequency plane.

For simultaneous sampling in time and frequency the Nyquist sampling theorem was
applied twice (Allen, 1977; Allen and Rabiner, 1977). The sampling interval was based
on the temporal and spectral range over which the Gaussian wavelet is essentially

different from zero. Since the Gaussian wavelet does not have compact support' in time,

'A function f{7) has compact support if it is zero outside the interval Tb(chDmT :
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nor in frequency, the range between the points that were 25 dB down from the peak was
taken as the range over which the window is significant (about twice the effective
duration and effective bandwidth). This criterion leads to a sampling of one wavelet per
three periods of the wavelet carrier frequency along the time axis, and eight wavelets per
octave along the frequency axis. Theoretically, the number of complex coefficients
needed to describe the signal using the 25-dB criterion for sampling, is about two
coefficients per input sample (Allen, 1977). In this study, the frequency of the signals was
limited to the range from 250 to 4000 Hz. As a result, one second of speech (sampling
frequency: 44.1 kHz; no information below 250 Hz or above 4 kHz preserved) was
described by 16%10° complex wavelet coefficients.

Using these wavelet coefficients, sounds can be reconstructed by an overlap-add
procedure. Theoretically, the reconstruction is not perfect. However, using the 25-dB
criterion for sampling in time and frequency, little or no aliasing occurs in either the time
or the frequency domain. Adequate sampling is important for two reasons (Allen and
Rabiner, 1977). First, the difference between the recomposed signal and the original
signal must not be noticeable to a listener. Second, in this study modifications to the
spectro-temporal decomposition of sound are performed. When modifying undersampled
spectro-temporal representations of sound, interactions between modification and window
shape may occur. Such interactions will lead to unwanted byproducts. As a result of the
careful sampling in our decomposition and recomposition scheme, (1) the difference
between an original and a recomposed signal was very small and not noticeable to the
listener, and (2) the scheme is robust for interactions between window shape and
modifications of the decomposition.

Between decomposition and recomposition, the accuracy of the intensity, time, or
frequency information was degraded to simulate poor auditory coding. Intensity
degradation was obtained by introducing uncertainty in the modulus of each wavelet
cocfficient. Temporal and spectral degradations were obtained by introducing uncertainty
in the temporal and spectral position of each wavelet, respectively. In Fig. 5.2, this is
illustrated schematically. In the following paragraphs, these different types of degradation
will be explained in more detail. After the perturbation, the energy contained in each
frequency band over the whole test sentence was scaled to equal the original energy in
that band. Since this study aims at investigating speech perception performance in noise,

speech and noise were summed before processing.
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FIG. 5.2. Schematic illustration of the

perturbation of the intensity, time, or spectral

information. The Gaussian wavelets are

symbolized by rectangles. Each wavelet is
given a random perturbation with respect to
its intensity, temporal position, or spectral

position.

® Degradation of the intensity accuracy

To degrade the accuracy of the intensity information, the modulus of the wavelet
coefficients was perturbed (intensity perturbation). This was achieved by multiplying
each wavelet coefficient by a random factor. As a result, silence will remain silence after
perturbation. The random perturbation factor ¢ (in dB) was chosen from a uniform
distribution with zero mean and boundaries® -/,,/2 and +/,,/2. Thus the modulus of cach

individual coefficient was multiplied by a different random factor 10

® Degradation of the temporal accuracy

To degrade the accuracy of the temporal information, the positions of the wavelets were
shifted randomly along the temporal axis (temporal perturbation). To avoid a degradation
of the accuracy of spectral information as much as possible, only the temporal envelope
of the wavelets was displaced, not the underlying fine structure. The new fine structure
was calculated by extrapolation of the original fine structure to the new position of the
envelope. As aresult, the information contained within the original fine structure was left
unaffected. The position of the envelope of each wavelet was shifted independently by

a random value chosen from a uniform distribution ranging from -7,/2 to +7,/2. The

‘In Chapter 4, the random perturbation factor with which the modulus of each wavelet

coefficient was multiplicd was chosen from a uniform distribution with boundaries -/, and +7,,.
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degree of temporal distortion T}, is expressed in terms of the duration of the wavelets
(inversely proportional to the bandwidth). If 7, equals two wavelets, the maximal
displacement along the time axis is one effective duration of the wavelet from its original
position. At 1 kHz, this is 5.76 ms; at 4 kHz, this is 1.55 ms.

® Degradation of the spectral accuracy

To degrade the accuracy of the spectral information, the position of each wavelet was
shifted randomly along the spectral axis (spectral perturbation). The positions of all
wavelet coefficients were shifted independently by a random value chosen from a
uniform distribution ranging from -F,/2 to +F /2. The degree of spectral distortion F; is
expressed in octaves. If 7= 0.5 octaves, the maximal displacement along the frequency
axis is 0.25 octaves (equals the effective bandwidth of the analysis window).

After wavelet decomposition, the spectral information is not only encoded in the
position of the wavelets along the spectral axis, but also in the phase of the coefficients.
The relative phases of the coetficients in each frequency band contain information about
the spectral structure within this band. The random shifts of the wavelet positions along
the spectral axis result in a smeared spectrum over bands. However, if the phase is kept
intact, part of the spectral information within a band is reintroduced in the overlap-add
procedure by interactions between neighboring wavelets.” By distorting the phase
information we tried to bypass this problem. The phase was distorted by a
desynchronization of the regular pattern of the wavelet coefficients along the temporal
axis. This desynchronization was obtained by shifting the position of each wavelet
(envelope plus fine structure) along the temporal axis by a random value chosen from a
uniform distribution ranging from -0.0375 to +0.0375 of the wavelet bandwidth. In all
conditions with spectral distortion including the spectral reference condition (0-octaves
spectral perturbation), the phase was distorted in this way.

In Fig. 5.3, the cffect of distorting the spectral information of an artificial vowel /a/
is illustrated. Panel a shows the undistorted vowel. In panel b, the vowel is plotted in the

spectral reference condition. In this condition, the phase of the complex coefficients is

*This inherent characteristic of overlap-add procedures was described in more detail by Baer
and Moore (1993). Without phase distortion, even for large random shifts along the spectral axis,
basic periodicity in the spectrum is preserved due to the preserved coherence of the phase

spectrum.
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FIG. 5.3. The effect of the artificial
distortion of the spectral information on
an artificial vowel /a/. (a) undistorted
vowel; (b) spectral reference condition
(phase distorted) (c) spectral perturbation
of 0.75 octaves (phase distorted and

spectrally perturbed).

distorted, but the positions of the wavelets along the spectral axis are retained. As aresult,

most of the spectral fine structure is lost, but the spectral envelope is intact. In panel c,

the vowel is plotted in the most severe spectral distortion condition used in this study, 1.¢.,

when F, equals 0.75 octaves. The phase 1s distorted as in the reference condition, and in

addition the wavelets were shifted randomly over maximal F,/2 along the spectral axis.

As aresult, the spectral envelope is smeared almost fully. Thus the overall spectral effect

of the applied spectral uncertainty is a broadening of the spectral peaks.
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FIG. 5.4. The effect of the non-

deterministic perturbation process on the

06
T iy RMS duration* and RMS bandwidth of a
O  spedrd perturbation
e & @ temporal perturbation | Gaussian-windowed tone with a center
3 frequency of 1 kHz and a shape factor of
5 04 3 ; 0.1735, i.e., an effective bandwidth of %
=
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9 03F il
o the values corresponding with temporal
g 0ot J ’-—‘{—‘3 I—§7—| i perturbation and spectral perturbation,
0® 10 respectively. The numbers represent the
0.1 | | | 1 |
2

degree of perturbation (expressed in the
number of wavelets). The error bars

represent the standard deviation.

As mentioned in the Introduction, degradation of the accuracy of the information of
one domain is not possible without collateral degradation of the information of other
domains. For cxample, the degradation of the accuracy of the intensity information also
affects the spectral and temporal content of a signal. The effects of distortion of temporal
information on spectral information and vice versa are illustrated in Fig. 5.4 for a
Gaussian-windowed sinusoid as input to the wavelet decomposition, followed by spectral
or temporal degradation, and recomposition. The RMS duration* and RMS bandwidth of
this Gaussian-windowed sinusoid (center frequency = 1 kHz; o= 0.1735) are indicated
by the filled circle with index ‘0. The effects of temporal perturbation on the duration
and bandwidth of the signal are represented by the other filled circles; the effects of the
spectral perturbation are indicated by open circles. The perturbation procedure was
applied to the input signal six times. The error bars represent the standard deviations of

the resulting duration and bandwidth of the output signals.

*The root mean square (RMS) duration of a function f{7) is defined by

1 -
A= 13 4(Hdr .
1A, f""“

The RMS bandwidth 13 defined analogously.
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Looking at the effect of temporal perturbation, it can be observed that, when a
temporal perturbation of 3 wavelets is applied, both the RMS duration and RMS
bandwidth of the Gaussian tone pulse increase. For the 7-wavelets condition, the RMS
duration is longer than in the 3-wavelets condition, but the RMS bandwidth is the same.
Thus for temporal perturbation up to 3 wavelets, both the spectral and the temporal
contrasts of sound are reduced. At that point, the spectral smearing reaches a maximum
of about 0.25 octaves. Beyond that, temporal perturbation only reduces the temporal
contrasts while the spectral contrasts stay unaltered.

With respect to spectral perturbation, it should be noted that in all spectral conditions
the phase was distorted. As a result, the duration and bandwidth of the Gaussian-
windowed sinusoid in the spectral reference condition (open circle ‘0”) are larger than the
duration and bandwidth of the original signal (filled circle ‘0’); the spectral reference
condition is slightly spectro-temporally smeared. The effect of additional spectral
perturbation is just a reduction of the spectral contrasts, while the resulting (after phase

distortion) temporal contrasis are maintained.
B. Subjects

Twelve normal-hearing listeners, aged 20 to 63 years with a mean age of 26 years,
participated in the experiment. Pure-tone air-conduction thresholds of the normal-hearing
listeners did not exceed 15 dB HL at any octave frequency from 250 to 4000 Hz. In
addition, twenty-six sensorineurally hearing-impaired listeners took part in the
experiment, aged 24 to 67 years with a mean age of 48 years. Their intelligibility scores
for monosyllabic words in quiet were at least 75% correct. The pure-tone, air-conduction
threshold in the hearing-impaired listener’s better-hearing ear was at least 30 dB HL at
one or more frequencies between 250 and 4000 Hz. Thresholds of the better-hearing ear
averaged over 0.5, 1, and 2 kHz (the pure-tone average, or PTA) ranged from 17 to 70 dB
HL, with a mean PTA of 50 dB HL. All listeners were native Dutch speakers.

C. Stimuli and apparatus

The speech stimuli consisted of sentences and words. The sentence sets contained lists

of 13 everyday Dutch sentences of eight Lo nine syllables read by a female and male
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speaker (Versfeld efal., in press). The word sets consisted of lists of balanced meaningful
CVC-words (Bosman and Smoorenburg, 1995).

Signals were played out over TDT (Tucker Davis Technologies) System II hardware.
Stimuli were presented in the middle of the dynamic range of each listener by frequency
shaping them using a programmable filter (TDT PF1). The stimuli were presented
monaurally through Sony MDR-V900 headphones. To avoid the risk of cross-hearing, the
listener’s better-hearing ear was tested. For calibration, sound pressure levels of the
stimuli were measured on a Briiel & Kjar type 4152 artificial ear with a flat-plate
adapter. The entire experiment was controlled by a personal computer. Subjects were

tested individually in a soundproof room.

D. Procedures

First, the hearing threshold and the uncomfortable loudness level (UCL) of each listener
were determined. In the detection and intelligibility tests, sounds were adapted to fit the
dynamic range of each listener. To familiarize the subjects with the procedure, a training
session preceded data collection. All conditions were measured twice i order to
determine measurement reliability. Speech intelligibility tests were performed once using
sentences spoken by the female talker and once using those by the male talker. In the
distortion-sensitivity model, the performance for individual hearing-impaired listeners 1s
compared with that for normal-hearing listeners. Therefore, for all listeners, the same

order of conditions and sentence lists was used.

® Threshold and UCL
The dynamic range of each listener was estimated by measuring the hearing threshold and

the uncomfortable loudness level (UCL) for narrow bands of noise. The UCL was
corrected for broadband stimulation, as described below.

Thresholds and UCLs were measured using 1/3-octave noise bands at center
frequencies of 250, 500, 1000, 2000, and 4000 Hz. Hearing thresholds were measured
using a Békésy tracking (Yantis, 1994) procedure (300-ms noise bursts; repetition rate
2.5 Hz; step size 1 dB). The measurement was ended after eleven level reversals. The
average of all but the first reversal level was taken as the hearing threshold. Narrow-band

UCLs were measured with 1/3-octave noise bursts that were presented with a 3-dB
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increase in level for each presentation (300 ms noise burst; repetition rate 1.4 Hz).
Listeners were asked to press a button when the noise bursts became uncomfortably loud.
Then, the level of the noise burst was immediately diminished by a random amount
between 21 and 30 dB. and the ascending procedure was repeated until six responses
were obtained. The average of the levels at which the button was pushed was taken as the
narrow-band UCL.

To correct the UCL for broadband stimulation, a 4-second broadband noise burst was
presented, spectrally shaped according to the narrow-band UCLs and starting 40 dB
below the narrow-band UCLs. The level of the broadband noise burst was gradually
increased in steps of 5 dB. After each presentation the listener was asked whether the
signal was experienced as uncomfortably loud. If this was the case, the corresponding

level was taken as the broadband UCL.

@ Detection threshold for distortion
The detection thresholds for the distortion of intensity, temporal, or spectral information
were estimated using words. A 31-3AFC two-down one-up adaptive procedure was used,
leading to a 70.7 % correct score. In each trial, the subject was presented with three
signals, twice the reference word and once the distorted word. The listener had to point
out the distorted one. For each trial, a random choice out of 90 bandpass filtered (250-
4000 Hz) pre-processed (at different degrees of distortion) words was loaded from disk.
The difficulty of the task was increased by dividing the distortion factor by
2 following two consecutive correct responses; the difficulty of the task was decreased
by multiplying the distortion factor by J2 followingone incorrectresponse. A transition
from increasing to decreasing difficulty or vice versa defined areversal. A run was ended
afier 20 reversals. The geometric mean of the last 16 reversals was used as an estimate
of the detection threshold for distortion. To define the experiment with respect Lo
presentation level, all words were presented in the middle of the dynamic range of the
listener, in speech noise (Wandel und Goltermann RG-1) at a signal-to-noise ratio of 15
dB.
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e Speech intelligibility

Speech-reception threshold in noise for an adapted spectrum (SRTa)

The speech-reception threshold (SRT) is an estimate of the ability to perceive speech in
daily life (Plomp and Mimpen, 1979). The SRT in noise is defined as the signal-to-noise
ratio (SNR) at which 50% of the sentences are reproduced correctly. The speech level is
varied in an adaptive, up-down procedure with a step size of 2 dB. The continuous
stationary noise is presented from 500 ms before to 500 ms after the sentence. In our
experiments, speech and noise are adapted to fit in the dynamic range of individual
listeners. This adapted speech-reception threshold is called SRTa. In the SRTa tests in
this study, all stimuli were bandpass filtered from 250 to 4000 Hz.

After an SRT test using undistorted speech, the SRTa was measured as a function of
the degree of distortion (distortion-sensitivity model). The intensity-distortion conditions
were 0 (undistorted), 10. and 20 dB. The temporal-distortion conditions were 0
(undistorted), 3, and 7 wavelets. The spectral-distortion conditions were 0, Y4, /2, and %

octave (recall that in all spectral-distortion conditions the phase was distorted).

Speech-Reception Bandwidth Threshold (SRBT)
In addition to the SRTa, the Speech-Reception Bandwidth Threshold (SRBT) was
measured to estimate suprathreshold speech processing. The SRBT measure of speech
intelligibility was introduced by Noordhoek et al. (1999). The SRBT is highly sensitive
for suprathreshold deficits, as is shown in a recent study of Noordhoek ez al. (in press).
The SRBT procedure is similar to the SRT procedure, except that the bandwidth
(center frequency: 1 kHz) of the undisturbed speech is varied instead of the level when
estimating the 50% intelligibility threshold. Complementary shaped bandstop noise is
added to the bandpass-filtered speech. Speech and noise are presented in the middle of

the listener’s dynamic range.

E. Speech Intelligibility Index

To estimate the quality of speech processing of listeners, the SRTa and SRET data were
converted to a Speech Intelligibility Index. The Speech Intelligibility Index (SII) (ANSI,

1997) is a physical measure of how much information of speech is available to the
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listener. The SII correlates highly with speech intelligibility. To perceive speech, normal-
hearing listeners need a certain amount of information which can be converted to an SII
value. If hearing-impaired listeners need more information, this suggests that their speech
processing is degraded. Thus elevated SII values are an indication for a low speech
processing quality. The SII model accounts for hearing threshold, self-masking in speech,
normal upward spread of masking and level distortion at high presentation levels. To
calculate the SII, speech spectra, noise spectra, and hearing thresholds must be known.
As mentioned in Sec. 5.1 D1, hearing thresholds were measured with 1/3-octave noise
bands, using Békésy tracking (Yantis, 1994). This procedure probably results in hearing
thresholds that are systematically about 4 dB higher than the methods on which the ISO
(1961) threshold is based (Noordhoek er al., in press; Noordhoek er al.. submitted).
Therefore, in the SII calculations the internal noise level was lowered by 4 dB. The band-
importance function for speech material of average redundancy (Pavlovic, 1987) was

used.

II. RESULTS AND DISCUSSION

A. Detection thresholds

To obtain insight into which attributes of sound processing are distorted for hearing-
impaired listeners, detection thresholds for the distortion of intensity, time, and frequency
information were measured. If the auditory coding of a particular type of information is
degraded, the detection thresholds for the distortion of this type of information are

assumed to be higher.

® Degradation of the intensity accuracy

For the normal-hearing listeners, the detection threshold for the intensity perturbation,
described in Sec. 5.1 A, ranged from 13 to 23 dB, with a median of 17 dB. For the
hearing-impaired listeners, the detection thresholds ranged from 9 to 53 dB, with a

median of 18 dB. The overall (normal-hearing plus hearing-impaired listeners: 38
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subjects) mean standard error of an individual detection threshold (2 measurements) was
3 dB. A Mann-Whitney U test showed that the difference in detection threshold between

normal-hearing and hearing-impaired listeners was not significant.

® Degradation of the temporal accuracy

For the normal-hearing listeners, the detection thresholds for temporal perturbation
ranged from 0.9 to 1.5 wavelets, with a median of 1.1 wavelets; for the hearing-impaired
listeners, this threshold ranged from 0.6 to 7.4 wavelets, again with a median of 1.1
wavelets. The mean standard error of an individual detection threshold was 0.4 wavelets.
A Mann-Whitney U test showed that the detection thresholds for the group of hearing-
impaired listeners were not significantly higher than those for the normal-hearing

listeners.

e Degradation of the spectral accuracy

For the normal-hearing listeners, the detection thresholds for spectral perturbation ranged
from 0.22 to 0.39 octave, with a median of 0.26 octave. For the hearing-impaired
listeners, the detection thresholds ranged from 0.17 to 1.4 octave, with a median of 0.36
octave. The mean standard error of the individual detection threshold was 0.06 octave.
A Mann-Whitney U test showed that the detection thresholds for the group of the
hearing-impaired listeners were significantly (p<0.05) higher than those for the normal-

hearing listeners.

In summary, with respect to the detection of distortion of intensity and temporal
information, no significant difference was observed between the group of normal-hearing
and the group of hearing-impaired listeners. With respect to the detection of spectral
distortion, a significant difference between normal-hearing and hearing-impaired listeners
was observed. Thus spectral cues were probably less clearly perceived by the hearing-

impaired listeners.
B. Suprathreshold Speech Intelligibility

The aim of this study is to gain insight into the suprathreshold speech processing

problems of hearing-impaired listeners. Therefore, speech processing performance was
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measured by means of the SRTa and SRBT test. For the normal-hearing listeners. the
SRTa ranged from -1.8 to 0.3 dB, with a median of -0.8 dB. For the hearing-impaired
listeners, the SRTa ranged from -1.1 dB to 8.5 dB, with a median of 2.0 dB. The mean
standard error of an individual SRTa (six measurements) was 0.7 dB. The hearing-
impaired listeners had significantly higher SRTa’s than the normal-hearing listeners
(Mann-Whitney U test: p<0.05). The SRBT for the normal-hearing listeners ranged from
1.1 to 1.7 octave, with a median of 1.6 octave. The SRBT for the hearing-impaired
listeners ranged from 1.5 to 3.4 octave, with a median of 2.1 octave. The standard error
of an individual SRBT (2 measurements) was 0.3 octave. The hearing-impaired listeners
had significantly higher SRBT values than the normal-hearing listeners (Mann-Whitney
U test: p<0.05).

For both the SR'Ta and the SRBT tests, hearing-impaired listeners performed worse
than normal-hearing listeners, which confirms the problems hearing-impaired listcners
have in perceiving speech. To quantify the degree of deterioration of suprathreshold
speech processing, the individual SRTa and SRBT data were converted to SII units. For
the normal-hearing listeners, the SII for the SRTa ranged from 0.36 to 0.42, with a
median of 0.39; the SII for the SRBT ranged from 0.26 to 0.39, with a median of 0.35.
For the hearing-impaired listeners, the SII for the SRTa ranged from 0.37 to 0.54, with
a median of 0.43; the SII for the SRBT ranged from 0.32 to 0.52, with a median of 0.43.
The individual standard error of the Slls,,, (6 measurements) was 0.02. The individual
standard error of the Sl (2 measurements) was 0.05. Both the Sllgy, and the Sllgs,
for the hearing-impaired listeners were significantly higher than those for the normal-
hearing listeners (Mann-Whitney U test; p<0.05).

The SII values of the hearing-impaired listeners indicate that their suprathreshold
speech processing is clearly distorted. The next step is to explore what aspects of auditory
coding are distorted. The detection threshold experiments suggest that hearing-impaired
listeners perceive spectral information less clearly than normal-hearing listeners. In Fig.
5.5 the individual detection thresholds for spectral perturbation are plotted as a function
of the Sllgzr, (panel a) and as a function of the Sl (panel b). Open symbols represent
the detection thresholds for the normal-hearing listeners, filled symbols those for the
hearing-impaired listeners. The figure shows a correlation between the SII's and the
detection threshold for spectral perturbation. A statistical analysis (Spearman rank

correlation) on the data for the normal-hearing and hearing-impaired listeners confirmed
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this: there is a significant (p<0.005) correlation of 0.5 between the detection threshold for
spectral perturbation and Sllgg+,. and a significant (p<0.0005) correlation of 0.6 between
the detection threshold and SIlggg:.

Summarizing, a correlation between the detection threshold for the distortion of
spectral information and the SII was observed. Thus less clearly perceived spectral
information by hearing-impaired listeners relates statistically to their speech processing
deficits. In the next section, the relation between the auditory coding accuracy and
reduced speech intelligibility is analyzed in a more direct way by means of the distortion-

sensitivity model.
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FIG. 5.5. Individual detection thresholds for spectral perturbation versus the Speech
Intelligibility Index (SII) corresponding with the mean of SRTa-scores (panel a) and
SRBT-scores (panel b) for normal-hearing listeners (open circles) and hearing-impaired

listeners (filled circles).
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C. Distortion-sensitivity model: group results

Applying the distortion-sensitivity model, the SRTa was measured as a function of the
artificial degradation of the spectro-temporal coding of sound, for normal-hearing and
hearing-impaired listeners. The results are plotted in Fig. 5.6. The SRTa is plotted as a
function of the degree of distortion of intensity information (panel a), temporal
information (panel b), and spectral information (panel c¢). Open and filled circles
represent the medians of the data for the normal-hearing and hearing-impaired listeners,
respectively. The bars represent the inter-quartile ranges. The arrows represent the
medians of the detection thresholds for normal-hearing (open circle) and hearing-impaired

listeners (filled circle).
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FIG. 5.6. The median of SRTa-values for normal-hearing (open symbols) and hearing-impaired
listeners (filled symbols) as a function of distortion. The error bars represent the inter-quartile
ranges. Arrows indicate the median of the detection threshold for each distortion for the normal-
hearing listeners (open circle) and hearing-impaired listeners (filled circle). Panel a: distortion of
intensity information; panel b: distortion of temporal information; panel ¢: distortion of spectral

information.
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® Degradation of the intensity accuracy

For all levels of intensity degradation, the hearing-impaired listeners perform poorer than
the normal-hearing listeners on the speech intelligibility tests (Fig. 5.6a). The difference
in performance between normal-hearing and hearing-impaired listeners appears to
decrease somewhat as a function of the intensity distortion. However, a Mann-Whitney
U/ Test showed that this effect was not significant. This is in agreement with the lack of
a significant difference in detection thresholds for intensity distortion between normal-
hearing and hearing-impaired listeners (Sec. 5.1 A; medians of the groups represented by
arrows). The absence of a difference in sensitivity between normal-hearing and hearing-
impaired listeners could be the result from the low perturbation levels used in this study.
However, higher intensity distortion levels were not measured, because of unwanted
spectro-temporal byproducts (see Chapter 4). In conclusion, the results do not show a
relation between reduced speech intelligibility in noise and a distorted representation of

intensity information.

® Degradation of the temporal accuracy

For all levels of temporal degradation, the medians of the SRTa’s for the hearing-
impaired listeners are higher than those for the normal-hearing listeners (Fig. 5.6b). The
difference in performance between normal-hearing and hearing-impaired listeners does
not decrease as a function of temporal perturbation. In addition, the group of hearing-
impaired listeners performed as well as the normal-hearing listeners on the temporal
perturbation detection task (Sec. 5.II A). In conclusion, the results do not suggest a
relation between reduced intelligibility in noise and a distorted representation of temporal

information.

@ Degradation of the spectral accuracy

For the most extreme spectral perturbation condition, only the results using the male
talker are used, because the male talker was just intelligible in this condition while the
female talker was not (see Fig. 5.6¢). The SRTa for the normal-hearing listeners in the
spectral reference condition is about 3 dB higher than in the intensity and temporal
reference condition, because the fine structure was perturbed in all spectral conditions

(Sec. 5.1 A). In the reference condition the median SRTa is higher for the hearing-
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impaired listeners than for the normal-hearing listeners. When spectral perturbation 1s
applied, the performance for the hearing-impaired listeners converges towards that for the
normal-hearing listeners. At %-octave of spectral perturbation, the performance for the
hearing-impaired listeners equals that for the normal-hearing listeners. Mann-Whitney {J
Tests confirm the observed trends: at 0 and Y-octave perturbation the performance for
the hearing-impaired listeners is significantly worse than that for the normal-hearing
listeners (p<0.05), whereas at %2 and at 3% octave no significant difference exists.

In summary, the detection threshold for spectral perturbation is significantly higher
for hearing-impaired listeners than for normal-hearing listeners; moreover, CONvergence
of the speech-processing performance of normal-hearing and hearing-impaired listeners
is observed. This strongly points to a relation between a reduced intelligibility in noise

and a distorted representation of spectral information.
D. Distortion-sensitivity model: Individual results

In the preceding section, the group results of the distortion-sensitivity model for normal-
hearing and hearing-impaired listeners were compared. Now, the individual results will
be used to further examine the relation between distorted coding of information and
reduced speech intelligibility. As an estimate of individual performance, the sensitivity
to the distortion was taken. The sensitivity fo the distortion of individual listeners is
defined as the slope of the linear regression line fitted through the individual SRTa values
for different degrees of distortion. It quantifies how sensitive a listener is to the distortion
of specific cues in speech. The underlying idea is that if a hearing-impaired listener is less
sensitive to a particular artificial distortion than normal-hearing listeners, this artificially
applied distortion probably relates to the internal deficit causing his speech perception
problems. In this study two measures for suprathreshold speech perception quality are
used: Sl and Sllger,. The relation between speech perception quality and the
sensitivity to distortion of information will be evaluated.

For both intensity and temporal information, no correlation between the sensitivity (o
the distortion and Sllggy, or SIlgz,r Was observed in the individual data [Spearman rank

correlation Sllq, and sensitivity to intensity distortion: -0.3 (p=0.09)].
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FIG. 5.7. The individual sensitivities to spectral perturbation for normal-hearing (open
symbols) and hearing-impaired listeners (filled symbols) versus the Sllspr, (panel a) and

versus the Slgggy (panel b).

In Fig. 5.7, the sensitivity to distortion of spectral information is plotted against the
individual SIL,, (panel a) and Sl (panel h). Open symbols represent the data for the
normal-hearing listeners; filled symbols those for the hearing-impaired listeners. As 1s
already clear from Fig. 5.6¢c, the median sensitivity of the hearing-impaired listeners 1s
less than that of the normal-hearing listeners. No clear trend between Sllggy, and
sensitivity is shown [Spearman rank correlation: -0.2 (p=0.2)]; however, there 1s a
correlation between Sllg ;- and sensitivity [Spearman rank correlation: -0.6 (p<0.05)]: the
higher the Sllgp,r. the lower the sensitivity to spectral distortion.

SIlgy, and Sl show a different picture: the sensitivity o spectral distortion is
significantly correlated with the Sllgggy. but not with the SIlpr.. This difference may be
explained by the different experimental setup: The Speech-Reception Bandwidth
Threshold is measured using bandpass filtered speech signals cmbedded in
complementary bandstop noise, whereas the speech-reception threshold test uses a noise
spectrum equal to the average speech spectrum. Therefore, the SRET 1s probably more
sensitive to excessive spread of masking than the SRTa. As a result, the sensitivity to

spectral distortion is likely to relate more directly to the Sy, than to the Sl
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In summary, the individual results show a relation between suprathreshold speech
processing as quantified by the Sllgy,; and the sensitivity to spectral distortion. This is in
agreement with the observed relation between speech processing quality and the detection
threshold for spectral perturbation (Sec. 5.1 B), and the observed convergence of the
performance for normal-hearing and hearing-impaired listeners for increasing degrees of
spectral distortion (Sec. 5.1 C). These results suggest that the auditory processing of
spectral information of hearing-impaired listeners is distorted and that this affects speech
perception. The poorer the spectral coding, the more problems hearing-impaired listeners
have in perceiving speech.

The question remains whether distorted spectral auditory coding is the only cause of
suprathreshold speech processing deficits. A considerable variance is present in the data
of Fig. 5.7. This may be the result of measurement error, but this may also be variance
due to factors other than distorted coding of spectral information. By calculating the
reliability (Nunnally, 1967) of the variables in the correlation, an estimate of the
influence of measurement error can be made. The square root of the product of the
reliabilities of two tests gives an estimate of the unsigned maximum correlation possible,
given the measurement accuracy.

The reliability of the Sllgry, (6 measurements) is 0.9. The reliability of the sensitivity
to the distortion is much smaller: about 0.3. This is because the measurement errors add
up when the slope is estimated. Between Sll;;,, and sensitivity, the maximum unsigned
correlation possible is about 0.5. The correlation observed was -0.2. Thus in the speech
processing problems of hearing-impaired listeners as quantified by the Slggr,, spectral
cues are probably not the only ones.

The reliability of the Sllgg .y (2 measurements) is 0.7. As a result, the estimate of the
unsigned maximum correlation possible between Sllg,; and sensitivity 1s 0.5. The
correlation observed was -0.6. It may surprise that the absolute value of the observed
correlation is larger than the predicted maximum correlation. However, the predicted
maximum correlation is only a rough estimate. Therefore, all variance seems explained.

In summary, the distorted speech processing of hearing-impaired listeners measured
by the SRBT test can fully be explained by distorted processing of spectral information,
but with respect to the SRTa test other factors seem to affect intelligibility as well. This
may be explained by the fact that upward spread of masking plays a dominant role in the
SRBT test, but not in the SRTa test.
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E. Comparison to literature

® Degradation of the intensity accuracy

The mean detection threshold for intensity distortion of hearing-impaired listeners is not
significantly higher than that of normal-hearing listeners. However, some hearing-
impaired listeners showed abnormally high distortion thresholds. This is consistent with
the literature about intensity discrimination (for a review, see Florentine ef al., 1993).
Overall, hearing-impaired listeners discriminate as well as normal-hearing listeners at
equal sound pressure levels, and intensity discrimination may even be better at equal
sensation levels. However, for some hearing-impaired listeners markedly higher
discrimination thresholds are observed (Schroder et al., 1994; Buus et al., 1995).

With respect to speech intelligibility as a function of intensity distortion, no
significant convergence of the performances for normal-hearing and hearing-impaired
listeners was observed. In addition, no significant correlation between the sensitivity to
intensity distortion and the S was found. In contrast, in Chapter 4 a significant
correlation between sensitivity to intensity distortion and SIlg,; was observed. Several
factors may account for this. Different listener groups were used in the previous and the
present study. Since among hearing-impaired listeners a diversity of auditory deficits is
observed (see, for example, Noordhoek et al., submitted), this may lead to a different
result. Moreover, although both groups of hearing-impaired listeners had comparable
hearing loss, the presentation levels for the second group of listeners was 7 dB lower than
for the first group due to lower uncomfortable loudness levels. Due to this difference in
dynamic range, the same intensity perturbations may have introduced different loudness
perturbations (see Chapter 4 of this thesis). These factors may explain why the correlation

in the present study is not significant while in the previous study it was.

® Degradation of the temporal accuracy

The detection threshold for temporal distortion by hearing-impaired listeners was not
significantly higher than that by normal-hearing listeners. However, some hearing-
impaired listeners showed abnormally high detection thresholds. This is in agreement
with the literature about temporal resolution. Although hearing-impaired listeners are

known to suffer from excessive forward masking (Festen and Plomp, 1983; Oxenham and
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Moore, 1995), on some tests of temporal resolution, most hearing-impaired listeners
perform as well as normal-hearing listeners (Moore, 1995).

The performances for normal-hearing and hearing-impaired listeners did not converge
as a function of the distortion of temporal information. In addition, no correlation
between the sensitivity to temporal distortion and SII was observed. This agrees with the
study of Duquesnoy and Plomp (1980). They measured how sensitive normal-hearing and
hearing-impaired listeners were to reverberation. Reverberation can be considered a very
systematic type of distortion of temporal information. Sensitivity was compared to the
Speech Transmission Index (Houtgast and Steeneken, 1973). Their results showed that

hearing-impaired listeners were as sensitive to reverberation as normal-hearing listeners.

® Degradation of the spectral accuracy

The detection thresholds for spectral distortion were significantly higher for the group of
hearing-impaired listeners than for the group of normal-hearing listeners. In addition,
convergence of speech perception performance for normal-hearing and hearing-impaired
listeners as a function of spectral distortion was observed. This agrees with the results of
Turner ef al. (1995) that also showed convergence (see Introduction).

The results of this study suggest that hearing-impaired listeners suffer from reduced
frequency selectivity and that this causes reduced speech intelligibility. This agrees with
the literature, in which it has been reported frequently that hearing-impaired listeners
suffer from reduced spectral resolution. [For review see Tyler (1986).] Reduced
frequency selectivity affects speech intelligibility in two ways. First, because of reduced
frequency selectivity the spectral contrasts in speech are less clear. Second, when
frequency selectivity is reduced, hearing-impaired listeners will suffer from excessive
upward and downward spread of masking.

Ter Keurs et al. (1992, 1993) investigated the first effect. Speech and noise, having
the same long-term average spectrum, were added affer the smearing of the spectral
envelope. As a result, the effect of excessive masking was not simulated. Ter Keurs ef al.
(1993) observed that hearing-impaired listeners were as sensitive to reduced spectral
contrasts in speech as normal-hearing listeners. They did find a small but significant
correlation between the SRT for unsmeared speech and auditory filter bandwidth, but

they could not explain this by a reduction of the spectral contrasts in speech.
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In our study, the first and second effects were evaluated in combination, because first
the noise was added to the speech and then the spectral information was distorted. Our
results strongly suggest that reduced frequency selectivity influences speech intelligibility
in noise. Since the results of ter Keurs ef al. (1993) suggest that the first effect is not
responsible for reduced speech perception, the reduced speech intelligibility in noise
observed in hearing-impaired listeners is probably mainly due to the second effect, i.e.,
excessive spread of masking. Thus for hearing-impaired listeners, it is more difficult to

separate speech from competing background noise.

I1I. SUMMARY AND CONCLUSIONS

In this study, the central question was how degraded speech perception of hearing-
impaired listeners relates to distorted auditory coding. To investigate this, the intensity,
time, and frequency information of sound were artificially distorted after wavelet coding.
The detection thresholds for the different types of distortion were measured (0 obtain
insight into how clearly hearing-impaired listeners could perceive a particular type of
information. To investigate the relation between distorted auditory coding and speech
perception, the distortion-sensitivity model was used. If hearing-impaired listeners are
less sensitive with respect to speech perception than normal-hearing listeners to a
particular type of distortion (intensity, time, or frequency), this indicates that this artificial
distortion relates to the distorted auditory coding causing speech perception problems.
The gronp results showed that the detection thresholds for hearing-impaired listeners
with respect to the distortion of intensity and temporal information were not significantly
higher than those for normal-hearing listeners. For the distortion of spectral information,
the detection thresholds for the hearing-impaired listeners were significantly higher than
those for the normal-hearing listeners. Thus hearing-impaired listeners may perceive
spectral information less clearly than normal-hearing listeners. With respect to the
distortion-sensitivity model, the results (Fig. 5.6) showed that the group of hearing-
impaired listeners was as sensitive as the group of normal-hearing listeners to intensity

and temporal distortion. The group of hearing-impaired listeners was less sensitive than
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normal-hearing listeners to the distortion of spectral information. Thus the group results
suggest that distorted coding of spectral information is an important factor underlying the
reduced speech intelligibility observed in hearing-impaired listeners.

Also, the individual results were considered to investigate the relation between
reduced speech intelligibility and distorted coding of spectral information in more detail.
A significant correlation between the SII, both Sllg, and Sllg,;, and the detection
threshold for spectral distortion was observed (Fig. 5.5). Thus the data reveal a statistical
relation between the quality of speech processing, quantified by the SII, and the spectral
coding accuracy, quantified by the detection threshold for spectral distortion. In addition,
the correlation between the Sllgy ;- and the sensitivity to spectral distortion with respect
to speech perception was significant (Fig. 5.7). Thus there is a statistical relation between
the quality of speech processing and the effect of distortion of the spectral cues on speech
perception. The more pronounced the speech perception problems of hearing-impaired
listeners (in terms of the SII), the less accurate the spectral auditory coding (higher
detection thresholds) and the less influence the distortion of spectral information has on
speech intelligibility (lower sensitivity to spectral distortion). The individual results
support the group result, strongly suggesting that distorted coding of spectral information
is the factor underlying the suprathreshold problems encountered by many hearing-
impaired listeners when trying to perceive speech.

The sensitivity to spectral distortion could explain all “true” variance in the Sllg,y,
i.e., all variance not due to measurement error. Thus distorted auditory coding of spectral
information may be the only factor underlying speech processing deficits measured by
means of the SRBT test. However, sensitivity to spectral distortion could not explain all
“true” variance in the Sllg,,. This suggests that, besides distorted coding of spectral
information, other factors play a role in the suprathreshold speech processing problems
of hearing-impaired listeners as reflected in the SRTa test.

From the data of the present study the following general conclusions can be drawn.
» The distortion-sensitivity model may be a valuable tool to investigate the underlying

causes of reduced speech perception.

e Distorted auditory spectral coding may be an important factor underlying the speech
perception problems of hearing-impaired listeners.
e Besides distorted coding of spectral information, other factors may play a role in

reduced speech intelligibility as well.
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General discussion

After using wavelet coding of sound as a tool to study the auditory
system, the usefulness of this tool will be discussed in this final chapter.
A review will be given of the results yielded using a wavelet coding tool

tailored to the auditory system.

In this thesis, wavelet coding is used as a tool to study the auditory system. This strategy
was chosen because of an important similarity between wavelet coding and auditory
coding, namely that their spectral resolutions are constant on a logarithmic frequency
axis. Investigating the auditory system by means of wavelet coding seemed interesting,
and this final chapter gives a review of the results of this wavelet approach. First, the
similarities between auditory coding and wavelet coding will be discussed (with respect
to part I of this thesis). Then, the results obtained by using auditory wavelet coding will
be discussed (with respect to part IT of this thesis). Subsequently, possible directions for
further investigation will be given. Finally, the success of wavelet coding as a tool for

studying the auditory system will be considered.
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I. PART I: AUDITORY CODING AND WAVELET
CODING

In the first part of this thesis, the auditory time-frequency window, i.e., the window with
which the car analyzes sound, was characterized. In Chapter 2, intensity discrimination
experiments were performed with Gaussian tone pulses and the results were interpreted
in terms of the multiple-window model: intensity discrimination improves when more
auditory windows are involved in the perception. The hypothesis was that, when
measuring intensity discrimination as a function of spectro-temporal shape, the intensity
discrimination performance is worst when the spectro-temporal shape of the stimulus
matches the spectro-temporal shape of the auditory window most closely. As aresult, the
just-noticeable differences in intensity were expected to show a convex shape when
plotted as a function of the spectro-temporal shape. Indeed, this convex shape (“hump”)
was observed. The results measured at carrier frequencies of 1 kHz and 4 kHz were
similar: both implied a corresponding bandwidth of the stimulus between roughly % and
/5 octave. Since the stimuli used were Gaussian tone pulses for which the durations are
inversely proportional to the bandwidth, the corresponding durations of these stimuli were
about 4 ms at 1 kHz and 1 ms at 4 kHz. The similarity of the intensity discrimination
performances at 1 and 4 kHz plotted as functions of the spectro-temporal shape suggests
that also for the auditory window the duration is roughly inversely proportional to the
bandwidth: if the duration of the auditory window at 4 kHz was larger than 1 ms, the
“hump” in the intensity discrimination performance would be broader. This was not
observed. Thus the spectral width of the auditory time-frequency window increases with
increasing frequency while the temporal width decreases.

In psychoacoustics, it is generally accepted that spectral resolution decreases with
increasing frequency: the auditory periphery can be though of as a bank of bandpass
filters, each between % and '3 octave wide, related to the auditory critical band (see
Scharf, 1970). The spectral widths of the auditory time-frequency windows as determined
in this thesis are in close agreement with these critical bands.

More controversial is the duration of the auditory time-frequency window. Our

conclusion that the duration decreases with increasing frequencies is in general agreement
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with results in the literature (Florentine er al., 1988; Gerken er al., 1990; Plack and
Moore, 1990). However, in absolute terms the temporal resolution observed in these
studies is usually larger than our result of a few milliseconds. For example, Plack and
Moore (1990) found durations of 13 ms at 0.3 kHz decreasing to 7 ms at 8.1 klz.
However, in a recent study by Wiegrebe and Krumbholz (1999), temporal resolution was
almost a factor 10 higher. Wiegrebe and Krumbholz argue that different parts of the
auditory pathway will limit temporal resolution measured in different experiments. In
their experiments and in the experiments of Chapter 2 of this thesis, the temporal
resolution of the auditory periphery was probably the limiting factor. On the contrary, in
the gap detection experiments of Plack and Moore (1990), more central parts of the
auditory system probably limited performance. Thus, in their experiments, the temporal
information may be available in the auditory nerve, but the central auditory system was
not able to use it optimally for gap detection.

With respect to the multiple-window model used to explain the intensity
discrimination results, Baer ef al. (1999a) questioned the validity of this model. They
reproduced the results of Chapter 2 and explained them using an alternative theory based
on basilar membrane compression. Baer ef al. state that the improvement of intensity
discrimination for short-duration broadband clicks is not due to the combination of
information of different auditory time-frequency windows (multiple-window model), but
due to the input-output function on the basilar membrane being less compressive for very
brief stimuli during the initial part of the response. Although not mentioned by Baer ez
al . it seems likely that for these short-duration broadband stimuli the information from
different auditory filters (windows) is combined (Florentine and Buus, 1981). Therefore,
both compression and multiple windows may play arole inintensity discrimination. More
experiments will be needed to test the two hypothescs.

In summary, in the first part of this thesis an attempt was made to characterize time-
frequency analysis of the peripheral auditory system. Based on the results of intensity
discrimination experiments using Gaussian tone pulses, the bandwidth of the auditory
time-frequency window was estimated at about %4 octave. This is in agreement with the
classical view of spectral processing of the auditory periphery, i.c., a bank of bandpass
filters each a critical band wide (about ¥ octave). In many models of the auditory system,
spectral and temporal processing are considered independently. A bandpass filter has a

certain time constant, but estimating the time constant of the auditory periphery from the
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filter bandwidth is tricky, unless additional assumptions about the order of the filter are
made (de Boer, 1985). In this thesis the time constant was coupled to the frequency
constant by estimating the time-frequency shape of a Gaussian tone pulse that matches
the auditory time-frequency window best. The spectral width of this function is
proportional to frequency and the temporal window inversely proportional to frequency.
A time-frequency analysis with these characteristics can be considered a waveletanalysis.
Therefore, in Chapter 3 of this thesis a wavelet analysis and synthesis method was

developed as an attempt to mimic time-frequency coding of the auditory periphery.

II. PART II: SPEECH PERCEPTION AND DISTORTED
CODING

In part II of this thesis, the effects of distorted auditory coding on speech perception were
examined, using a wavelet decomposition and recomposition scheme as a signal-
processing tool. The auditory wavelet coding was used to model normal auditory time-
frequency coding. By distorting the wavelet coefficients, distorted auditory coding was
simulated. Intensity, temporal, or spectral information of speech was distorted and the
effect on speech perception was measured. The distortion-sensitivity model was used,
comparing the results of hearing-impaired listeners on speech perception as a function of
artificial distortion with the results of normal-hearing listeners. The underlying idea of
this approach is that if a hearing-impaired listener is less sensitive to a particular type of
distortion than normal-hearing listeners, this artificial distortion relates to the hearing-
impaired listener’s distorted (suprathreshold) auditory coding that degrades his speech
perception performance.

Distortion of the intensity information of sound was obtained by multiplying the
modulus of each wavelet coefficient by a random factor. Temporal and spectral
information was distorted by randomly shifting the position of each wavelet along the
temporal and spectral axis, respectively. The effect of distortion of one dimension on the
information content of other dimensions was taken into account. This method for

simulating a distorted representation of information was chosen because of the elegant
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possibility to treat the three dimensions in a way that is essentially identical. This
emphasizes the intrinsic link between intensity, time and frequency. Still, this study did
not aim at exactly simulating possible coding deficiencies in the auditory system, but the
cssential effects of the auditory coding deficits should be simulated. The method appears
to be able to do this satisfactorily, at least with respect to distorted auditory coding of
spectral information.

Chapter 5 showed that main effects were observed for spectral coding only: The
detection thresholds for the artificial distortion of spectral information in a group of
hearing-impaired listeners were higher than those of normal-hearing listeners. In addition,
hearing-impaired listeners were less sensitive than normal-hearing listeners to artificial
spectral distortion when trying to understand speech in noise. This strongly suggests that
hearing-impaired listeners suffer from distorted auditory coding of spectral information
and that this causes problems in speech perception. There were also indications that other
factors, besides reduced spectral resolution, limited speech perception. The results of
Chapter 4 suggest that distorted coding of intensity information may play a role.
However, this could not be concluded from the results of Chapter 5. The results in this
chapter did not show a link between distorted coding of temporal information and
reduced speech intelligibility.

During this project, speech perception of hearing-impaired listeners was studied in the
same group using a different approach, i.e., the correlation approach combined with the
examination of individual data (“individual approach’) (Noordhoek et al., submitted). In
a correlation approach, the individual differences among listeners are used to study
statistical relations between auditory functions, e.g., frequency selectivity, and speech
perception. In the “individual approach,” the individual results are looked at, to examine
whether a hearing-impaired listener who performed less with respect to speech
intelligibility was also performing poorly with respect to one or more auditory functions.
Noordhoek et al. measured the auditory functions around 1 kHz. When measuring speech
intelligibility, the bandwidth of the speech was limited to a frequency region around 1
kI1z to such an extent that intelligibility of short sentences dropped to 50% (Speech-
Reception Bandwidth Threshold test). Noordhock ef al. accounted for the effect of
hearing threshold and sound pressure level of the stimuli on speech perception by means

of the Speech Intelligibility Index as was followed by the present study.
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The main conclusions of Noordhoek e7 al. (submitted) agree with those of this thesis:
reduced spectral resolution is a very important cause for speech perception deficits. Both
in this study and in the study by Noordhoek ef al., it became clear that factors other than
reduced spectral resolution and hearing threshold can also affect speech perception of
hearing-impaired listeners. The group of hearing-impaired listeners of Noordhoek et al.
did not appear to suffer from distorted coding of intensity information, as they did not
perform worse than normal-hearing listeners in the intensity discrimination task. In
contrast, the results of Chapter 4 of this thesis suggest that distorted intensity coding may
play a role. Noordhoek ef al. showed that reduced temporal resolution may be a factor
underlying reduced speech intelligibility for some hearing-impaired listeners. In contrast,
in Chapter 5 of this thesis, distorted coding of temporal information did not seem to be
a factor. To summarize, the importance of good acuity of spectral coding for speech
perception became clear both in this study and in the study by Noordhoek e? al.. The role
of intensity and temporal coding is still less clear.

Both studies showed that reduced spectral resolution is an important cause for speech
perception problems. However, they also showed that large differences among hearing-
impaired listeners exist, with respect to the seriousness of the deficit, but also with
respect to the type of auditory deficit. The studies make clear that, to be able to help
hearing-impaired listeners, itis important to examine their individual auditory deficits and
how they affect speech perception. After “earmarking” a hearing-impaired listener’s

problem, this listener could benefit from an individual correction.

III. SUGGESTIONS FOR FURTHER STUDIES

More research is needed to clarify the role of intensity and temporal coding for speech
perception. The strongest approach is probably an approach from two directions: the
correlation/individual approach, and the distortion-sensitivity model. The
correlation/individual approach can show the auditory deficits from which hearing-
impaired listeners are suffering, and how they correlate with speech intelligibility. Then,
by the distortion-sensitivity model, the effect of these auditory deficits on speech
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perception can be examined more directly. Measures of temporal auditory deficits are
forward masking, backward masking, and amplitude modulation detection (temporal
modulation transfer function). For slow amplitude modulation rates, modulation detection
can also be seen as an example of a measure of intensity processing, like intensity
discrimination. Applying the distortion-sensitivity model, speech perception as a function
of distortion of intensity or temporal information of hearing-impaired listeners is
compared with that of normal-hearing listeners. It might prove useful to examine the
effects of various types of distortions. For example, in a study on the acuity of intensity
coding, one could also use sparse coding of the wavelet coefficients instead of
multiplying the modulus of each wavelet coefficient by a random factor. The idea behind
the intensity perturbation of Chapters 4 and 5 was to simulate reduced acuity of auditory
intensity coding due to noisy intensity information. Sparse coding would simulate another
aspect of reduced acuity of auditory intensity coding, i.e., a coding with low intensity
“selectivity.” It can also be used to study impaired loudness perception.

To study the relation between speech perception and the processing of temporal
information, it might be worthwhile to use fluctuating noise maskers besides the
nonfluctuating noise maskers. Effects of distorted coding of temporal information are
probably more pronounced when fluctuating noise maskers are used than when
unmodulated maskers are used.

In this study a correction to the speech perception values with respect to effects of
audibility was applied by means of the Speech Intelligibility Index model. The SII model
is based on the spectra of speech and maskers. It can estimate the effect of a continuous
steady-state noise masker on speech intelligibility. However, it cannot deal with
fluctuating maskers. Therefore, in a further study of processing of temporal information,
the SII model should be extended to include fluctuating noise sources as well, for
example by means of the phase-locked modulation transfer function (Ludvigsen e: al.,
1990: Drullman ef al., 1994, 1996).

With respect to the shape of the auditory time-frequency window, it is interesting to
investigate the shape of this window for hearing-impaired listeners. In this way, it may
be possible to test whether the compression model proposed by Baer e/ al. (1999a) or our
multiple-window model is better suited to explain the intensity discrimination
experiments for stimuli with different spectro-temporal shapes. The model of Baer ef al.

explains the variation in intensity discrimination by a variation in the degree of amplitude
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compression. Since hearing-impaired listeners experience less amplitude compression
than normal-hearing listeners, their model predicts that intensity discrimination for
hearing-impaired listeners varies less as a function of spectro-temporal shape than that
for normal-hearing listeners. In contrast, the multiple-window model predicts that
intensity discrimination will be worst for stimuli with spectro-temporal shapes that
correspond most closely to those of the auditory time-frequency windows. Since the
auditory time-frequency window of hearing-impaired listeners is expected to have an
increased bandwidth, the poorest discrimination performance is expected for stimuli with
a broader bandwidth than that observed for normal-hearing listeners.

Recently, Baer e/ al. (1999b) measured intensity discrimination as a function of
spectro-temporal shape for hearing-impaired listeners. Although large variability was
present in the results, they seem o provide support for both hypotheses: for some
hearing-impaired listeners, intensity discrimination did not vary as a function of spectro-
temporal shape; for other hearing-impaired listeners, the intensity-discrimination results
showed a “hump” for stimuli with a broader bandwidth than that observed for the normal-
hearing listeners. These results suggest that probably both mechanisms apply to some

extent in intensity discrimination.

IV. WAVELET CODING AS A TOOL FOR STUDYING
THE AUDITORY SYSTEM?

The underlying reason for using wavelet coding to study the auditory system was the
presumption that peripheral auditory time-frequency coding is very similar to wavelet
coding. The results of the first part of this thesis confirm this. Just like for a wavelet, the
bandwidth of the auditory window is (roughly) proportional to frequency and the duration
of the window is (roughly) inversely proportional to frequency. Therefore, modeling
auditory spectro-temporal coding by wavelet coding seems highly appropriate. In the
second part of this thesis, distorted auditory coding was mimicked by a distortion of the
wavelet coding. Hearing-impaired listeners were less sensitive to the distortion of spectral

information than normal-hearing listeners, and this strongly suggests that a distorted
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representation of spectral information is the cause for reduced (suprathreshold) speech
perception of hearing-impaired listeners.

Let us finally return to the point raised at the beginning of this chapter, i.e., the
successfulness of wavelet coding as a tool to study the auditory system. It was shown
that, in comparison with short-time Fourier analysis, wavelet analysis simulates the time-
frequency analysis of the auditory system more closely with respect to temporal and
spectral resolution. Therefore, it is worthwhile to consider wavelet coding in studies of
the auditory system. Wavelet coding is an interesting and easy manageable tool for
further investigation. In this thesis, this tool provided some insightinto the suprathreshold
speech processing problems of hearing-impaired listeners: these problems mainly result

from distorted auditory processing of spectral information.
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Summary: Wavelet coding of sound

as a tool for studying the auditory system

In this thesis, wavelet coding is used as a tool for studying the time-frequency behavior
of the auditory system. The reason for using wavelet analysis, instead of the often-used
short-time Fourier analysis is the resemblance between wavelet analysis and auditory
analysis with respect to spectral resolution. In short-time Fourier analysis, spectral
resolution is constant throughout the frequency scale. On the contrary, in wavelet
analysis, spectral resolution is proportional to frequency. For the auditory system, above
about 500 Hz, spectral resolution is proportional to frequency as well. Therefore, a
wavelet coding algorithm is developed that mimics the time-frequency analysis of the
auditory system. With the aid of an intensity-discrimination experiment, the temporal and
spectral resolution of the wavelet coding are tuned to the resolution of the auditory
system. Then, the resulting “auditory” wavelet coding is used as a front-end signal-
processing tool in studying the auditory system. Artificial distortion of this wavelet
coding is used (o simulate the effects of distorted auditory coding on speech perception.

This thesis starts with an abstract consideration of auditory time-frequency analysis.
To analyze sounds of different time-frequency shapes, the auditory system performs a
time-frequency analysis using time-frequency windows. A stimulus can give excitation
in a single or in several time-frequency windows, depending on its time-frequency shape.
When more than one time-frequency window is excited by a stimulus, it is reasonable to
assume that, in an intensity discrimination task, the information from the different
windows is combined statistically. This is described in the so-called multiple-window
model, which is a generalization of the multiband excitation pattern model (Florentine

and Buus, 1981) in which the information from different auditory filters is combined, and
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the multiple-look model (Viemeister and Wakefield, 1991) in which the information from
different time segments or looks 1s combined.

In Chapter 2 of this thesis, the multiple-window model is tested on its merits in an
intensity discrimination experiment using Gaussian tone pulses. The time-frequency
shape of these stimuli is varied from a long-duration narrow-band tone to a short-duration
broadband click. Since these stimuli have different time-frequency shapes, different
numbers of windows may be excited: a series of windows along the temporal axis for the
long-duration narrow-band tone; a series of windows along the spectral axis for the short-
duration broadband click; and one or only a few windows for an intermediate tone pulse.
The multiple-window model predicts that the more windows are involved in the intensity
discrimination task, the better the performance will be, because information from
different windows can be processed independently and combined subsequently;
performance will be poorest for a stimulus of intermediate shape that excites one or only
a few windows.

The intensity discrimination results fit well into the multiple-window model. Intensity
discrimination performance as a function of time-frequency shape has a “convex” shape,
with poorest performance for a stimulus with a bandwidth of about Y octave. This
“critical” bandwidth is observed both at 1 kHz and at 4 kHz, suggesting that the
bandwidth of the auditory window is proportional to frequency. As a consequence of the
use of Gaussian tone pulses, the durations of the “critical” stimuli are inversely
proportional to frequency. The similar results at 1 and 4 kHz suggest that the duration of
the auditory time-frequency window 1s inversely proportional to frequency as well,
because the width of the “convex’ shape would be different for different frequencies, if
the duration of the auditory window was not inversely proportional to frequency. In
summary, the results from this experiment indicate that the spectral width of the auditory
window is proportional to frequency and the temporal width inversely proportional to
frequency. Thus peripheral auditory time-frequency coding can be approximated by
wavelet coding.

The intensity discrimination results suggest that a Gaussian mother wavelet, i.e., a
complex sinusoidal carrier with a Gaussian envelope, with a bandwidth of % octave
approximates the auditory time-frequency window. Using this mother wavelet, a
decomposition and recomposition method is developed, as described in Chapter 3.

Nyquist’s sampling theorem is used to decide on an adequate sampling in time and
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frequency (Allen, 1977; Allen and Rabiner, 1977). The resulting time-frequency sampling
is eight wavelets per octave along the spectral axis, and one wavelet per three stimulus
periods along the temporal axis. This “auditory” wavelet coding tool is used as a signal-
processing tool in subsequent studies of the auditory system.

In Chapters 4 and 5. the developed “auditory” wavelet coding is used to study speech
perception of hearing-impaired listeners. Many hearing-impaired listeners have problems
to understand speech in noise, even if sounds are well above the hearing threshold. These
listeners possibly suffer from a distorted auditory coding. The effect of this distorted
auditory coding on speech perception is studied by artificially distorting the wavelet
coding between decomposition and recomposition of sound, and measuring the effect of
this artificial distortion on speech intelligibility. Perturbations are applied in three
dimensions of coding: intensity. time, and frequency. The effects of distorted coding in
cach of these dimensions are interpreted using the so-called distortion-sensitivity model.
In this model, speech perception performance as a function of the degree of distortion is
compared between hearing-impaired listeners and normal-hearing listeners. The
underlying idea s that, when the auditory coding of a particular cue in sound is distorted
for hearing-impaired listeners, they will be less sensitive to an artificial distortion of that
cue than normal-hearing listeners. If speech perception of hearing-impaired listeners is
affected less by the distortion than that of normal-hearing listeners, performance of
normal-hearing and hearing-impaired listeners will converge towards higher degrees of
distortion. Thus, convergence for a particular type of distortion is an indication that this
artificial distortion relates to the auditory distorted coding that causes speech perception
problems.

The results of Chapter 5 did not show that hearing-impaired listeners were less
sensitive to a distorted coding of intensity or temporal information than normal-hearing
listeners. This suggests that auditory coding in the intensity or the temporal domain does
not constitute a problem for hearing-impaired listeners, although in Chapter 4 some
indications that auditory intensity coding might be a problem were given. On the other
hand, with regard to spectral perturbations, speech perception performance for hearing-
impaired listeners is clearly less sensitive than performance for normal-hearing listeners.
In addition, hearing-impaired listeners also had problems to detect such spectral

distortions. The low sensitivity of hearing-impaired listeners with respect to spectral
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distortion suggests that their problems in understanding suprathreshold speech in noise
are due to coding problems with respect to spectral information.

In conclusion, wavelet coding approximates peripheral auditory coding, as confirmed
by the intensity discrimination experiments using Gaussian tone pulses. From the results
of this experiment, a wavelet coding algorithm, using a Gaussian mother wavelet with a
bandwidth of ¥ octave, is developed to model auditory time-frequency coding. Artificial
distortion of the wavelet coding is used to investigate the influence of distorted auditory
coding on speech perception. The results of this study suggest that distorted auditory
coding of spectral information is an important factor underlying speech perception

problems of hearing-impaired listeners.
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Samenvatting: Waveletcodering van geluid
als middel voor het bestuderen van het

auditief systeem

In dit proefschrift wordt waveletcodering gebruikt om de tijd-frequentie analyse van het
gehoor te bestuderen. De reden voor het gebruik van een waveletcodering in plaats van
de klassieke short-time Fouriertransformatie is de overeenkomst wat betreft spectrale
resolutie van waveletanalyse en auditieve tijd-frequentie analyse. Bij een short-time
Fouriertransformatie is de spectrale resolutie constant over de gehele frequentieschaal.
Echter, bij een waveletanalyse is de spectrale resolutie evenredig met de frequentie,
evenals bij het auditief systeem (bij frequenties hoger dan ongeveer 500 Hz). Met behulp
van intensiteitsdiscriminatie-experimenten is bepaald hoe de temporele en spectrale
resolutic van de waveletanalyse kan worden aangepast aan die van het gehoor.
Vervolgens is met behulp van een kunstmatige verstoring van de waveletcodering
onderzocht wat het belang is van verschillende aspecten van perifere auditieve codering
voor spraakperceptie.

Dit proefschrift begint met een poging om de tijd-frequentie analyse van de auditieve
periferie te karakteriseren. Voor het verwerken van zowel temporele als spectrale variaties
in geluid voert het gehoor een tijd-frequentie analyse uit met behulp van tijd-frequentie
vensters (windows). Een stimulus kan één of meerdere auditieve vensters activeren
afhankelijk van zijn vorm. Wanneer er meer dan én tijd-frequentie venster wordt
geactiveerd is het redelijk om aan te nemen dat bij een discriminatietaak de statistische
informatie van verschillende vensters wordt gecombineerd. Dit wordt in dit proefschrift
het multiple-window model genoemd. Het is een combinatie van het multiband excitation
pattern model (Florentine en Buus, 1981) waarin de informatie van verschillende

auditieve filters wordt gecombineerd, en het multiple-look model (Viemeister en
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Wakefield, 1991) waarin de informatic van verschillende tijdsegmenten (/ooks) wordt
gecombineerd.

In hoofdstuk 2 van dit proefschrift wordt het multiple-window model getest in een
intensiteitsdiscriminatie-experiment met Gaussische toonpulsen. De spectro-temporele
vorm van deze stimuli is gevarieerd van een toon (lange duur, smalbandig) naar een klik
(korte duur, breedbandig). Omdat deze stimuli verschillen wat betreft hun spectro-
temporele vorm, zullen verschillende stimuli een verschillend aantal tijd-frequentie
vensters aanslaan: een aantal vensters langs de tijd-as door een toon; een aantal vensters
langs de frequentie-as door een klik; één (of een paar) vensters door een stimulus die zich
wat betreft spectro-temporele vorm tussen toon en klik in bevindt. Het multiple-window
model voorspelt dat, hoe meer vensters betrokken zijn bij de intensiteitsdiscriminatietaak,
hoe makkelijker de beslissing zal zijn, omdat de informatie van verschillende vensters
onafhankelijk verwerkt kan worden en vervolgens kan worden gecombineerd; de
beslissing zal het moeilijkst zijn voor een stimulus met een tussenvorm die slechts één of
een paar vensters aanslaat. |

De resultaten van de intensiteitsdiscriminatie-experimenten komen overeen met de
voorspellingen van het multiple-window model. De taak is inderdaad het moeilijkst voor
een stimulus met een spectro-temporele vorm tussen toon en klik. Deze stimulus heeft een
bandbreedte van ongeveer Y4 octaaf. Deze “kritische” bandbreedte wordt gemeten bij
zowel 1 kHz als bij 4 kHz. Dit toont aan dat, in ieder geval bij de gemeten frequenties,
de bandbreedte van het auditieve venster evenredig is met frequentie. Omdat bij de
experimenten gemeten is met Gaussische toonpulsen, is de duur van de “kritische” stimuli
omgekeerd evenredig met de frequentie. Echter, de gelijkvormge resultaten bij 1 en 4
kHz suggereren dat de duur van het auditieve tijd-frequentie venster ook omgekeerd
evenredig is met de frequentie. Immers, de breedte van het maximum zou verschillend
zijn bij verschillende frequenties als de duur van het auditieve venster niet omgekeerd
evenredig met de frequentie zou zijn. Dus, waveletcodering lijkt een goede benadering
voor de tijd-frequentie codering van de auditieve periferie.

De intensiteitsdiscrirninatie-experimenten laten zien dat de auditieve tjd-frequentie
analyse kan worden benaderd met een Gaussisch moederwavelet (een complexe
sinusvormige draaggolf met een Gaussische omhullende) met een bandbreedte van Y4
octaaf. Met dit moederwavelet 1s een waveletanalyse en -synthese ontwikkeld, die

beschreven is in hoofdstuk 3. Nyquist’s bemonsteringstheorema is gebruikt om de
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bemonstering in tijd en frequentie te bepalen (Allen, 1977; Allen en Rabiner, 1977). De
resulterende tijd-frequentie bemonstering is één wavelet per drie waveletperiodes langs
de tijd-as en acht wavelets per octaaf langs de frequentie-as. Deze waveletcodering is
vervolgens gebruikt om het gehoor te bestuderen.

In hoofdstuk 4 en 5 wordt beschreven hoe met de ontwikkelde ‘auditieve’
waveletcodering de problemen met spraakverstaan van slechthorenden zijn onderzocht.
Veel slechthorenden hebben problemen met het verstaan van spraak in rumoer, zelfs als
het geluid boven de gehoordrempel is. Deze luisteraars hebben blijkbaar last van een
verstoorde auditieve codering. In dit proefschrift is het effect van een verstoorde auditieve
codering op het spraakverstaan onderzocht door een kunstmatige verstoring van de
waveletcodering. De verstoringen zijn aangebracht in dric dimensies: intensiteit, tijd en
frequentie. Spraakverstaan is gemeten als functie van de mate van verstoring voor
normaal- en slechthorenden en geinterpreteerd met het distortion-sensitivity model. De
achterliggende gedachte van dit model is dat, indien een verstoorde verwerking van
bepaalde informatie een oorzaak is van problemen met spraakverstaan, slechthorenden
minder dan normaalhorenden last zullen hebben van een kunstmatige verstoring van deze
informatie. In dat geval zullen de prestaties van normaal- en slechthorenden naar elkaar
toe groeien als functic van de mate van verstoring. Met andere woorden, convergentie
voor een bepaald type verstoring is een aanwijzing dat deze kunstmatige verstoring een
relatie heeft tot de verstoorde auditieve codering waar het spraakverstaan van
slechthorenden onder lijdt.

De resultaten van hoofdstuk 4 suggereren dat een verstoorde auditieve
intensiteitscodering een mogelijke oorzaak van problemen met spraakverstaan is. Echter,
de resultaten van hoofdstuk S bevestigen dit niet. Voor een verstoring van temporele
informatie waren slechthorenden ook niet minder gevoelig dan normaalhorenden.
Daarmee toonde het onderzoek niet aan dat de auditicve codering van intensiteit- of
temporele informatie een probleem is voor slechthorenden. Het spraakverstaan van
slechthorenden leed duidelijk wel minder onder een kunstmatige verstoring van spectrale
informatie dan dat van normaalhorenden. Bovendien hadden slechthorenden meer moeite
met het detecteren van de spectrale verstoring. Dit toont aan dat problemen met het
coderen van spectrale informatie een oorzaak zijn van de problemen van slechthorenden
met het verstaan van spraak in rumoer. Uit het onderzoek bleek verder dat er onder

slechthorenden grote onderlinge verschillen bestaan in de problemen met spraakverstaan
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en dat er, naast een slechte verwerking van frequentie-informatie, waarschijnlijk ook
ander factoren een rol spelen.

Samenvattend, de tijd-frequentie analyse van de auditieve periferic kan worden
benaderd meteen waveletcodering. Resultaten van intensiteitsdiscriminatie-experimenten
met Gaussische toonpulsen maken dat aannemelijk. Met behulp van deze resultatenis een
waveletanalyse ontwikkeld, gebruik makend van een Gaussisch moederwavelet met een
bandbreedte van V4 octaaf. Een kunstmatige verstoring van de waveletcodering is gebruikt
om de effecten van een verstoorde auditieve codering op het spraakverstaan te simuleren.
De resultaten laten zien dat een slechte verwerking van spectrale informatie een oorzaak

is van de bovendrempelige problemen met spraakverstaan waar slechthorenden onder

lijden.
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