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General introduction

In this thesis wavelet coding of soundis used as a tool to study the

auditory system. The type of wavelet coding used is important.

Parameters of the wavelet analysis should betailored to the auditory

system. Therefore, in the first part of this thesis, a perceptually relevant

wavelet analysis and synthesis scheme is developed. In the secondpart,

this schemeis used as a front-end signal processing tool for studying

which auditory coding deficits impair speech perception in hearing-

impaired listeners.

I. WAVELET CODING

Wavelets are “little waves that start and stop” (Strang, 1994). Sounds can be decomposed

into wavelets, just as sounds can be decomposed into sines and cosines, as is done in

Fourier analysis. A wavelet can be considered to represent a time-frequency window.

Each wavelet originates from one prototype analysis function, the mother wavelet. A

basis of wavelets is constructed by compression (or stretching) of this prototype function

to cover the frequency domain,and by shifting of this prototype function to coverthe

temporal domain. Wavelet coding will be explained in more detail in Chapter 3 of this

thesis, but discussing the mother wavelet bricfly here seems useful. In Fourier analysis,
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one is boundedto use sines and cosines. However, in wavelet analysis, one can choose

among different mother wavelets. The choice of the mother wavelet determines the shape

of the corresponding spectro-temporal analysis window, thus determining the temporal

and spectral resolution of the wavelet analysis. As a result, a different choice of the

mother wavelet will result in a different spectro-temporal representation of sound. Thus,

the choice of the mother wavelet is important.

Il. WAVELET CODING OF SOUND AS A TOOL FOR

STUDYING THE AUDITORY SYSTEM?

In the field of signal analysis, the decomposition of a signal in wavelets is a recent

development. When applied to sound, the wavelet approach results in a type of time-

frequency representation that matches, to some extent, the properties of sound coding in

the auditory system. The spectral resolution of the auditory system is roughly constant

on a logarithmic frequency scale. Wavelet analysis uses a logarithmic frequency scale as

well. In contrast, in Fourier analysis, spectral resolution is constant on a linear frequency

scale. In the past, short-time Fourier analysis was used successfully in the study of the

auditory system. Simulating more closely the spectral resolution of the auditory system.

wavelet analysis promises to work even better.

Ill. AIM OF THE THESIS

The aim ofthis thesis is to investigate how wavelet coding can be used as a tool in

psychoacoustics, more specifically, as a tool to study speech perception. Since the type

of wavelet coding used is important, first it will be determined which wavelet expansion

characterizes auditory spectro-temporal coding as closely as possible. This wavelet

coding can be considered a representation of sound that mirrors the properties of auditory
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coding. The wavelet coefficients that result from the wavelet coding can be manipulated,

introducing specific malformations of the characteristics of sound. Specific artificial

distortions introducedin the wavelet coded sounds can be usedto study the relevance of

certain aspects of auditory coding for speech perception. For instance, the perceptual

consequence of a reduced acuity in auditory intensity coding may be simulated by

artificially distorting the modulus of wavelet coefficients. In such a way, wavelet coding

may provide a powerfultool for studying the relevanceof (simulated) changes in certain

aspects of auditory coding on sound perception. In this thesis, wavelet coding will be

used to study how impaired auditory coding degrades speech perception of hearing-

impaired listeners.

IV. DISTORTION-SENSITIVITY MODEL

Roughly speaking, hearing impairment can have two manifestations: (1) reduced

audibility, and (2) distortion of perceived sounds (see Plomp, 1978). Because of reduced

audibility, sounds haveto be presentedat higher sound pressure levels than normal to be

audible. Because of distortion, sounds that are well above the hearing threshold are

subject to some type ofdistortion process in the ear. The term ‘distortion’ mayrecall

associations with nonlinear processing. However, the term distortion is not used in this

sense in this thesis. Here,it is defined as some kind of deviation from the processing in

a normal-hearing listener which is not simply related to an elevated hearing threshold.

This auditory distortion leads to so-called suprathreshold auditory deficits that hinder

speech processing. The effect of audibility on speech perception is understood well and

can be estimated, for example, by the Speech-Intelligibility-Index model (ANSI, 1997).

The effects of suprathreshold deficits on speech perceptionareless clear.

In this study, the effects of distortion of auditory coding on the perception of speech

are examined under the so-called distortion-sensitivity model. This model will be

explained in more detail in Chapter 4. In the distortion-sensitivity model, performanceis

measured as a function of some type ofartificial distortion. The comparison of the

scnsitivitics to the distortion by normal-hearing and hearing-impairedlisteners provides
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interesting information, becauseartificial distortion of cues that are not perceived by the

hearing impaired will probably not affect their performance. Thus,if hearing-impaired

listeners are less sensitive to the distortion under study than normal-hearinglisteners,that

type ofartificial distortion mayrelate to the impaired auditory speech coding.

Suprathreshold deficits can express themselves in a distorted processingof intensity,

temporal, and spectral information. For example, a deficit that is related to distorted

processing of intensity information is impaired loudness perception. Excessive forward

masking, i.e., non-simultaneous masking in which

a

signalis masked by a preceding

sound, is an expressionofdistorted processing oftemporal information; excessive upward

spread of masking, i.e., simultaneous masking in which a signal is masked by spectral

components of lower frequency, is an expression ofdistorted processing of spectral

information.In this thesis, the distortion-sensitivity model will be usedto gain insight into

the role of a distorted representation of these three types of information for speech

perception.

V. OUTLINE

This thesis consists of two parts. In part I (Chapters 2 and 3), the parameters ofthe

wavelet decomposition and recomposition scheme are defined. As explained above,the

spectro-temporal shape of the mother wavelet is important for simulating the spectro-

temporal resolution of the auditory system. The initial experiment of this thesis was

performed to guide the proper choice of the mother wavelet. The results are used to

develop a perceptually relevant wavelet analysis and reconstruction method. In part IJ

(Chapters 4 and 5), the wavelet-coding and reconstruction schemeis applied to study the

auditory system.

A. Part I: Auditory wavelet coding

The experiments of Chapter 2 aimto characterize the time-frequency window that the

normal-hearing ear uses while analyzing sounds. This is done by meansofintensity-
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discrimination experiments for a specific type of stimulus: a Gaussian-shapedtonepulse.

The spectro-temporal shape of this Gaussian tone pulse is varied from narrow-band and

long-duration, to broadband and short-duration. Results confirm that auditory spectro-

temporal analysis can be modeled well by a wavelet analysis. These results are used to

define a mother wavelet that matches the auditory time-frequency window.In Chapter

3, using this mother wavelet, a decomposition and recomposition method is developed,

resulting in a perceptually relevant spectro-temporal coding algorithm, 1.e., a sound

coding method that mirrors, to some extent, the properties of peripheral auditory coding.

This method will be used as a front-end signal processingtool for studying the perceptual

relevance of (simulated) changes in auditory codingin partII.

B. Part Il: The effect of impaired auditory coding on speech perception

Using the perceptually relevant wavelet coding method developed in part I, impaired

processing is studied by distortion of the wavelet coefficients between wavelet

decomposition and recomposition. When applying this methodin listening experiment,

specific manipulations of the wavelet coefficients may be used to simulate specific

changes in auditory coding. Thus, the importance of various aspects of auditory coding

for speech perception can be investigated.

In Chapter 4, the distortion-sensitivity model is used to study one dimension of

auditory coding, i.e., intensity coding. The intensity coding of sound is distorted by

random perturbations in the modulusofthe wavelet coefficients. Speech intelligibility is

measuredas a function ofthis intensity distortion. The aim ofthis chapteris to investigate

if distortion of the intensity information can (partly) explain the reduced speech

perception of hearing-impairedlisteners.

In Chapter5, three dimensionsof auditory coding,i.e., intensity, time, and frequency,

are considered. While Chapter 4 was only concerned with local manipulations in the

time-frequency representation of a sound relating to the intensity-coding acuity, in

Chapter 5 also spread-of-excitation types of manipulations are studied. This relates to a

decrease in the acuity of the spectro-temporal representation of a sound. Temporal and

spectral information of sound weredistorted by randomly shifting the position of the

wavelet coefficients along the time or frequency axis, respectively. The experimental

questions are (1) what degrees of distortions are detectable, and (2) how do these
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distortions affect speech perception (distortion-sensitivity model). Data with respect to

the first question provide information on the acuity of a subject’s auditory coding. Data

with respectto the second question may give someinsight into the practical consequences

for speech perception when this acuity is (artificially) reduced. The aim ofthis chapter

is to estimate how impaired auditory coding affects speech perception of hearing-

impairedlisteners.

In the last chapter of this thesis, a general discussion is given. We will discuss how

useful our wavelet coding tool was in revealing the importance of the studied types of

information for understanding the suprathreshold deficits underlying poor speech

perception by the hearing impaired.

VI. RELATED FIELDS

This thesis aims at a better understandingof the auditory system, especially that of speech

perception of hearing-impaired listeners. The typical nature of its approachrelatesit to

several applied topics. For instance, efficient coding and transmission of speech signals

is an important area of research. The relatively novel wavelet coding is considered a

serious candidate for sparse coding. Our data with respect to detection of coding

distortion are related to the minimum numberofbits required for speech coding. Our data

with respectto the effect of distortion on speech perception may be useful to estimate the

reduction in speechintelligibility when speechis sparsely coded.

Insight into how impaired auditory coding affects speech perception may provide

important information for the field of speech enhancement. In this field, sound processing

algorithms are developed to improve speechintelligibility of hearing-impairedlisteners.

Insight into what is wrong with auditory coding of hearing-impaired listeners may help

to find algorithms that can relieve the speech perception problems caused by degraded

auditory coding. The tool developed inthis thesis (an auditory-relevant scheme for sound

coding and reconstruction) mightalso be useful for implementation ofadvancedstrategies

of signal processing in the time-frequency domain.
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Intensity discrimination of Gaussian-

windowed tones: Indications for the shape

of the auditory frequency-time window

The just-noticeable difference in intensity jnd(I) was measured for 1-

kHz tones with a Gaussian-shaped envelope as a function of their

spectro-temporal shape. Thestimuli, with constant energy and a constant

product of bandwidth and duration, ranged from a long-duration narrow-

band “tone” to a short-duration broadband “click.” The jnd(I) was

measured in three normal-hearinglisteners at sensation levels of 0, 10,

20, and 30 dB in 35 dB(A) SPL pink noise. At intermediate sensation

levels, jnd(I) depends on the spectro-temporal shape: at the extreme

shapes (tones andclicks), intensity discrimination performanceis best,

whereas at intermediate shapes the jnd(I) is larger. Similar results are

observed at a higher overall sound level, and at a higher carrier

frequency. The maximumjnd(I) is observed for stimuli with an effective

bandwidth of about 1/3 octave and an effective duration of 4 msat 1

kHz (1 ms at 4 kHz). A generalized multiple-window modelis proposed

that assumesthat the spectro-temporal domainis partitioned into

“internal” auditory frequency-time windows. The modelpredicts that

intensity discrimination thresholds depend upon the number of windows

excited by a signal: jnd(1) is largest for stimuli covering one window.

Journal ofthe Acoustical Society ofAmerica 105: 3425-3435, 1999
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INTRODUCTION

This study addresses a fundamental psychoacoustical question: how does the auditory

system extract spectro-temporal information while processing complex sounds? To obtain

information about both the spectral and the temporal structure of a signal, the auditory

system performs a frequency-time (f-t) analysis. The result of an f-t analysis is a

spectrogram, showing the distribution of signal energy over frequency andtime.In the

spectrogram, the signal energy at a given point is determined by an integration over a

specific frequency-time window.Theshapeofthis f-t analysis window determines which

characteristics of the sound are displayed. It is commonly assumed that the peripheral

auditory system carries out an f-t analysis with its own specific f-t window. This study

seeks to characterize the auditory f-t window.

Anf-t analysis window cannotberestricted arbitrarily both in time and in frequency.

The minimum area of an f-t window 1s unity if this area is defined as the product of the

effective bandwidth and the effective duration (see Stewart, 1931; Gabor, 1947). The

lower bound is attained by the Gaussian function (see Gabor, 1947). Given this

restriction, the shape of an f-t analysis windowcan vary. Different f-t analysis windows

will display different details in the f-t representation.

In this study we use a psychophysical approach to gain an insightinto the shapeofthe

f-t window underlying auditory sound analysis. Before explaining the experimental

paradigm, we will briefly review some current ideas on spectral and temporal resolution

in the auditory system and their relation to the auditory f-t window.

In psychoacoustics, the partition of the frequency axis into critical bands is a basic

concept. Roughly, the auditory filters have a constant relative bandwidth of 1/3 octave

(see, e.g., Scharf and Buus, 1986). This suggests that the spectral width of the auditory

f-t windowis about 1/3 octave.

In the time domain, however, the picture is less clear. Recall that, for a given

bandwidth, the sma/llest possible temporal widthis defined by the minimumwindowarea.

Thus the temporal width of the auditory f-t window must be at least as long as the

munimum temporal width possible, given a specific spectral width. Taking into account

psychoacoustical arguments for defining a temporal width, there is no complete



Introduction il

consensus. Plack and Moore (1990) discuss the problem of describing the temporal

resolution of the auditory system with a single value. They note that the integration time

constant appears to decrease with increasing frequency (see also Gerken ef al., 1990;

Florentineet a/., 1988). This suggests that the temporal width of the auditory f-t window

decreases with increasing frequency. Viemeister and Wakefield (1991) are interested in

the “resolution-integration’” paradox: Models describing temporal resolution use short

time constants, whereas models describing the improvement in detection and

discrimination with increasing signal duration are based on a process of long-term

temporal integration. Their conclusions favor the short time constants (roughly 3 ms for

|-kHz sinusoids). Although temporalintegration data (time-intensity trade in detection)

can be explained easily by an energy-detector model (single look) with an adjustable time

window matched tothe signal duration (see, for example, Dai and Wright, 1995), the

multiple-look model of Viemeister and Wakefield with short time constants can account

for both the data on temporal resolution and temporalintegration. In general, temporal

resolution experiments suggest that the temporal width ofthe auditory f-t window is

about 3 ms at 1 kHz and smallerat higher frequencies. This is very close to the minimum

duration possible if the bandwidth of the auditory f-t windowis 1/3 octave.

The present research evaluates the auditory f-t window by assessing just-noticeable

differences in intensity for stimuli with different spectro-temporal shapes. By varying the

spectro-temporal shape, the numberof “internal” (auditory) f-t windowsexcited by the

signal can be varied. Our hypothesis is that this variation affects the just-noticeable

difference in intensity. The basis for this hypothesis can be found in the existing models

with respect to intensity discrimination.

An important modelthat describes intensity discrimination performanceis the so-

called multiband excitation-pattern model(see,e.g., Florentine and Buus, 1981; Durlach

eral.. 1986; Buus, 1990; Buus and Florentine, 1994). This model operatesin the spectral

domain. The idea is that the excitation pattern induced by the signal is divided into

several spectral bands, and the content of each band is processed individually.

Information can be combined across bands to cometo an overall percept. Alternatively,

psychoacousticaldata with respect to temporal mechanisms can be accountedfor, at least

qualitatively, by the multiple-look model (see Florentine, 1986, Viemeister and

Wakefield, 1991). The multiple-look model divides the signal into short-duration

segments. As in the multiband model, the information in different segments or “looks”
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is considered statistically independent. A combination of different looks will result in

more information and therefore in lower thresholds. Conceptually, of course, the

multiband model and the multiple-look model are very similar, one operating in the

spectral domain andthe other in the temporal domain. Durlachef a/. (1986) note that the

frequency channels in their model for discrimination of broadband signals can refer to

time intervals as well.

The rationale of the hypothesis of this study is a generalization of these “multi-

channel models”(multiband and multiple-look models), whichin this paperwill be called

the “‘multiple-window model” in the f-t domain. Our hypothesis is the following: the

auditory spectro-temporal domain is partitioned into “internal’’ auditory frequency-time

windows.So, the “internal” f-t representation of a signal can be characterized by the

number off-t windows covered by the signal. As in the multiband excitation-pattern

model (Florentine and Buus, 1981), the multiple-window model assumes that the

discriminability within a windowis independentof excitation level (Weber’s Law). Thus

intensity discriminability for a given signal depends on the number of independent

auditory f-t windows covered by the signal: the just-noticeable difference in intensity

jnd(/) will be smaller if more windowsare involved.

Evaluation of intensity discrimination thresholds for a range of stimuli with well-

defined variations in spectro-temporal shape may reveal the shape of the auditory f+

window. By manipulation of the spectro-temporal shape of the stimuli the number of

auditory f-t windows covered by the signal can be varied. We are looking forthe signal

for whichthe “internal”auditory representation best matchesthe auditory f-t window. For

that purpose weused sinusoids with a Gaussian-shaped temporal envelope. Consequently,

it can be shownthat the spectral envelope is Gaussian shaped as well. A Gaussian-

windowed signal was chosen because of its minimum effective f-t area. Another

appealing property is its symmetry in frequency and time. A series of amplitude

discrimination experiments was performedfor a range of these stimuli in which only one

variable was changed, the so-called shape factor, which determinesthe effective! number

of periods included under the Gaussian envelope. By varying the shape factor, the

representation of the signal in the f-t plane was systematically varied while keeping its

 

‘The effective numberofperiodsis defined as the effective duration divided by the period of

the carrier frequency of the Gaussian-windowedsinusoid. This is equal to the reciprocal of the

shape factorofthe signal (1/a).
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area constant, ranging from a long-duration narrow-band “tone” to a short-duration

broadband “click” (see Fig. 2.1). A tone, corresponding to a small shape factor, will

excite many f-t windows along the time axis; a click, corresponding to a large shape

factor, will excite many f-t windowsalong the frequency axis; somewhere between tone

and click fewer windows will be excited. Thus the number of auditory f-t windows

excited by the signal varies as a function of the shape factor according to an U-shaped

Curve.

The multiple-window idea states that jnd(/) varies with the numberof f-t windows

involved in the discrimination task. The more elementary f-t windowswhich are involved,

the smaller the jnd(/) will be. This implies that the signal with the largest jnd(/) covers

the minimum number of windows. The shape factor correspondingto this signal will be

called the “critical” shape factor. Thusthe signal with the critical shape factor is most

successful in exciting only the minimum number of f-t windows; the “internal”

representation ofthis signal is mostcloselyrelated to the elementary f-t window. Within

the context of the multiple-window idea, the shapeof the f-t representationofthat signal

best matches the shape ofthe elementary f-t window in (peripheral) auditory coding. The

aimofthe experimentsis to test the multiple-window hypothesis by examining whether

jnd(Z) varies with a varying spectro-temporal shape ofthe stimuli. If jnd(/) varies as a

function of shapefactor, the critical shape factor gives some insightinto the auditory ft

window,
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In the first experiment, the relation betweenintensity discrimination and shape factor

was determined for 1-kHz sinusoids at various sensation levels (0,7 10, 20, 30 dB SL) in

35-dB(A) SPL pink noise. Low sensation levels were used to avoid spread of excitation

as muchas possible. In the second experiment, intensity discrimination performance was

measured at 4 kHz. Finally, in the third experiment, intensity discrimination performance

was measured at a 20-dB higher level for both noise and signal.

IL.METHOD

A.Stimuli

Thestimuli s(t) consist of Gaussian-windowedtones, defined by

s(t)=A fofosin(2nf4+e-n(afot)”) ‘ (2.1)

Theseare sinusoids with carrier frequency/, and a gradual onsetand offset (see Fig. 2.1).

The shape factor a determines the effective numberof sinusoidal periods, equal to 1/a,

contained within the Gaussian envelope. If a is small, the number of periods is large

(tone). If a is large, the numberof periodsis small (click). Throughout the experiments

the independentvariable is the shape factor a (0.0375, 0.075, 0.15, 0.3, 0.6, and 1.2). The

effective duration of the Gaussian signal is A=1/(af)). The effective bandwidth is A=af.

The amplitude of the signal is defined by Aap, . The amplitude difference is

produced by increasing the amplitude constant A from A, to A,+AA. By introducing the

phase factor 2/4 the energy of the signal is independent of a and/. As a result, the total

energy Fiof the signal is (¥2/4)4* , only depending on the amplitude constant A.

 

*The intensity discrimination task at 0 dB SL is vot equal to a detection task, because each

interval contains a signal. However, if the reference stimuli are presented at 0 dB SL,the signals

are not always audible. When,in a trial, one or two of the stimuli are not audible this is perceived

by the subject as a mixture between an amplitude discrimination task and a detection task. Hanna

et al. (1986) also measured jnd(/) at 0 dB SL.
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As already mentioned in the Introduction, in this study the temporal and spectral

domainare investigated in combination. Therefore,the set of stimuliinthis study consists

of stimuli that cover more critical bands along the frequency axis and only one look

(about 3 ms at 1 kHz) alongthe time axis, stimuli that cover only one critical band and

more time looks, and stimuli in between. In Table 2.1, the bandwidth, duration, and

effective numberof periods of the stimuli used in the experiments can be found. The

column labeled “# f-t windows”gives the estimated number off-t windows covered by

the 1-kHz tone, assuming a Gaussian auditory f-t window with a shape factor of 0.23,

corresponding to a bandwidth of 1/3 octave and a duration of 4 ms at 1 kHz anda

duration of | ms at 4 kHz.

TABLE 2.1. Theeffective duration A,, the effective bandwidth A, the effective numberof periods, and the

estimated numberof f-t windowsforstimuli with different shape factor a and carrier frequencyf, as used

in the experiments,
 

 

 

a i A, A, # periods # f-t windows

0.0375 1000 Hz 27 ms 37.5 Hz 27 y

4000 Hz. 6.7 ms 150 Hz iy F

0.075 1000 Hz 13 ms 15 Hz 13 3

4000 Hz 3.3 ms 300 Hz 13 3

0.15 1000 Hz 6.7 ms 150 Hz 6.7 2

4000 Hz 1.7 ms 600 Hz 6.7 2

0.3 1000 Hz 3.3 ms 300 Hz 3.3 1

4000 Hz 0.83 ms 1200 Hz 3.3 1

0.6 1000 Hz 1.7 ms 600 Hz Ly 3

4000 Hz 0.42 ms 2400 Hz 1.7 3

1:2 1000 Hz 0.83 ms 1200 Hz 0.83 6

4000 Hz 0.21 ms 4800 Hz 0.83 6
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B. Apparatus

Stimuli were generated digitally at a sampling frequency of 40 kHz and wereplayed out

over TDT (Tucker Davis Technologies) System Il hardware. Because Gaussian-

windowed signals do not have compact support,’ the signals were cutoff at frequencies

correspondingto their 60-dB downpoints. A Wandel und Goltermann RG-1 analog noise

generator produced the continuous pink noise. Signals and noise were attenuated (TDT

PA4) separately, and subsequently summed (TDT SM3). The stimuli were presented

monaurally through Sony MDR-CD999 headphones. Masking noise levels were measured

ona Brtiel & Kjzr type 4152 artificial ear with a flat-plate adapter. The entire experiment

wascontrolled by an IBM PC-compatible computer. Subjects were tested individually in

a soundproof room.

C. Procedure

Intensity discrimination performance was measured using an adaptive, three-interval,

three-alternative forced-choice paradigm (31, 3AFC). Each trial consisted of three

observation intervals. The time betweentheonsetof the three stimuli was always 500 ms,

but the duration of the stimuli differed with different shape factors. Taking into-account

the cutoff at 60 dB below the top, the total duration of the longest signal was 80 ms. Two

intervals contained the reference signal (with amplitude constant A,) and one interval

contained the incremented signal (with amplitude constant Aj+AA). The incremented

signal occurred randomly in one of the three observation intervals. Each observation

interval was marked by visual display. The onsetofthe stimuli coincided with the onset

of the display. The noise was presented continuously. The subject’s task was to indicate

the interval that contained the incremented signal by pushing the appropriate button on

a PC keyboard. There was no response time limit. Immediately after the response,

feedback was provided. After the response, 500 ms elapsed before a followingtrial

started.

 

°A functionf(t) has compactsupportif it is zero outside the interval 7,<t<7,+AT.
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In obtaining a threshold estimate, the adaptive procedure wasstarted at an increment

amplitude AA, several steps larger than the anticipated threshold. In the adaptive

procedure,the transition from increasing to decreasingdifficulty, and vice versa, defined

a turnaround. Adaptive thresholds were determined with a one-down/one-up procedure

followed by a two-down/one-up procedure after four turnarounds. The steps in the

amplitude increment were accomplished by multiplication or division of Ad by a factor

B(w<1): A,=AgtPAAcg OF Aney=AgtCWASog ,tespectively. As aresult, the amplitudenew

step in dB gets smaller as the difference in amplitude AA between reference signal and

incremented signal gets smaller. Fortheinitial steps, », was 0.66; after four turnarounds,

p. wasset to 0.8. Arun was endedafter 24 turnaroundsand the geometric meanof the AA

values of the last 16 turnarounds wasused to estimate the threshold A4,,,, theoretically

equivalent to 70.7% correct (Levitt, 1971). Assuming unbiased responses,the threshold

in this paradigm correspondstoa sensitivity d' of about 1.265 (see, e.g., Versfeld et al.,

1996). For each subject each condition was repeated six times. The test order of the

conditions was balanced according to a Latin square.

Discrimination thresholds were expressed as the just-noticeable difference in

intensity, jnd(/) in decibels:

A, +AA ind
jodD=2008y— ; (2.2)

ated)

where A4,,, indicated the amplitude incrementyielding 70.7% correct responses.

Beforehand, to set sensation levels for individual subjects and conditions, masked

detection thresholds were determined in a similar manner as described above (3 AFC

adaptive procedure). Thus, the detection threshold was defined asthe threshold at which

70.7% of the stimuli was detected correctly bythe listener.

D. Subjects

Three subjects (23-25 years), including the first author, participated in the experiments.

All had normal hearing (absolute thresholds better than 15 dB HL at octave frequencies

from 125 Hz to 4 kHz and at 6 kHz). Subjects were given practice to stabilize their

performance. On the average this took 30 min of practice for five successive days. As a

result, practice effects were negligible during the actual experiment.
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E. Data analysis

The data analysis was performed on the logarithmsof the jnd(/) to make sure that the

variance was approximately independentof the size of the jnd(/) (see Florentine, 1983;

Florentine e/ a/., 1987). Therefore, the average jnd(/) was calculated as the geometric

meanof the individual data in decibels. An analysis of variance (ANOVA)for repeated

measures was used to examinethestatistical significance of the effects. Differences were

considered significant whenthe tests indicated a probability less than 0.05.

Il. EXPERIMENTS

A. Experiment I: Intensity discrimination as a function of shape factor and

sensation level

The carrier frequency was 1 kHz. The level of the pink masking noise wasset at 35

dB(A) SPL. The masked detection threshold of the stimuli was essentially constant as a

function of shape factor (see the Appendix and Fig. 2.A3b for further discussion). The

sensation levels of the stimuli were varied from 0 to 30 dB, in 10-dB steps.

Fig. 2.2 shows the discrimination threshold jnd(/) as a function of shape factor and

sensation level for the individual subjects and the averaged discrimination thresholds

across subjects. Error bars indicate the standard error of the mean.

Thethree listeners show similar behavior. At intermediate levels, i.e., at 10 dB SL for

all subjects and at 20 dB SL for subjects JK and NS, jnd(/) varies as a function of the

shape factor. When the shape factor is increased from 0.0375 to 0.15, intensity

discrimination performance deteriorates (higher thresholds): at 10 dB SL, jnd(/) increases

by a factor of 1.7 when the shape factor is quadrupled. Whenthe shape factoris changed

from 0.3 to 1.2, intensity discrimination performance improves (lower thresholds): at 10

dB SL, jnd(/) decreases by a factor of 1.4 when the shape factor is quadrupled. The

maximum jnd(J/) (poorest performance) occurs at 10 dB SL for shape factors of 0.15 and
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0.3. At lower and higher levels (0 and 30 dB, respectively) the jnd(/) does not vary with

the shape factor. When the sensation level is increased from 0 to 10 dB, an increase in

jnd(ZJ) of about 1 dB is observed for a shape factor of 0.15 and 0.3.

The trends shown in Fig. 2.2 are supported by the statistical analysis. A three-way

repeated measures ANOVA[sensation level (4) X shape factor (6) X subject (3)] on the

individual data shows a significant effect of both the sensation level [/(3,6)= 5.58;

p=0.036] and the shape factor [#(5,10)=11.33; p<0.001)]. Also the interaction between

level and shapefactoris significant [/(15,30)=2.78; p<0.01]. The latter result is probably

introduced because, at 10 and 20 dB SL,jnd(J) reaches a maximum at a shape factor of

0.15 or 0.3, while at 0 and 30 dB SL jnd(/) does not vary systematically as a function of

the shape factor.

Two additional experiments (II and III) were conducted to investigate in more detail

how the threshold behavior varies with the shape factor.

B. ExperimentI: Intensity discrimination at 4 kHz

To examine whether the 10 dB SL maximumis also presentat other carrier frequencies,

the 10 dB SL condition was repeated with a carrier frequency of 4 kHz. The results are

displayed in Fig. 2.3. Again, a maximumjnd(J)is reached at a shape factor of 0.15 or 0.3.

jnd(/) increases bya factor of 1.7 when the shape factor is quadrupled from 0.0375 to

0.15, and jnd(ZJ) decreases by a factor of 1.7 whenthe shapefactor is quadrupled from 0.3

to 1.2.

The trends are confirmed by a three-way repeated measures ANOVA [carrier

frequency (2) X shape factor (6) X subject (3)] on the individual data from this

experiment (4 kHz) combined with the 10 dB SL results from the first experiment (1

kHz). The analysis shows a significant main effect of the shape factor [/(5,10)=19.29;

p<0.0001], but no significant effect of carrier frequency nora significant interaction of

frequency and shapefactor.
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C. ExperimentIII: Intensity discrimination for a higher overall level [pink noise:

55 dB(A) SPL]

To examine whether the observed trends really depend on sensation level and not on

overall level, we increased the background noise level to 55 dB(A) SPL and repeated the

experiment with Gaussian-windowed tones of 1 kHz at 10 dB SL.

For the higher overall level, the discrimination thresholds obtained for each subject

and for the mean of the three listeners are shown in Fig. 2.4. Again a maximum was

reached for a shape factor of 0.15 or 0.3. jnd(/) increases by a factor of 1.8 when the

shapefactor is quadrupled from 0.0375 to 0.15 and decreases bya factor of 1.7 when the

shape factor is quadrupled from 0.3 to 1.2.

A three-way repeated measures ANOVA [overall level (2) X shape factor (6) X

subject (3)] on the individual data of this experiment [55 dB(A) SPL] combined with the

10 dB SL data of experiment I [35 dB(A) SPL] showsa significant main effect of the

shapefactor ([F(5,10)=33.51;p<0.000 01). The effect of overall level and the interaction

betweenshape factor and overall level are not significant.

Il. DISCUSSION

The results show that the just-noticeable difference in intensity jnd(/) of Gaussian-

windowed tones may vary as a functionof the shape factor. For 1-kHz tonesat sensation

levels of 10 and 20 dB SLin 35 dB(A) SPL pink noise, jnd(/) reaches a maximumat a

critical shape factor of 0.15 or 0.3 (see Fig. 2.2). At both lower and higher sensation

levels, jnd(/) is relatively constant for different shape factors. For a 4-kHz carrier

frequency,a similar variation in jnd(/) with the signal shape is obtained: again, at a shape

factor of 0.15 or 0.3 a maximum is observed (see Fig. 2.3). Also, after increasing the

overall level [noise level: 55 dB(A) SPL] the variation in jnd(/) persists (see Fig. 2.4).

In this study the spectro-temporal shape ofthe stimuli ranged froma relatively long-

duration tone to a very short-duration click. As the signals vary from toneto click, two
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processes occur: temporal shortening and spectral widening.First, as the signal decreases

in duration and increases in bandwidth, the primaryeffect is temporal shortening. This

causes an increase in the jnd(/) until the bandwidth reachesthe critical band. At this point

the second process, the increase in bandwidth, becomes important, serving to reduce the

jnd(/). These two processes are addressed more orless separately in literature.

With respect to the effect of temporal shortening, Florentine (1986) and Buus and

Florentine (1992) have done extensive research measuring intensity discrimination for

pure tones as a function of duration. They foundthat intensity discrimination improves

with increasing duration. Our results show the same behavior: at lowlevels (10 and 20

dB SL) jnd() decreases toward smaller shape factors, corresponding to longer durations.

Also, quantitatively, the rate of improvement measuredin this study agrees with the rate

found by Florentine (1986) and Buus and Florentine (1992).

At some point, separating the effect of temporal shortening and the effect of the

increase in bandwidthis not possible. Studyingjnd(/) as a function ofduration, Florentine

(1986) omitted durations of 4 ms andless from the fitting procedure because these data

deviated from a linear function [in a double logarithmic plot of jnd(/) versus duration].

She noted that this may have been dueto the spectral splatter. Our data also show this

effect, a flattening of the curve for small durations, at a shape factor between 0.15 and

0.3. Our explanation is, analogous to Florentine’s remark, thatat this point the bandwidth

ofthe Gaussian-windowedsignal exceeds the width of the auditory filter. From this point

on, the spectral width of the signal determines the discrimination threshold, 1.e., the

process of increasing bandwidth becomes important.

With respect to the effect of the increase in bandwidth, Buus (1990) measured

intensity discrimination as a function of bandwidth. He found that jnd(/) is independent

of bandwidth when the stimulus bandwidth is less than the width of the auditoryfilter.

For larger bandwidths, at low levels, a decrease in jnd(/) with increasing bandwidth was

found. Our data also show this trend: jnd(/) decreases for shape factors larger than 0.3,

at sensation levels of 10 dB and 20 dB.

In quantitative terms, an optimum detector predicts a decrease ofjnd(/) by a factor of

2 (in decibels) when the bandwidthor the duration is quadrupled. In the multiple-window

model the two processes of the variation in bandwidth and the variation in duration are

combined in the variation of the numberof f-t windowscovered by the signal. Then, in

the multiple-window model jnd(/) is expected to decrease by a factor of 2 when the
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numberof f-t windowsis quadrupled. We found a decrease bya factor of 1.7 instead of

2, somewhatless than predicted by the multiple-window model. Florentine (1986) also

found smaller improvements(a factor 1.5 whenthe duration was quadrupled). Possible

explanations for this small deviation from the model improvementpredictions are a

reduced discriminability in the individual f-t windows as the number of f-t windows

increases, a suboptimal combinationofthe informationofthe different windows(see also

Buusand Florentine, 1992)or that the windowsare nottotally statistically independent.

The most important finding ofthis studyis that, for intermediate sensationlevels, the

data qualitatively agree with the generalized multiple-windowhypothesis put forward in

the introduction. As aresult, we can identify a “critical” shape factor, for which intensity

discrimination performanceis worst. This “critical” shape factor has a value between 0.15

and 0.3, both at a carrier frequency of 1 kHz and 4 kHz,at an overall level of 35 dB(A)

SPL and 55 dB(A) SPL.So, in the proposed auditory spectro-temporal representation, a

Gaussian-windowed sinusoid with a bandwidth of about 1/3 octave and an effective

duration of about 4 ms at 1 kHz and 1 ms at 4 kHz(including effectively about four

sinusoidal periods) can be considered an approximation of the “elementary”f-t window

of the perceptually relevant auditory spectrogram. These valuesare in line with the idea

of the critical band of the multiband excitation-pattern model (Florentine, 1986) and with

the temporal constants of the multiple-look model,i.e., about 3 ms for 1-kHz tones and

decreasing toward higher center frequencies (Viemeister and Wakefield, 1991).

Having discussed the main issue ofthe paper,i.e., the relation betweenjnd(/) and the

shape factor, as observed at 10 or 20 dB SL,in terms of the multiple-window model, a

few aspects of the data deserve some further discussion. (1) The masked detection

threshold is virtually constant as a function of shape factor. (2) At 0 dB SL, jnd(/) does

not depend on shapefactor. (3) For the critical shape factor, jnd(/) increases about 1 dB

whenthe sensation level increases from 0 to 10 dB SL.(4) At higher sensation levels (30

dB SL), intensity discrimination again is a constant as a function of the shape factor.

First, the role of the internal noise versus the external noise in the multiple-window model

will be addressed. This will help to clarify points | and 2. Then, points 3 and 4 will be

discussed.

The noisy representation of intensities in the auditory system that underlies the

observedintensity discrimination thresholdsis formed as the sumof external and internal

variance. The external variance is mediated by the external background noise added to
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the signal in the experimental procedure. The internal variance is introduced in the

auditory system itself, for example resulting from the variance in the neural coding

process. If the signal-to-external-noiseratio is not too low, the internal noise dominates

intensity discrimination performance. Following Weber's Law it is assumed that the

variance dueto internal noise is proportional to the signal energy. Thus the signal-to-

internal-noiseratio is independentofthe excitation level. Therefore, when the energy of

the signalis distributed over several windowsrather than concentrated within a single

window,the “quality” within each individual window in terms of signal-to-internal noise

ratio does not change. Asa result, the combination of several windowswill yielda better

performance,for the internal noise is independent between windows. This formsthe basis

for the improvementpredicted by the multiple-window model. These predictions are

consistent with the results found at 10 and 20 dB SL. D

However, at very low signal-to-external noise ratios the external noise dominates.

Thusto clarify point 1 (masked detection thresholds) and point 2 [jnd(/) at 0 dB SL], the

role of the external noise needs to be discussed. Contrary to the internal noise, the

external noise in each window is signal #dependent. Therefore, when the energy of the

signal is distributed over several f-t windows, the signal-to-external-noise ratio in each

windowdecreases. This poorer quality in each individual windowis counterbalanced by

the combination of the information across several windows. The neteffect is a constant

threshold as a function of the numberof f-t windowsfor the optimum detector. Thus the

explanation for the constant masked thresholds (point 1) and the constant jnd(/) at 0 dB

SL (point2) is a trade off betweenthe increase in the number of f-t windows covered by

the signal and the decrease in the signal-to-external-noise ratio in each individual

window. This might imply that masked detection thresholds cannot be used to assess the

shape of the auditory f-t window.

Thethird point to be addressed is the observed increase in jnd(/) when the sensation

level is increased from 0 to 10 dB. We believe that this is due to a two-stage strategy

listeners will use in an intensity discrimination task at 0 dB SL: a detection stage followed

by adiscrimination stage. AtO dB SLnotall stimuli are detectable; the stimulus with the

incremented amplitude has a higher probability of being detected. Detecting a stimulus

in a particular interval is a one-interval process; discriminating among the stimuli is a

three-interval process. Thus due to the difference in memoryload (Durlach and Braida,

1969), assumingthatlisteners benefit from the detection cue at 0 dB SL seems reasonable



26 Chapter 2: Discrimination ofGaussian tones

(see also the Appendix). As a result jnd(/) is smaller at 0 dB SL than at 10 dB SL.

Because moststudies regarding jnd(/) as a function of level report a decreasing jnd(/) as

a function of level, our results, the increase in jnd(/) when the sensation level increases

from 0 to 10 dB, might seem little unexpected. However, in most studies (see, e.g.,

Jesteadt et al., 1977, Florentine, 1983; Florentine e7 a/., 1987, Ozimek and Zwislocki,

1996) the lowest sensation level at which the jnd(/) is measured is 5 or 10 dB SL; Atthis

level the effect of the detection strategy has probably disappeared. The only study known

by the authors that measured the jnd(/) at 0 dB SL was a study by Hannaef a/. (1986).

Unfortunately, their results can neither confirm nor disprove ourresults.

Regarding the last point (i-e., 4), spread of excitation is important. In the spectral

domain, it is well known that spread of excitation, i.c., the growth of the excitation

pattern with increasing level, occurs. As a result, jnd(/) is independent of bandwidth at

high sensation levels. This effect was found by, for instance, Buus (1990) and is also

accounted for by the multiband excitation-pattern model (Florentine and Buus, 1981;

Buus and Florentine, 1994). In the multiple-window approach, spread of excitation is

anticipated both in the temporal and in the spectral domain: The higher the sensation

level, the larger the area on the f-t plane excited by the signal. Therefore, at 30 dB SL,

probably even for the critical shape factor the internal signal representation may already

cover many elementary f-t windows. This may explain why jnd(/) becomes independent

of the shape factorat higherlevels.

To substantiate the qualitative arguments of the multiple-window idea, and the role

of external and internal noise as described in the preceding paragraphs, a simple detection

and discrimination model was developed. We refer to the Appendix for a description of

the model. The aim of the modelis to simulate the trends observed in the data: the

dependenceof the discrimination threshold on the shape factor at 10 dB SL, whereasat

Q dB SL the discrimination threshold is a constant as a function of shape factor; the

constant detection threshold as a function of shape factor; the slight increase in jnd(/) at

a shape factor of 0.3 when the sensation level increases from 0 to 10 dB SL. The

simulated trends (see the Appendix) agree with the observed trends in the data.

The results of this study point to an auditory f-t window with a constant relative

bandwidth and a duration inversely related to frequency: at low frequencies the spectral

width of the f-t windowsis small and the duration long, whereas at high frequencies the

spectral width of the f-t windowsis broad and the duration short. This perceptually



The effect of intensity perturbations on

speech intelligibility for normal-hearing

and hearing-impaired listeners

Hearing-impaired listeners are known to suffer from reduced speech

intelligibility in noise, even if sounds are above their hearing thresholds.

This study examined the possible contribution of reduced acuity of

intensity coding to this problem. The “‘distortion-sensitivity model” was

used: the effect of reduced acuity of auditory intensity coding on

intelligibility was mimickedbyanartificial distortion of the speech

intensity coding, and the sensitivity to this distortion for hearing-

impaired listeners was compared with that for normal-hearing listeners.

Stimuli (speech plus noise) were wavelet coded using a Gaussian

wavelet (1/4 octave bandwidth). The intensity coding was distorted by

multiplying the modulus of each wavelet coefficient by a random factor.

Speech-reception thresholds (SRTs) were measured for various degrees

of intensity perturbation. Hearing-impairedlisteners wereclassified as

suffering from suprathreshold deficits if intelligibility of undistorted

speech was worse than predicted from audibility by the Speech

Intelligibility Index model (ANSI, 1997). Hearing-impaired listeners

without suprathreshold deficits were as sensitive to the intensity

distortion as the normal-hearing listeners. Hearing-impaired listeners

with suprathreshold deficits appeared to be less sensitive. Results

indicate that reduced acuity of auditory intensity coding may bea factor

underlying reduced speechintelligibility for the hearing impaired.

Submiited to the Journal ofthe Acoustical Society ofAmerica
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at 10 dB SL will be simulated. In the simulation this translates into the dependenceof the

discrimination threshold on the number of elementaryf-t windows coveredby the signal.

Then, analogous to the points addressed in Sec. 2-III, the following trends will be

simulated: (1) the detection threshold as a function of the numberoff-t windows covered

by the signal; (2) the discrimination threshold as a function of the number of windowsat

0 dB SL; (3) for one f-t window, the discrimination threshold at 0 and 10 dB SL.

In the simulations the 3AFC two-down one-up adaptive procedure (see Sec. 2.IC) is

adopted: in each trial three intervals are presented; a decision algorithm decides which

interval contains the signal in case of detection or the incremented signal in case of

discrimination. Thus in the model a human observer is mimicked and the simulated

thresholds can be compared directly to the experimental data.

All signals have total energy E. If a signal covers just one f-t window of the auditory

system, this f-t window containsthe total energy E.If a signal extends over a numberof

N f-t windows, the N f-t windows contain each 1/N part of E. In Table 2.1 a rough

estimate of the number of f-t windows corresponding to the stimuli used in the

experiments can be found. This estimate is based on an f-t window with a shape factor

of 0.23 (about the “critical” shape factor), corresponding to a Gaussian-windowed

stimulus with a bandwidth of 1/3 octave. The external noise that enters each f-t window

is modeled as Gaussian noise with spectral density No. This noise having a random phase

and an amplitude taken from a Rayleigh distribution is added to the signal. In the model,

the external noise of the different f-t windows is assumed to be uncorrelated.

A. Detection

In the simulated detection experiments, one interval contains the signal plus external

noise and the other two contain only external noise. In Fig. 2.Ala a scheme of the

detection modelis plotted. If the signal covers more than one f-t window (in case of small

and large shape factors), the energy of the signal within an interval is divided over the

proper numberoff-t windows.In a detection task where stimuli are not always audible,

assuming that the auditory system is unable to focus exactly on the f-t windows covered

by the signal seems reasonable. Therefore, 50 f-t windowsare considered forall shape

factors, comparable to, for example, an integration time of 200 ms (50 times 4 ms). On

this internal auditory representation, detection decisions are based. Detection performance
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FIG. 2.Al. A schematic representation of the detection (a) and discrimination (b) model.
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is limited by the external noise No and the total number of f-t windows (set at 50)

considered.‘ This classical decision algorithm “picks out” the interval containing the

highest sum ofthe internal representation of stimulus level of the f-t windows.

B. Discrimination

In the simulated discrimination experiments, two intervals contain the reference signal

and oneinterval contains the signal with the incremented amplitude. In Fig. 2.Alb a

schemeofthe discrimination modelis plotted. In some of our experimental conditions the

stimuli are very close to the detection threshold (0 or 10 dB SL), and as a result the

stimuli are not always audible. Therefore, the decision strategy for the discrimination

experiment is divided into two stages: a detection stage followed by a discrimination

stage. In the detection stage the decision is made whetherthe signal is audible or not.

Only, if an interval contains an audible signal, this is forwarded to the discrimination

stage. Finally, the decision has to be made which of the audible stimuli is the one with

the incremented amplitude. This two-stage approach agreed with the experience ofthe

listeners at low sensation levels in the discrimination experiment: the listeners’ strategy

wasto select only between audible stimuli. According to the listeners’ experience, the

decision strategy in the simulations was as follows: If two orall of the stimuli were

audible, the interval containing the highest sum of the internal representation of stimulus

level over the f-t windows was chosen;if only one interval contained an audible signal,

this interval was chosen; if none of the stimuli was audible, randomly oneof the three

intervals was picked.

In the detection stage, audibility of the signal is defined with respect to the energy

distribution of the external noise. In the model, a signal in noise is audible (detectable)

if the sum of the internal representation is higher than B. The constant B is chosen such

that the probability that noise alone will have a total energy higher than B is 1%e. As in

the detection simulations, in the detection stage the total of 50 f-t windowsts considered.

 

* The fact that the total energy of 50 windowswasconsideredfor all stimuli is an essential

part of the detection model, and will affect the detection threshold as a function of the number of

f-t windows.
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In the discrimination stage where the signal is always audible, assuming that the

listener can focus exactly on the f-t windows covered by the signal seems reasonable.

Therefore, only the f-t windows containing the signal are considered. “Coding” noise is

added to the internal representation. From theliterature (see, e.g., Buus and Florentine,

1991) it is knownthat, in discrimination tasks, the sensitivity d’ is roughly proportional

to the difference limenin intensity: d’=/*log,,((E+AL)/E) . Therefore, the variance of

the internal “coding” noise component in the discrimination stage was taken to be

proportional to the energy of the signal (constant variance in dB, Weber’s Law): The

noise was taken from a Gaussiandistribution with a standard deviation o. Consideringthe

range of the jnd(/) ofour results, o = 4 dB wastaken as a reasonable value. ‘The internal

noise is uncorrelated across the f-t windows[see Durlach e7 al. (1986)].

C. Results of the simulations

The simulated discrimination threshold as a function of the shape factor at 10 dB SL is

plotted in Fig. 2.42. On the top axis of Fig. 2.A2 the numberof f-t windowsused to

simulate the different shape factors is shown. The shape factors and the corresponding

estimate of the numberoff-t windowscan also be found in Table 2.1. At 10 dB SL, jnd(/)

has a maximum forthe critical shape factor or, alternatively, for one f-t window.jnd(/)

decreases for smaller and larger shape factors, or, alternatively, as the numberoff-t
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windows increases. These trends are also observed in the data (see Figs. 2.2, 2.3, and

2.4).

The simulated detection threshold as a function of the numberoff-t windowscovered

by the signalis plotted in Fig. 2.A3a. The figure showsthat the detection threshold E/N,

is independent of the number of f-t windows. In Fig. 2.A3b, the mean of the informal

detection threshold data at 1 kHz is plotted as a function of shape factor. The data are

expressed in decibels re: an arbitrary reference. The data show slight increase in the

detection threshold as the shape factor and, as a result, the bandwidth increases. This

trend was also observed by Van den Brink and Houtgast (1990) for signals with constant

spectro-temporal area. Because no maximum (nor minimum) can be observedin ourdata,

it is concludedthat, essentially, the detection threshold does not depend on the number

of f-t windows covered by the signal. Experimentally observed and simulated trends
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The simulated discrimination threshold as a function of the shape factor at 0 dB SL

is shownin Fig. 2.44. On thetop axis ofthe figure the number of f-t windows usedto

simulate the different shape factors is shown. Please see also Table 2.1. The jnd(/) at 0

dB SL. does not depend onthe shapefactor, or, alternatively, the numberoff-t windows.

The simulated trends agree with the data (see Fig. 2.2). Comparing Fig. 2.A2 (10 dB SL)

and Fig. 2.A4 (0 dB SL), it can be seen that for the “critical” shape factor (or one f-t

window)the jnd(/) increases with about | dB when the sensation level increases from 0

to 10 dB SL. This trend was also observed in the data (see Fig. 2.2).
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Wavelet analysis

Since wavelet analysis plays an important role in this thesis, a short

explanation about this joint time-frequency analysis will be given in this

chapter. The similarities between wavelet analysis and auditory analysis

will be addressed. This chapter will go into the basic parameters of the

wavelet tool that will be used in the following chapters.

INTRODUCTION

In this thesis, wavelet codingis used as a tool for studying the auditory system. Different

perspectives with respectto this topic are possible. Since this thesis deals with acoustic

signals, a sound processing point of view will be taken. Then, wavelet analysis can be

considered an analysis in which both temporal and spectral information ofthe signal are

obtained, just as in auditory sound analysis. In this chapter, some general aspects of

wavelet analysis will be explained. Also, the differences between wavelet analysis and

short-time Fourier analysis will be discussed (Sec. 3.II). We will focus on the similarities

between auditory analysis and wavelet analysis, and on how the parameters of the

wavelet analysis can be tailored to the auditory system (Sec. 3.IJI). The result is a

perceptually relevant sound coding, that will be called auditory wavelet coding (Sec.

3.V). This auditory wavelet coding will be used as a front-end signal processing tool to
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study the auditory system in Chapters 4 and 5. Whennoreferencesare given,the text of

this chapter is based on Rioul and Vetterli (1991), Vetterli and Kovacevic (1995), and

Strang and Nguyen (1996).

I. BASICS OF WAVELET ANALYSIS

A. Wavelets

As the name suggests, wavelet analysis is an expansion by means of wavelets. Wavelets

are little waves. In Fig. 3.la, an example of a waveletis shown. Wavelets are oscillatory

and decay to zero quickly. In acoustics, a wavelet is equivalent to a time-frequency

window.It is localized in time and in frequency and does not have a DC component. All

wavelets in a particular wavelet analysis are based on a fundamental prototype analysis

function, i.e., the mother wavelet. Many different mother wavelets are possible, a

constraint beingthat they shouldintegrate to zero. Different wavelets within one analysis

schemeare scales and shifts of this mother wavelet oy:

1 tty .
Oh? aeR ’ LER Gs. 1)

a

in which a is the scaling parameter, f, is the shifting parameter, and 1//a normalizes the

energy of the wavelets.

In Fig. 3.1, examplesof scales and shifts of the mother wavelet are shown. Scaling is

compressionorstretching in time of the mother wavelet (Fig. 3.1b). The smaller the scale,

the more compressed the wavelet. Byscaling, wavelets with different positions along the

spectral axis are obtained. [In the example of Fig. 3.1, the carrier frequency /, of the

wavelet is inversely proportional to the scale («1/a).] Scaling also affects the temporal

and spectral width of the wavelet. This aspect will be discussed in the next section. For

all wavelets, the numberof oscillations within the temporal envelope is constant. By a

shift of the mother wavelet, a wavelet with a different position along the temporal axis

is obtained (Fig. 3.1c). Thus, by scales and shifts of the mother wavelet the whole time-

frequency range can be spanned.
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B. Scale

Several times, the term ‘scale’ was mentioned. Scale plays a central role in wavelet

analysis. Signals are analyzed at different scales obtained by compression or stretching

of the mother wavelet. By compression, a wavelet at a small scale is obtained. This

contracted wavelet can be used to analyze detailed aspects, i-e., the high frequencies,in

a signal. It is very localized in time, but less localized in frequency. Thus, at higher

frequencies, the spectral resolution of wavelet analysis is reduced, but the temporal

resolution is increased. By stretching the mother wavelet, a wavelet at a large scale is

constructed. This wavelet has a long duration and can be used to analyze long-term

trends, i.e., the low frequencies, ina signal. This wavelet is not so muchlocalizedin time,

but very localized in frequency. Thus, at lower frequencies, spectral resolution is good,

but temporal resolution is poor.

——«fl\»——

—«llllve— Wwe
a) example of mother wavelet b) scales: different positions along the frequency axis

=e—— =o
c) shifts: different positions along the time axis

FIG. 3.1. Wavelets



40 Chapter 3: Wavelet analysis

In summary, wavelet analysis uses short windows at high frequencies and long

windowsat low frequencies. Asa result, for increasing frequencies temporal resolution

gets better, but spectral resolution gets poorer. The spectral resolution of a wavelet

analysis is inversely proportional to the scale; it is proportional to the carrier frequency

of the wavelets. Therefore, wavelet analysis has a constant relative spectral resolution.

The zooming-in property, to analyze according to scale, is fundamental to wavelet

analysis.

C. Uncertainty principle

Important characteristics of a time-frequency analysis are its temporal and spectral

resolution. The uncertainty principlestates thatit is not possible to get an arbitrarily good

resolution both in time and in frequency (see Landau and Polak, 1964). Maximum

spectral resolution is obtained by long-term Fourier analysis, but then, no temporal

information is available. Maximumtemporalresolution is provided by the time signal

itself, but then, no spectral information is available. By application of a time-frequency

window both temporal andspectral information of the signal can be obtained. However,

a bound exists on the maximum joint resolution in time and frequency. The product of

temporal and spectral width of an analysis window cannotbe smaller than this bound,the

uncertainty limit. This limit is attained by the Gaussian window. The productof the

effective duration (Gabor, 1947) and effective bandwidth of the Gaussian window equals

1. Thus, when using another analysis window than the Gaussian window,the combined

time-frequency resolution of the analysis will be worse than this lower bound.

In wavelet analysis, the joint time-frequency resolution is determined by the mother

wavelet, that will be discussed in detail later in this chapter. As already mentioned,

scaling the mother waveletaffects the time-frequencyshape of the resulting wavelet: for

increasing frequencies, good spectral resolution is traded off for good temporal

resolution. However,the product ofbandwidth and duration is constant and alwayslarger

than or equal to the uncertainty limit.
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D. Scalogram

The scalogram is the time-frequency representationofthe energy of a signal analyzed by

means of wavelets (Rioul and Flandrin, 1992). It is similar to the spectrogram ofthe

short-time Fourier transform (to be discussed in the next section). A wavelet expansion

results in wavelet coefficients. A wavelet coefficient has a modulus and a phase. It

correspondsto a specific wavelet in the expansion. The square of the modulus of the

coefficient represents the energy of the signal at a particular time and frequency.In Fig.

3.3b, an example ofa scalogramis plotted. Presented is the energy distribution overtime

and frequency of a signal consisting of a sinusoid addedto a spike. The scalogram is

shaded proportionally to the energy. The time-frequency plane is covered by so-called

time-frequency tiles. The term time-frequency tile of a particular wavelet is used to

designate the time-frequency position and width of that analysis function (Herley e7 a/.,

1993). In the scalogram,thetiles are symbolizedbyrectangles. In Fig. 3.2 amorerealistic

representation of an elementary tile correspondingto a Gaussian wavelet is shown. The

tiles of the scalogram represent the time-frequency shape of the analyzing wavelets,

expressing the temporal and spectral resolution. As can be observed in Fig. 3.3b, the

spectral resolution is not constantnoris the temporal resolution. However,the area, ie.,

the product of temporal and spectral width of the wavelets, is constant.

 

FIG. 3.2. An elementary tile corresponding to a Gaussian wavelet.
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Il. THE WAVELET TRANSFORM VS. THE SHORT-TIME

FOURIER TRANSFORM

Classically, the short-time Fourier transform is used for time-frequency analyses. The

wavelet transform has recently gained interest as an analysis tool for acoustic signals. The

short-time Fourier transform is a Fourier transform on short-time segments of a signal.

First, the signal is windowed using a fixed temporal window. Then, each sound segment

is transformed to the Fourier domain using a basis of sines and cosines. The spread ofthe

energy over time and frequency is represented in a spectrogram.

Just like the wayelet transform, the short-time Fourier transform is a joint time-

frequency analysis, but the analysis windowsofthe short-time Fourier transform and the

wavelet transform are very different. In Fig. 3.3 this is illustrated by a schematic

representation of a scalogram and a spectrogram. In a wavelet analysis, different

frequencies are obtained by scaling ofthe mother wavelet. By compression, the envelopes

of the wavelets are narrowed for higher frequencies. The numberof oscillations under a

windowis constant. The short-time Fourier transform uses analysis functions of constant

duration. As a result, for higher frequencies, an increasing numberof oscillations are

present under the envelope. In a short-time Fourier transform, spectral information is

analyzed bysines and cosines windowedbya fixed temporal window.As a result, the

spectral resolution of the short-time Fourier transform is independent of time and

frequency. For the wavelet transform, spectral information is analyzed by scales of the

mother wavelets. As a result, spectral resolution is proportional to frequency; it is

constant on a logarithmic frequencyaxis.

Auditory coding is a time-frequency coding with a spectral resolution roughly

proportional to frequency (Scharf, 1970). Wavelet coding has this same property.

Moreover,the results of Chapter 2 show thattheinitial stages of the auditory system have

wavelet-like characteristics: the spectral width of the peripheral auditory window

increases for higher frequencies, whereas temporal width appears to decrease. Therefore,

wavelet analysis provides an interesting alternative to the short-time Fourier Transform

to model and understand time-frequency coding ofthe auditory periphery.



IL. The wavelet transform vs. the short-time Fourier transform 43

 

 

 

—
»

fr
eq

[H
z]

N

N
S

 

v \ \sinus WM —w\\\/\Ww—
         

cick

=~

—> time [s] qd

 

            iyRZZ —~v\\\\/\\Wwer

—
>

fr
eg

[H
z]

Q
e

               
 

VfLLLL) = Signal
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panel(b) the result of a wavelet analysis (scalogram)is plotted. On the nightside ofthe figures,

examples af the corresponding analysis windowsofthe short-time Fourier analysis and wavelet

analysis are shown.
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Ill. IMPORTANT PARAMETERS OF WAVELET CODING

Wavelet coding has two important parameters: (A) the mother wavelet, and (B) the time-

frequencytiling. Both will be explained in this section. These parameters can be used to

design a wavelet analysis algorithm.

A. The mother wavelet

The mother wavelet plays an importantrole in wavelet coding.It is the prototype analysis

function from whichall wavelets in a particular wavelet analysis are derived by scales

and shifts. Unlike Fourier analysis, which is based on sines and cosines, wavelet analysis

can use mother wavelets of arather wide functional form. A constraintis that they should

integrate to zero. This allows freedom in the choice of the mother wavelet. It can be

smooth, based on a simple mathematical expression, or based on a simple associated

filter. The mother wavelet can be made to fit or model a specific application or

phenomenon.

FIG. 3.4. Mother wavelets: (a) Haar wavelet; (b) Daubechies 7 wavelet; (c) Gaussian wavelet.
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An importantclass ofmother wavelets is that with compactsupportin time. Compact

support meansthat the mother waveletis zero outside a certain interval. Numerically, this

is an attractive quality. The Daubechies wavelets, named after their inventor, have

compact supportin time. Thefirst and most simple waveletoutof the class ofDaubechies

wavelets, i.c., Daubechies 1, was already knownlonger.It is also called the Haar wavelet

(see Fig. 3.4a). The Haar wavelet was named after Haar who,in 1910, was the first one

to construct a basis, not by sines and cosines, but by scales and shifts of this step

function. Having extremely compact supportthe Haar waveletis very localized in time,

but it is not well localized in frequency. Its spectrum has manylarge sidelobes. In Fig.

3.4b, the Daubechies 7 wavelet is shown. Daubechies wavelets with a higher number are

less localized in time, but better localized in frequency. The mother wavelet used in this

thesis, i.c., the Gaussian wavelet, does not have compact support in time, butit is

spectrally very smooth (Fig. 3.4c).

Different mother wavelets have different time-frequency shapes. This shape

determines the spectral and temporalresolution of the wavelet analysis. Therefore, the

choice of the mother wavelet has great impact on the display of the time-frequency

characteristics of the signal underinvestigation. As already mentioned, the uncertainty

principle puts a lower bound on the product of temporal and spectral resolution.

However, above this bound one is free to choose an adequate joint time-frequency

resolution.

As explained before, the periferal auditory time-frequency windowlooksa lotlike

that of a wavelet. The question remains what mother wavelet most closely resemblesthe

auditory time-frequency window. Theresults of Chapter 2 suggest that a Gaussian-

windowed sinusoid with a shape factor between 0.15 and 0.3 roughly matches the

auditory time-frequency window. Thus, a Gaussian mother wavelet may be a reasonable

choice for a wavelet codingthatis similar to peripheral auditory coding. The Gaussian

wavelet is a complex sinusoidal carrier with a Gaussian envelope.It is described by

si) = of, expl2mfyt-t,)) exp(—mlafy(t-1)))) (3.2)

in which /, is the carrier frequency, a is the shape factor, and jaf, normalizes the

energy of the analysis function. As shown in equation 3.1, wavelets are constructed by

scales and shifts of this mother wavelet. Since fj is inversely proportional to scale,

different scales are obtained by varyingfy. Different shifts are obtained by varying /,. This
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frequency-time window hasan effective bandwidth of A=af, and an effective duration

of A=1/(af,) (Gabor, 1947). A numerical drawbackofthe Gaussian mother waveletis that

it does not have compact support’ in time. However, its fundamental advantage is

smoothness both in time and in frequency. In contrast to many other mother wavelets, it

does not have spectral sidelobes. Its bandwidth and duration can be adjustedto fit the

bandwidth and duration of the auditory time-frequency window.

Another option would be to use an asymmetric time-frequency window, because the

auditory time-frequency window is probably not symmetrical (see, e.g., Irino and

Patterson, 1996). For example, the asymmetric gammatone may provide a better

approximation of the auditory time-frequency window than the symmetric Gaussian

wavelet (Irino and Patterson, 1997). A drawback of the gammatone is that it is

numericallyless efficient than the Gaussian wavelet, because one side of the gammatone

envelope decays more slowly than the other one. An appealing property of the Gaussian

waveletis its similarity in time and frequency. Moreover,it satisfies minimal uncertainty

in the joint time-frequency representation. Since the Gaussian wavelet can be considered

a first order approximation of the gammatone and to keep computations simple, inthis

thesis, a Gaussian mother wavelet was chosen for auditory wavelet coding. In Chapters

4 and 5,the effective bandwidth of the Gaussian waveletis set to 4 octave [roughly equal

to the auditory critical band (Scharf, 1970)]. This corresponds with a shape factor a of

0.1735. As a result, the effective duration of the frequency-time window is 5.76 msat|

kHz (1.44 msat 4 kHz). The effective numberof sinusoidal periods within the Gaussian

envelope equals 5.8 (i.e., 1/a).

B. Time-frequencytiling

The scalogram of Fig. 3.3b showedthat the time-frequency planeis coveredbytiles, i.e.,

time-frequency windows. The time-frequencytiling is related to the sampling in time and

frequency of a wavelet expansion, becauseit indicates where wavelets are localized in

time and frequency (Herley e/al., 1993). Adequate sampling is important for two reasons.

First, in undersampled time-frequency representations notall information ofthe signal

is available. After wavelet coding, a signal can be reconstructed by a linear combination

 

'A function f(t) has compact supportifit is zero outside the interval 7,<f<7)+AT.
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of the wavelets, where each wavelet is multiplied by its coefficient (overlap-add

procedure). However, undersampled wavelet expansions may lead to far from perfect

reconstructions. The second reasonis that modifications to undersampled time-frequency

representations of sound are affected by the shape ofthe time-frequency window (Allen

and Rabiner, 1977). Interactions between window shape and modification will lead to

unwanted byproducts.In this section, different time-frequencytilings will be discussed.

® Continuous wavelet analysis

The continuous wavelet analysis is a continuoustime-frequency representation: a wavelet

coefficient is calculated at every scale and time. Thus, information is available for all

times and frequencies. For the continuous wavelet analysis, the sampling density is

(theoretically) infinite. As aresult, the continuous wavelet analysis is very redundant, and

calculation is very time-consuming. Often, it is possible to sample the continuoustime-

frequency representation and still have essentiallyall informationavailable, thus being

able to reconstruct the original signal. The analysisis still performed in the continuous

domain,butit is discrete in the sense that informationis available at discrete points in the

time-frequency plane. In Chapters 4 and 5 a samplingofthe continuous time-frequency

plane is used. For adequate sampling in time and frequency, the Nyquist sampling

theorem can be used (Allen, 1977; Allen and Rabiner, 1977). For simultaneous time-

frequency sampling the Nyquist sampling theorem is applied twice. The sampling interval

is based on the temporal and spectral range over which the wayelets are essentially

different from zero, meaning that the parts outside this range can be neglected.

® Discrete wavelet analysis

The continuous wavelet analysis, whether sampledornot, is performedin the continuous

time domain.In contrast, the discrete wavelet analysis is performed in the discrete time

domain. Like for the sampled continuous wavelet analysis, this results in informationat

discrete points in frequency and time. However,the calculation ofthe discrete wavelet

analysis is very different from the calculation of the continuous wavelet transform. The

discrete wavelet analysis is calculated by means of successive application ofa highpass

and a lowpassfilter, followed by downsampling bya factor2. In Pig. 3.5a, such a cascade

algorithm is shown. The corresponding scalogram (Fig. 3.3b) showsthat for eachstep,

the lowerfrequency rangeis divided in 2. This operation improvesthe spectral resolution
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of the lower frequencies. The result is an octave analysis. For each step j (/: integer),

going toward lowerfrequencies, the scale gets a factor of 2 larger. Thus, this operation

corresponds to wavelets with scale factor 2!. However, due to the downsampling

operation, the temporal resolution gets a factor of 2 worse in each step. Thus, the

temporal shift 7, is equal to ke?! (k: integer), in which k is a counter to cover the whole

time range. All informationofthe signalis available in the resulting wavelet coefficients;

the coding is not redundant. This is a very useful property for data compression. A

wavelet analysis with Daubechies wavelets can be calculated this way.
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FIG. 3.5. Cascade algorithm of (a) discrete wavelet transform; (b) example of

wavelet packet transform. HP: Highpassfilter; LP: Lowpassfilter; ! 2:

downsampling by factor 2.
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@ Wavelet packet analysis

If a spectral resolution of one octave is not good enough, a wavelet packet analysis can

be used. The wavelet packet analysis is based on the discrete wavelet analysis. However,

in a wavelet packet analysis not only the low-frequencypartof the signal is analyzed in

a cascadealgorithm, but also the high-frequency part (Fig. 3.5b). In this way, an arbitrary

frequencysplit can be obtained (see, e.g., Herley ef al., 1993). The price paidis that the

joint time-frequency resolution of a wavelet packet analysis is worse than of the discrete

wavelet analysis. The analysis functions of a wavelet packet analysis are usually not

smooth. Moreover, because of the different succession of highpass and lowpassfilters,

the resulting analysis functions are not equal to scales and shifts of a mother wavelet.

In this thesis, a Gaussian wavelet was chosen as a mother wavelet. The Gaussian

wavelet can only be used in a continuous wavelet transform. Therefore, the Nyquist

sampling theorem was usedto select an adequate tiling for the Gaussian wavelet. The

Gaussian wavelet does not have compact support in time nor in frequency. Therefore, the

range between the 25-dB downpoints was taken as the range over which the window is

significantly different from zero (about twice the effective duration and effective

bandwidth). This criterion leads to a sampling of one wavelet per three periods of the

wavelet carrier frequency along the time axis, and eight wavelets per octave along the

frequency axis. It should be noted that, using this time-frequency sampling, the

reconstructed signal will not be perfect, because only when the sampling density is

infinite, the difference between an original and a reconstructed signal will be zcro.

However, this sampling density was considered sufficient for its purpose: the difference

between original and reconstructed signals was very small and not noticeable to the

listeners.
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IV. APPLICATIONS

Thelast ten years, basic wavelet theory has been developed. Theterritoryof applications

is less explored. Wavelets can be used for many different applications, from solving

partial differential equations to the generation of musical tones. In this section, some

applications useful in acoustics will be described: (1) signal analysis, (2) data

compression, (3) noise reduction.

Thefirst application of wavelet analysis is in signal analysis. Since wavelet analysis

uses short-duration, high frequency wavelets, it is well suited for transient detection

(Mallat and Hwang, 1992). It has proven to be useful for high resolution seismic analysis.

Since wavelet analysis has important similarities with auditory time-frequency analysis,

wavelet analysis is also used to model auditory analysis (Yanget al., 1992; Evangelista,

1993; Irino and Kawahara, 1993; Agerkvist, 1994, Wang and Shamma, 1995; Agerkvist,

1996; this thesis).

Another important application of wavelet analysis is data compression. Using wavelet

analysis, it is possible to approximate data with sharp discontinuities by arelatively small

number of wavelet coefficients. Especially for image compression, sparse coding by

means of wavelet analysis is very successful. In 1993, the US Federal Bureau of

Investigation (FBI) adopted a wavelet standard for compression and storage of

fingerprints. The 30 millionsets of fingerprints are compressedata ratio of 26:1. Only

experts cantell the difference between an original and a compressed fingerprint. Wavelet

coding is also used for compression of acoustic signals (Benedetto and Teolis, 1993;

Sinha and Tewfik, 1993; Wannamaker and Vrscay, 1997).

A third application of wavelet analysis is the de-noising of noisy data. In a de-noising

algorithm, the wavelet coefficients are subjected to a nonlinear threshold operation. Ina

hard-thresholding operation,all coefficients with a modulusless than a certain value are

set to zero. In a soft-thresholding operation, coefficients with modulusless than a certain

value are attenuated. The idea is that coefficients with few energy probably do not

contain the important information ofthe signal, but noise. By making these zero or by

attenuation, this noise may be reduced. With respect to sounds, wavelet analysis has been

used for speech enhancement (Drake e7 a/., 1993; Pintér, 1996; Whitmal e/ a/., 1996;
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Nishimura ef a/., 1998). Another example of de-noising is the removalof scratch noise

in old recordings (Montresor ef al, 1990). Then, the zooming-in property of wavelet

analysis is successful in the detection of the scratches (edge detection).

V. AUDITORY WAVELET CODING

In this chapter, the similarities between wavelet coding and peripheral auditory coding

were discussed. By choosing a Gaussian mother wavelet with a bandwidth of % octave,

the joint time-frequency resolution ofthe wavelet coding was roughly matchedto that of

the auditory system. Given this mother wavelet, an adequate time-frequencytiling is eight

wavelets per octave along the frequency axis, and one wavelet every three periods along

the time axis. This wavelet coding can be seen as a perceptually relevant wavelet coding,

and is taken as a model of normal peripheral auditory coding.In the following chapters,

a distortion of the wavelet coding will be used to model distorted peripheral auditory

coding in hearing-impairedlisteners.

REFERENCES

Agerkvist, F. T. (1994). “Time-frequency analysis and auditory models,” doctoral

dissertation (ISSN 0105-3027), Technical University of Denmark, Denmark.

Agerkvist, F. T. (1996). “A time-frequency auditory model using wavelet packets,”J.

Audio Engineering Society 44, 37-50.

Allen, J. B. (1977). “Short term spectral analysis, synthesis, and modification by discrete

Fourier transform,’’ IEEE Trans. Acoust. Speech Signal Process. 25, 235-238.

Allen, J. B., and Rabiner, L. R. (1977). “A unified approach to short-time Fourier

analysis and synthesis,” Proc. of the IEEE 65, 1558-1564.



52, Chapter 3: Wavelet analysis

Benedetto, J. J., and Teolis, A. (1993). “A wavelet auditory model and data

compression,” Applied and computational harmonic analysis 1, 3-28.

Drake, L. A., Rutledge, J. C., and Cohen, J. (1993). “Wavelet analysis and recruitment

of loudness compensation,” TEEE Trans. Signal Processing 41, 3306-3312.

Evangelista, G. (1993). “Pitch-synchronous wavelet representation of speech and music

signals,” [EEE Trans. Signal Processing 41, 3313-3330.

Gabor, D. (1947). “Acoustical quanta and the theory of hearing,” Nature (London) 159,

591-594.

Herley, C., Kovacevié, J., Ramchandran, K., and Vetterli, M. (1993). “Tilings of the

time-frequency plane: construction of arbitrary orthogonal bases and fast tiling

algorithms,” IEEE Trans. Signal Processing 41, 3341-3359.

Irino, T., and Kawahara, H. (1993). “Signal reconstruction from modified auditory

wavelet transform,” IEFE Trans. on signal processing 41, 3549-3554.

Irino, T., and Patterson, R. D. (1996). “Temporal asymmetry in the auditory system,”J.

Acoust. Soc. Am. 99, 2316-2331.

Irino, T., and Patterson, R. D. (1997). “A time-domain, level-dependent auditory filter -

the gammachirp,” J. Acoust. Soc. Am. 101, 412-419.

Landau, H. J., and Pollak, H. O. (1961). “Prolate spheroidal wave functions, Fourier

analysis and uncertainty — II,” The Bell System Technical Journal 40, 65—84.

Mallat, S., and Hwang, W. L. (1992). “Singularity detection and processing with

wavelets,” IEEE Trans. on Information Theory, Special Issue on Wavelet Transforms

and Multiresolution Signal Analysis 38, 617-643.

Montresor, S., Valiere, J. C., Allard, J. F., and Baudry, M. (1990). “Therestoration of old

recordings by meansofdigital techniques,” A. E. S. Montreux, Preprint 2915 (G4).

Nishimura, R., Asano, F., Suzuki, Y., and Sone, T. (1998). “Speech enhancement using

spectral subtraction with wavelet transform,” Electronic and Communications in

Japan Part 3. Vol. 81, No. 1, 24-31.

Pintér, I. (1996). “Perceptual wavelet-representation of speech signals and its application

to speech enhancement,” Computer speech and language 10, 1-22.

Rioul, O., and Flandrin, P. (1992). “Time-scale energy distributions: A general class

extending wavelet transforms,” [EEE Trans. Signal Process. 40, 1746-1757.

Rioul, O., and Vetterli, M: (1991). “Wavelets and signal processing,” IEEE Signal Proc.

Mag. October, 14-38.



References 53

Scharf, B. (1970). “Critical bands,” in Foundations ofModern Auditory Theory, edited

by J. V. Tobias (Academic, New York), Vol. 1, pp. 157-202.

Sinha, D., and Tewfik, A. H. (1993). “Low bit rate transparent audio compression using

adapted wavelets,” IEEE Trans. on signal processing 41, 3463-3479.

Strang, G., and Nguyen,T. (1996). “Wavelets andfilter banks,” Wellesley-Cambridge

Press (Wellesley, USA).

Vetterli, M., and Kovaéevié, J. (1995). “Wavelets and subband coding,” Prentice Hall

(New York).

Wang, K., and Shamma,S. A. (1995). “Spectral shape analysis in the central auditory

system,” IEEE Trans. on Speech and Audio Processing 3, 382-395.

Wannamaker, R. A., and Vrscay, E. R. (1997). “Fractal wavelet compression of audio

signals,” J. Audio Eng. Soc. 45, 540-553.

Whitmal, N. A., Rutledge, J. C., and Cohen, J. (1996). “Reducing correlated noise in

digital hearing aids,’ IEEE Engineering in Medicine and Biology September/October,

88-96.

Yang, X., Wang, K., and Shamma,S.A. (1992). “Auditory representation of acoustic

signals,” IEEE Trans. on Information Theory 38, 824-839.



: oustteis ho. = oe | 'F -

/ wahbrctses! of
untae regentlgenwr i - ODAt 3 Tm. Sa" ; ‘eI ft sen ¥ thaltetin tell

ersus =e ee mul 1 ai Sey,f ify uw ee y Dae F Ga ete 2 of) deen’) Go perpen ihe ino! om SOW

PE ue cnet las A cremateant Ryn heed ATICUa

iFide = eA tare

T

atPariggee» cee any Tot. fe Lo yard
a 8 : ) =) ==. -1 -3oS ates," res i 1 ities : = a a

agit, le ar) 1 ya 7 BS ~ me Qj! om oe rhs A el Oo oe Ooeee OO et Bn
Wear, * 1 ohi

; "| rue tebe |shha pills deg 2 Ok,

inf a~ olga Sree’ yuna May EE YEE ae lg ses ith vale B dss oea
‘a gi :

r a 7 =m] ° i io marl a elles Sem “Tal fh en 2 k ne ite Pe!elFal" a= FT fay i 4

oo OD eeee abeee |

J Fw 2}
laut "A a-

y 4 SOB ited | is Ty res pent oly le eee ats i

wut 66» oe alerm‘oid a few? i i war

conRee i FF

Ak, Beal ee yw A | ere Fd Ryoe ase LATE ®

Rte el oPpee diem...ee

mypllige Etsl etn mW

=
.

  
a Lin_t

faeom0 Se ae gine yates «ce
chebit: wunieni mele WE eamps asi BAe Ie

OEeel ieeeeee ;

otdes Pio edles be prepay bes Tol = (| apul 7 al a0eg 1 {Pe d ih

—Eeee lecaee Suis "wait

ia ; :
a ye i | - oo OS - an : - -

- 7 = => =.= erietiiie beet egFE
BnBe2 Hdl baal ot - Oo OO 7 na!

some te wilateya:
Miadl

7a) jun f fuets aggtea oe Fr Ti lay

mre ‘te! =: : —chs Ae Mita" HY) Fo iy gg bn alaebe
T I - coterpeatet!“-"*s =a ail I ys oteoe Td tee ae ” =-; POT A ip outa

oe be tote See, Oe Pe ey : - “ 1a" a —
Warififs lorreeee 7 Oo

l oumat = —

taypureBl
were i| wr oe hthUe a me qarenueet 1 a] ul a | | ait a.

ighbly! 7 ‘ke Ht!a F ra 4” cormrpititstt hie ts) .- | yet:

east Yatle Pets eat ry pagal wed HaIPE Tyceucergsds By aan aE
F agemyee see i odlg_o De ty fa" te i “255.a, 4 iW tT A of dul

wh” ge qThem a! i mat um b | cmmak —— : a yupphys i 17

| ==, "a 4 _tl -. w ala = - 7 oe - i iz bin)eAAl

hy": got] | wet 7 - ee-ra- ss - ¢ 5 eS

wi p=, on af ah “ee 7 = - Ls peg * pe a Hn eas yu 3 ity 1 - = So



The effect of intensity perturbations on

speech intelligibility for normal-hearing

and hearing-impaired listeners

Hearing-impaired listeners are knownto suffer from reduced speech

intelligibility in noise, even if sounds are above their hearing thresholds.

This study examined the possible contribution of reduced acuity of

intensity coding to this problem. The “distortion-sensitivity model” was

used:the effect of reduced acuity of auditory intensity coding on

intelligibility was mimicked by an artificial distortion of the speech

intensity coding, and the sensitivity to this distortion for hearing-

impaired listeners was compared with that for normal-hearinglisteners.

Stimuli (speech plus noise) were wavelet coded using a Gaussian

wavelet (1/4 octave bandwidth). The intensity coding was distorted by

multiplying the modulus of each wavelet coefficient by a random factor.

Speech-reception thresholds (SRTs) were measured for various degrees

of intensity perturbation. Hearing-impaired listeners were classified as

suffering from suprathreshold deficits if intelligibility of undistorted

speech was worse than predicted from audibility by the Speech

Intelligibility Index model (ANSI, 1997). Hearing-impairedlisteners

without suprathreshold deficits were as sensitive to the intensity

distortion as the normal-hearing listeners. Hearing-impaired listeners

with suprathreshold deficits appeared to be less sensitive. Results

indicate that reduced acuity of auditory intensity coding may be a factor

underlying reduced speechintelligibility for the hearing impaired.

Submitted to the Journal ofthe Acoustical Society ofAmerica
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INTRODUCTION

Speech recognition (or intelligibility) in noisy environments is a problem for many

hearing-impaired listeners. This problem may result from inaudibility of part of the

speech spectrum. However, even if sounds are above hearing thresholds over the whole

frequency range, some hearing-impaired listeners still have problems perceiving speech

in noise. Their speech processing is not as good asthat of normal-hearing listeners due

to suprathreshold deficits (Moore, 1996; Noordhoek e7 a/., in press). Examples of

suprathreshold deficits are reduced spectral resolution (frequency selectivity), reduced

temporal resolution, impaired frequencydiscrimination, or impaired loudness perception.

This study examinesa deficit related to impaired loudness perception, i.c., reduced

intensity coding. Reduced intensity coding maybe thoughtofas a less accurate intensity

representation in the auditory periphery. This may be due, for example, to a loss of

auditorynervefibers, resulting ina more noisy intensity coding. Reduced intensity coding

may lead to higher just-noticeable differences (jnd’s) in intensity or less jnd’s. A few

studies suggest that intensity coding maybe disrupted for some listeners with cochlear

damage (Florentine e¢ a/., 1993; Buus ef a/., 1995; Moore, 1995). Reduced intensity

coding acuity is likely to affect speech intelligibility. However, the literature does not

report any attempts to relate intensity coding to speechintelligibility.

The main question in this study is whether poor auditory intensity codingis at least

partly responsible for the observed poor speech intelligibility in noise by hearing-

impaired listeners. This is examined by introducing anartificial distortion in the

intensities of speech. The distortion simulates the effect of reduced acuity of auditory

intensity coding on speech perception. Speech-receptionthresholds (SRTs)for various

degreesofthe applied artificial distortion are comparedfor normal-hearing andhearing-

impairedlisteners in orderto clarify the contribution of reduced auditory intensity coding

acuity to impaired speech intelligibility. This type of experiment may be called a

“distortion-sensitivity approach” (Houtgast, 1995).

Under the distortion-sensitivity model, a specific type of distortion is applied to

combined speech and noise stimulus. Intelligibility tests are administered in order to

determine whetherthe artificial distortion is or is not related to the suprathreshold deficit
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of hearing-impairedlisteners. Therefore,intelligibility is measured as a function of the

degree of the distortion, and sensitivity to the distortion is compared for normal-hearing

and hearing-impaired listeners. Fig. 4.1 is a schematic illustration of the possible

outcomes of such an experiment.

In the undistorted condition,using the original, unmodified speech, hearing-impaired

listeners usually recognize speech more poorly than normal-hearinglisteners. When

comparing speechintelligibility by normal-hearing and hearing-impaired listeners as a

function ofthe degreeofdistortion,essentially, two different trends may be hypothesized.

First, performanceofthe normal-hearing andhearing-impaired listeners converges (dotted

line). Second, performanceof the normal-hearing and hearing-impairedlisteners does not

converge (dashed line).

In the convergence case, the performance difference between normal-hearing and

hearing-impairedlisteners becomes smaller as a function of the distortion level. For high

levels of distortion, performance becomesessentially equal. Thus, hearing-impaired

listeners are less sensitive to the distortion than normal-hearinglisteners. In statistical

terms. this is an interaction betweenlistener groups and level of distortion or, stated

differently, between hearing deficit and distortion. In terms of interpretation, the effect

of the artificial distortion is smaller for hearing-impaired listeners because the hearing

deficit already affects the speech processing in a similar way. Thus,the specific type of

artificial distortion for which convergenceis observed, hints at the suprathreshold deficit

causing the speechintelligibility problems of the hearing impaired.
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In the no-convergence case, performance by normal-hearing and hearing-impaired

listeners does not come close together. Hearing-impaired listeners are just as sensitive to

distortion as normal-hearing listeners. This suggests that the effects of this type of

artificial distortion are not related to the suprathreshold hearing deficits causing impaired

speech intelligibility. It should be notedthat, as the type of suprathreshold hearing deficit

may be listener dependent, studying the results of individual listeners is important.

Thedistortion-sensitivity model canbeillustrated by a simple example. Let us assume

that a hearing-impaired listener suffers from a severe high-frequency hearing loss. The

appliedartificial distortion is lowpassfiltering of the speech signal. Speech intelligibility

is measured as a function of the cutoff frequency of the lowpassfilter. Lowpassfiltering

reduces the speechintelligibility. Compared with normal-hearinglisteners, the hearing-

impaired listener is less sensitive to the lowpass filtering. This is because the high

frequencies in the broadbandsignal are not perceived anyway. Convergence of the

performance of normal-hearing and hearing-impaired listeners suggests that lowpass

filtering relates to the problem experienced by the hearing-impaired listener, i.e., the

listener misses somepart of the high-frequency spectrum.

In this study, artificial distortion of the intensity coding tries to mimic poor auditory

intensity coding. To simulate poor intensity coding, a model of ‘normal’ auditory

intensity analysis is required. Auditory analysis is a spectro-temporal analysis. This is

modeled by wavelet decomposition. Wavelet analysis is used for mimicking auditory

time-frequency analysis because of its logarithmic frequencyscale (see,e.g., Rioul and

Vetterli, 1991). In Chapters 2 and 3 it was shown that auditory spectral and temporal

resolution are roughly matched by using a Gaussian-shaped mother wavelet(prototype

analysis function) with a bandwidth of 1/4 octave. Using this perceptually relevant time-

frequency analysis, specific manipulations of the wavelet coefficients may be used to

simulate specific changes in auditory coding. Therefore, a reduced acuity in auditory

intensity coding may be simulated by introducing random perturbationin the intensity of

the wavelet coefficients.

In summary, the aim of this study is to investigate if reduced speechintelligibility by

hearing-impaired listeners may be explained by reduced intensity coding. This question

is addressed by a “distortion-sensitivity model” in which anartificial distortion of the

intensities in a speech-plus-noise stimulus between wavelet decomposition and

recomposition is applied. Intelligibility is measured as a function of the degree of
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distortion, and the sensitivity of hearing-impaired and normal-hearing listeners iS

compared. Therationale behind the distortion-sensitivity model is that when a hearing-

impairedlisteneris less sensitive to the intensity distortion than normal-hearinglisteners

this may indicate that poor auditory intensity coding1s causing part of the speech

intelligibility problems.

I. METHOD

A. Distortion of wavelet coded intensities

In this study, intensity coding of soundis distorted to mimic the effects of poor auditory

intensity coding. By means of the Speech-reception threshold test (SRT; for an

explanation, see Sec. 4.1 D2), speech intelligibility of sentences is measured as a function

of the degree of applied artificial intensity distortion. In order to simulate auditory

intensity coding, a perceptually relevant spectro-temporal analysis method has been

developed.

To model auditory spectro-temporal coding, sounds were described in the time-

frequency domain by means of a wavelet transform. Compared with the short-time

Fourier transform, the wavelet transform matches auditory system coding more closely

because it uses a logarithmic frequency scale (e.g., Rioul and Vetterli, 1991). In this

study, the criterion for the choice of the mother waveletis its spectral (and temporal)

resolution. Results of Chapter 2 suggest that a Gaussian-windowedsinusoid with a shape

factor between 0.15 and 0.3 roughly matches the auditory time-frequency window.

Therefore, as the prototype analysis function, a complex sinusoidal carrier with a

Gaussian envelope was chosen. This Gaussian wavelet is described by

S(t) = yoo exp(i2n/o!) exp( -n(afot)”) 7 (4.1)

in which f, is the carrier frequency, a is the shape factor, and (oh normalizes the

energy ofthe analysis function. This time-frequency window has an effective bandwidth

of A=af, and an effective duration of A=1/(af,) (see Gabor, 1947). The shape factor o
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wasset to 0.1735. Thus, the effective bandwidth of the analysis function was 4 octave

[about the auditory critical band (see Scharf, 1970)]. As a result, the effective duration

of the time-frequency window is 5.76 ms at 1 kHz (1.44 ms at 4 kHz). The effective

number of sinusoidal periods contained within the Gaussian envelope equals 5.8 (i.e.,

1/q).

This Gaussian wavelet is used to construct a wavelet decomposition that covers the

time-frequencyplane. Shifts of this prototype function cover the temporal domain;scales

of the prototype function cover the spectral domain. The scaling is controlled by varying

the carrier frequency/. For simultaneous sampling in time and frequency the Nyquist

sampling theorem was used (see Allen, 1977; Allen and Rabiner, 1977). This theorem 1s

based on the bandwidth and duration of the analysis function. Because the Gaussian

wavelet does not have compact support’ in time norin frequency, the 25-dB downpoints

were taken as an estimate of the upperlimit of bandwidth and duration of the analysis

functions. This leads to a sampling of one wavelet per three periods of the wavelet carrier

frequency along the time axis, and eight wavelets per octave along the frequency axis.

Thetheoretical number of complex coefficients needed to describe the signal is about 2

per input sample (see Allen, 1977). In this study, the information of the signals was

limited to the frequency range from 250 to 4000 Hz. As a result, the number of

coefficients computed per input sample could be limited to about unity. Thus, one second

of speech (sampling frequency: 15625 Hz) was described by 16*10° complex wavelet

coefficients in which no information below 250 Hz and above 4 kHz was preserved.

Using these coefficients, sounds can be reconstructed by an overlap-add procedure.

Theoretically, the reconstructionis not perfect. However, using the above described time-

frequencytiling, differences between the original signal and the reconstructed signal are

very small and not noticeable to a listener.

After the wavelet analysis, the modulus of each wavelet coefficient was perturbed to

mimic the effect of a reduced accuracy in intensity coding. This was achieved by

multiplying each individual complex wavelet coefficient by a random factor. As a result,

silence will still be silence after perturbation. The random perturbation factor ¢ (in dB)

was chosen from a uniform distribution with zero mean and boundaries -Pmax and

+Pmax. Thus, the modulus of each individual coefficient was multiplied by a different

 

'A functionf/t) has compact support ifit is zero outside the interval 7)<t<7,+AT .
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randomfactor 10*”°. After perturbation, the energy contained in each frequency band over

the whole sentence was scaled to equalthe original energy in this band.

Theperturbationofthe intensity coding was applied to the combined speech and noise

signal. This probably simulates impaired auditory processing morerealistically than a

procedure in which speech andnoise are processed separately and then combined.

B. Subjects

Twenty-five sensorineurally hearing-impairedlisteners participated in the experiment.

Theywereall native Dutch speakers, aged 24 to 70 years with a mean age of 41 years.

Their intelligibility scores for monosyllabic words in quiet were at least 75% correct.

Thresholds in the better-hearing ears averaged over 0.5, 1, and 2 kHz (the pure-tone

average, or PTA) ranged from 7 to 58 dB HL, with a mean PTA of 38 dB HL. The pure-

tone, air-conduction thresholds in the better-hearing ears were at least 30 dB HL at one

or more frequencies between 250 and 4000 Hz.

Twenty-two normal-hearing listeners (aged 19 to 29 years with a mean age of 22

years) served as a control group. All were native Dutch speakers. Pure-tone air-

conduction thresholds of the normal-hearing listeners did not exceed 15 dB HL at any

octave frequency from 250 to 4000 Hz.

C. Stimuli and apparatus

Speech material consisted of lists of 13 everyday Dutch sentences of eight to nine

syllables read by a female or a male speaker (Plomp and Mimpen, 1979; Smoorenburg,

1992). The masking noise wasspectrally shaped for each speaker individually according

to the long-term average spectrum ofall sentences.

Signals were generated by TDT (Tucker Davis Technologies System I) hardware.

Stimuli were presented in the middle of the dynamic range ofeach listener by frequency

shaping using a programmable filter (TDT PF1). The stimuli were presented monaurally

through Sony MDR-V900 headphones. To avoid the risk of cross-hearing, the listener's

better-hearing ear wastested. For calibration, noise levels were measured on a Briiel &

Kjer type 4152 artificial ear with a flat-plate adapter. The entire experiment was
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controlled via a personal computer. Subjects were tested individually in a soundproof

room.

D. Procedures

First, the dynamic range ofeach listener was determined. Then, speechintelligibility was

measured, in which combined speech and noise were presented in the middle of the

dynamic range. These tests are described below. To familiarize the subjects with the

procedure, a training session preceded data collection. All conditions were measured

twice to determine test-retest reliability. An essential part of the distortion-sensitivity

modelis the comparisonofthe performanceofindividual hearing-impairedlisteners with

that of normal-hearinglisteners. Therefore,for all listeners, the same order of conditions

was used. In addition, a different but fixed sentence list was used in each condition.

® Dynamic Range

The dynamic range of each listener was estimated by measuring the hearing threshold and

the uncomfortable loudness level (UCL) for narrow bands of noise. The UCL was

corrected for broadband stimulation, as described below.

Thresholds and UCLs were measured with 1/3-octave noise bands with center

frequencies at 250, 500, 1000, 2000, and 4000 Hz. Hearing thresholds were measured

using a Békésy tracking procedure (300-msnoise bursts; repetition rate 2.5 Hz; step size

1 dB). The measurement was ended after eleven reversals. The averageofall butthefirst

reversal level was taken as the hearing threshold. Narrow-band UCLs were measured with

noise bursts presented increasing in level by 3 dB for each presentation (300 ms noise

burst; repetition rate 1.4 Hz). Listeners were asked to push a button whenthe noise bursts

became uncomfortably loud. Then, the level of the noise burst was immediately

diminished by arandom amount between 21 and 30 dB, and the ascending procedure was

repeated until six responses were obtained. The average of the levels at which the button

was pushed wastaken as the narrow-band UCL.

To correct the UCL for broadband stimulation, a 4-second broadband noise burst was

presented, spectrally shaped according to the narrow-band UCLsandstarting 40 dB

below the narrow-band UCLs. The level of the broadband noise burst was gradually

increased in steps of 5 dB. After each presentation the listener was asked whether the
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signal was experienced as uncomfortably loud. If this was the case, the corresponding

level was taken as the broadband UCL.

@ Speechintelligibility

Speech-reception thresholdin noisefor an adapted spectrum (SRTa)

The speech-reception threshold (SRT, Plomp and Mimpen, 1979) was used to measure

speechintelligibility. The SRT in noise is defined as the signal-to-noise ratio (SNR) at

which 50% of sentences are reproduced correctly. The speech level is varied in an

adaptive, up-down procedure with a step size of 2 dB. Speech andnoise are adapted to

fit in the dynamic rangeof individual listeners. The adapted speech-reception threshold

is called SRTa. In the SRTatests in this study, all stimuli were bandpassfiltered from 250

to 4000 Hz. The SRTa was measured asa functionof intensity perturbation.

The aim ofthis study is to assess the effect of a reduced auditory intensity coding

resulting from artificial perturbations of the intensity coding of the speech-plus-noise

stimulus. Because of the applied intensity perturbations, the auditory system is not

provided with accurate intensity information. However, the applied intensity

perturbations also introduce spectro-temporal fluctuations. To study the effects of

distorted intensity coding, it is important to ensure that spectro-temporal effects do not

dominate the speechintelligibility ofhearing-impaired listeners. Therefore,in the present

study speech intelligibility was measuredfor intensity perturbations that only slightly

affect performance. Preliminary data were collected to determinethe appropriate range

of intensity perturbations to apply.

The SRTa was measuredas a functionof the degree of intensity perturbation (0, 10,

20, 30, and 40 dB) for 10 normal-hearing listeners. Fig. 4.2 presents the results. Mean

data for the normal-hearing listeners are indicated by open symbols. Errorbars indicate

the standard error of the mean. A typical example of the performance of a hearing-

impairedlisteneris indicatedbyfilled symbols. For the normal-hearinglisteners at 10 dB,

the SRTa is slightly affected (difference with no perturbation: 1.3 dB). For more severe

perturbations, the SRTa increases almostlinearly with perturbation, ranging from -0.9 dB

when Pmax is 10 dB to 6.6 dB when Pmax is 40 dB. The hearing-impaired listener

appears to be hardly affected by the 10 dB intensity perturbation; the decrease in

performance compared with the reference condition (no perturbation) is only 0.3 dB.

However, for larger degrees ofintensity perturbations, speech intelligibility deteriorates
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more quickly than observedfor the normal-hearing listeners. Linear regression lines were

fitted through the SRTa data at 10, 20, 30, and 40 dB ofintensity perturbation. The slope

of the hearing-impaired listener was steeper than the 95-percent upper boundary of the

slopes of the normal-hearinglisteners.

These data suggest that severe degrees of intensity perturbation affected this hearing-

impaired listener more than the normal-hearing listeners. This may be explained by the

effect of the perturbations on loudness perception. Since the dynamic range of the

hearing-impaired listener was markedly smaller than that of the normal-hearinglisteners,

the same intensity perturbation did not result in the same loudness perturbation. This

hearing-impaired listener was probably subjected to higher degrees of loudness

perturbation than the normal-hearing listeners. Another cause may be the spectro-

temporal fluctuations introduced bytheartificial intensity distortion. These fluctuations

in the combined speech and noise may result in additional masking in the temporal

domain, i.c., forward and backward masking, and in the spectral domain, i.e., upward and

downward spread of masking. Hearing-impaired listeners are known to suffer from

excessive masking. [For review, see Moore (1995).] For large amounts of intensity

perturbations these unwanted spectro-temporal byproducts may even dominate the speech

intelligibility of hearing-impairedlisteners, causing performancesfor normal-hearing and

hearing-impaired listeners to diverge.
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To recapitulate, a small but consistent effect on speech intelligibility was observedfor

intensity perturbations of 10 dB. To avoidtherisk of spectro-temporal effects of the

intensity distortion algorithm, the range 0-10 dB was measured in the speech

intelligibility experiment. As a measureforthe sensitivity to the intensity distortion, the

SRTa at 10 dB minus the SRTa at 0 GBis used.

Speech-Reception Bandwidth Threshold (SRBT)

To classify the hearing-impaired listeners into a group “with” and “without”

suprathreshold deficits, the Speech-Reception Bandwidth Threshold (SRBT) was

measured. The SRBT is a measure ofspeech intelligibility introduced by Noordhoek et

al. (1999). The SRBT is highly sensitive for suprathreshold deficits, as is shown in a

recent study of Noordhoeket al. (in press).

The SRBTprocedureis similar to the SRT procedure, except that the bandwidth

(center frequency 1 kHz) of speech sounds is varied instead of their levels when

estimating the 50% intelligibility threshold. Complementary bandstop noise is added to

the bandpass-filtered speech. Both speech and noise are presented in the muddle of the

listener's dynamic range.

E. Speech intelligibility index

As a measure for the quality of speech processing, the SRTa and SRBT data were

converted to a SpeechIntelligibility Index. The Speech Intelligibility Index (SID (ANSI,

1997) is a physical measure of how much informationof the speech is available to the

listener. The SII model accounts for hearing threshold, self-masking in speech, upward

spread of masking and level distortion at high presentation levels. To calculate the SII,

speech spectra, noise spectra and hearing thresholds must be known. Therefore, sound

pressure levels of speech and noise (divided in 1/3-octave bands) were measured with the

headphonepositioned on a Briiel & Kjzr type 4152 artificial ear with a flat-plate coupler.

These levels were converted to equivalent free-field levels.
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If. RESULTS AND DISCUSSION

A. Suprathreshold deficits

In the speechintelligibility tests (SRTa and SRAT) sounds were spectrally shapedto fit

in the dynamic range of individual listeners. A comparison of the results for normal-

hearing and hearing-impaired listeners provides insight into the speechintelligibility

performanceofthe hearing impaired when soundsare presented abovehearing threshold.

For the normal-hearing listeners, the average SRTa was -2.1 dB (standard deviation

0.9 dB); for the hearing-impairedlisteners, the SRTa ranged from -2.0 dB to 6.8 dB, with

an average of 0.4 dB. The individual standarderror (test-retest) averaged overall listeners

was 1.1 dB.

For the normal-hearing listeners, the averageSRBT was 1.44 octave (standard

deviation 0.18 octave); for the hearing-impairedlisteners, the SRAT ranged from 1.25 to

3.49 octave, with an average of 1.94 octave. The individual standard error(test-retest)

averaged overall listeners was 0.16 octave.

The upperlimit of the one-tailed 95% confidence interval of the data for the normal-

hearing listeners was used to distinguish the hearing-impaired listeners with difficulty of

listening in noise. Relative to this boundary, the SRTa was elevated for 15 of the 25

hearing-impaired listeners; the SRBT was elevated for 13 of the 25 hearing-impaired

listeners. This indicates that a substantial numberofthe hearing-impaired listeners has

problems recognizing speech in noise, even if sounds are presented in the middle of the

dynamic range ofthe listeners.

Speechintelligibility problems may be due to suprathreshold deficits. However, other

possible explanationsare inaudibility ofpart of the speech spectrum (if the dynamic range

of a listener is very small) or high presentation levels causing extra upward spread of

masking andleveldistortion. Therefore, to investigate the effect of suprathreshold deficits

on speech intelligibility, individual SRTa and the SRBT data were convertedinto SII

units. An elevation of the S[]-values of a hearing-impaired listener compared with that of

the normal-hearing listeners indicates the presence of suprathreshold deficits. The higher

the SII, the more serious the speech processing deficits. Fig. 4.3 showsthe individual SII



II. Results and discussion

 

 

   
 

 

 

    

67

0.7 T T 0.7 r 17. r

wf -
0.6 F 0.6 F és

oo e ke
0.5 fF ve? 4 0.5 + e

A 4
= vB * p Se e
0.4 5 ale H 0.45 ee

ZoteP 0°
setts ‘*

O37 Y ° 5 0.3 F e

we
0.2 F 1 0.2 F

0.4 U+—_+_+_L.____.__ 0.1 : :
6 4 -2 #O 2 4 6 2 3 4

SRTa (250-4000 Hz) [dB SNR] SRBT[octaves]

FIG.4.3. Speech Intelligibility Index (SII) versus SRTa and SRBT for normal-hearing

listeners (open circles) and hearing-impairedlisteners(filled circles). Solid lines represent the

upper boundaries of the one-tailed 95% confidence intervals for normal-hearinglisteners.

Dashed lines represent the maximum SII whenthe audibility of the speechis not influenced

by the hearing threshold, upward spread of masking, and level distortion.

values of the SRTa and SRST test for the normal-hearing listeners (open circles) and the

hearing-impaired listeners (filled circles). The SII values are plotted as a function ofthe

individual results on the two speechintelligibility tests. The upper limit of the one-tailed

95% confidence interval of the SII’s of the normal-hearing listeners is chosen as the

boundary between normaland elevated SII. This is indicated by a horizontal solid line.

The boundary between normaland elevated SRTa or SRBT is indicated bya vertical solid

line. The dashedlines in Fig. 4.3 represent the maximum SII value whenthe audibility

of the speech is not influenced by the hearing threshold, upward spread of masking, and

level distortion. 10 of the 25 hearing-impaired listeners have a higher than normal SII-

SRTa and 11 have a higher than normal SII-SRAT; of the latter group. 7 also have a

higher than normal SII-SRTa. These results show that a substantial number of hearing-

impairedlisteners have speechintelligibility problems because of suprathresholddeficits.

In Sec. 4.]. B hearing-impaired listeners are divided into groups with and without

suprathreshold deficits.
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Therelation between the occurrence of suprathreshold deficits and hearing loss is

illustrated in Fig. 4.4. SII-SRBT and SIJ-SRTa for the hearing-impaired listeners are

plotted as a function of PTA. The horizontalline is the 95% confidencelimit of the SII’s

(SII-SRAT and SII-SRTa combined)for the normal-hearinglisteners. Figure 4.4 shows

no correlation between hearing loss and SII. This indicates that some hearing-impaired

listeners with only a mild hearing loss experienced hampered speech perception due to

suprathreshold deficits. In contrast, some hearing-impairedlisteners with a severe hearing

loss did not suffer from suprathreshold deficits. This finding agrees with the results of

Noordhoekef a/. (in press).

B. The distortion-sensitivity model

The distortion-sensitivity model compares speech intelligibility as a function of the

degree of distortion for normal-hearing and hearing-impaired listeners. The aim is to

determine whetherartificial distortion relates to a suprathreshold deficit causing impaired

speech perception. The hypotheses underlying this model were schematically illustrated

in Fig. 4.1. In Fig. 4.5 the results of this study are depicted.

The average results ofthe normal-hearing listeners are represented by the open circles.

The hearing-impaired listeners are divided into two groups: (1) without suprathreshold

deficits and (2) with suprathreshold deficits. The division is based on the SII-SRBT
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because the SII-SRBT is independent of the values plotted in Fig. 4.5 and, as was

mentioned in Sec. 4.1 D2, the SRAT test is highly sensitive to suprathreshold deficits.

This resulied in a group of 14 listeners without suprathreshold deficits, of which the

average SRTa-valuesare represented by downwardpointing triangles, and a group of11

listeners with suprathreshold deficits, of which the average scores are represented by

upward pointing triangles. Notall listeners were tested at 5 dB of intensity perturbation.

Data points in this condition are for 12 normal-hearing listeners, and for 5 hearing-

impairedlisteners with suprathreshold deficits and 8 without. The error bars represent the

standard error of the mean.

Compared with normal-hearing listeners, hearing-impaired listeners without

suprathreshold deficits show SRTa measures that are shifted upwards by 1 dB. No

convergence of the data is observed. A studentt-test with unequal variances comparing

the ‘sensitivity to the distortion’ (SRTa at 10 dB minus SRTaat 0 dB) of normal-hearing

and hearing-impaired listeners did not show significant convergence either. This group

of hearing-impairedlisteners is just as sensitive to the distortion as the normal-hearing

listeners.

FIG. 4.5. SRTa as a function of intensity

perturbation for normal-hearing listeners

(open circles) and hearing-impaired listeners.

Hearing-impaired listeners are divided into
 

a
o
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The performance of the hearing-impaired listeners with suprathreshold deficits does

converge toward the performanceof the normal-hearing listeners for increasing amounts

of perturbation. This implies that the hearing-impaired listeners with suprathreshold

deficits are less sensitive to the distortion than the normal-hearing listeners. A studentt-

test with unequal variances confirmed this (p<0.05).

Thus, the hearing-impaired listeners without suprathreshold deficits are as sensitive

to the intensity perturbations as the normal-hearing listeners. This is not surprising since

the SII model showsthat their speechintelligibility problems can be explained solely on

basis of audibility. Their suprathreshold speech processing is as good as that of normal-

hearing listeners. However, the hearing-impairedlisteners with suprathresholddeficits are

less sensitive to the intensity distortion. As already mentioned in Sec. 4.] D2, the same

degreeof intensity perturbation will result in a larger degree of loudness perturbationfor

hearing-impairedlisteners than for normal-hearinglisteners, because the hearing-impaired

listeners have a smaller dynamic range than the normal-hearing listeners. However, the

conversion ofthe intensity factor to a loudness perturbation factor for each listener will

result in a more pronounced convergenceofperformance for normal-hearing and hearing-

impairedlisteners. In conclusion, along thelines of the distortion-sensitivity model, the

results suggests that the artificial intensity distortion is related to the suprathreshold

speech-processing problems of hearing-impairedlisteners.
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The division of the hearing-impaired listeners into two groups showedthat hearing-

impairedlisteners with suprathreshold deficits are less sensitive to the intensity distortion

than normal-hearing listeners, whereas the group without is just as sensitive as the

normal-hearing listeners. To explore this relation between suprathreshold deficits and

distortion sensitivity further, it is interesting to look at the individual results. As

mentioned in Sec. 4.1 D2, the difference in SRTa between 10 dB and O dB intensity

perturbation was taken as a measure of the individual sensitivity to the distortion.In Fig.

4.6, this sensitivity is plotted as a function of the SII-SRBT. Open symbols representthe

data for normal-hearing listeners, the filled symbols those for hearing-impairedlisteners.

The individual standard error of the SI-SRBT (test and retest) averaged overall listeners

was 0.029; the individual standarderrorofthe sensitivity to the distortion (test and retest)

averaged over all listeners was 1.3 dB. The error bars indicate plus and minus one

individual standard error. For somelisteners, sensitivity to the distortion was negative,

suggesting that performance improved whenintensity perturbationwas applied. However,

the negative sensitivity may be explained by orderandlist effects. As indicated before,

to allow comparison between listeners, subjects listened to the same lists in each

condition, in the same order. As a result, order and list effects may be present in the data

acrosstests.

Even though the individual standard errors are large, a trend can be observedinFig.

4.6: a decrease in sensitivity as the SII-SRATincreases. A linear regression analysis on

the data of the hearing-impaired listeners showed a significant correlation of -0.54

(p<0.05). From this it may be concluded that the higher the SII (more severe speech

processing deficits) the less sensitive the hearing-impairedlisteners are to the intensity

distortion.

In summary, the results provide evidence that speech intelligibility for the group of

hearing-impaired listeners with suprathreshold deficits is affected less by intensity

perturbation than for normal-hearinglisteners. Moreover, looking at the individual results

of all hearing-impaired listeners, the sensitivity to the intensity perturbation correlates

negatively with the SJI-SRAT. In other words, the larger the effect of suprathreshold

deficits on speech processing, the less sensitive a hearing-impaired listeneris to intensity

perturbation. Under the distortion-sensitivity model, this implies that distortion of

intensity coding relates to the effects of suprathreshold deficits underlying the poor
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speechintelligibility in noise. The underlying deficit might be poor auditory intensity

coding.

Ill. SUMMARY AND CONCLUSIONS

In this study, speech intelligibility was measured as a function of intensity perturbation

of speech-plus-noise stimuli. The sensitivity to the distortion by hearing-impaired

listeners was compared with that by normal-hearing listeners. The data on the speech

intelligibility tests were converted to Sll-values. An elevation of the SII of a hearing-

impaired listener, as compared with the SII’s of normal-hearing listeners, indicates a

suprathreshold speech processingdeficit; the higher the SII, the more speechintelligibility

is affected by suprathreshold deficits. The hearing-impaired listeners were divided into

two groups on the basis of their SII-SRBT: a group with and a group without

suprathreshold deficits. This classification did not relate to hearing loss: some listeners

with a severe hearing loss did not show suprathreshold deficits, whereas somelisteners

with a mild hearing loss showed severe suprathreshold deficits. Data revealed that

hearing-impaired listeners without suprathreshold deficits were just as sensitive to

intensity perturbations as normal-hearing listeners; hearing-impaired listeners wiih

suprathreshold deficits appeared to be less sensitive to intensity perturbations than

normal-hearinglisteners. The convergencefor increasing degrees ofintensity perturbation

suggests that the appliedartificial distortion relates to the suprathreshold deficit causing

speechintelligibility problems. A small but significant correlation between the SII-SRBT

of hearing-impaired listeners and the sensitivity to the intensity distortion was observed.

It is concluded that intensity perturbation may partly characterize the effect of a

suprathreshold deficit causing a reduced speech intelligibility in noise. The underlying

hearing deficit may be a reduced acuity of auditory intensity coding.
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Effects of degradation of intensity, time, or

frequency content on speech intelligibility

for normal-hearing and hearing-impaired

listeners

Manyhearing-impairedlisteners suffer from distorted auditory

processing capabilities. This study examines which aspects of auditory

coding(i.e., intensity, time, or frequency) are distorted and how this

affects speech perception. The distortion-sensitivity model is used: the

effect of distorted auditory coding of a speech signalis simulated by an

artificial distortion, and the sensitivity of speech intelligibility to this

artificial distortion is compared for normal-hearing and hearing-impaired

listeners. Stimuli (speech plus noise) are wavelet coded using a complex

sinusoidal carrier with a Gaussian envelope (14 octave bandwidth).

Intensity information is distorted by multiplying the modulus of each

wavelet coefficient by a random factor. Temporal and spectral

information are distorted by randomly shifting the wavelet positions

along the temporal or spectral axis, respectively. Measured were (1)

detection thresholds for each type of distortion, and (2) speech-reception

thresholds (SRTs) for various degrees of distortion. For spectral

distortion, hearing-impaired listeners showed increased detection

thresholds and werealsoless sensitive to the distortion with respect to

speech perception. For intensity and temporal distortion, thresholds and

sensitivity both were normal. Results indicate that a distorted coding of

spectral information maybe an important factor underlying reduced

speechintelligibility for the hearing impaired.

Submitted to the Journal ofthe Acoustical Society ofAmerica
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INTRODUCTION

The difficulty hearing-impaired listeners have to perceive speech in noise has been the

subject of many investigations, but is still not entirely understood. Although audibility

plays an important role, several studies have shownthat this cannot explain the whole

problem [see, for example, Moore (1996) or Noordhoekef al. (in press)]. These studies

have demonstrated that factors apart from reduced audibility, called suprathreshold

deficits, degrade speech processing. Suprathreshold deficits can distort the auditory

processing ofeither intensity, time, or frequency information, or a combination of these

types of information. For example, excessive forward and backward masking are

consequences of suprathreshold deficits that may be reduced a single factor of distorted

temporal coding; excessive upward and downward spread of masking may berelated to

distorted spectral coding. Impaired loudness perception probably relates to a distorted

representation of intensity information. This study evaluates these three types of

information. The aim is to investigate how reduced speech intelligibility relates to

distorted coding of intensity, time, or frequency.

Auditory coding cannot be manipulated directly. However, one can investigate the

differences in auditory functions among hearing-impaired subjects on specific auditory

tests related to accuracy ofintensity, time or frequency coding, and correlate these with

their speech perception performance. In several studies this correlation approach was

applied, concentrating on the role of reduced temporalor spectral resolution. The role of

reduced temporal resolution in reduced speechintelligibility in noise is not yet clear. In

some studies a significant correlation between speech intelligibility and temporal

resolution was found (Tyler ef al., 1982; Dreschler and Plomp, 1985; Moore and

Glasberg, 1987); in other studies this was not so (Festen and Plomp, 1983; van Rooij and

Plomp, 1990). With respect to reduced spectral resolution, in most studies a significant

correlation with speech intelligibility was found (Patterson ef al., 1982: Festen and

Plomp, 1983; Dreschler and Plomp, 1985; Horst, 1987). On the other hand,this was not

the case in a few other studies (van Rooij and Plomp, 1990; Smoorenburg, 1992).

The correlation approach results in statistical relations between reduced speech

perception and suprathreshold deficits. A drawback of this approach is that one cannot
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exclude that an underlying commonfactor causes the observedcorrelation. For example,

if a correlation between speechintelligibility and spectral resolution is observed, an

underlying common factor can be the hearing threshold. Then, higher hearing thresholds

instead of reduced frequency selectivity may cause reduced speech perception. In

different studies, underlying factors probably had different effects, which may explain

the different results. Relations between distorted auditory coding and speech perception

can be investigated in a moredirect way using the distortion-sensitivity model (Houtgast,

1995; Chapter 4 ofthis thesis).

Under the distortion-sensitivity model (Fig. 5.1), the relation between speech

intelligibility and a distorted auditory codingis studied by simulating the effect of the

auditory deficit by artificial distortion of the speech signal. The idea is that removing

cuesthat are not perceived by the hearing impaired will not affect their performance.

Performance is measured as a function of distortion, and compared for normal-hearing

and hearing-impaired listeners. Two trends may be observed: convergence (dotted and

solid lines) or no convergence (dashed andsolid lines). In the convergence case, hearing-

impairedlisteners are less sensitive to the distortion than normal-hearing listeners. Then,

it may be concludedthattheartificial distortion relates to distorted auditory coding that

impedes performance. Theartificial distortion affects the sound characteristics in the

same wayas the auditory deficits. In the no-convergence case, hearing-impairedlisteners

are as sensitive to the distortion as normal-hearing listeners, indicatingthat the artificial

distortion has norelation to hearing deficits causing difficulties in speech perception. A
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few studies (Duquesnoy and Plomp, 1980; ter Keurs e¢ a/., 1993; Turner ef al., 1995;

Chapter4 ofthis thesis) used the principles of the distortion-sensitivity modelso far, but

they did not explicitly explain their results in terms of the model, exceptthe last study.

In Chapter4 ofthis thesis the distortion-sensitivity model was used with respectto the

coding of intensity information. It was concludedthat reduced intensity coding accuracy

may partly explain impaired speech perception.

With respect to the coding of temporal information, Duquesnoy and Plomp (1980)

measured speech reception ofnormal-hearing and hearing-impairedlisteners as a function

of reverberation time. Their results show that hearing-impaired listeners are as sensitive

to reverberation as normal-hearing listeners. In terms of the distortion-sensitivity model,

this leads to the conclusion that speech perception problemsare not caused bya deficit

that introduces a delay to parts of the speech energy, as distorted temporal coding may

do.

With respect to coding of spectral information, ter Keurs ef a/. (1993) compared the

effect of reduced spectral contrast on speech perception in normal-hearing and hearing-

impaired listeners. They concluded that “limited resolution of spectral contrast is only

loosely associated with hearing loss for speech in noise.” Turner e/ a/. (1995) compared

speech reception of hearing-impaired and normal-hearing listeners for unprocessed

speech and for speech in which spectral cues were removed. For the original speech,

hearing-impairedlisteners had lower speech-intelligibility scores than the normal-hearing

listeners. However, for speech without spectral cues, hearing-impaired listeners

understood as well as normal-hearing listeners. In terms of the distortion-sensitivity

model, this convergence indicates that the reduced speech intelligibility by hearing-

impaired listeners is related to a degraded processing of spectral cues. It should be

mentioned thatthis is our interpretation of the data. Turner e7 a/. were interested in the

ability of hearing-impaired listeners to use temporal cues. Their conclusion, not in

conflict with ours, is that the temporal accuracy of speech coding of hearing-impaired

listeners is not impaired in terms of speech recognition.

The studies mentioned above obtained data that can be analyzed in terms of the

distortion-sensitivity model. The effects of distortion of intensity, time, and frequency

information on speech perception werestudiedin isolation, although these three domains

are not completely independent. Manipulation in one domain will affect the other

domains. For example, spectral smearing introduces temporal smearing and vice versa.
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In Sec. 5.1 A,this will be illustrated. Being aware of these unwanted byproducts of the

speech processing algorithm is important. Therefore, in the present study, the

interdependencyof the intensity, time, and frequency domains was taken into account.

In short, this study addresses which domainsin auditory coding (i.e., intensity, time,

or frequency) cause speech-perception problems for hearing-impairedlisteners. First, it

is investigated which sound domains are less clearly perceived by hearing-impaired

listeners. For this, detection thresholds for artificially applied distortions of intensity,

time, or frequency are measured. If a particular type of information is less clearly

perceived by hearing-impaired listeners, the detection thresholdsforthe distortion of this

information will probably be higher. The influence of distorted coding on speech

perception was investigated by means of the distortion-sensitivity model. Speech

intelligibility is measured as a functionofthe degree ofartificial distortion of intensity,

time, or frequency information. Comparison ofthe performance for normal-hearing and

hearing-impaired listeners may provide insight into the role of reduced accuracy in

auditory coding as a possible explanation for the degraded performanceof the hearing

impaired.

I. METHOD

A. Degradation ofintensity, time, and frequency information

In this study, a sound processing algorithm is used to degradeartificially the intensity,

time, and frequency content of speech. The degradationis intendedto simulate the effects

of distorted auditory coding. By meansof the speech-receptionthresholdtest (SRT, Sec.

5.1D3), speech intelligibility of sentences was measured as a function of applied artificial

distortion. In order to simulate auditory coding, a perceptually relevant spectro-temporal

decomposition and recomposition method was developed. This method wasalso used in

Chapter4, and is described below.
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@ Spectro-temporal decomposition & recomposition

Tomodel auditory spectro-temporal coding, sounds were described in the time-frequency

domain by means of a wavelet transform. Compared with the short-time Fourier

transform, the wavelet transform matches auditory system coding more closely because

it uses a logarithmic frequency scale (e.g., Rioul and Vetterli, 1991). An important

criterion in the choice of the mother wavelet is its spectral and temporal width. Results

of Chapters 2 and 3 suggest that a Gaussian-windowed sinusoid with a shape factor

between 0.15 and 0.3 roughly matches the auditory time-frequency window.Therefore,

as the prototype analysis function, a Gaussian wavelet was chosen. The Gaussian wavelet

is a complex sinusoidal carrier with a Gaussian envelope:

s(t) = Jaf, expG2af,f) exp(-a(af,f)”) (5.1)

in which f, is the carrier frequency, a is the shape factor, and oh normalizes the

energy of the analysis function. This time-frequency window has an effective bandwidth

of A=of, and an effective duration of A=1/(a/.) (Gabor, 1947). The effective bandwidth

of the analysis function wasset to 4 octave [roughly equalto the auditory critical band

(Scharf, 1970)]. This correspondswith a shape factor o=0.1735. As aresult, the effective

duration of the time-frequency window is 5.76 ms at 1 kHz (1.44 ms at 4 kHz). The

effective numberofperiods contained within the Gaussian envelope equals 5.8 (i.e., 1/a).

This Gaussian wavelet was used to construct a wavelet decomposition that covers the

time-frequencyplane.Shifts of this prototype analysis function cover the temporal range;

scales of the prototype function cover the spectral range. The scaling is controlled by

varying the carrier frequency /,. The decomposition results in complex wavelet

coefficients, which can be characterized by a modulus, a phase, and a position in the

time-frequency plane.

For simultaneous sampling in time and frequency the Nyquist sampling theorem was

applied twice (Allen, 1977; Allen and Rabiner, 1977). The sampling interval was based

on the temporal and spectral range over which the Gaussian wavelet is essentially

different from zero. Since the Gaussian wavelet does not have compact support'in time,

 

"A function /(/) has compact supportif it is zero outside the interval 7,<(<7Z,+AT .
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nor in frequency, the range betweenthe points that were 25 dB down from the peak was

taken as the range over which the window is significant (about twice the effective

duration and effective bandwidth). This criterion leads to a sampling of one wavelet per

three periodsof the wayelet carrier frequency along the timeaxis, and eight wavelets per

octave along the frequency axis. Theoretically, the number of complex coefficients

needed to describe the signal using the 25-dB criterion for sampling, is about two

coefficients per input sample (Allen, 1977). In this study, the frequencyofthe signals was

limited to the range from 250 to 4000 Hz. As a result, one second of speech (sampling

frequency: 44.1 kHz; no information below 250 Hz or above 4 kHz preserved) was

described by 16*10° complex wavelet coefficients.

Using these wavelet coefficients, sounds can be reconstructed by an overlap-add

procedure. Theoretically, the reconstruction is not perfect. However, using the 25-dB

criterion for sampling in time and frequency,little or no aliasing occursin either the time

or the frequency domain. Adequate sampling is important for two reasons (Allen and

Rabiner, 1977). First, the difference between the recomposed signal and the original

signal must not be noticeable to a listener. Second, in this study modifications to the

spectro-temporal decomposition ofsound are performed. When modifyingundersampled

spectro-temporal representationsofsound,interactions between modification andwindow

shape may occur. Suchinteractions will lead to unwanted byproducts. Asa result of the

careful sampling in our decomposition and recomposition scheme, (1) the difference

between an original and a recomposed signal was very small and not noticeable to the

listener, and (2) the scheme is robust for interactions between window shape and

modifications of the decomposition.

Between decomposition and recomposition, the accuracy of the intensity, time, or

frequency information was degraded to simulate poor auditory coding. Intensity

degradation was obtained by introducing uncertainty in the modulus of each wavelet

coefficient. Temporal andspectral degradations were obtainedby introducing uncertainty

in the temporal and spectral position of each wavelet, respectively. In Fig. 5.2, this is

illustrated schematically. In the following paragraphs, these different types ofdegradation

will be explained in more detail. After the perturbation, the energy contained in each

frequency band over the whole test sentence was scaled to equal the original energy in

that band. Since this study aimsat investigating speech perception performancein noise,

speech and noise were summedbefore processing.



82 Chapter 5: Coding accuracy and speech perception

FIG. 5.2. Schematic illustration of the

perturbation of the intensity, time, or spectral

information. The Gaussian wavelets are

 symbolized by rectangles. Each wavelet is

given a random perturbation with respect to

its intensity, temporal position, or spectral

position.
 

 

 

@ Degradation of the intensity accuracy

To degrade the accuracy of the intensity information, the modulus of the wavelet

coefficients was perturbed (intensity perturbation). This was achieved by multiplying

each wavelet coefficient by a random factor. Asa result, silence will remain silence after

perturbation. The random perturbation factor ¢ (in dB) was chosen from a uniform

distribution with zero mean and boundaries? -/,,2 and +/,/2. Thus the modulus of cach

individual coefficient was multiplied by a different random factor 10””.

@ Degradation of the temporal accuracy

To degrade the accuracy of the temporal information, the positions of the wavelets were

shifted randomly along the temporal axis (temporal perturbation). To avoid a degradation

of the accuracy of spectral information as much as possible, only the temporal envelope

of the wavelets was displaced, not the underlying fine structure. The new fine structure

was calculated by extrapolation ofthe original fine structure to the new position of the

envelope. As aresult, the information contained within the original fine structure wasleft

unaffected. The position of the envelope of each wavelet was shifted independently by

a random value chosen from a uniform distribution ranging from -7/,/2 to +//,/2. The

 

“In Chapter 4, the random perturbation factor with which the modulus of each wavelet

coefficient was multiplicd was chosen from a uniform distribution with boundaries -/p and +/).
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degree of temporal distortion 7 is expressed in terms of the duration of the wavelets

(inversely proportional to the bandwidth). If 7), equals two wavelets, the maximal

displacementalong the time axisis one effective duration of the wavelet fromits original

position. At 1 kHz,this is 5.76 ms; at 4 kHz,this is 1.55 ms.

® Degradation of the spectral accuracy

To degrade the accuracy of the spectral information, the position of each wavelet was

shifted randomly along the spectral axis (spectral perturbation). The positions of all

wavelet coefficients were shifted independently by a random value chosen from a

uniform distribution ranging from -F’,/2 to +,,/2. The degree of spectral distortion F;, 1s

expressed in octaves. If F,= 0.5 octaves, the maximal displacement along the frequency

axis is 0.25 octaves (equals the effective bandwidth of the analysis window).

After wavelet decomposition, the spectral information is not only encoded in the

position of the wavelets along the spectral axis, but also in the phaseof the coefficients.

The relative phases ofthe coefficients in each frequency band contain information about

the spectral structure within this band. The random shifts of the wavelet positions along

the spectral axis result in a smeared spectrum over bands. However,if the phase is kept

intact, part of the spectral information within a bandis reintroducedin the overlap-add

procedure by interactions between neighboring wavelets.’ By distorting the phase

information we tried to bypass this problem. The phase was distorted by a

desynchronization of the regular pattern of the wavelet coefficients along the temporal

axis. This desynchronization was obtained by shifting the position of each wavelet

(envelope plus fine structure) along the temporal axis by a random value chosen from a

uniform distribution ranging from -0.0375 to +0.0375 of the wavelet bandwidth. In all

conditions with spectral distortion including the spectral reference condition (O-octaves

spectral perturbation), the phase wasdistorted in this way.

In Fig. 5.3, the effect of distorting the spectral information of an artificial vowel /a/

is illustrated. Panel a showsthe undistorted vowel. In panel b, the vowelis plotted in the

spectral reference condition. In this condition, the phase of the complex coefficients is

 

*This inherent characteristic of overlap-add procedures was described in more detail by Baer

and Moore (1993). Without phase distortion, even for large random shifts along the spectralaxis,

basic periodicity in the spectrum is preserved due to the preserved coherence of the phase

spectrum.
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FIG. 5.3. Theeffect of the artificial

distortion of the spectral information on

an artificial vowel /a/. (a) undistorted

vowel; (b) spectral reference condition

(phase distorted) (c) spectral perturbation

of 0.75 octaves (phase distorted and

spectrally perturbed).

distorted, but the positionsof the wavelets along the spectral axis are retained. As a result,

most of the spectral fine structure is lost, but the spectral envelopeis intact. In panel c.

the vowelis plotted in the most severe spectral distortion condition usedin this study, 1.c.,

when F’,, equals 0.75 octaves. The phaseis distorted as in the reference condition, and in

addition the wavelets were shifted randomly over maximalF’,/2 along the spectralaxis.

As aresult, the spectral envelope is smeared almostfully. Thusthe overall spectral effect

of the applied spectral uncertaintyis a broadening of the spectral peaks.
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FIG. 5.4. The effect of the non-

deterministic perturbation process on the
 

    

0.6
: RMSduration* and RMS bandwidth of a

O spectral perturbation

est: @ temporal perturbation | Gaussian-windowedtone with a center

& frequency of | kHz and a shape factor of

5 O4P 3 ; 0.1735, ie., an effective bandwidth of %
s .
g . octave. Filled and open symbols represent
© 0.3} Fl ae= the values corresponding with temporal

id ook ae t =). it i 1 | perturbation and spectral perturbation,

o@ 10 respectively. The numbers represent the
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2
degree of perturbation (expressed in the
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number of wavelets). The error bars

represent the standard deviation.

As mentionedin the Introduction, degradation of the accuracy of the information of

one domain is not possible without collateral degradation of the information of other

domains. For example, the degradation of the accuracy of the intensity information also

affects the spectral and temporal contentof a signal. The effects of distortion of temporal

information on spectral information and vice versa are illustrated in Fig. 5.4 for a

Gaussian-windowedsinusoid as input to the wavelet decomposition, followed by spectral

or temporal degradation, and recomposition. The RMSduration* and RMS bandwidth of

this Gaussian-windowedsinusoid (center frequency = 1 kHz; a = 0.1735) are indicated

by the filled circle with index ‘0’. The effects of temporal perturbation on the duration

and bandwidth of the signal are represented by the other filled circles; the effects of the

spectral perturbation are indicated by open circles. The perturbation procedure was

applied to the input signal six times. The error bars represent the standard deviations of

the resulting duration and bandwidth of the outputsignals.

 

"The root mean square (RMS) duration of a function7/7) is defined by

] oi, Bi
Ae rf*(ndt .

Ol, fs

The RMS bandwidthis defined analogously.

 



86 Chapter 3: Coding accuracy and speech perception

Looking at the effect of temporal perturbation, it can be observed that, when a

temporal perturbation of 3 wavelets is applied, both the RMS duration and RMS

bandwidth of the Gaussian tone pulse increase. For the 7-wavelets condition, the RMS

duration is longer thanin the 3-wavelets condition, but the RMS bandwidthis the same.

Thus for temporal perturbation up to 3 wavelets, both the spectral and the temporal

contrasts of sound are reduced. Atthat point, the spectral smearing reaches a maximum

of about 0.25 octaves. Beyond that, temporal perturbation only reduces the temporal

contrasts while the spectral contrasts stay unaltered.

With respectto spectral perturbation, it should be noted thatin all spectral conditions

the phase was distorted. As a result, the duration and bandwidth of the Gaussian-

windowedsinusoid in the spectral reference condition (open circle ‘0’) are larger than the

duration and bandwidth of the original signal (filled circle “0’); the spectral reference

condition is slightly spectro-temporally smeared. The effect of additional spectral

perturbation is just a reduction ofthe spectral contrasts, while the resulting (after phase

distortion) temporal contrasts are maintained.

B. Subjects

Twelve normal-hearing listeners, aged 20 to 63 years with a mean age of 26 years,

participated in the experiment. Pure-tone air-conductionthresholds of the normal-hearing

listeners did not exceed 15 dB HL at any octave frequency from 250 to 4000 Hz.In

addition, twenty-six sensorineurally hearing-impaired listeners took part in the

experiment, aged 24 to 67 years with a mean age of 48 years. Their intelligibility scores

for monosyllabic words in quiet were at least 75% correct. The pure-tone, air-conduction

threshold in the hearing-impairedlistener’s better-hearing ear was at least 30 dB HL at

one or more frequencies between 250 and 4000 Hz. ‘Thresholds of the better-hearing ear

averaged over 0.5, 1, and 2 KHz (the pure-tone average, or PTA) ranged from 17 to 70 dB

HL, with a mean PTA of 50 dB HL.All listeners were native Dutch speakers.

C. Stimuli and apparatus

The speech stimuli consisted of sentences and words. The sentence sets containedlists

of 13 everyday Dutch sentences of eight to nine syllables read by a female and male
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speaker (Versfeld eral. , in press). The wordsets consisted oflists of balanced meaningful

CVC-words (Bosman and Smoorenburg, 1995).

Signals were played out over TDT (Tucker Davis Technologies) System II hardware.

Stimuli were presented in the middle of the dynamic range of each listener by frequency

shaping them using a programmable filter (TDT PF1). The stimuli were presented

monaurally through Sony MDR-V900 headphones.To avoidthe risk of cross-hearing, the

listener’s better-hearing ear was tested. For calibration, sound pressure levels of the

stimuli were measured on a Briiel & Kjzr type 4152 artificial ear with a flat-plate

adapter. The entire experiment was controlled by a personal computer. Subjects were

tested individually in a soundproof room.

D. Procedures

First, the hearing threshold and the uncomfortable loudness level (UCL) of each listener

were determined. In the detection andintelligibility tests, sounds were adaptedto fit the

dynamic range of each listener. To familiarize the subjects with the procedure,a training

session preceded data collection. All conditions were measured twice in order to

determine measurementreliability. Speech intelligibility tests were performed once using

sentences spoken by the female talker and once using those by the male talker. In the

distortion-sensitivity model, the performancefor individual hearing-impairedlistenersis

compared with that for normal-hearing listeners. Therefore, for all listeners, the same

order of conditions and sentence lists was used.

@ Threshold and UCL

The dynamic range of each listener was estimated by measuringthe hearing threshold and

the uncomfortable loudness level (UCL) for narrow bands of noise. The UCL was

corrected for broadband stimulation, as described below.

Thresholds and UCLs were measured using 1/3-octave noise bands at center

frequencies of 250, 500, 1000, 2000, and 4000 Hz. Hearing thresholds were measured

using a Békésy tracking (Yantis, 1994) procedure (300-ms noise bursts; repetition rate

2.5 Hz; step size | dB). The measurement was ended after eleven level reversals. The

averageofall but the first reversal level was taken as the hearing threshold. Narrow-band

UCLs were measured with 1/3-octave noise bursts that were presented with a 3-dB
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increase in level for each presentation (300 ms noise burst; repetition rate 1.4 Hz).

Listeners were askedto press a button whenthe noise bursts became uncomfortably loud.

Then, the level of the noise burst was immediately diminished by a random amount

between 21 and 30 dB, and the ascending procedure was repeated until six responses

were obtained. The average of the levels at which the button was pushed wastaken asthe

narrow-band UCL.

To correct the UCLfor broadbandstimulation, a 4-second broadband noise burst was

presented, spectrally shaped according to the narrow-band UCLs and starting 40 dB

below the narrow-band UCLs. The level of the broadband noise burst was gradually

increased in steps of 5 dB. After each presentation the listener was asked whether the

signal was experienced as uncomfortably loud. If this was the case, the corresponding

level was taken as the broadband UCL.

@ Detection threshold for distortion

The detection thresholdsfor the distortion of intensity, temporal, or spectral information

were estimated using words. A 3I-3AFCtwo-downone-up adaptive procedure wasused,

leading to a 70.7 % correct score. In eachtrial, the subject was presented with three

signals, twice the reference word and once the distorted word. Thelistener had to point

out the distorted one. For eachtrial, a random choice out of 90 bandpassfiltered (250-

4000 Hz) pre-processed(at different degrees of distortion) words wasloaded from disk.

The difficulty of the task was increased by dividing the distortion factor by

¥2 following two consecutive correct responses;the difficulty of the task was decreased

by multiplying the distortion factor by /2 following oneincorrect response.Atransition

from increasing to decreasingdifficulty or vice versa defined a reversal. A run was ended

after 20 reversals. The geometric mean of the last 16 reversals was used as an estimate

of the detection threshold for distortion. To define the experiment with respect to

presentationlevel, all words were presented in the middle of the dynamic range of the

listener, in speech noise (Wandel und Goltermann RG-1) at a signal-to-noise ratio of 15

dB.
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@ Speechintelligibility

Speech-reception threshold in noisefor an adapted spectrum (SRTa)

The speech-reception threshold (SRT) is an estimate of the ability to perceive speech in

daily life (Plomp and Mimpen, 1979). The SRTin noise is definedas the signal-to-noise

ratio (SNR) at which 50% of the sentences are reproduced correctly. The speech levelis

varied in an adaptive, up-down procedure with a step size of 2 dB. The continuous

stationary noise is presented from 500 ms before to 500 ms after the sentence. In our

experiments, speech and noise are adaptedto fit in the dynamic range of individual

listeners. This adapted speech-reception thresholdis called SRTa. In the SRTatests in

this study, all stimuli were bandpassfiltered from 250 to 4000 Hz.

After an SRTtest using undistorted speech, the SRTa was measuredas a function of

the degree ofdistortion (distortion-sensitivity model). The intensity-distortion conditions

were 0 (undistorted), 10, and 20 dB. The temporal-distortion conditions were 0

(undistorted), 3, and 7 wavelets. The spectral-distortion conditions were 0, /%, 2, and %

octave (recall that in all spectral-distortion conditions the phase was distorted).

Speech-Reception Bandwidth Threshold (SRBT)

In addition to the SRTa, the Speech-Reception Bandwidth Threshold (SRAT) was

measured to estimate suprathreshold speech processing. The SRBT measure of speech

intelligibility was introduced by Noordhoek e7 a/. (1999). The SRBTis highly sensitive

for suprathresholddeficits, as is shown in a recent study of Noordhoeketal. (in press).

The SRBT procedure is similar to the SRT procedure, except that the bandwidth

(center frequency: 1 kHz) of the undisturbed speech is varied instead of the level when

estimating the 50%intelligibility threshold. Complementary shaped bandstop noise is

added to the bandpass-filtered speech. Speech and noise are presented in the middle of

the listener’s dynamic range.

E. Speech Intelligibility Index

To estimate the quality of speech processing oflisteners, the SRTa and SRABT data were

converted to a Speech Intelligibility Index. The Speech Intelligibility Index (SID) (ANSI,

1997) is a physical measure of how much information of speech is available to the
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listener. The SII correlates highly with speech intelligibility. To perceive speech, normal-

hearing listeners need a certain amount of information which can be converted to an STI

value.Ifhearing-impaired listeners need more information, this suggests that their speech

processing is degraded. Thus elevated SII values are an indication for a low speech

processing quality. The SI model accounts for hearing threshold, self-masking in speech,

normal upward spread of masking and level distortion at high presentation levels. To

calculate the SII, speech spectra, noise spectra, and hearing thresholds must be known.

As mentioned in Sec. 5.1 D1, hearing thresholds were measured with 1/3-octave noise

bands, using Békésy tracking (Yantis, 1994). This procedure probably results in hearing

thresholds that are systematically about 4 dB higher than the methods on which the ISO

(1961) threshold is based (Noordhoek ef a/., in press; Noordhoek e7 a/., submitted).

Therefore, in the SII calculations the internal noise level was lowered by 4 dB. The band-

importance function for speech material of average redundancy (Pavlovic, 1987) was

used.

Il, RESULTS AND DISCUSSION

A. Detection thresholds

To obtain insight into which attributes of sound processing are distorted for hearing-

impaired listeners, detection thresholdsfor the distortion ofintensity,time, and frequency

information were measured.If the auditory coding of a particular type of information is

degraded, the detection thresholds for the distortion of this type of information are

assumed to be higher.

® Degradation of the intensity accuracy

For the normal-hearing listeners, the detection threshold for the intensity perturbation,

described in Sec. 5.1 A, ranged from 13 to 23 dB, with a median of 17 dB. For the

hearing-impaired listeners, the detection thresholds ranged from 9 to 53 dB, with a
4

median of 18 dB. The overall (normal-hearing plus hearing-impaired listeners: 38
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subjects) mean standarderrorof an individual detection threshold (2 measurements) was

3 dB. A Mann-WhitneyUtest showedthat the difference in detection threshold between

normal-hearing and hearing-impairedlisteners was not significant.

® Degradation of the temporal accuracy

For the normal-hearing listeners, the detection thresholds for temporal perturbation

ranged from 0.9 to 1.5 wavelets, with a median of 1.1 wavelets; for the hearing-impaired

listeners, this threshold ranged from 0.6 to 7.4 wavelets, again with a median of 1.1

wavelets. The meanstandarderrorof an individual detection threshold was 0.4 wavelets.

A Mann-Whitney Utest showedthat the detection thresholds for the group of hearing-

impaired listeners were not significantly higher than those for the normal-hearing

listeners.

@ Degradation of the spectral accuracy

For the normal-hearinglisteners, the detection thresholds for spectral perturbation ranged

from 0.22 to 0.39 octave, with a median of 0.26 octave. For the hearing-impaired

listeners, the detection thresholds ranged from 0.17 to 1.4 octave, with a median of 0.36

octave. The meanstandard error of the individual detection threshold was 0.06 octave.

A Mann-Whitney Utest showed that the detection thresholds for the group of the

hearing-impaired listeners were significantly (p<0.05) higher than those for the normal-

hearing listeners.

In summary, with respect to the detection of distortion of intensity and temporal

information,no significant difference was observed between the group of normal-hearing

and the group of hearing-impaired listeners. With respect to the detection of spectral

distortion, a significantdifference between normal-hearing and hearing-impairedlisteners

was observed. Thus spectral cues were probably less clearly perceived by the hearing-

impairedlisteners.

B. Suprathreshold Speech Intelligibility

The aim ofthis study is to gain insight into the suprathreshold speech processing

problemsof hearing-impairedlisteners. Therefore, speech processing performance was
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measured by means of the SRTa and SRAT test. For the normal-hearing listeners. the

SRTa ranged from -1.8 to 0.3 dB, with a median of -0.8 dB. For the hearing-impaired

listeners, the SRTa ranged from -1.1 dB to 8.5 dB, with a median of 2.0 dB. The mean

standard error of an individual SRTa (six measurements) was 0.7 dB. The hearing-

impaired listeners had significantly higher SRTa’s than the normal-hearing listeners

(Mann-Whitney test: p<0.05). The SRAT for the normal-hearing listeners ranged from

1.1 to 1.7 octave, with a median of 1.6 octave. The SRAT for the hearing-impaired

listeners ranged from 1.5 to 3.4 octave, with a median of 2.1 octave. The standard error

of an individual SRAT (2 measurements) was 0.3 octave. The hearing-impaired listeners

had significantly higher SRAT values than the normal-hearing listeners (Mann-Whitney

Utest: p<0.05).

For both the SR'Ta and the SRAT tests, hearing-impaired listeners performed worse

than normal-hearing listeners, which confirms the problems hearing-impairedlisteners

have in perceiving speech. To quantify the degree of deterioration of suprathreshold

speech processing, the individual SRTa and SRAT data were converted to SII units. For

the normal-hearing listeners, the SII for the SRTa ranged from 0.36 to 0.42, with a

median of 0.39; the SII for the SRBT ranged from 0.26 to 0.39, with a median of 0.35.

For the hearing-impaired listeners, the SII for the SRTa ranged from 0.37 to 0.54, with

a median of 0.43; the SII for the SRAT ranged from 0.32 to 0.52, with a median of 0.43.

The individual standard error of the SII,,.,, (6 measurements) was 0.02. The individual

standard errorof the SIgp; (2 measurements) was 0.05. Both the SII,g7, and the Slgger

for the hearing-impaired listeners were significantly higher than those for the normal-

hearing listeners (Mann-Whitney Utest; p<0.05).

The SII values of the hearing-impaired listeners indicate that their suprathreshold

speechprocessingis clearly distorted. The nextstep is to explore what aspects of auditory

coding are distorted. The detection threshold experiments suggest that hearing-impaired

listeners perceive spectral informationless clearly than normal-hearing listeners. In Fig.

5.5 the individual detection thresholds for spectral perturbation are plotted as a function

of the SII.p7, (panel a) and as a functionof the SII... (panel b). Open symbols represent

the detection thresholds for the normal-hearing listeners, filled symbols those for the

hearing-impaired listeners. The figure shows a correlation between the SII’s and the

detection threshold for spectral perturbation. A statistical analysis (Spearman rank

correlation) on the data for the normal-hearing and hearing-impairedlisteners confirmed
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this: there is a significant (p<0.005) correlation of 0.5 between the detection thresholdfor

spectral perturbation and SIlcp7,, and a significant (p<0.0005) correlation of 0.6 between

the detection threshold and SUgpzr.

Summarizing, a correlation between the detection threshold for the distortion of

spectral information and the SII was observed. Thus less clearly perceived spectral

information by hearing-impaired listeners relates statistically to their speech processing

deficits. In the next section, the relation between the auditory coding accuracy and

reduced speechintelligibility is analyzed in a moredirect way by meansofthe distortion-

sensitivity model.
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C. Distortion-sensitivity model: group results

Applying the distortion-sensitivity model, the SRTa was measured asa function ofthe

artificial degradation of the spectro-temporal coding of sound, for normal-hearing and

hearing-impaired listeners. The results are plotted in Fig. 5.6. The SRTais plotted as a

function of the degree of distortion of intensity information (panel a), temporal

information (panel b), and spectral information (panel c). Open and filled circles

represent the mediansofthe data for the normal-hearing and hearing-impairedlisteners,

respectively. The bars represent the inter-quartile ranges. The arrows represent the

mediansofthe detection thresholds for normal-hearing (open circle) and hearing-impaired

listeners (filled circle).
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intensity information; panel b: distortion of temporal information; panel c: distortion of spectral

information.
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© Degradation of the intensity accuracy

For all levels of intensity degradation, the hearing-impairedlisteners perform poorerthan

the normal-hearing listeners on the speech intelligibility tests (Fig. 5.6a). The difference

in performance between normal-hearing and hearing-impaired listeners appears to

decrease somewhatas a function of the intensity distortion. However, a Mann-Whitney

U Test showed that this effect was not significant. This is in agreement with the lack of

a significant difference in detection thresholds for intensity distortion between normal-

hearing and hearing-impaired listeners (Sec. 5.1 A; medians of the groups represented by

arrows). The absenceofa difference in sensitivity between normal-hearing and hearing-

impaired listeners could be the result from the low perturbation levels usedin this study.

However, higher intensity distortion levels were not measured, because of unwanted

spectro-temporal byproducts (see Chapter 4). In conclusion, the results do not show a

relation between reduced speechintelligibility in noise and a distorted representation of

intensity information.

@ Degradation of the temporal accuracy

For all levels of temporal degradation, the medians of the SRTa’s for the hearing-

impaired listeners are higher than those for the normal-hearinglisteners (Fig. 5.6b). The

difference in performance between normal-hearing and hearing-impaired listeners does

not decrease as a function of temporal perturbation. In addition, the group of hearing-

impaired listeners performed as well as the normal-hearing listeners on the temporal

perturbation detection task (Sec. 5_IT A). In conclusion, the results do not suggest a

relation between reducedintelligibility in noise and a distorted representation of temporal

information.

@ Degradation of the spectral accuracy

For the most extreme spectral perturbation condition, only the results using the male

talker are used, because the male talker was just intelligible in this condition while the

female talker was not (see Fig. 5.6c). The SRTa for the normal-hearing listeners in the

spectral reference condition is about 3 dB higher than in the intensity and temporal

reference condition, because the fine structure was perturbedinall spectral conditions

(Sec. 5.1 A). In the reference condition the median SRTais higher for the hearing-
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impaired listeners than for the normal-hearing listeners. When spectral perturbation is

applied, the performancefor the hearing-impairedlisteners converges towardsthat for the

normal-hearing listeners. At 34-octave of spectral perturbation, the performance for the

hearing-impairedlisteners equals that for the normal-hearing listeners. Mann-Whitney U

Tests confirm the observed trends: at 0 and 4-octave perturbation the performancefor

the hearing-impaired listeners is significantly worse than that for the normal-hearing

listeners (p<0.05), whereas at % and at 34 octaveno significant difference exists.

In summary, the detection threshold for spectral perturbation is significantly higher

for hearing-impairedlisteners than for normal-hearing listeners; moreover, Convergence

of the speech-processing performance of normal-hearing and hearing-impairedlisteners

is observed. This strongly points to a relation between a reducedintelligibility in noise

and a distorted representation of spectral information.

D. Distortion-sensitivity model: Individual results

In the preceding section, the groupresults of the distortion-sensitivity model for normal-

hearing and hearing-impaired listeners were compared. Now,the individualresults will

be used to further examine the relation between distorted coding of information and

reduced speechintelligibility. As an estimate of individual performance,the sensitivity

to the distortion was taken. The sensitivity to the distortion of individual listeners is

defined as the slope of the linear regression line fitted through the individual SRTa values

for different degrees of distortion. It quantifies how sensitive listeneris to the distortion

of specific cues in speech. The underlying idea is that if a hearing-impairedlisteneris less

sensitive to a particular artificial distortion than normal]-hearinglisteners, this artificially

applied distortion probably relates to the internal deficit causing his speech perception

problems.In this study two measures for suprathreshold speech perception quality are

used: SlIgper and Sllcpr,. The relation between speech perception quality and the

sensitivity to distortion of information will be evaluated.

For both intensity and temporal information, no correlation betweenthe sensitivity to

the distortion and SII,p;, or SIlsgz¢ was observed in the individual data [Spearman rank

correlation Sll.g,,- and sensitivity to intensity distortion: -0.3 (p=0.09)].
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FIG. 5.7. The individualsensitivities to spectral perturbation for normal-hearing (open

symbols) and hearing-impairedlisteners (filled symbols) versus the Slspr (panel a) and

versus the Slspp(panel b).

In Fig. 5.7, the sensitivity to distortion of spectral information is plotted against the

individual SII,.;; (panel a) and SI5;,5; (panel b). Open symbols represent the data for the

normal-hearinglisteners; filled symbols those for the hearing-impaired listeners. Asis

already clear from Fig. 5.6c, the mediansensitivity of the hearing-impaired listeners is

less than that of the normal-hearing listeners. No clear trend between SIIgpy, and

sensitivity is shown [Spearman rank correlation: -0.2 (p=0.2)]; however, there is a

correlation between SII. and sensitivity [Spearmanrankcorrelation: -0.6 (p<0.05)]: the

higher the SlIggzy. the lower the sensitivity to spectral distortion.

SIlgpy, and Sllgpar Show a different picture: the sensitivity to spectral distortion is

significantly correlated with the SIggzr, but not with the Sllprs This difference may be

explained by the different experimental setup: The Speech-Reception Bandwidth

Threshold is measured using bandpass filtered speech signals embedded in

complementary bandstop noise, whereas the speech-reception threshold test uses a noise

spectrum equalto the average speech spectrum. Therefore, the SRBT is probably more

sensitive to excessive spread of masking than the SRTa. Asa result, the sensitivity to

spectral distortionis likely to relate more directly to the SIIsp4z than to the Sllgrs:
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In summary, the individual results show a relation between suprathreshold speech

processing as quantified by the SII,,.; and the sensitivity to spectral distortion. This is in

agreementwith the observedrelation between speech processing quality and the detection

threshold for spectral perturbation (Sec. 5.1] B), and the observed convergence of the

performance for normal-hearing and hearing-impaired listeners for increasing degrees of

spectral distortion (Sec. 5.II C). These results suggest that the auditory processing of

spectral information of hearing-impairedlistenersis distorted andthat this affects speech

perception. The poorerthe spectral coding, the more problems hearing-impairedlisteners

have in perceiving speech.

The question remains whether distorted spectral auditory coding is the only cause of

suprathreshold speech processing deficits. A considerable variance is present in the data

of Fig. 5.7. This may be the result of measurementerror, but this may also be variance

due to factors other than distorted coding of spectral information. By calculating the

reliability (Nunnally, 1967) of the variables in the correlation, an estimate of the

influence of measurement error can be made. The square root of the product of the

reliabilities of two tests gives an estimate of the unsigned maximumcorrelation possible,

given the measurement accuracy.

The reliability of the SII,p;, (6 measurements) is 0.9. The reliability of the sensitivity

to the distortion is much smaller: about 0.3. This is because the measurementerrors add

up whenthe slope is estimated. Between SII, and sensitivity, the maximum unsigned

correlation possible is about 0.5. The correlation observed was -0.2. Thus in the speech

processing problemsof hearing-impaired listeners as quantified by the SI.,7,, spectral

cues are probably notthe only ones.

The reliability of the SI.p2; (2 measurements) is 0.7. As a result, the estimate of the

unsigned maximum correlation possible between SII,,,; and sensitivity is 0.5. The

correlation observed was -0.6. It may surprise that the absolute value of the observed

correlation is larger than the predicted maximum correlation. However, the predicted

maximum correlation is only a rough estimate. Therefore, all variance seems explained.

In summary, the distorted speech processing of hearing-impaired listeners measured

by the SRBT test can fully be explained bydistorted processing of spectral information,

but with respect to the SRTatest other factors seem to affect intelligibility as well. This

may be explained by the fact that upward spread of masking plays a dominantrole in the

SRBT test, but not in the SRTatest.
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E. Comparison to literature

@ Degradation of the intensity accuracy

The meandetection threshold for intensity distortion of hearing-impairedlistenersis not

significantly higher than that of normal-hearing listeners. However, some hearing-

impairedlisteners showed abnormally high distortion thresholds. Thisis consistent with

the literature about intensity discrimination (for a review, see Florentine e¢ al., 1993).

Overall, hearing-impaired listeners discriminate as well as normal-hearing listeners at

equal soundpressure levels, and intensity discrimination may even be better at equal

sensation levels. However, for some hearing-impaired listeners markedly higher

discrimination thresholds are observed (Schroderef a/., 1994; Buus e7 al., 1995).

With respect to speech intelligibility as a function of intensity distortion, no

significant convergence of the performances for normal-hearing and hearing-impaired

listeners was observed. In addition, no significant correlation betweenthe sensitivity to

intensity distortion and the SI was found. In contrast, in Chapter 4 a significant

correlation between sensitivity to intensity distortion and SII,,,7 was observed. Several

factors may accountfor this. Different listener groups were usedin the previous and the

present study. Since among hearing-impaired listeners a diversity of auditory deficits is

observed (see, for example, Noordhoek et al/., submitted), this may lead to a different

result. Moreover, although both groups of hearing-impaired listeners had comparable

hearing loss, the presentationlevels for the second groupoflisteners was 7 dB lowerthan

for the first group dueto lower uncomfortable loudnesslevels. Due to this difference in

dynamic range, the sameintensity perturbations may have introduced different loudness

perturbations(see Chapter4 ofthis thesis). These factors may explain why the correlation

in the present study is not significant while in the previous study it was.

@ Degradation of the temporal accuracy

The detection threshold for temporal distortion by hearing-impaired listeners was not

significantly higher than that by normal-hearing listeners. However, some hearing-

impaired listeners showed abnormally high detection thresholds. This is in agreement

with the literature about temporal resolution. Although hearing-impaired listeners are

knownto suffer from excessive forward masking (Festen and Plomp, 1983; Oxenham and
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Moore, 1995), on some tests of temporal resolution, most hearing-impaired listeners

perform as well as normal-hearing listeners (Moore, 1995).

The performancesfornormal-hearing and hearing-impaired listeners did not converge

as a function of the distortion of temporal information. In addition, no correlation

between the sensitivity to temporal distortion and SII was observed. This agrees with the

study of Duquesnoy and Plomp (1980). They measured howsensitive normal-hearing and

hearing-impaired listeners were to reverberation. Reverberation can be considered a very

systematic type of distortion of temporal information. Sensitivity was compared to the

Speech Transmission Index (Houtgast and Steeneken, 1973). Their results showedthat

hearing-impaired listeners wereas sensitive to reverberation as normal-hearinglisteners.

@ Degradation of the spectral accuracy

The detection thresholds for spectral distortion were significantly higher for the group of

hearing-impaired listeners than for the group of normal-hearing listeners. In addition,

convergence of speech perception performance for normal-hearing and hearing-impaired

listeners as a function of spectral distortion was observed. This agrees with the results of

Turneref al. (1995) that also showed convergence (see Introduction).

The results of this study suggest that hearing-impaired listeners suffer from reduced

frequency selectivity and that this causes reduced speechintelligibility. This agrees with

the literature, in which it has been reported frequently that hearing-impaired listeners

suffer from reduced spectral resolution. [For review see Tyler (1986).] Reduced

frequencyselectivity affects speech intelligibility in two ways. First, because of reduced

frequency selectivity the spectral contrasts in speech are less clear. Second, when

frequency selectivity is reduced, hearing-impaired listeners will suffer from excessive

upward and downwardspread of masking.

Ter Keurs e7 al. (1992, 1993) investigated the first effect. Speech and noise, having

the same long-term average spectrum, were added after the smearing of the spectral

envelope. As a result, the effect of excessive masking was not simulated. Ter Keurset al.

(1993) observed that hearing-impaired listeners were as sensitive to reduced spectral

contrasts in speech as normal-hearing listeners. They did find a small but significant

correlation between the SRT for unsmeared speech and auditory filter bandwidth, but

they could not explain this by a reduction of the spectral contrasts in speech.
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In our study, the first and second effects were evaluated in combination, becausefirst

the noise was addedto the speech and then the spectral information was distorted. Our

results strongly suggestthat reduced frequency selectivity influences speechintelligibility

in noise. Since the results of ter Keurs ef al. (1993) suggest that the first effect is not

responsible for reduced speech perception, the reduced speechintelligibility in noise

observed in hearing-impairedlisteners is probably mainly due to the secondeffect, 1.e.,

excessive spread of masking. Thus for hearing-impaired listeners, it is more difficult to

separate speech from competing backgroundnoise.

Il. SUMMARY AND CONCLUSIONS

In this study, the central question was how degradedspeech perception of hearing-

impairedlisteners relates to distorted auditory coding. To investigate this, the intensity,

time, and frequency information of soundwereartificially distorted after wavelet coding.

The detection thresholds for the different types of distortion were measured to obtain

insight into how clearly hearing-impaired listeners could perceive a particular type of

information. To investigate the relation between distorted auditory coding and speech

perception, the distortion-sensitivity model was used.If hearing-impaired listeners are

less sensitive with respect to speech perception than normal-hearing listeners to a

particular type of distortion (intensity, time, or frequency), this indicates thatthis artificial

distortion relates to the distorted auditory coding causing speech perception problems.

The group results showedthatthe detection thresholds for hearing-impairedlisteners

withrespectto the distortion ofintensity and temporal information were notsignificantly

higher than those for normal-hearing listeners. For the distortion of spectral information,

the detection thresholds for the hearing-impairedlisteners were significantly higher than

those for the normal-hearing listeners. Thus hearing-impaired listeners may perceive

spectral information less clearly than normal-hearing listeners. With respect to the

distortion-sensitivity model, the results (Fig. 5.6) showed that the group of hearing-

impaired listeners was as sensitive as the group of normal-hearing listeners to intensity

and temporal distortion. The group of hearing-impaired listeners was less sensitive than
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normal-hearing listeners to the distortion of spectral information. Thus the groupresults

suggest that distorted coding of spectral informationis an important factor underlying the

reduced speechintelligibility observed in hearing-impaired listeners.

Also, the individual results were considered to investigate the relation between

reduced speechintelligibility and distorted coding of spectral information in moredetail.

A significant correlation between the SII, both SII,.;, and SIIsg4;, and the detection

threshold for spectral distortion was observed (Fig. 5.5). Thus the data reveal statistical

relation between the quality of speech processing, quantified by the SII, and the spectral

coding accuracy, quantified by the detection threshold for spectral distortion. In addition,

the correlation betweenthe SIl,g,; and the sensitivity to spectral distortion with respect

to speech perception wassignificant (Fig. 5.7). Thus thereis a statistical relation between

the quality of speech processing andthe effect ofdistortion of the spectral cues on speech

perception. The more pronounced the speech perception problems of hearing-impaired

listeners (in terms of the SII), the less accurate the spectral auditory coding (higher

detection thresholds) and the less influence the distortion of spectral information has on

speech intelligibility (lower sensitivity to spectral distortion). The individual results

support the groupresult, strongly suggestingthat distorted coding of spectral information

is the factor underlying the suprathreshold problems encountered by many hearing-

impaired listeners when trying to perceive speech.

The sensitivity to spectral distortion could explain all “true” variance in the Slcgi,

i.e., all variance not due to measurementerror. Thusdistorted auditory coding of spectral

information may be the only factor underlying speech processing deficits measured by

meansof the SRBT test. However, sensitivity to spectral distortion could not explainall

“true” variance in the SII,,;,. This suggests that, besides distorted coding ofspectral

information, other factors play a role in the suprathreshold speech processing problems

of hearing-impaired listeners as reflected in the SRTatest.

From the data of the present study the following general conclusions can be drawn.

¢ The distortion-sensitivity model may be a valuable tool to investigate the underlying

causes of reduced speech perception.

e Distorted auditory spectral coding may be an important factor underlying the speech

perception problems of hearing-impaired listeners.

¢ Besides distorted coding of spectral information, other factors may play a role in

reduced speech intelligibility as well.
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General discussion

After using wavelet coding of soundas a tool to study the auditory

system, the usefulness of this tool will be discussedin this final chapter.

A review will be given of the results yielded using a wavelet codingtool

tailored to the auditory system.

In this thesis, wavelet codingis usedas a tool to study the auditory system. Thisstrategy

was chosen because of an important similarity between wavelet coding and auditory

coding, namely that their spectral resolutions are constant on a logarithmic frequency

axis. Investigating the auditory system by means of wavelet coding seemed interesting,

and this final chapter gives a review of the results of this wavelet approach. First, the

similarities between auditory coding and wavelet coding will be discussed (with respect

to part I of this thesis). Then, the results obtained by using auditory wavelet coding will

be discussed (with respectto partII of this thesis). Subsequently, possible directions for

further investigation will be given. Finally, the success of wavelet codingas a tool for

studying the auditory system will be considered.
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I. PART I: AUDITORY CODING AND WAVELET

CODING

In the first part of this thesis, the auditory time-frequency window,i.e., the window with

which the ear analyzes sound, was characterized. In Chapter 2, intensity discrimination

experiments were performed with Gaussian tone pulses and the results were interpreted

in terms of the multiple-window model: intensity discrimination improves when more

auditory windows are involved in the perception. The hypothesis was that, when

measuring intensity discrimination as a function of spectro-temporalshape,the intensity

discrimination performance is worst when the spectro-temporal shape of the stimulus

matches the spectro-temporal shape ofthe auditory window mostclosely. Asa result,the

just-noticeable differences in intensity were expected to show a convex shape when

plotted as a function of the spectro-temporal shape. Indeed, this convex shape (“hump”)

was observed. The results measured at carrier frequencies of 1 kHz and 4 kHz were

similar: both implied a corresponding bandwidth of the stimulus between roughly “4 and

¥/s octave. Since the stimuli used were Gaussian tone pulses for which the durations are

inversely proportionalto the bandwidth,the corresponding durationsofthese stimuli were

about 4 ms at 1 kHz and 1 ms at 4 kHz. The similarity of the intensity discrimination

performancesat ] and 4 kHz plotted as functionsof the spectro-temporal shape suggests

that also for the auditory window the duration is roughly inversely proportional to the

bandwidth: if the duration of the auditory window at 4 kHz was larger than 1 ms, the

“hump” in the intensity discrimination performance would be broader. This was not

observed. Thusthe spectral width of the auditory time-frequency window increases with

increasing frequency while the temporal width decreases.

In psychoacoustics, it is generally accepted that spectral resolution decreases with

increasing frequency: the auditory periphery can be though of as a bank of bandpass

filters, each between '4 and 1octave wide, related to the auditory critical band (see

Scharf, 1970). The spectral widthsofthe auditory time-frequency windowsas determined

in this thesis are in close agreement with these critical bands.

More controversial is the duration of the auditory time-frequency window. Our

conclusionthatthe duration decreases with increasing frequenciesis in general agreement
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with results in the literature (Florentine ef a/., 1988; Gerken ef a/., 1990; Plack and

Moore, 1990). However, in absolute terms the temporal resolution observed in these

studies is usually larger than our result of a few milliseconds. For example, Plack and

Moore (1990) found durations of 13 ms at 0.3 kHz decreasing to 7 ms at 8.1 kHz.

However, ina recent study by Wiegrebe and Krumbholz (1999), temporal resolution was

almost a factor 10 higher. Wiegrebe and Krumbholz argue that different parts of the

auditory pathway will limit temporal resolution measured in different experiments. In

their experiments and in the experiments of Chapter 2 of this thesis, the temporal

resolution of the auditory periphery was probablythe limiting factor. On the contrary, in

the gap detection experiments of Plack and Moore (1990), more central parts of the

auditory system probably limited performance. Thus,in their experiments, the temporal

information may be available in the auditory nerve, but the central auditory system was

not able to use it optimally for gap detection.

With respect to the multiple-window model used to explain the intensity

discrimination results, Baer ef a/. (1999a) questioned the validity of this model. They

reproducedthe results of Chapter 2 and explained them using an alternative theory based

on basilar membrane compression. Baeref a/. state that the improvementof intensity

discrimination for short-duration broadband clicks is not due to the combination of

information of different auditory time-frequency windows(multiple-window model), but

due to the input-outputfunction on the basilarmembrane being less compressive for very

brief stimuli during the initial part of the response. Although not mentioned by Baer ef

al., it seems likely that for these short-duration broadband stimuli the information from

different auditoryfilters (windows) is combined (Florentine and Buus, 1981). ‘Therefore,

both compression and multiple windows mayplay a role in intensity discrimination. More

experiments will be needed to test the two hypotheses.

In summary,in thefirst part of this thesis an attempt was made tocharacterize time-

frequency analysis of the peripheral auditory system. Based on the results of intensity

discrimination experiments using Gaussian tone pulses, the bandwidth ofthe auditory

time-frequency window wasestimated at about 4 octave. This is in agreement with the

classical view of spectral processing of the auditory periphery,i.c., a bank of bandpass

filters each a critical band wide (about 4 octave). In many models of the auditory system,

spectral and temporal processing are considered independently. A bandpassfilter has a

certain time constant, but estimatingthe time constantof the auditory periphery from the
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filter bandwidth is tricky, unless additional assumptions aboutthe orderofthefilter are

made (de Boer, 1985). In this thesis the time constant was coupled to the frequency

constant by estimating the time-frequency shape of a Gaussian tone pulse that matches

the auditory time-frequency window best. The spectral width of this function is

proportional to frequency and the temporal window inversely proportional to frequency.

A time-frequency analysis with these characteristics can be considered a wavelet analysis.

Therefore, in Chapter 3 of this thesis a wavelet analysis and synthesis method was

developed as an attempt to mimic time-frequency coding of the auditory periphery.

Il. PART II: SPEECH PERCEPTION AND DISTORTED

CODING

In partII of this thesis, the effects of distorted auditory coding on speech perception were

examined, using a wavelet decomposition and recomposition scheme as a signal-

processing tool. The auditory wavelet coding was used to model normal auditory time-

frequency coding. By distorting the wavelet coefficients, distorted auditory coding was

simulated. Intensity, temporal, or spectral information of speech wasdistorted and the

effect on speech perception was measured. The distortion-sensitivity model was used,

comparing the results of hearing-impaired listeners on speech perceptionas a function of

artificial distortion with the results of normal-hearing listeners. The underlying idea of

this approachis that if a hearing-impaired listener is less sensitive to a particular type of

distortion than normal-hearinglisteners,this artificial distortion relates to the hearing-

impaired listener’s distorted (suprathreshold) auditory coding that degrades his speech

perception performance.

Distortion of the intensity information of sound was obtained by multiplying the

modulus of each wavelet coefficient by a random factor. Temporal and spectral

information was distorted by randomly shifting the position of each wavelet along the

temporal and spectral axis, respectively. The effect of distortion of one dimension on the

information content of other dimensions was taken into account. This method for

simulating a distorted representation of information was chosen becauseof the elegant
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possibility to treat the three dimensions in a way thatis essentially identical. This

emphasizesthe intrinsic link between intensity, time and frequency. Still, this study did

not aim at exactly simulating possible coding deficiencies in the auditory system, but the

essential effects of the auditory coding deficits should be simulated. The method appears

to be able to dothis satisfactorily, at least with respectto distorted auditory coding of

spectral information.

Chapter 5 showed that main effects were observed for spectral coding only: The

detection thresholds for the artificial distortion of spectral information in a group of

hearing-impairedlisteners were higherthan those of normal-hearinglisteners. In addition,

hearing-impaired listeners were less sensitive than normal-hearinglistenersto artificial

spectral distortion when trying to understand speechin noise. This strongly suggests that

hearing-impairedlisteners suffer from distorted auditory coding of spectral information

andthatthis causes problemsin speech perception. There were alsoindications that other

factors, besides reduced spectral resolution, limited speech perception. The results of

Chapter 4 suggest that distorted coding of intensity information may play a role.

However, this could not be concluded from the results of Chapter 5. The results in this

chapter did not show a link between distorted coding of temporal information and

reduced speechintelligibility.

Duringthis project, speech perception of hearing-impaired listeners was studied in the

same group usinga different approach,i.e., the correlation approach combined with the

examination of individual data (“‘individual approach”) (Noordhoekez al., submitted). In

a correlation approach, the individual differences among listeners are used to study

statistical relations between auditory functions, e.g., frequency selectivity, and speech

perception.In the “individual approach,”the individualresults are lookedat, to examine

whether a hearing-impaired listener who performed less with respect to speech

intelligibility was also performing poorly with respect to one or more auditory functions.

Noordhoek e7 al. measured the auditoryfunctions around 1 kHz. When measuring speech

intelligibility, the bandwidth of the speech was limited to a frequency region around 1

kHz to such an extentthat intelligibility of short sentences dropped to 50% (Speech-

Reception Bandwidth Threshold test). Noordhoek et a/. accounted for the effect of

hearing threshold and sound pressurelevelof the stimuli on speech perception by means

of the SpeechIntelligibility Index as was followed by the presentstudy.
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The main conclusions of Noordhoeke7al. (submitted) agree with those ofthis thesis:

reduced spectral resolution is a very important cause for speech perceptiondeficits. Both

in this study and in the study by Noordhoeke/ a/., it becameclear that factors other than

reduced spectral resolution and hearing threshold can also affect speech perception of

hearing-impaired listeners. The group of hearing-impaired listeners of Noordhoekez al.

did not appear to suffer from distorted coding of intensity information, as they did not

perform worse than normal-hearing listeners in the intensity discrimination task. In

contrast, the results of Chapter4 ofthis thesis suggest that distorted intensity coding may

play a role. Noordhoek ef al. showed that reduced temporal resolution may be a factor

underlying reduced speechintelligibility for some hearing-impairedlisteners. In contrast,

in Chapter 5 of this thesis, distorted coding of temporal information did not seem to be

a factor. To summarize, the importance of good acuity of spectral coding for speech

perception becameclear both in this study and in the study by Noordhoeke7al.. The role

of intensity and temporal codingis still less clear.

Both studies showedthat reduced spectral resolution is an important cause for speech

perception problems. However, they also showedthat large differences among hearing-

impaired listeners exist, with respect to the seriousness of the deficit, but also with

respect to the type of auditory deficit. The studies makeclear that, to be able to help

hearing-impairedlisteners, itis important to examinetheir individual auditory deficits and

how they affect speech perception. After “earmarking” a hearing-impaired listener’s

problem,this listener could benefit from an individual correction.

Ill. SUGGESTIONS FOR FURTHER STUDIES

More research is neededto clarify the role of intensity and temporal coding for speech

perception. The strongest approach is probably an approach from two directions: the

correlation/individual approach, and the distortion-sensilivity model. The

correlation/individual approach can show the auditory deficits from which hearing-

impaired listeners are suffering, and how they correlate with speechintelligibility. Then,

by the distortion-sensitivity model, the effect of these auditory deficits on speech
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perception can be examined more directly. Measures of temporal auditory deficits are

forward masking, backward masking, and amplitude modulation detection (temporal

modulation transfer function). For slow amplitude modulation rates, modulation detection

can also be seen as an example of a measure of intensity processing, like intensity

discrimination. Applying the distortion-sensitivity model, speech perceptionas a function

of distortion of intensity or temporal information of hearing-impaired listeners is

compared with that of normal-hearing listeners. It might prove useful to examine the

effects of various types of distortions. For example, in a study onthe acuity of intensity

coding, one could also use sparse coding of the wavelet coefficients instead of

multiplying the modulus ofeach waveletcoefficient by a random factor. The idea behind

the intensity perturbation of Chapters 4 and 5 was to simulate reduced acuity of auditory

intensity coding dueto noisy intensity information. Sparse coding would simulate another

aspect of reduced acuity ofauditory intensity coding, i.e., a coding with low intensity

“selectivity.” It can also be used to study impaired loudness perception.

To study the relation between speech perception and the processing of temporal

information, it might be worthwhile to use fluctuating noise maskers besides the

nonfluctuating noise maskers. Effects of distorted coding of temporal information are

probably more pronounced when fluctuating noise maskers are used than when

unmodulated maskers are used.

In this study a correction to the speech perception values with respect to effects of

audibility was applied by meansofthe Speech Intelligibility Index model. The SII model

is based on the spectra of speech and maskers.It can estimate the effect of a continuous

steady-state noise masker on speech intelligibility. However, it cannot deal with

fluctuating maskers. Therefore,in a further study of processing of temporal information,

the SII model should be extended to include fluctuating noise sources as well, for

example by meansof the phase-locked modulation transfer function (Ludvigsen e7al.,

1990: Drullmanet a/., 1994, 1996).

With respectto the shape of the auditory time-frequency window,it is interesting to

investigate the shape of this window for hearing-impairedlisteners. In this way, it may

be possible to test whether the compression model proposed by Baerer al. (1999a) or our

multiple-window model is better suited to explain the intensity discrimination

experiments for stimuli with different spectro-temporal shapes. The modelof Baer ef al.

explains the variation in intensity discriminationby a variation in the degree of amplitude
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compression. Since hearing-impaired listeners experience less amplitude compression

than normal-hearing listeners, their model predicts that intensity discrimination for

hearing-impaired listeners varies less as a function of spectro-temporal shapethan that

for normal-hearing listeners. In contrast, the multiple-window model predicts that

intensity discrimination will be worst for stimuli with spectro-temporal shapes that

correspond most closely to those of the auditory time-frequency windows. Since the

auditory time-frequency window of hearing-impaired listeners is expected to have an

increased bandwidth,the poorest discrimination performanceis expectedfor stimuli with

a broader bandwidth than that observed for normal-hearing listeners.

Recently, Baer e/ a/. (1999b) measured intensity discrimination as a function of

spectro-temporal shape for hearing-impaired listeners. Although large variability was

present in the results, they seemto provide support for both hypotheses: for some

hearing-impaired listeners, intensity discrimination did not vary as a function ofspectro-

temporal shape; for other hearing-impairedlisteners, the intensity-discrimination results

showed a “hump”for stimuli with a broader bandwidth than that observed for the normal-

hearing listeners. These results suggest that probably both mechanisms apply to some

extent in intensity discrimination.

IV. WAVELET CODING AS A TOOL FOR STUDYING

THE AUDITORY SYSTEM?

The underlying reason for using wavelet coding to study the auditory system was the

presumption that peripheral auditory time-frequency coding is very similar to wavelet

coding. Theresults of the first part of this thesis confirm this. Just like for a wavelet, the

bandwidth ofthe auditory windowis (roughly) proportionalto frequency and the duration

of the window is (roughly) inversely proportional to frequency. Therefore, modeling

auditory spectro-temporal coding by wavelet coding seems highly appropriate. In the

secondpart of this thesis, distorted auditory coding was mimicked bya distortion of the

wavelet coding. Hearing-impairedlisteners were less sensitive to the distortion of spectral

information than normal-hearing listeners, and this strongly suggests that a distorted
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representation of spectral informationis the cause for reduced (suprathreshold) speech

perception of hearing-impairedlisteners.

Let us finally return to the point raised at the beginning of this chapter, i.e., the

successfulness of wavelet coding as a tool to study the auditory system. It was shown

that, in comparison with short-time Fourier analysis, wavelet analysis simulates the time-

frequency analysis of the auditory system more closely with respect to temporal and

spectral resolution. Therefore, it is worthwhile to consider wavelet coding in studies of

the auditory system. Wavelet coding is an interesting and easy manageable tool for

further investigation.In this thesis, this tool provided someinsightinto the suprathreshold

speech processing problemsof hearing-impairedlisteners: these problems mainly result

from distorted auditory processing of spectral information.
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Summary: Wavelet coding of sound

as a tool for studying the auditory system

In this thesis, wavelet coding is used as a tool for studying the time-frequency behavior

of the auditory system. The reason for using wavelet analysis, instead of the often-used

short-time Fourier analysis is the resemblance between wavelet analysis and auditory

analysis with respect to spectral resolution. In short-time Fourier analysis, spectral

resolution is constant throughout the frequency scale. On the contrary, in wavelet

analysis, spectral resolutionis proportional to frequency. For the auditory system, above

about 500 Hz, spectral resolution is proportional to frequency as well. Therefore, a

wavelet coding algorithm is developed that mimics the time-frequency analysis of the

auditory system. With the aid of an intensity-discrimination experiment, the temporal and

spectral resolution of the wavelet coding are tuned to the resolution of the auditory

system. Then, the resulting “auditory” wavelet coding is used as a front-end signal-

processing tool in studying the auditory system. Artificial distortion of this wavelet

codingis used to simulate the effects of distorted auditory coding on speech perception.

This thesis starts with an abstract consideration of auditory time-frequency analysis.

To analyze sounds of different time-frequency shapes, the auditory system performs a

time-frequency analysis using time-frequency windows. A stimuluscan give excitation

in asingle or in several time-frequency windows, dependingonits time-frequency shape.

When more than one time-frequency windowis excited by a stimulus,it is reasonable to

assume that, in an intensity discrimination task, the information from the different

windowsis combinedstatistically. This is described in the so-called multiple-window

model, which is a generalization of the multiband excitation pattern model (Florentine

and Buus, 1981) in which the information from different auditory filters is combined, and
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the multiple-look model (Viemeister and Wakefield, 1991) in which the information from

different time segments or looks is combined.

In Chapter 2 of this thesis, the multiple-window modelis tested on its merits in an

intensity discrimination experiment using Gaussian tone pulses. The time-frequency

shapeofthese stimuli is varied from a long-duration narrow-bandtoneto a short-duration

broadbandclick. Since these stimuli have different time-frequency shapes, different

numbers of windows maybe excited: a series of windowsalong the temporalaxis for the

long-duration narrow-band tone; a series of windowsalongthe spectral axisfor the short-

duration broadbandclick; and one or only a few windowsfor an intermediate tone pulse.

The multiple-window modelpredicts that the more windowsare involved in the intensity

discrimination task, the better the performance will be, because information from

different windows can be processed independently and combined subsequently;

performancewill be poorest for a stimulusofintermediate shape that excites one or only

a few windows.

The intensity discrimination results fit well into the multiple-window model. Intensity

discrimination performanceas a function oftime-frequency shape has a “convex”’ shape,

with poorest performance for a stimulus with a bandwidth of about 4 octave. This

“critical” bandwidth is observed both at 1 kHz and at 4 kHz, suggesting that the

bandwidth of the auditory windowis proportional to frequency. As a consequenceofthe

use of Gaussian tone pulses, the durations of the “critical” stimuli are inversely

proportional to frequency. The similar results at 1 and 4 KHz suggestthat the duration of

the auditory time-frequency window is inversely proportional to frequency as well,

because the width of the “convex” shape would be different for different frequencies,if

the duration of the auditory window was not inversely proportional to frequency. In

summary, the results from this experimentindicate that the spectral width of the auditory

window is proportional to frequency and the temporal width inversely proportional to

frequency. Thus peripheral auditory time-frequency coding can be approximated by

wavelet coding.

The intensity discrimination results suggest that a Gaussian mother wavelet, .e., a

complex sinusoidal carrier with a Gaussian envelope, with a bandwidth of “4 octave

approximates the auditory time-frequency window. Using this mother wavelet, a

decomposition and recomposition method is developed, as described in Chapter 3.

Nyquist’s sampling theorem is used to decide on an adequate sampling in time and



Summary 119

frequency (Allen, 1977; Allen and Rabiner, 1977). The resulting time-frequency sampling

is eight wavelets per octave along the spectral axis, and one wavelet per three stimulus

periods along the temporal axis. This “auditory” wavelet codingtoolis used as a signal-

processing tool in subsequentstudies of the auditory system.

In Chapters 4 and 5, the developed “auditory” wavelet coding is used to study speech

perceptionofhearing-impairedlisteners. Many hearing-impairedlisteners have problems

to understand speechin noise, even if sounds are well above the hearing threshold. These

listeners possibly suffer from a distorted auditory coding. The effect of this distorted

auditory coding on speech perception is studied by artificially distorting the wavelet

coding between decomposition and recomposition of sound, and measuring the effect of

this artificial distortion on speech intelligibility. Perturbations are applied in three

dimensions of coding:intensity, time, and frequency. The effects of distorted coding in

each ofthese dimensionsare interpreted using the so-called distortion-sensitivity model.

In this model, speech perception performance as a functionofthe degree of distortionis

compared between hearing-impaired listeners and normal-hearing listeners. The

underlying idea is that, when the auditory codingofa particular cue in soundis distorted

for hearing-impaired listeners, they will be less sensitive to an artificial distortion of that

cue than normal-hearing listeners. If speech perception of hearing-impaired listeners is

affected less by the distortion than that of normal-hearing listeners, performance of

normal-hearing and hearing-impaired listeners will converge towards higher degrees of

distortion. Thus, convergence fora particular type of distortion is an indicationthat this

artificial distortion relates to the auditory distorted coding that causes speech perception

problems.

The results of Chapter 5 did not show that hearing-impaired listeners were less

sensitive to a distorted coding of intensity or temporal information than normal-hearing

listeners. This suggests that auditory coding in theintensity or the temporal domain does

not constitute a problem for hearing-impairedlisteners, although in Chapter 4 some

indications that auditory intensity coding might be a problem were given. On the other

hand, with regard to spectral perturbations, speech perception performancefor hearing-

impairedlistenersis clearly less sensitive than performance for normal-hearing listeners.

In addition, hearing-impaired listeners also had problems to detect such spectral

distortions. The lowsensitivity of hearing-impaired listeners with respect to spectral



120 Summary

distortion suggests that their problems in understanding suprathreshold speech in noise

are due to coding problems with respect to spectral information.

In conclusion, wavelet coding approximates peripheral auditory coding, as confirmed

by the intensity discrimination experiments using Gaussian tone pulses. From the results

of this experiment, a wavelet coding algorithm, using a Gaussian mother wavelet with a

bandwidth of 4 octave, is developed to model auditory time-frequency coding. Artificial

distortion of the wavelet coding is used to investigate the influence of distorted auditory

coding on speech perception. The results of this study suggest that distorted auditory

coding of spectral information is an important factor underlying speech perception

problems of hearing-impaired listeners.
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Samenvatting: Waveletcodering van geluid

als middel voor het bestuderen van het

auditief systeem

In dit proefschrift wordt waveletcodering gebruikt om de tijd-frequentie analyse van het

gehoor te bestuderen. De reden voor het gebruik van een waveletcoderingin plaats van

de klassicke short-time Fouriertransformatie is de overeenkomst wat betreft spectrale

resolutie van waveletanalyse en auditieve tijd-frequentie analyse. Bij een short-time

Fouriertransformatie is de spectrale resolutie constant over de gehele frequentieschaal.

Echter, bij een waveletanalyse is de spectrale resolutie evenredig met de frequentie,

evenals bij het auditief systeem (bij frequenties hoger dan ongeveer 500 Hz). Met behulp

van intensiteitsdiscriminatie-experimenten is bepaald hoe de temporele en spectrale

resolutic van de waveletanalyse kan worden aangepast aan die van het gehoor.

Vervolgens is met behulp van een kunstmatige verstoring van de waveletcodering

onderzocht wat het belang is van verschillende aspecten van perifere auditieve codering

voor spraakperceptie.

Dit proefschrift begint met een poging om detijd-frequentie analyse van de auditieve

periferie te karakteriseren. Voor het verwerken van zowel temporeleals spectrale variaties

in geluid voert het gehoor een tijd-frequentie analyse uit met behulp van tijd-frequentie

vensters (windows). Een stimulus kan één of meerdere auditieve vensters activeren

afhankelijk van zijn vorm. Wanneer er meer dan één tijd-frequentie venster wordt

geactiveerd is het redelijk om aan te nemen dat bij een discriminatietaak de statistische

informatie van verschillende vensters wordt gecombineerd. Dit wordt in dit proefschrift

het multiple-window model genoemd.Hetis een combinatie van het mu/tiband excitation

pattern model (Florentine en Buus, 1981) waarin de informatie van verschillende

auditieve filters wordt gecombineerd, en het multiple-look model (Viemeister en
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Wakefield, 1991) waarin de informatie van verschillende tijdsegmenten (/eoks) wordt

gecombineerd.

In hoofdstuk 2 van dit proefschrift wordt het multiple-window model getest in een

intensiteitsdiscriminatie-experiment met Gaussische toonpulsen. De spectro-temporele

vorm van deze stimuli is gevarieerd van een toon (lange duur, smalbandig) naar een klik

(korte duur, breedbandig). Omdat deze stimuli verschillen wat betreft hun spectro-

temporele vorm, zullen verschillende stimuli een verschillend aantal tijd-frequentie

vensters aanslaan: een aantal vensters langs de tijd-as door een toon; een aantal vensters

langs de frequentie-as door een klik; één (of een paar) vensters door een stimulusdie zich

watbetreft spectro-temporele vorm tussen toon en klik in bevindt. Het multiple-window

model voorspelt dat, hoe meer vensters betrokkenzijn bij de intensiteitsdiscriminatietaak,

hoe makkelijker de beslissing zal zijn, omdat de informatie van verschillende vensters

onafhankelijk verwerkt kan worden en vervolgens kan worden gecombineerd; de

beslissing zal het moeilijkst zijn voor een stimulus met een tussenvorm die slechts één of

een paar vensters aanslaat. |

De resultaten van de intensiteitsdiscriminatie-experimenten komen overeen met de

voorspellingen van het mu/tiple-window model. De taak is inderdaad het moeilijkst voor

een stimulus met een spectro-temporele vorm tussen toon en klik. Deze stimulus heeft een

bandbreedte van ongeveer 4 octaaf. Deze “kritische” bandbreedte wordt gemeten bij

zowel1 kHz als bij 4 kHz. Dit toont aan dat, in ieder geval bij de gemeten frequenties,

de bandbreedte van het auditieve venster evenredig is met frequentie. Omdat bij de

experimenten gemeten is met Gaussische toonpulsen,is de duur van de “kritische” stimuli

omgekeerd evenredig met de frequentie. Echter, de geliajkkvormige resultaten by 1 en 4

kHz suggereren dat de duur van het auditieve tijd-frequentie venster ook omgekeerd

evenredig is met de frequentie. Immers, de breedte van het maximum zou verschillend

zijn bij verschillende frequenties als de duur van het auditieve venster niet omgekeerd

evenredig met de frequentie zou zijn. Dus, waveletcodering lijkt een goede benadering

voor de tijd-frequentie codering van de auditieve periferie.

De intensiteitsdiscriminatie-experimentenlaten zien dat de auditieve tijd-frequentie

analyse kan worden benaderd met een Gaussisch moederwavelet (een complexe

sinusvormige draaggolf met een Gaussische omhullende) met een bandbreedte van 4

octaaf. Met dit moederwavelet is een waveletanalyse en -synthese ontwikkeld, die

beschreven is in hoofdstuk 3. Nyquist’s bemonsteringstheorema is gebruikt om de
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bemonsteringin tijd en frequentie te bepalen (Allen, 1977; Allen en Rabiner, 1977). De

resulterendetijd-frequentic bemonstering is 6én wavelet per drie waveletperiodeslangs

de tijd-as en acht wavelets per octaaf langs de frequentie-as. Deze waveletcodering is

vervolgens gebruikt om het gehoorte bestuderen.

In hoofdstuk 4 en 5 wordt beschreven hoe met de ontwikkelde ‘auditieve’

waveletcodering de problemen met spraakverstaan van slechthorenden zijn onderzocht.

Veel slechthorenden hebben problemen methet verstaan van spraak in rumoer,zelfs als

het geluid boven de gehoordrempel is. Deze luisteraars hebben blijkbaar last van een

verstoorde auditieve codering.In dit proefschrift is het effect van een verstoorde auditieve

codering op het spraakverstaan onderzocht door een kunstmatige verstoring van de

waveletcodering. De verstoringen zijn aangebrachtin dric dimensies: intensiteit, tijd en

frequentie. Spraakverstaan is gemeten als functie van de mate van verstoring voor

normaal- en slechthorenden en geinterpreteerd met het distortion-sensitivity model. De

achterliggende gedachte van dit model is dat, indien een verstoorde verwerking van

bepaalde informatie een oorzaak is van problemen met spraakverstaan, slechthorenden

minder dan normaalhorendenlast zullen hebben van een kunstmatige verstoring van deze

informatie. In dat geval zullen de prestaties van normaal- en slechthorenden naar elkaar

toe groeien als functic van de mate van verstoring. Met andere woorden, convergentie

voor een bepaald type verstoring is een aanwijzing dat deze kunstmatige verstoring een

relatie heeft tot de verstoorde auditieve codering waar het spraakverstaan van

slechthorenden onderlijdt.

De resultaten van hoofdstuk 4 suggereren dat een verstoorde auditieve

intensitcitscodering een mogelijke oorzaak van problemen met spraakverstaan is. Echter,

de resultaten van hoofdstuk 5 bevestigen dit niet. Voor een verstoring van temporele

informatie waren slechthorenden ook niet minder gevoelig dan normaalhorenden.

Daarmee toonde het onderzoek niet aan dat de auditieve codering van intensiteit- of

temporele informatie een probleem is voor slechthorenden. Het spraakverstaan van

slechthorenden leed duidelijk wel minder onder een kunstmatige verstoring van spectrale

informatie dan dat van normaalhorenden. Bovendien hadden slechthorenden meermoeite

met het detecteren van de spectrale verstoring. Dit toont aan dat problemen methet

coderen van spectrale informatie een oorzaak zijn van de problemen van slechthorenden

met het verstaan van spraak in rumoer. Uit het onderzoek bleek verder dat er onder

slechthorenden grote onderlinge verschillen bestaan in de problemen met spraakverstaan
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en dat er, naast een slechte verwerking van frequentie-informatie, waarschijnlik ook

ander factoren cen rol spelen.

Samenvattend, de tijd-frequentie analyse van de auditieve periferie kan worden

benaderd meteen waveletcodering. Resultaten van intensiteitsdiscriminatie-experimenten

met Gaussische toonpulsen maken dat aannemelijk. Met behulp van deze resultaten is een

waveletanalyse ontwikkeld, gebruik makend van een Gaussisch moederwavelet met een

bandbreedte van ‘4 octaaf. Een kunstmatige verstoring van de waveletcodering is gebruikt

omde effecten van een verstoorde auditieve codering op het spraakverstaante simuleren.

Deresultaten laten zien dat een slechte verwerking van spectrale informatie een oorzaak

is van de bovendrempelige problemen met spraakverstaan waar slechthorenden onder

lijden.
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