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 1.1 Cancer 

 

The human body is made up out of trillions of cells (cell size illustrated in a movie). All of 
these cells have their own tasks to keep the body functioning correctly. This means that 
some cells are being renewed every couple of days, and others stay where they are for 
years. Despite the fact that cells from different organ systems can have very different tasks, 
they all have the same 3 billion deoxyribonucleic acid (DNA) base pairs. Although the DNA of 
each cell contains the same information, they can use different control mechanisms to 
prevent and repair damage. Damage to the DNA occurs thousands of times per cell per day 
due to endogenous and exogenous DNA-damaging factors or during cell division (1). Even 
though the cellular DNA repair system is very accurate (DNA repair explained in a movie), 
throughout a person’s lifetime most cells will acquire changes somewhere in their DNA. 
Through these changes it can happen that one of these cells manages to acquire the 
properties to escape all control mechanisms to become a cancer cell: a cell that does not 
stop dividing and can grow into other tissues. To become a tumor, cells need to acquire 
characteristics that enable them to keep proliferating and invading, without being stopped 
by signaling in or outside the cell as summarized in the hallmarks of cancer by Hanahan and 
Weinberg (2, 3). The fact that they have updated their review to add more (emerging) 
hallmarks between 2000 and 2011 (figure 1.1), only shows that we are still in the process of 
increasing our understanding of how a cancer cell becomes (and stays) a cancer cell. 

 
Figure 1.1: (Emerging) hallmarks of cancer, adapted from Hanahan and Weinberg 2011 (2), 
with permission, © 2011 Elsevier Inc. Published by Elsevier Inc. 

https://www.youtube.com/watch?v=t4Tst9DZFPI
https://www.ncbi.nlm.nih.gov/pubmed/15123782
https://www.youtube.com/watch?v=vP8-5Bhd2ag
https://www.ncbi.nlm.nih.gov/pubmed/21376230
https://www.ncbi.nlm.nih.gov/pubmed/10647931
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/figure-1.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/figure-1.png
https://www.ncbi.nlm.nih.gov/pubmed/21376230
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 1.2 Head and neck cancer 

 

1.2.1 Definition 

The term head and neck cancer is used to summarize a group of tumors derived from cells in 
one of the following subsites of the upper aerodigestive tract: the oral cavity (mouth), 
oropharynx, nasal cavity, nasopharynx, hypopharynx, salivary glands and the larynx (figure 
1.2). Except for salivary gland carcinomas, all tumors are squamous cell carcinomas. In the 
remainder of this thesis, the nasal cavity, nasopharynx and salivary glands will not be 
included when head and neck cancer is mentioned. 

 
Figure 1.2: Head and neck cancer regions. 

1.2.2 Epidemiology 

Head and neck cancer is the 7th most common cancer worldwide (figure 1.3). Yearly over 
600,000 people are diagnosed with head and neck cancer and over 350,000 people die from 
it (4). The incidence is generally higher in developing countries (4). From the different 
subsites of head and neck cancer, cancer of the lip and oral cavity is the most common 
(44%), followed by cancer of the hypo-/oropharynx and larynx (figure 1.3). 
The highest incidence of head and neck cancer is in the age group between 55 and 70 years 
old (5). Head and neck cancers occur predominantly in men, with only 20-30% of all new 
patients in the US in 2017 expected to be female (calculated from table 1 in ref.(6)). 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/figure-2.jpg
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/figure-2.jpg
https://www.ncbi.nlm.nih.gov/pubmed/21351269
https://www.ncbi.nlm.nih.gov/pubmed/21351269
https://seer.cancer.gov/archive/publications/survival/
https://www.ncbi.nlm.nih.gov/pubmed/28055103
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Figure 1.3: Incidence of all 14,067,894 cancer cases worldwide in 2012. Data plotted from 
GLOBOCAN 2012 data (website) (7). 

1.2.3 Etiology 

An estimated 75% of all head and neck cancers can be attributed to tobacco smoking and 
excessive alcohol consumption (8). Heavy smokers or drinkers have a higher risk to develop 
head and neck cancer, with respective odds ratios of 5 and 2 (9). For people that abuse both 
alcohol and tobacco, the odds ratio is almost 40, showing that the effect of both substances 
together is more than additive (8). Another important causative agent is infection with the 
human papilloma virus (HPV), especially subtype HPV16 (10). The virus produces 
oncoproteins E6 and E7, leading to tumor initiation. For all tumors the HPV prevalence rate 
is 26%, this is lower for cancer of the larynx and higher in oropharynx tumors (10). Although 
HPV infection is very common and in most cases does not lead to the development of 
cancer, the risk to develop an oropharyngeal tumor increases substantially with HPV16 
infection. When comparing patients with oropharyngeal tumors to a group of healthy 
controls, the HPV16 infection rate is 30-35% versus 0.5-1% in control groups (11, 12). This 
difference in HPV infection rates can be measured already ten years before the diagnosis of 
the oropharyngeal tumor (12). 

1.2.4 Methods to study a head and neck tumor 

There are many ways to study all characteristics of a head and neck tumor: from a simple 
look in the mouth to an array investigating all biological processes in a tumor (summarized in 
figure 1.4).  
 
Clinical examination 
Clinical examination is used to get an initial impression of the extent of the disease. For head 
and neck cancer this comprises mainly endoscopic examination of the tumor (youtube) and 
palpation of the tumor and regional lymph node stations in the neck. 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/figure-3.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/figure-3.png
http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
http://globocan.iarc.fr/Pages/references.aspx
https://www.ncbi.nlm.nih.gov/pubmed/3365707
https://www.ncbi.nlm.nih.gov/pubmed/17505073
https://www.ncbi.nlm.nih.gov/pubmed/3365707
https://www.ncbi.nlm.nih.gov/pubmed/15734974
https://www.ncbi.nlm.nih.gov/pubmed/15734974
https://www.ncbi.nlm.nih.gov/pubmed/23503618
https://www.ncbi.nlm.nih.gov/pubmed/23775966
https://www.ncbi.nlm.nih.gov/pubmed/23775966
https://www.youtube.com/watch?v=GMS8dEtfis4
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Figure 1.4: Methods to study a head and neck tumor. 

Imaging (13, 14) 
Ultrasound can be used in combination with a fine needle aspiration biopsy to assess tumor 
presence in cervical lymph nodes or assess depth of infiltration in oral cancer. Computed 
tomography (CT) scanning is often used to get an overview of the location of the tumor and 
possible cervical lymph nodes. It is routinely used to make segmentations to determine the 
extent of the radiation fields or measure tumor volumes. Magnetic resonance imaging (MRI) 
scanning is often used to get a better soft-tissue contrast and can be very helpful to visualize 
and delineate head and neck tumors. Additionally, different scanning protocols can be used 
to image different structures more clearly or study different tissue characteristics like 
diffusion or perfusion. 
Another method to produce functional images is positron emission tomography (PET): 
different molecules labeled with a positron-emitter, like fluorine-18 can be used. After 
injection into the body, the molecule of choice will distribute throughout the body. The best 
known PET tracer is fludeoxyglucose (FDG), glucose labeled with fluorine-18, used to study 
glucose uptake in different tissues, which can be used to detect (metabolically active) tumor 
cells. A clear advantage of PET scanning is the accrual of real-time biological information and 
the possibility to use a variety of molecules as PET tracer, depending on the process one 
means to study (15). Examples of tracers other than FDG, that are of particular interest in 
radiation oncology are thymidine labeled with carbon-11 to measure proliferation, FMISO 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/figure-4.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/figure-4.png
https://www.ncbi.nlm.nih.gov/pubmed/16343366
https://www.ncbi.nlm.nih.gov/pubmed/25979394
https://www.ncbi.nlm.nih.gov/pubmed/22987087
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([18F]Fluoromisonidazole) and Cu-ATSM for hypoxia imaging and 99mTc-Labeled annexin to 
study apoptosis (16). 

Radiomics 
Apart from anatomical information, recently, different features acquired with these different 
imaging modalities have been shown to be useful as predictors of outcome (radiomics) (17, 
18, 19, 20, 21). The obvious advantage of radiomics is that multiple features can be 
extracted from standard CT, PET or MRI scans that are already part of the diagnostic or 
treatment process. The challenge is to correctly place relevant radiomics features in a 
biological context (21). 

Probing 
To obtain real-time information about a tumor, a probe can be used to make measurements 
inside a tumor. The best known are the Eppendorf pO2 measurements with an oxygen 
sensitive needle probe inserted into the tumor (22). Although this is an invasive technique, it 
does give access to real time measurements with the possibility to repeat measurements 
during treatment. 

Tumor biopsy 
When (part of) a tumor is taken out, the tissue can be studied in a variety of ways. The 
presence of the HPV virus can be determined on the biopsy material, tumor cells can be 
grown outside a patient, slices of tissue can be stained and viewed under a microscope and 
cells or pieces of tissue can be used to study the proteins, RNA or DNA of a tumor or even a 
single tumor cell (23). 

Pathology/Immunohistochemistry 
Slices of tumor can be fixed onto glass to study them under a microscope. Different staining 
protocols, using (fluorescent) dye labeled antibodies, can be used to visualize various 
markers inside or around tumor cells. This can also be done in a tissue microarray (TMA) 
format, meaning multiple small slices of tumors from different patients can be stained on 
the same slide. 

Grow cells outside the patient 
Cells can be grown in mice (xenografts) or in short- or long term 2D or 3D cultures. This 
allows researchers to multiply the tumor and to further study the mechanistics of the cells or 
test the effectiveness of potential therapies. A lecture on ‘the good and bad ways’ to do this 
by Adrian Begg can be viewed here: Good and bad ways to assess treatment response . 

‘Omics’ 
How (cancer) cells behave is determined by the genetic information stored on approximately 
3 billion DNA bases, called the genome (24). A strand of DNA consists of a double stranded 
sequence of four bases: cytosine, guanine, adenine and thymine. Parts of the DNA can be 
stimulated to make copies to ribonucleic acid (RNA), a process called transcription. RNA 
consists of single strands of the bases guanine, uracil, adenine and cytosine, complementary 
to the transcribed part of DNA. Only a small part (about 1%) of the total DNA contains 
sequences with exomes (genes), that can be transcribed to messenger RNA (25). This form of 
RNA is translated to proteins, that will execute the desired actions in a cell (From DNA to 

https://www.ncbi.nlm.nih.gov/pubmed/18314068
https://www.ncbi.nlm.nih.gov/pubmed/22257792
https://www.ncbi.nlm.nih.gov/pubmed/26251068
https://www.ncbi.nlm.nih.gov/pubmed/23714730
https://www.ncbi.nlm.nih.gov/pubmed/24969789
https://www.ncbi.nlm.nih.gov/pubmed/27725679
https://www.ncbi.nlm.nih.gov/pubmed/27725679
https://www.ncbi.nlm.nih.gov/pubmed/11033187
https://www.ncbi.nlm.nih.gov/pubmed/28102262
http://www.youtube.com/embed/S3ptuFPLzk0
https://www.ncbi.nlm.nih.gov/pubmed/22965149
https://www.ncbi.nlm.nih.gov/pubmed/19684571
https://www.youtube.com/watch?v=gG7uCskUOrA
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protein in a movie). In total humans have around 20,000 genes (26) and even more proteins 
because of post-translational modifications (27). The suffix ‘-omics’ stands for a method 
acquiring a lot of data about all genes in one experiment (Introduction to ‘omics’ by NASA), 
which is possible on DNA, RNA and protein levels (figure 1.5). The simultaneous study of the 
whole genome (DNA) from one sample is termed genomics (28, 29, 30) (NASA explains 
genomics). Using new techniques to study the whole genome, all cancer-related mutations, 
translocations, amplifications and deletions can be examined and correlated with outcome 
or treatment response. Functional genomics studies what kind of processes are active in a 
tumor (cell) (31). Proteomics, the study of all proteins that are present in a tumor (cell), 
would presumably best represent what is occurring in that cell at a given time point. 
However, the study of all proteins in one sample is challenging and less sensitive than other 
approaches (27, 31). These other approaches include epigenetics, the study of manipulation 
of DNA to express certain genes, and transcriptomics, the study of messenger RNA that is 
translated to proteins (32, 33, 34) (NASA explains transcriptomics). For many genes there is a 
good correlation between messenger RNA and protein levels and an even better correlation 
between groups of messenger RNAs and certain biological processes. Still, messenger RNA 
does not always translate into protein. One of the reasons for this is the presence of 
microRNAs: small pieces of single stranded RNA (around 22 nucleotides) that can 
singlehandedly silence hundreds of genes (35). Almost 1,000 microRNAs have been 
identified so far, regulating at least 60% of all genes (36, 37). MicroRNAs regulate gene 
expression by binding to their (partly) complementary sequence on messenger RNA 
molecules, finally resulting in reduced protein production (38). MicroRNAs can reduce 
messenger RNA levels or directly reduce protein levels by translation inhibition, multiple 
modes of silencing seem to exist, that can be active at the same time (39, 40). 

 
Figure 1.5. ‘Omics’ at different levels. Adapted from chapter 23 (41) by A.C. Begg.  

Frequent genetic defects in head and neck cancer 
A median of 5 mutations per megabase was found in a group of head and neck cancer 
patients (42). Although no two tumors have the exact same genetic defects, there are some 

https://www.youtube.com/watch?v=gG7uCskUOrA
https://www.ncbi.nlm.nih.gov/pubmed/24939910
https://www.ncbi.nlm.nih.gov/pubmed/18314066
https://www.youtube.com/watch?v=m7X6mugpijQ
https://www.ncbi.nlm.nih.gov/pubmed/23589546
https://www.ncbi.nlm.nih.gov/pubmed/24560816
https://www.ncbi.nlm.nih.gov/pubmed/23589557
https://www.youtube.com/watch?v=LLac4OlvUeE
https://www.youtube.com/watch?v=LLac4OlvUeE
https://www.ncbi.nlm.nih.gov/pubmed/10866209
https://www.ncbi.nlm.nih.gov/pubmed/18314066
https://www.ncbi.nlm.nih.gov/pubmed/10866209
https://www.ncbi.nlm.nih.gov/pubmed/19015660
https://www.ncbi.nlm.nih.gov/pubmed/18703132
https://www.ncbi.nlm.nih.gov/pubmed/26996076
https://www.youtube.com/watch?v=19ef7dI8Yzc
https://www.ncbi.nlm.nih.gov/pubmed/15685193
https://www.ncbi.nlm.nih.gov/pubmed/18955434
https://www.ncbi.nlm.nih.gov/pubmed/15652477
https://www.ncbi.nlm.nih.gov/pubmed/16122423
https://www.ncbi.nlm.nih.gov/pubmed/22850425
https://www.ncbi.nlm.nih.gov/pubmed/18668040
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/figure-5.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/figure-5.png
https://www.crcpress.com/Basic-Clinical-Radiobiology-Fourth-Edition/Joiner-van-der-Kogel/p/book/9780340929667
https://www.ncbi.nlm.nih.gov/pubmed/23945592
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faults that are common amongst different head and neck tumors (43). It has to be stated 
that tumors caused by HPV do not possess all the same genetic alterations (44 ,45, 46, 47) 
and might be considered a different entity from tumors that are mainly caused by smoking 
and drinking (48, 49). Some of the most commonly described genetic alterations in head and 
neck cancers are in the p53, CDKN2A (p16), CCND1 (cyclin D1), epidermal growth factor 
receptor (EGFR), PIK3CA and NOTCH pathways (47, 50) as can be seen in figure 1.6. 
A loss or mutation of TP53 on chromosomal location 17p13 can lead to decreased apoptosis 
and increased proliferation. This is observed in about 50-80% of head and neck cancers (47, 
51, 52). The cyclin-dependent kinase inhibitor 2A (CDKN2A) gene produces p16, which 
inhibits CDK4 and CDK6 to prevent phosphorylation of the Rb protein, leading to inhibition of 
cell cycle progression from G1 to S-phase. In 80% of head and neck cancers the p16 protein 
is absent, mostly by deletion of the gene location of p16 on chromosome 9p21, which leads 
to increased proliferation. A study by van der Riet et al, showed that p16 was deleted in 70% 
of head and neck tumors (53). Cyclin D1, on the other hand, activates Rb, thus enabling the 
transition from G1 to S phase. An activating polymorphism of this gene was described in 25% 
of tumors (54), whereas the chromosomal region of this gene (11q13) was amplified in 20-
50% (43, 55). Another often described oncogene is the epidermal growth factor receptor 
(EGFR) located on chromosome 7p11, which is a regulator of tumor cell growth, invasion, 
angiogenesis, and apoptosis. This receptor shows overexpression in 40% of tumors (56). 
Reasons for overactivation of EGFR signaling can be the expression of mutant EGFRvIII (57) 
or an amplification of the EGFR gene (58). Not just EGFR, but other genes in the PI3K-AKT or 
RAS-MAPK can be deregulated, giving the same effect. More recently, inactivation of the 
NOTCH pathway has been found in head and neck tumors. Inactivation of this pathway could 
lead to loss of regulation of several processes like self-renewal capacity, cell-cycle exit, and 
survival (59, 60). 

Figure 1.6: Common alterations in 279 HNSCC samples and their role in the different 
‘hallmarks of cancer’. Picture adapted from Lawrence et al. (47) with permission according 
to Nature Publishing Group guidelines. 

https://www.ncbi.nlm.nih.gov/pubmed/21160525
https://www.ncbi.nlm.nih.gov/pubmed/15240783
https://www.ncbi.nlm.nih.gov/pubmed/16467079
https://www.ncbi.nlm.nih.gov/pubmed/25056374
https://www.ncbi.nlm.nih.gov/pubmed/25631445
https://www.ncbi.nlm.nih.gov/pubmed/26936027
https://www.ncbi.nlm.nih.gov/pubmed/23295808
https://www.ncbi.nlm.nih.gov/pubmed/25631445
https://www.ncbi.nlm.nih.gov/pubmed/27551333
https://www.ncbi.nlm.nih.gov/pubmed/25631445
https://www.ncbi.nlm.nih.gov/pubmed/18094376
https://www.ncbi.nlm.nih.gov/pubmed/12649174
https://www.ncbi.nlm.nih.gov/pubmed/8118798
https://www.ncbi.nlm.nih.gov/pubmed/18413827
https://www.ncbi.nlm.nih.gov/pubmed/21160525
https://www.ncbi.nlm.nih.gov/pubmed/16314836
https://www.ncbi.nlm.nih.gov/pubmed/16763281
https://www.ncbi.nlm.nih.gov/pubmed/16951222
https://www.ncbi.nlm.nih.gov/pubmed/17538160
https://www.ncbi.nlm.nih.gov/pubmed/21798893
https://www.ncbi.nlm.nih.gov/pubmed/21798897
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/figure-6.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/figure-6.png
https://www.ncbi.nlm.nih.gov/pubmed/25631445
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1.2.5 Staging 

Based on the spread and extent of the tumor, determined by clinical examination and 
imaging, patients are classified into different stage groups. Staging can then be used to 
select the correct treatment or make an estimation of the prognosis. The staging of tumors 
of the larynx, oropharynx, lip and oral cavity is done using the TNM AJCC Cancer Staging 
Manual, for this thesis the seventh edition was used, summarized in table 1.1. This edition 
has recently been updated to the eighth edition (61). 

 
Table 1.1: Staging of head and neck tumors. Summarized from AJCC Cancer Staging Manual, 
Seventh Edition (2010) published by Springer New York, Inc.  

https://www.ncbi.nlm.nih.gov/pubmed/28128848
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Table-1_1.png
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1.2.6 Management 

According to the specific (sub-)site and the stage, a patient with a head and neck tumor will 
be treated with one or a combination of these modalities: surgery, radiotherapy, 
photodynamic therapy, chemotherapy and targeted therapy (62, 63). Usually treatment 
consists of radiotherapy, chemoradiotherapy or surgery with or without adjuvant (chemo-
)radiotherapy. While surgical resection of the tumor can be effective in terms of tumor 
control, it is challenging to spare some important functions like speech and swallowing in 
advanced stages. Therefore a lot of research has been conducted into organ-sparing 
strategies using either single-modality radiotherapy or radiotherapy in combination with 
chemo- or targeted therapy. Data from small randomized trials suggest that outcome rates 
between surgery and (chemo-) radiotherapy are similar, with a possible exception for oral 
cavity and advanced laryngeal cancers (64, 65, 66). Results of phase II/III studies for the 
subgroup of small (T1-2) tumors are still awaited (67). Meanwhile, comparable survival rates 
between surgery and radiotherapy groups were reported in a large literature review of 
oropharyngeal cancers (68). Generally, less toxicity is reported in these studies when surgery 
is avoided. Currently, approximately two third of all patients is (partly) treated with 
radiotherapy: 58% of all patients with pharynx/oral cavity tumors and 74% of all patients 
with larynx tumors (69). 

1.2.7 Prognosis 

The average overall survival for head and neck cancer is around 50% (4), but this can vary 
greatly between groups of patients with different characteristics. One way to divide patients 
into different prognosis groups is to use the TNM stage groups (table 1.2). The 5 year 
survival can range from 83% for stage I patients to 30% for stage IV patients (table 1.2) (5, 
70). 

 
Table 1.2: Stage groups. Summarized from AJCC Cancer Staging Manual, Seventh Edition 
(2010) published by Springer New York, Inc. Five year relative survival rates from SEER data. 

The first sign of failure after therapy is usually a locoregional recurrence (80-90%, calculated 
from: (71, 72, 73)). The rate of second primary tumors is significantly higher in head and 
neck cancer patients than for other tumors. Eventually, 36% of these patients will get a 
second primary tumor (mostly lung cancer). Roughly 10% of all patients will get a second 
primary head and neck cancer (74), because HPV, smoking and drinking affect the entire 

https://www.ncbi.nlm.nih.gov/pubmed/26215712
https://www.ncbi.nlm.nih.gov/pubmed/27898173
https://www.ncbi.nlm.nih.gov/pubmed/27494036
https://www.ncbi.nlm.nih.gov/pubmed/25639864
https://www.ncbi.nlm.nih.gov/pubmed/12115386
https://www.ncbi.nlm.nih.gov/pubmed/27943254
https://www.ncbi.nlm.nih.gov/pubmed/12115386
https://www.ncbi.nlm.nih.gov/pubmed/21454129
https://www.ncbi.nlm.nih.gov/pubmed/21351269
https://seer.cancer.gov/archive/publications/survival/
https://seer.cancer.gov/archive/publications/survival/seer_survival_mono_highres.pdf
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Table-1_2.png
https://seer.cancer.gov/archive/publications/survival/seer_survival_mono_highres.pdf
https://www.ncbi.nlm.nih.gov/pubmed/21154350
https://www.ncbi.nlm.nih.gov/pubmed/16950362
https://www.ncbi.nlm.nih.gov/pubmed/22975604
https://www.ncbi.nlm.nih.gov/pubmed/18729183
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area (field cancerization). Both recurrences and second primaries are challenging to (re-) 
treat, toxicity is high and the five year overall survival only 20% (75). 

1.2.8 Quality of life 

During treatment the acute dose-limiting toxicity is mainly severe (grade 3-5) mucositis, 
occurring in approximately 30% of radiotherapy patients and in 40-70% of accelerated 
radiotherapy or chemoradiotherapy patients (76, 77, 78, 79). In a systematic review that 
summarizes quality of life data from 37 studies among head and neck cancer survivors, 
toxicity at one year after treatment was reported (80). Persisting issues reported at that time 
were mostly fatigue, xerostomia (dry mouth) and sticky saliva. Other observed symptoms at 
1 year were problems with appearance, speech, swallowing, taste/smell and sexuality. 
Primary hypothyroidism has also been described as a late complication after treatment of 
tumors of the head and neck (81). 
 

 1.3 Radiotherapy for head and neck cancer 
and reasons for its failure 

 

While in daily clinical practice the TNM staging system is used to predict prognosis and base 
treatment decision on, the failure of radiotherapy treatment can be attributed to factors on 
different levels. The treatment, patient characteristics, tumor characteristics and cell 
properties can all contribute to the eventual cure or failure (summarized in figure 1.7). 

1.3.1 Treatment characteristics 

Radiotherapy 
Radiotherapy using photons causes damage through the generation of free radicals or 
through direct damage in the cell. Radiation damage causes various DNA defects, of which 
the most lethal is the DNA double strand break. An illustration: a typical fraction dose of 2 
Gray (Joule/kilogram) induces > 2,000 DNA base damages, ∼2,000 DNA single strand breaks, 
and 40-80 DNA double strand breaks per cell (82). Every 2 Gy-fraction will kill around 30-50% 
of the tumor cells. Fractionated radiotherapy uses the principle that normal tissues have a 
better ability to repair (DNA) damage than tumor cells, and will therefore (partly) recover in 
between fractions, while tumor cells will not. The relative advantage of a treatment course 
integrating both the tumor and the normal-tissue effects can be expressed in a therapeutic 
ratio (41). Alterations in the radiotherapy fractionation or the addition of chemotherapy or 
targeted therapies aim to specifically target tumor cells and thereby improve the therapeutic 
ratio. An example of a typical curative head and neck irradiation schedule is 35 fractions of 2 
Gy (total dose 70 Gy) over 7 weeks. 
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Figure 1.7: Overview of causes of radiotherapy failure (upwards arrows) or success 
(downwards arrows) in head and neck cancer. 

To make different irradiation schedules comparable in terms of the biological effect, 
treatment schedules can be recalculated to the equivalent dose in 2-Gy fractions (EQD2) 
using the Linear Quadratic (LQ) model (Lecture LQ model by Adrian Begg). Assuming the 
overall treatment time is unchanged the formula is: EQD2 = D * (d + α/β)/(2 + α/β), were D is 
the total dose, d the dose per fraction and the α/β-ratio represents the fractionation 
sensitivity of the tissue of interest (for head and neck cancer 10 is commonly used). An EQD2 
converter can be found here: EQD2 converter. When the overall treatment time is changed 
(usually to accelerate the treatment) the EQD2 is calculated as follows: EQD2,t.new = EQD2,t.old – 
(t.new – t.old) * Dprolif, where t.new is the new overall treatment time in days, t.old the 
original treatment time in days and Dprolif is the dose recovered per day due to proliferation; 
for head and neck cancer this is 0.7 Gy/day (83). 

Treatment and treatment delivery 
Different treatment-related factors can contribute to treatment failure. The total dose 
(EQD2) has been shown to predict survival (84, 85). A higher total EQD2 gives a better tumor 
control, but is sometimes compromised because of an interruption of the treatment. Other 
reasons for a lower EQD2 are concessions due to dose limiting normal tissue toxicity 
(important but not discussed in this thesis) or missing part of the tumor extent on 
pretreatment imaging leading to a lower dose or complete geographical miss of the tumor, 
meaning part of the tumor will not receive the total dose needed for tumor kill. Time plays 
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an important role in head and neck cancer radiotherapy. Both the overall treatment time 
and the time to treatment initiation have been shown to be important predictors of 
outcome. A delayed start of treatment is prognostic ally unfavorable (86, 87). Data from the 
US National Cancer Database show that patients with a waiting time under 52 days have a 
median overall survival of 72 months, versus 47 months for patients with a waiting time over 
67 days (86). Radiotherapy can further be improved by using accelerated (reduction of total 
treatment time) or hyperfractionated (more fractions in the same treatment time) 
treatment schedules (72, 79, 88). A lecture by Jack F. Fowler on hyperfractionated and 
accelerated radiotherapy can be viewed here: altered fractionation (Jack F. Fowler, 1989). 
The benefit of these regimens is an absolute overall survival benefit of 3.4% at 5 years (8.2% 
for hyperfractionation). Other strategies to improve radiotherapy outcome are the addition 
of chemotherapy (89) or targeted therapy (90). Concomitant chemotherapy gives an 
absolute survival advantage of 6.5% at 5 years in a large meta-analysis (91). On the addition 
of targeted therapies to radiotherapy, there are no meta-analyses yet. So far, a combination 
of radiotherapy with the hypoxic sensitizer (nimorazole) (92) or the EGFR-inhibitor 
cetuximab have shown promise (90). More targeted therapies are currently under 
investigation, as well as proton therapy (93). 

1.3.2 Patient characteristics 

Patient-related factors 
Many patient characteristics have been described to influence cure and survival rates. 
Factors that have been linked to decreased survival are a higher age, male sex, pre-
treatment anemia, a poor general health/comorbidity and (persistent) smoking. Older 
patients do worse that younger patients; this has been shown in several studies with an 
average hazard ratio of 1.5 per decade (84, 85, 94, 95, 96). Male sex was reported to have a 
hazard ratio of 2.3 compared to female sex in a series of 994 laryngeal cancer patients that 
were treated with radiotherapy (84). Patients with a low hemoglobin concentration before 
start of radiotherapy have a worse overall and disease free survival rate, with a hazard ratio 
of around 1.4 for patients with anemia (84, 85, 97). The worse survival of anemic patients 
cannot be overcome by a transfusion prior to the start of treatment (98). Patients with a 
worse general health score either defined as performance status (85, 99), ASA comorbidity 
score (100) or ACE-27 score (101) do worse than healthy patients without comorbidities 
(102). In a large study conducted to identify behavioral factors that influence survival of 
head and neck cancer patients, being a former or current smoker gave a decreased overall 
survival (with respective hazard ratios compared to never smokers of 2.0 and 2.4) (95). 
Molina et al. reported a slightly lower hazard ratio of 1.3 for tobacco use (94). In a recent 
study by Gillison et al. the risk of death increased by 1% per pack-year that was smoked 
(103). 
 
Tumor-related factors 
Tumor properties that have been described to influence cure rates negatively are a higher T 
and/or N-stage, a large tumor volume, the site from which the primary tumor originates and 
biological characteristics. A higher T stage is correlated with a worse overall survival, with 
estimated hazard ratios of 1.5, 2 and 3 for T2, T3 and T4 tumors compared to T1 tumors (73, 
84, 85, 96, 97, 101). Another way to describe the primary tumor is the measurement of the 
primary tumor volume on pre-treatment imaging (CT/MRI/PET). The larger the tumor 
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volume, the worse overall survival rates, this was demonstrated in a few studies that 
measured tumor volume, the overall survival rate was reported to decrease around 10% for 
every 10 cm3 volume increase (100, 104, 105, 106, 107). In all of these studies, the addition 
of tumor volume to a multivariate model eliminated T-stage as a significant predictor of 
overall survival. The extent of lymph node involvement, the N stage is often correlated with 
survival, in a study by Schroeff et al. 5 year survival was 61.3% for N0 and 10% for N3. Others 
have reported similar findings (84, 85, 96, 97, 99, 101, 104), with hazard ratios compared to 
N0 for respectively N1,N2 and N3 patients, being around 1.5, 2 and 3. Different studies show 
the importance of tumor subsite for the prediction of outcome (84, 94, 95, 97, 99). A 
representative example is the study by Schroeff et al., which showed that in a large 
population cohort, patients with a glottic larynx tumor had a much better 5 year survival 
(68%) than other sites like oral cavity (42%), oropharynx (37%) or patients with hypopharynx 
(28%) tumors (101). 

1.3.3 Tumor biology 

The survival of patients can be influenced by general prognostic biological factors like tumor 
grade or HPV status, but also by predictive factors that are (partly) specific for the response 
to radiotherapy (108). The grade of the tumor is a measure for its aggressiveness that 
correlates with prognosis. In a study by Molina et al. a moderate to poor differentiation 
grade has a hazard ratio of 1.2 over good differentiation (94, 101). Fairly recently the HPV 
infection status has been discovered to be a major factor for the prediction of outcome of 
head and neck cancer (109). Patients with HPV-positive tumors have a reduction in the risk 
of dying from their cancer when compared with HPV-negative tumors. In a meta-analysis of 
37 studies by Ragin et al. a 28% reduced risk of death was observed (hazard ratio 0.72) (110). 
In three studies of patients treated with (chemo-)radiotherapy a consistent 60% reduction in 
the risk of death was observed (hazard ratio 0.4) (111, 112, 113). The superior cure rates of 
patients with HPV positive tumors might be caused by an increased sensitivity to irradiation 
due to impaired DNA repair (114, 115). Because of their superior survival, patients with HPV 
positive tumors have even been suggested to be candidates for treatment deintensification 
(49, 116, 117). 
Classical radiobiological processes influencing tumor response to irradiation are 
oxygenation, proliferation and intrinsic radiosensitivity (118), also described as the 4 or 5 
‘Rs’: Repair, Reoxygenation, Repopulation, Redistribution of cells in the cell cycle and 
intrinsic Radiosensitivity (119, 120). More recently other processes have been added to 
these factors: the presence of stem cells, microenvironmental factors like blood supply and 
immune cells and possibly also the energy metabolism of the tumor cells (121, 122). 

Repair 
The term repair, or recovery, is often interpreted as ‘DNA repair’, but was originally (before 
the discovery of DNA repair) used to describe the observation that tissues can recover after 
radiotherapy. This recovery has different aspects: repair of DNA damage (discussed under 
‘intrinsic radiosensitivity’) and tissue factors (discussed under ‘microenvironmental factors’). 

(Re-) oxygenation 
Hypoxic cells treated with radiotherapy have a survival advantage. This was shown by 
numerous in vitro studies (among others: (123, 124, 125, 126)). The fact that hypoxia is a 
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negative prognostic factor, has also been shown in vivo, using different techniques to 
evaluate the level of hypoxia in a tumor (127). Hypoxia can be measured directly by invasive 
methods or indirectly by imaging techniques or by studying protein or messenger RNA 
expression of genes known to be involved in hypoxia (127). Of note is that hypoxia is often 
subdivided into chronic (diffusion limited) and acute (perfusion limited) hypoxia, which of 
these two has the most implications for therapy outcome is still under debate (128). Many 
methods to study hypoxia in a tumor exist, consisting of invasive methods, different imaging 
techniques and various analyses of biopsy material (129). Direct, pre-treatment Eppendorf 
pO2 measurements with an oxygen sensitive needle probe inserted into the tumor, 
demonstrated that a high percentage of hypoxic areas within the tumor was associated with 
poor survival (22, 130, 131, 132). Studies of PET imaging of hypoxia with different tracers 
indicated that, again, hypoxia correlates with worse control rates after radiotherapy (133, 
134, 135, 136). Hypoxia PET scans can also be of use in the monitoring of hypoxia during 
treatment: a decrease of hypoxic tumors from 70-100% before treatment to 6-36% during 
treatment was observed (133, 137, 138). Another imaging strategy to study hypoxia is MRI, 
using specific scanning protocols, like dynamic contrast enhanced (DCE) MRI (129, 139, 140). 
The most extensively immunohistochemically studied hypoxia markers are the exogenous 
pimonidazole and the endogenous markers HIF1-alpha and carbonic anhydrase IX (CAIX). 
Pimonidazole (an exogenous compound preferentially bound by hypoxic cells) staining 
correlated with local control after radiotherapy: 2-year local control rates increased from 
48% to 87% when pimonidazole staining decreased (141). Overexpression of HIF1-alpha, a 
proposed marker for acute hypoxia, correlated significantly with worse local control (142, 
143, 144), as well as expression (pattern) of CAIX, a HIF-1alpha target and pH regulator (142, 
145, 146, 147). With the notion that one marker might not reflect the complex cellular 
response to hypoxia, there have also been reports of panels of markers (gene expression 
sets) studied simultaneously that correlate hypoxia status with outcome (148, 149, 150, 
151). 
Finally, the fact that in vivo modification of oxygen status during radiotherapy can improve 
local control, especially in hypoxic tumors, proves that hypoxia is an important factor in 
radioresistance (92, 133, 138, 151, 152, 153). 
 
Repopulation/proliferation (Link to lecture by Adrian Begg on proliferation) 
Using fractionated radiotherapy, not just normal tissues, but also tumors have the 
opportunity to compensate for their loss, meaning fast proliferating tumors will (partly) 
renew themselves in between fractions. Two factors are of importance for this 
phenomenon: the ability to proliferate quickly and the number of cells that have clonogenic 
capacity (154). The potential tumor doubling time, measured on pre-treatment biopsy 
material, was a significant predictor in single center studies, but failed to show a significant 
correlation with outcome in a multicenter validation study of 476 patients (155). However, in 
head and neck cancer, a negative effect of prolongation of overall treatment time has been 
shown. From about 5 weeks after the start of fractionated radiotherapy an accelerated 
repopulation has been observed, meaning that with a longer overall treatment time, more 
dose is needed for the same tumor control rates (156, 157, 158). This observation has been 
used to design new fractionation schedules. When the same dose (70 Gy) was administered 
in 6 weeks instead of 7, a significantly higher tumor control rate (around 10% higher) was 
observed (79, 159). However, not all patients appear to benefit from accelerated 
radiotherapy, additional subgroup analyses have shown that the benefit is for patients with 
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a well differentiated, slowly proliferating tumors with high EGFR expression (160, 161, 162, 
163). An explanation for this counterintuitive finding could be that these tumors resemble 
normal mucosa and therefore still share the ability for accelerated repopulation (164). 
Another approach to measure proliferation of a tumor, could be to detect the glucose 
uptake (165). Tumor uptake of 2-[(18)F] fluoro-2-deoxy-D-glucose (FDG) measured by 
positron emission tomography (PET) has been shown to be a prognostic factor in a series of 
120 head and neck cancer patients. A higher glucose uptake (measured by a higher 
standardized uptake value) was correlated with worse disease free survival (166). 

Redistribution 
Over 50 years ago it was observed that cells in different phases of the cell cycle showed 
different survival rates after irradiation (167, 168). It was shown that cells are generally more 
sensitive to irradiation during mitosis/G2 phase and more resistant during the (late) S phase. 
Fractionating radiotherapy would increase the probability of irradiating cells in a more 
sensitive phase, because of the redistribution in phases in between two fractions (119, 169). 
In series of in head and neck cancer patients treated with differently fractionated 
radiotherapy schedules, it was observed that tumors with a longer duration of S phase 
(measured in vitro) had worse local control rates: around 30-40% in tumors with a longer S 
phase, compared to 50-60% for tumors with a shorter S phase duration (155, 170). 

Intrinsic (cellular) radiosensitivity 
Within a tumor, different cell populations exist, with different sensitivity to irradiation (171). 
Tumor cell radiosensitivity, defined as the sensitivity of cells to ionizing radiation in vitro, is a 
significant prognostic factor for radiotherapy outcome (118). The sensitivity of cells in vitro 
can be tested by measuring clonogenic survival at specific doses of irradiation. The 
percentage of surviving colony-forming cells at a certain dose level can then be determined. 
Survival of cells at 2 Gy was shown to correlate with tumor control rates in studies that 
compared in vitro cellular radiosensitivity to therapy response (172, 173, 174, 175). 
Hypothetical causes for cellular radiosensitivity can be divided into three categories: 1. Cells 
get less damaged upon irradiation, 2. Cells repair DNA damage better/faster after 
irradiation, 3. Cells with the same amount of damage have better pro-survival mechanisms. 
Although there is not much evidence for the first hypothesis, it has been suggested that cells 
with more radical oxygen species scavengers, like glutathione, have higher survival rates 
(176, 177). Another possible factor contributing to the evasion of damage from radiotherapy 
is chromatin density. Areas of more condensed chromatin have been shown to be less prone 
to double strand breaks (178, 179). The second hypothesis, better DNA damage repair, is 
probably the most important and most investigated explanation for intrinsic sensitivity. Cells 
that are defective in DNA repair are more sensitive to irradiation. This can be learned from 
patients with DNA repair disorders (180, 181). Luckily, in most cancer patients, impaired 
DNA-repair is specific to tumors, which leads to improvement of the therapeutic ratio of 
fractionated radiotherapy. Numerous in vitro experiments have shown a radiosensitization 
after the inhibition of one of the DNA repair pathways (128, 182, 183). Some drugs targeting 
the DNA damage response are currently tested in clinical phase I/II studies (184). A lecture 
on the exploitation of DNA repair by Adrian Begg can be viewed here: Exploiting DNA repair 
to improve radiotherapy. Finally, the ability to evade death after getting damaged by 
irradiation could contribute to cells being more resistant. Firstly, by the correct activation of 
cell cycle checkpoints upon obtaining DNA damage, a cell can take the time to repair damage 
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and thereby evade mitotic catastrophe. There is evidence that cell cycle checkpoint 
inhibition can lead to higher tumor control rates (185). In case the damage is too extensive, 
there are many ways for a cell to die (186, 187). Although the most researched method, 
apoptosis through TP53 signaling, is not consistently linked to radiosensitivity, other modes 
of dying could be correlated with radiosensitivity (188, 189). There is some evidence in head 
and neck cancer that TP53 does not inhibit apoptosis, but causes treatment failure by 
evasion of senescence (190). 
 
Other processes (not starting with an ‘R’) 
Since the 4 or 5 classic ‘Rs’ have been defined decades ago, there are some new insights as 
to why tumors can be radioresistant. Firstly, the discovery that not all cells in a tumor are 
important for the survival of that tumor gave rise to the characterization of the cancer stem 
cell model (Lecture Professor Weinberg on cancer stem cells): only some cells in a tumor are 
able to regrow a new tumor and are therefore the only cells that need to be killed in order 
not to get a tumor recurrence after radiotherapy (191, 192). This means that all other factors 
(all classic ‘Rs’) are only important for those cancer stem cells (121). There is a growing body 
of evidence suggesting that not only the percentage of cancer stem cells in a tumor is 
important, but that cancer stem cells are intrinsically more radioresistant than non-cancer 
stem cells (193). Secondly, there is a growing recognition that the microenvironment in 
which a tumor cell grows is important for its response to irradiation. The microenvironment 
can influence radiotherapy response in several ways. Cancer cells can be influenced by their 
neighboring cells, leading to the bystander effect (indirect damage of initially undamaged 
cells because they are next to irradiated cells) (194). Another important component of the 
microenvironment is the vasculature. Tumor often have a ‘messy’ vasculature leading to 
various levels of hypoxia. Additionally, endothelial cells dying as a response to radiotherapy 
can prevent the regrowth of tumor cells that were being supplied by that vessel (195). The 
inhibition of vasculogenesis has been shown to prevent tumor recurrence in glioblastoma 
xenografts (196). Other important cells in the microenvironment are the immune cells. 
Infrequently an abscopal radiotherapy effect is observed: stimulation of the immune system 
by irradiation of one tumor location can stimulate immune cells to eradicate tumor cells at 
an unirradiated site in the same patient (197). Given recent breakthroughs in cancer 
immunotherapy, there is a growing interest in the stimulation of this abscopal effect by 
combining radiotherapy with immunotherapy (198, 199, 200, 201, 202). Lastly, the altered 
energy metabolism of tumor cells can have an effect on radiosensitivity; a different redox 
state can lead to more ROS scavenging or have an effect on immune invasion or 
angiogenesis (122, 203, 204). 
 
Prediction of response to radiosensitizers 
Biological properties are not only useful to predict response to radiotherapy, but also 
response to radiosensitizers. It has been shown that pre-treatment tumor hypoxia status can 
predict benefit from hypoxia-sensitizers added to radiotherapy (92, 133, 138, 151, 152, 153). 
Response to concurrent cisplatin could be predicted by measuring cisplatin-DNA adduct 
levels or loss of nuclear p53 signal (205, 206) and a worse response to EGFR inhibitor has 
been attributed to activation of ERK signaling, KRAS mutations or the absence of the KRAS-
variant (207, 208, 209, 210). 
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 1.4 Thesis outline/aim/scope 

 

Clearly there is a need for the improvement of survival rates in head and neck cancer, ideally 
with a reduction of severe toxicity. The most likely way to accomplish this is to better select 
patients for a treatment that fits their specific tumor characteristics. Currently only the 
clinical characteristics are used and treatment is based on site and TNM stage, which merely 
account for 25% of the variation in survival (211, 212, 213, 214). 
The research described in this thesis aims to discover more about the individual biological 
tumor properties in head and neck cancer, using messenger- and microRNA data to predict 
which tumors will be more radioresistant and why. Eventually this could lead to a better 
understanding of the reasons for radiotherapy failure and an up-front adaptation of therapy 
(depicted in figure 1.8) to give each individual patient the best chance of survival (215, 216, 
217). 

Figure 1.8. An example of the current use of clinical factors (blue) and how addition of 
biological knowledge could individualize and improve radiotherapy (green). 
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In chapter 2, we show that gene expression can improve the prediction model and adds 
valuable information to known clinical factors for local control after chemoradiotherapy in 
75 advanced head and neck cancer patients. Chapter 3 describes the analysis of a more 
homogeneous series of 52 T1-2 larynx cancer patients, treated with single modality 
radiotherapy. Pre-treatment high expression of the putative stem cell marker CD44 
correlates with local recurrence rate in this training series and in an independent validation 
cohort of 76 patients. Chapter 4 describes the discovery of an intrinsic radioresistance gene 
set on mRNA and micro RNA expression data from 32 head and neck cancer cell lines. We 
found that low expression of miR-203, giving more epithelial-to-mesenchymal transition, not 
only corresponds with intrinsic radiosensitivity, but also predicts outcome after radiotherapy 
in larynx cancer patients. Chapter 5 describes the comparison of published hypoxia gene sets 
that seem very dissimilar. However, these almost entirely different sets of genes classify 224 
head and neck cancer patients nearly identically. 
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 Abstract 

 

PURPOSE: 
The purpose of this study was to combine gene expression profiles and clinical factors to 
provide a better prediction model of local control after chemoradiotherapy for advanced 
head and neck cancer. 

MATERIAL AND METHODS: 
Gene expression data were available for a series of 92 advanced stage head and neck cancer 
patients treated with primary chemoradiotherapy. The effect of the Chung high-risk and 
Slebos HPV expression profiles on local control was analyzed in a model with age at 
diagnosis, gender, tumor site, tumor volume, T-stage and N-stage and HPV profile status. 

RESULTS: 
Among 75 patients included in the study, the only factors significantly predicting local 
control were tumor site (oral cavity vs. pharynx, hazard ratio 4.2 [95% CI 1.4-12.5]), Chung 
gene expression status (high vs. low risk profile, hazard ratio 4.4 [95% CI 1.5-13.3]) and HPV 
profile (negative vs. positive profile, hazard ratio 6.2 [95% CI 1.7-22.5]). 

CONCLUSIONS: 
Chung high-risk expression profile and a negative HPV expression profile were significantly 
associated with increased risk of local recurrence after chemoradiotherapy in advanced 
pharynx and oral cavity tumors, independent of clinical factors. 
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 Introduction 

 

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer world 
wide, with almost 650,000 new cases and 350,000 disease related deaths annually [1]. At 
presentation, around half of these patients have advanced disease [2]. In this group there is 
a limited benefit from radiotherapy alone (5 year locoregional control 12.6-37.4%) [3]. 
Combined with chemotherapy, higher locoregional control rates of up to 65% can be 
achieved [4, 5, 6, 7, 8, 9]. However, the obvious benefit due to the addition of chemotherapy 
comes at the cost of higher grade III-IV toxicity. It is therefore essential to predict which 
patients will not benefit from chemoradiotherapy, which patients will become disease free, 
and in this last group, which patients would have been disease free with radiotherapy only. 

Currently, clinical factors such as stage, site and tumor volume are used to predict response 
and select treatment [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. In the largest series analyzed so 
far, Knegjens et al. found tumor volume to be the most important predictor of outcome after 
chemoradiotherapy [20]. Like Knegjens, Chen et al. found a poorer outcome for patients 
with primary tumors above 30 cc [21]. However, the predictive power of clinical factors is 
still limited. 

Apart from clinical factors, infection status with high risk Human Papilloma Virus (HPV) 
should be taken into account. HPV-associated tumors have a different pathogenesis, with 
different and less chromosomal aberrations than tumors caused by alcohol and tobacco 
abuse [22]. HPV-positive tumors arise more often in the oropharynx than in other sites. 
Patients with these tumors seem to have a better prognosis than HPV-negative patients [23, 
24, 25, 26]. 

In recent years, gene expression profiling has been used to search for gene signatures 
correlating with outcome. These have the potential to provide insight into mechanisms and 
can monitor multiple biological processes. To date, such gene signatures as a single factor 
have shown prognostic potential [27, 28, 29]. 

Chung et al. [30, 31] found a gene expression profile containing mostly genes involved in 
epithelial-mesenchymal transition and NFκB pathway activation. This profile was highly 
prognostic for survival in two series of head and neck cancer patients treated with primary 
surgery with or without adjuvant therapy. This signature was subsequently validated in an 
independent dataset by Pramana et al. [32], who tested the signature in a series of HNSCC 
patients treated with combined radiation and cisplatin, with locoregional control as the 
endpoint. It therefore appears to be predictive in this setting, but its independence of clinical 
factors was not evaluated. 

In this study, we further investigated whether a HPV profile (published by Slebos et al. [33]) 
and the Chung profile are able to add predictive power to the current prediction of local 
recurrence with just clinical factors. 
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 Materials and methods 

 

Patients 
Of 92 advanced HNSCC patients with gene expression data available, patients were eligible 
for analysis in the current series if they had a stage III/IV (M0) tumor and there was a good 
quality MRI or CT scan on which to measure the primary tumor volume. In the previous 
analysis by Pramana et al. [32], oral cavity and larynx cancer patients were excluded from 
the final analysis because they showed very different survivals after treatment and could 
therefore have confounded the effect of gene expression. For the current analysis, we 
decided to include oral cavity tumors, since we aimed to study whether the effect of gene 
expression was independent of clinical factors. Larynx cancer patients were not deemed 
representative for this study population because according to the Dutch Consensus 
guidelines they do not usually receive chemoradiotherapy [34]. 

Treatment 
All patients were categorized as anatomically or functionally inoperable and treated with 
curative intent. Treatment consisted of cisplatin-based concomitant chemoradiotherapy 
regimens in phase II/III studies at the Netherlands Cancer Institute. The different schedules 
all included irradiation with 70 Gy in 35 fractions over 6-7 weeks. Chemotherapy was 
administered either intra-arterial (i.a.) 150 mg/m2 on treatment days 2, 9, 16 and 23, intra-
venous (i.v.) daily low dose (6 mg/m2) cisplatin or intra-venous on treatment day 1, 22 and 
43 (100 mg/m2). There was no significant difference in outcome between intra-arterial and 
intra-venous chemoradiotherapy [35]. 

Chung gene expression profile 
The methods for generating expression profiles have been described previously [32]. Briefly, 
gene expression profiles were measured on pre-treatment biopsies of all patients. Different 
published gene sets were tested, of which a “high risk” signature published by Chung et al. 
[31] was the most significant predictor of locoregional recurrence. Unigene identifiers were 
used to map the 42 Chung genes to the latest annotations of the NKI array. When more than 
one probe mapped to the same Unigene cluster, the probe with the least missing values and 
with the highest interquartile range (IQR) was used. This resulted in 32 genes to be used for 
analysis. For each patient, Pearson correlations were calculated against the Chung score. 
Patients were grouped into those who had a negative or positive correlation of their gene 
expression values with the high risk Chung profile, representing a predicted low or high risk, 
respectively. 
 
HPV profile 
Since there was no DNA available to test for infection with HPV, gene expression was used to 
asses HPV infection status. Slebos et al. published a set of 20 genes that were upregulated 
when HPV is transcriptionally active [33]. Symbols for these genes were updated from the 
NCBI Entrez Gene database (www.ncbi.nlm.nih.gov/sites/entrez), and the corresponding 
probe numbers on the NKI array selected. In this way, 12 of the 20 genes could be mapped 
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to the NKI array and were used as the HPV signature (table 2.1). When more than one probe 
mapped to the same gene, the probe with the least missing expression values across the 
patient series and with the highest interquartile range (IQR) of expression between the 
patients was used. Since only upregulated genes were used, average expression of these 
genes was calculated for every patient and the median of the average expression values 
used to divide patients into two groups, the group with low HPV gene expression (under the 
median) being considered HPV negative-like and the group with high HPV gene expression 
being considered HPV positive-like. 

 
Table 2.1. HPV gene signature: The 12 upregulated genes from the Slebos study [33] that 
could be mapped to our microarray platform and were used to determine HPV profile status. 

Tumor volume 
The pretreatment CT or MRI scan was used for primary tumor volume measurement. All 
visible primary tumor was manually delineated on every CT or MRI slice. Pathological lymph 
nodes were not included. Tumor volume was calculated after triangulation of the surface of 
the delineations [20]. 
 
Statistics 
The primary endpoint for this study was local control. A local recurrence was defined as a 
pathologically proven recurrence at the site of the primary tumor. Time to local recurrence 
was calculated from the date of diagnosis until local recurrence, death, loss to follow-up or 
end of follow-up, whichever occurred first. Events other than local recurrence resulted in 
censoring of time to local recurrence. The association with local control was evaluated for 
gender, age at diagnosis, primary tumor site, T and N-stages, primary tumor volume, Slebos 
HPV expression status and Chung gene expression status by Kaplan-Meier plots and 
corresponding log-rank tests as well as by hazard ratios (HR) and 95% confidence intervals 
(CI) based on Cox regression. Age at diagnosis was dichotomized at the median among 
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patients with a recurrence; tumor volume was dichotomized using a 30 cc cut off. Trend 
tests were based on the slope of the continuous variable. Variables with a HR>1.5 or <0.5 or 
a p-value<0.05 for at least one category in univariate analyses were included in a 
multivariate model. Kaplan-Meier curves were generated in GraphPad PRISM 5.01. All other 
analyses were performed using SPSS 15.0. Based on the results of the multivariate analysis, 
patients were grouped according to their total number of independent risk factors for local 
recurrence. 
 
Comparison with a larger series 
The present dataset was limited to patients who had available gene expression data. To 
assess reproducibility of the results found for clinical factors, we compared our results to the 
results of a series of 360 patients also treated with radiation plus cisplatin and from which 
75% of the present study patients were taken [20]. 
 

 Results 

 
 
Patient inclusion 
Of 92 patients, 75 were eligible for analysis in the current series. A total of 17 patients were 
excluded from further analysis for the following reasons: 10 patients had a T1-2 or larynx 
tumor, 1 patient was a double entry, 1 patient had a volume of nearly 400 cc, more than 4 
times higher than the next largest tumor, and was therefore not considered to be 
representative of the group, and 5 patients had a poor quality CT scan and therefore no 
volume data could be obtained. Tumor volume was measured on MRI scans for 64 patients 
and on CT-scans for 11 patients. 
 
Patient characteristics 
The characteristics of the patients are shown in table 2.2. The study population was 
predominantly male (69%) with a mean age at diagnosis of 58 years. Patients had a pharynx 
tumor (oropharynx and hypopharynx combined) in 85% and a tumor of the oral cavity in 
15%. The mean primary tumor volume was 30.9 cc, ranging from 4.3 cc to 96.7 cc. Patients 
received radiotherapy with i.a. cisplatin (34 patients), high dose i.v. (18 patients) or low dose 
i.v. (23 patients) cisplatin treatment. For the Chung status, 64% of the patients were 
predicted to be low risk and 36% high risk. Since the median average expression for the 
Slebos HPV genes was used to generate two groups, half of the patients had a positive 
profile. Median follow-up time was 93 weeks. A total of 17 local recurrences occurred during 
follow-up, with a median time to recurrence of 24 weeks. 
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Table 2.2. Patient characteristics: Baseline characteristics of the 75 patients that were 
included in this study. 

Univariate analysis 
Of all factors included in the univariate analysis, significant predictors of local recurrence 
were Chung status, tumor site and HPV profile (table 2.3). Kaplan Meier curves for local 
recurrence for these factors are shown in figure 2.1. There was no significant difference 
between hypo- and oropharynx tumors, and so these were combined into one group of 
pharyngeal carcinomas. Associations with age at diagnosis, T-stage and tumor volume were 
suggestive, but did not reach statistical significance (p<0.05). Oral cavity tumors, a Chung 
high risk profile and a negative HPV profile were significantly associated with a higher risk of 
local recurrence. 
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Table 2.3. Univariate and multivariate analysis – local recurrence: Results of the univariate 
Cox proportional hazards analysis for all factors. The hazard ratio (HR) between the two 
categories of each factor is given, together with the p-value and, if applicable, a p-value for 
the trend of the corresponding continuous variable. Results of the multivariate Cox 
proportional hazards analysis for the five factors with a HR>1.5 or <0.5 or a p-value<0.05 in 
the univariate model.  
 
Multivariate analysis 
Of the six factors entered in a multivariate Cox regression, tumor site, Chung status and HPV 
status were significantly associated with local control (table 2.3). Patients with oral cavity 
tumors were 4 times as likely to get a local recurrence compared to patients with a pharynx 
tumor (HR 4.2, 95% CI 1.4 – 12.5). Risk for local recurrence was increased at a similar 
magnitude for patients with a Chung high risk signature compared with the low risk group 
(HR 4.4, 95% CI 1.5 –13.3). Patients with a HPV-negative profile were 6 times more likely to 
get a local recurrence than patients with a HPV-positive profile (HR 6.2, 95% CI 1.7 – 22.5). 
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Figure 2.1. Site, Chung and HPV profile: Kaplan-Meier curves for all 75 patients grouped by 
based on site (A), Chung risk group (B) and HPV profile status (C). The given p-values were 
calculated with a log-rank test. 
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Local recurrence by number of risk factors 

Figure 2.2 shows a Kaplan-Meier curve for a combined model of site, Chung status and HPV 
status. The number of unfavorable features (an oral cavity tumor, a Chung high risk profile 
and a HPV-negative profile) were added up for every patient. For example, a patient with a 
tumor of the pharynx with a Chung low risk profile and a HPV-positive profile has 0 high risk 
features. From this figure can be seen that in the group of 22 patients with just favorable 
factors (0) there were no recurrences during follow up and the 4 patients with three 
unfavorable factors all had recurrences. 

 
Figure 2.2. Local recurrence by number of risk factors: Kaplan-Meier curve for all 75 patients 
organized into groups based on the number of high risk features (Chung high risk profile, HPV 
profile negative and oral cavity). The given p-value was calculated with a log-rank test. 

Comparison with a larger series 
In line with the results for the series of 360 patients [21], site and, to a lesser degree, T-stage 
were important predictors of local control. Tumor volume was not significantly associated 
with local control in the univariate analysis in the current study, whereas the association was 
highly significant in the earlier published larger series of 360 patients (p<0.001) [21] from 
which the present patient population was taken. However, the magnitude of the association 
was approximately similar, but was attenuated in the multivariate analysis of the current 
data. We explored the dependence of the strength of association on sample size by drawing 
ten random samples of 75 patients from the series of 360 patients (table 2.4). Tumor volume 
was significantly associated with local control in 5 of the 10 samples, and 3 of the 10 
corresponding p-values exceeded the one observed in the current smaller series. The 
differences observed for tumor volume is therefore likely due to the smaller size of our 
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current series. In addition, it is possible that the Chung or HPV profiles partly capture the 
tumor volume signal in the multivariate analysis. 

Table 2.4. Random series of N=75 from N=360: Ten series of 75 patients, all randomly 
selected from a larger series of 360 patients. Five of the ten randomly generated series had a 
p-value<0.05 for tumor volume in a cox proportional hazards model. 

 

 Discussion 

 

Our aim was to study the independence of a high risk and a HPV gene expression profile for 
predicting local recurrence, when analyzed in a model with known clinical predictors in 
advanced HNSCC patients treated with chemoradiotherapy. A gene expression profile 
designed by Chung et al. [31] was previously validated to predict locoregional recurrence 
after chemoradiotherapy on a series of 92 advanced HNSCC patients by Pramana et al. [32]. 
From this series we analyzed 75 patients to test association of clinical factors and gene 
expression with local control. The main finding of this study was that the two gene 
expression profiles had an independent effect on local recurrence in a model with clinical 
factors and were the most important independent factors in a multivariate model, together 
with tumor site. This implies that they could in the future be a valuable addition to the 
clinical factors that are currently used for prediction of local recurrence. 

In this study, it was not possible to test for HPV presence in DNA and therefore, gene 
expression was used to identify patients with a HPV-like profile. As shown in studies that 
used DNA tests for HPV, patients with a HPV positive profile had a better cure rate [24, 25]. 
Lassen et al. and van den Broek et al. showed that high p16INK4A expression 
(immunohistochemistry) independently predicted good treatment response and survival in 
patients with head and neck cancer treated with conventional (chemo-) radiotherapy [23, 
36]. In their most recent paper, Lassen et al. showed that p16 positive patients do not seem 
to react to hypoxic modification during radiotherapy [37]. P16 (CDKN2A) was also one of the 
genes we analyzed with the Slebos HPV profile. To our knowledge, our study is the first to 
show that a HPV gene set can predict local recurrence. 

We are not aware of any other externally validated gene expression signature predicting 
local recurrence in head and neck cancer patients treated with (chemo-) radiotherapy. Other 
authors have searched for profiles able to predict recurrence in head and neck cancer [27, 
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28, 29]. Ginos et al. studied 41 surgically treated patients, in which they found genes that 
correlated with recurrent disease. None of those genes correlated with site, grade or stage 
[28]. Ganly et al. found 2 genes predictive of locoregional recurrence after chemo-
radiotherapy in 35 patients, using a 277-gene cDNA array [29]. Dumur et al. found 142 genes 
predictive of locoregional recurrence in 19 patients treated with radiotherapy with or 
without chemotherapy [27]. The clinical factors they studied (age, gender, stage and 
location) were not significant in a univariate analysis and therefore no multivariate analysis 
was performed. 

The Chung and HPV profiles are therefore, to date, the only validated signatures for 
prediction of local recurrence in HNSCC patients. In addition, the present series is the first to 
be large enough to test independence of validated signatures from clinical factors in a 
multivariate model. As can be seen in figure 2.2, a combination of site, Chung expression 
profile and HPV profile, leads to a subgrouping of patients, where the best group has no local 
recurrences and the worst group has no cures in it. Although the patient numbers were not 
very high, these kind of subgroups could be very useful to select patients for therapy. The 
value and robustness of this combination will need to be confirmed in independent studies. 

The present study indicates that gene expression signatures can add valuable additional 
information to current clinical predictors. In future randomized trials, expression profile 
measurements can thus be useful in indicating which patients benefit most from the 
treatment being tested, and thus lead to more rationale and effective application of new 
therapies. 

Conclusion 

 
Gene expression profiles can be useful for predicting local control, independent of clinical 
factors, after chemoradiotherapy in advanced pharynx and oral cavity tumors. Together with 
tumor site, the Chung high risk signature and HPV profile status were the most important 
predictors of local control. 
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http://www.ncbi.nlm.nih.gov/pubmed?term=Pramana%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20346528
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20der%20Wal%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=Lacko%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=Peutz-Kootstra%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=de%20Jong%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=Takes%20RP%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=Kaanders%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20der%20Laan%20BF%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20der%20Laan%20BF%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=Wachters%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=Jansen%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=Rasch%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20Velthuysen%20ML%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20Velthuysen%20ML%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=Gr%C3%A9nman%20R%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=Hoebers%20FJ%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=Schuuring%20E%5BAuthor%5D&cauthor=true&cauthor_uid=20837694
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20den%20Brekel%20MW%5BAuthor%5D&cauthor=true&cauthor_uid=20346528
http://www.ncbi.nlm.nih.gov/pubmed?term=van%20den%20Brekel%20MW%5BAuthor%5D&cauthor=true&cauthor_uid=20346528
http://www.ncbi.nlm.nih.gov/pubmed?term=Begg%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=20346528
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http://clincancerres.aacrjournals.org/content/16/21/5091.full
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 Abstract 

 

PURPOSE: 
To find molecular markers from expression profiling data to predict recurrence of laryngeal 
cancer after radiotherapy. 

EXPERIMENTAL DESIGN: 
We generated gene expression data on pre-treatment biopsies from 52 larynx cancer 
patients. Patients developing a local recurrence were matched for T-stage, subsite, 
treatment, gender and age with non-recurrence patients. Candidate genes were then tested 
by immunohistochemistry on tumor material from a second series of 76 patients. Both series 
comprised early stage cancer treated with radiotherapy alone. Finally, gene expression data 
of eight larynx cancer cell lines with known radiosensitivity were analyzed. 

RESULTS: 
Nineteen patients with a local recurrence were matched with 33 controls. Gene sets for 
hypoxia, proliferation and intrinsic radiosensitivity did not correlate with recurrence, 
whereas expression of the putative stem cell marker CD44 did. In a supervised analysis, 
probes for all three splice variants of CD44 on the array appeared in the top 10 most 
significantly correlated with local recurrence. Immunohistochemical analysis of CD44 
expression on the independent validation series confirmed CD44’s predictive potential. In 8 
larynx cancer cell lines, CD44 gene expression did not correlate with intrinsic radiosensitivity 
although it did correlate significantly with plating efficiency, consistent with a relationship 
with stem cell content. 

CONCLUSIONS: 
CD44 was the only biological factor tested which significantly correlated with response to 
radiotherapy in early stage larynx cancer patients, both at the mRNA and protein levels. 
Further studies are needed to confirm this and to assess how general these findings are for 
other head and neck tumor stages and sites. 

TRANSLATIONAL RELEVANCE: 
Treatment choice for larynx cancer is based on clinical factors such as T-stage, but these are 
imprecise indicators of response. Having robust methods to predict outcome of a particular 
therapy would be extremely valuable, allowing a more rational treatment choice which 
should lead to greater tumor cell kill and also spare patients from toxic and ineffective 
therapies. Such predictors should include biological factors as well as clinical factors, given 
the heterogeneity in tumor biology even for patients presenting with similar sites and 
stages. The present study employed gene expression profiling in a series of larynx cancers 
and validated the result in a second similar series using immunohistochemistry. The principle 
predictor for outcome after radiotherapy was CD44, a putative stem cell marker. In addition, 
this study sheds light on potential mechanisms of radioresistance, which could lead to the 
design of targeted drugs for combining with radiation. 
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 Introduction 

 

The incidence of larynx cancer in the United States is around 4.5 cases per 100,000 per year 
(1). The 5-year relative survival percentage for localized disease has been stable at around 
70-80% for the last 20 years (1). In early laryngeal cancer, radiotherapy is an effective 
treatment modality, with local control rates between 80-90% for T1 tumors (2). Partial 
laryngectomy or CO2 laser resection are alternative treatments with comparable survival 
rates, although when used as salvage after a failed radiotherapy course they have a higher 
complication rate (3). Treatment choice is mainly based on the estimated functional 
outcome and the preferences of the clinician. It would therefore be useful to predict 
beforehand which patients will benefit from radiotherapy. Prediction of resistance is also 
likely to be increasingly useful in the development of biological modifiers which increase the 
effects of radiation, providing an alternative treatment for resistant tumors. 

Important clinical factors associated with local recurrence after radiotherapy are tumor 
stage, tumor size, radiotherapy fraction size and year of treatment (4). Treatment choice is 
now mainly based on T-stage (5), although this is still a relatively poor indicator of survival 
(6). Since clinical factors cannot provide an accurate prediction, it is likely that recurrence of 
a tumor can partly be explained by tumor biology. Three biological processes known to 
influence response to radiotherapy are intrinsic radiosensitivity (7), hypoxia (8) and 
repopulation (9). For each of these processes, individual markers (mainly immuno-
histochemical) have been investigated and found to be of predictive value (10–12), although 
none have been sufficiently validated or are in routine use. Since many genes are involved in 
each process, in addition to single markers representing these processes, sets of markers 
(gene sets) for hypoxia (13, 14), intrinsic radiosensitivity (15–17) and repopulation (18) have 
also been defined. Another factor more recently hypothesized to play a role in response to 
therapy is the number of stem cells, ultimately determining repopulation of the tumor (19, 
20) and so eradication of this subpopulation is of prime importance. 

To date, no studies have investigated all these processes simultaneously. Microarrays have 
been used to measure gene expression (mRNA) on a genome wide scale, and can in principle 
monitor all the above-mentioned processes concurrently. However, only one microarray 
study with 14 patients has been carried out for patients treated with radiotherapy alone 
(21). Several expression profiling studies have been carried out on patients treated with 
radiotherapy in combination with surgery or chemotherapy (22–26). However, these have 
often included heterogeneous groups of patients and cannot address the question of factors 
affecting the response of laryngeal cancer to radiation alone. 

Our objective was to find a gene expression profile that will accurately predict local 
recurrence after radiotherapy in a homogeneous group of patients with early laryngeal 
carcinoma. We chose to study early stage tumors, since these are likely to be more 
homogeneous than advanced tumors and also technically easier to treat, minimizing the 
chance of geographical misses. Treatment failure is then highly likely to be due to biological 
rather than technical factors. In addition to giving more insight into the molecular processes 

http://clincancerres.aacrjournals.org/content/16/21/5329#ref-1
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underlying treatment failure, accurate prediction would enable treatment to be 
individualized, leading to increased survival and less unnecessary morbidity. We studied two 
series of early stage larynx cancer patients treated with radiotherapy alone. The first was a 
test series of frozen tumor specimens used to study global gene expression to discover 
predictive markers for local control, which were then validated on a second series by 
immunohistochemistry. 
 

 Materials and Methods 

 

 All studies reported here were done with approval of the local Medical Ethics Committees. 

Gene expression series 

Patients. 
Fifty two patients were recruited from five different institutes in The Netherlands and were 
eligible if they had been treated for a T1 or T2 larynx carcinoma (Table 3.1), and pre-
treatment fresh frozen tumor material was available. Patients were treated between 1997 
and 2005, and staging was done either clinically or with a CT-scan. Because patients with 
small tumors did not have a CT-scan, tumor volumes could not be measured for the whole 
group. Treatment was radiotherapy alone with curative intent, applying fractionation 
schemes standard in each of the five centers. To compare different radiotherapy schedules, 
the equivalent dose in 2-Gy fractions (EQD2) was calculated for every patient with the 
formula: EQD2 = D × (d + α/β)/(2 + α/β), where D is the total dose, d the given fraction dose, 
the α/β ratio was assumed to be 10 Gy. Recurrence was defined as a histologically proven 
local tumor recurrence within two years of the initial treatment, to ensure the analysis of 
true recurrences rather than second primaries. Since we planned to study a matched series, 
for every patient with a recurrence we aimed to include two controls, with a recurrence-free 
follow-up of at least two years and matched for the institute they were treated in, T-stage, 
subsite, gender and age. There were no significant differences between groups with and 
without local recurrence in age, gender, subsite, T-stage, total dose, fraction size, tumor 
percentage or RNA quality (Table 3.1).  
 
RNA isolation. 
All biopsies were snap frozen in liquid nitrogen. Around 30 slices of 30 μm were deposited in 
RNA-Bee (Campro scientific). Before and after these 30 slices H&E sections were taken that 
were subsequently assessed by an experienced pathologist, who scored differentiation and 
tumor percentage. Only biopsies containing on average more than 50% of tumor cells were 
included. The tumor material in RNA-Bee was processed using the Qiagen RNeasy mini and 
RNase-free DNase kits. Total RNA was isolated and DNAse treated using spin columns 
according to the manufacturers instructions. The Agilent 2100 bioanalyzer was used to 
assess the integrity (intactness) of the RNA. Samples with an RNA Integrity Number (RIN) 
under 6.0 or with no obvious 18S and 28S peaks were discarded. 
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Table 3.1. Baseline characteristics of patients and treatments in the expression profiling test 
series: The characteristics are shown separately for the groups with and without recurrences. 
EQD2: dose recalculated to an equivalent dose in 2 Gy fractions. Tumor percentage: average 
percentage of tumor cells in the frozen biopsy used for RNA extraction. RIN: RNA integrity 
number. 

Gene expression. 
cDNA was made from one microgram of total RNA and amplified into aRNA with T7-mRNA 
Superscript-III amplification kit (Invitrogen). Only amplification yields over 1000-fold with a 1 
kB smear on a gel were accepted. Hybridization to microarray slides was performed at our 
Central Microarray Facility (http://microarrays.nki.nl). All samples were hybridized to 
Illumina bead arrays (v3 Illumina beads) and subsequently scanned using the Illumina 
scanner. Each Illumina array consists of 3-micron silica beads covered with oligos containing 
over 48,000 transcript probes per sample, representing around 25,000 known genes. Each 
transcript probe was represented more than 20-fold per array and final data were averaged 
for each probe. Fluorescence intensities were measured with the Illumina scanner and 
averaged per probe. 
 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/Table-3_1.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/Table-3_1.png
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Data analysis. 
The dataset was transformed (variance stabilizing method (ref. 27)) and normalized (robust 
spline method) with the Lumi (28) package for R, version 2.8 (29) (http://www.R-
project.org). If, for a specific probe, no patient had a value above background levels, that 
probe was filtered out. Gene sets for hypoxia, proliferation, radiosensitivity and stem cells 
were tested (13–16, 18, 30, 31). Unigene identifiers were used to map the genes in a set to 
the annotations of the Illumina array. For gene sets with known weights contributing to the 
endpoint (as described in the original publications), Pearson correlations were calculated 
against the weights of a gene set for each patient. This also allowed assessment of gene sets 
which included genes both positively and negatively correlating with outcome. For gene sets 
without weights (each gene assumed to contribute equally), the average expression of the 
genes in the set was calculated. For these signatures, all genes in the set were correlated in 
the same direction with outcome. The Pearson or average values were then used in a logistic 
regression with local recurrence data. In order to give comparable odds ratios, some Pearson 
correlations were multiplied by 5 or 10, which does not change the P-values but simply 
provides a better comparison of odds. 

In addition to this hypothesis-driven analysis, a data-driven analysis was performed with 
Biometric Research Branch (BRB) array tools (NIH, http://linus.nci.nih.gov/brb-
arraytools.htm). Genes were first filtered by including probes where at least 20% of samples 
had a minimum fold change greater than 1.35 and a P-value for log-ratio variation under 
0.01. The filtered set was entered in a nearest centroid model that finds genes that best 
predict local recurrence. Genes significantly different between the patients with and without 
recurrence at the P < 0.01 significance level were used for class prediction. The leave-one-
out cross-validation method was used to compute mis-classification rates. 

Immunohistochemistry series 

Patients. 
Of the patients included in the mRNA expression microarray series, paraffin embedded 
material for immunohistochemistry (IHC) was used from two of the five institutes 
(Amsterdam and Groningen). This small subset of 20 cases was used to confirm gene 
expression values by IHC. A second matched series of 76 patients was used as an 
independent validation series of our findings from the gene expression study. Paraffin 
embedded biopsies were used to make cores for a tissue microarray (TMA). The construction 
of the TMA and the patient characteristics were described previously (10). Briefly, the 
patients were predominantly male with stage T1 and T2 glottic tumors given a median of 66 
Gy in 2 Gy fractions (Table 3.2).  
 
Immunohistochemistry staining. 
Sections of 3 μm were cut from either whole tissue blocks or the TMA and mounted on 
amino-propyl-ethoxy-silan (APES, Sigma-Aldrich, Diesenhofen Germany)-coated glass slides. 
Slides were deparaffinized in xylene and rehydrated in ethanol. Antigen retrieval comprised 
boiling the slides in a microwave oven in citrate (pH 6.0) for 15 minutes. Endogenous 
peroxidase was blocked with 0.3% hydrogen peroxidase for 30 minutes. Slides were 
incubated with a mouse monoclonal antibodies against CD44 (156-3C11; dilution 1:200; Cell 
Signaling Technology, Danvers, MA) and CD44v6 (clone VFF-18; dilution 1:8000; Bender 

http://clincancerres.aacrjournals.org/content/16/21/5329#ref-27
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Medsystems, Vienna, Austria) for 1 h at room temperature. Detection was performed with 
RAMHRP (dilution 1:100) and GARHRP (dilution 1:100), visualized by 3′3-diaminobenzi-
dinetetra-hydrochloride and counterstained with haematoxylin. 

 
Table 3.2. Baseline characteristics of patients in the TMA validation series: The characteristics 
are shown separately for the groups with and without recurrences.  

Immunohistochemistry scoring. 
The percentage of tumor cells staining positive for CD44 was scored as well as the intensity 
of staining (low or high). A CD44 staining score was calculated by adding the percentages of 
positive low and high intensity cells, weighted by factor of 1 and 2 respectively. This 
weighted score reflects total CD44 protein better than total percentage positive cells, for 
better comparison with total mRNA from the microarray analysis. For the set of patients in 
which concordance between mRNA and IHC was tested, all slides were analyzed 
independently by two teams, each consisting of a pathologist (MvV and JvdW) and a 
scientist. Slides scored differently by the two teams were discussed at a conference 
microscope to reach consensus. Before consensus, the inter-observer correlation for CD44 
scores was 0.75 (P < 0.001; Figure 3.1). For the TMA series of 76 patients, scoring was done 
by one team. Pearson correlations were calculated between mRNA levels and IHC scores. For 
the TMA analysis, associations between CD44 expression and local recurrence were 
compared using a logistic regression model. P-values of <0.05 were considered statistically 
significant. Statistical analysis was performed with SPSS 16.0 for Windows (SPSS Inc., 
Chicago, IL). 
 
 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/Table-3_2.png
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Figure 3.1. Interobserver variability between immunohistochemistry scores of the two teams for 
N=20. 

Larynx cancer cell lines 

Cell culture. 
The larynx cancer cell lines UT-SCC-6A, -8, -9, -19A, -19B, -22, -23 and -42A from the 
University of Turku (Finland) were cultured in DMEM with 10% FBS, 1% NEAA, 1% L-
glutamine and 1% penicillin-streptomycin. Information was available on plating efficiency 
and radiosensitivity for all cell lines (published and unpublished data) (refs. 32–34). 
 
Gene expression. 
For each cell line, 1 × 106 cells were washed with ice cold PBS at approximately 50% 
confluence and then collected in RNA-Bee. Illumina microarray data were generated using 
the same methods and materials as described above for the tumor biopsies. 
 

 Results 

 

Gene expression 

Gene expression analysis. 
Exclusion of probes that did not exceed background expression in any patient left 26,454 
probes for analysis. Gene expression signatures for hypoxia, intrinsic radiosensitivity, 
repopulation and stem cells were analyzed in a logistic regression (Table 3.3). The putative 
stem cell marker CD44 was the most significant, with an unrelated stem cell signature as 
second most significant. A third stem cell signature not including CD44 (Table 3.4) was fifth 
of the 12 signatures tested but was not significant. After multiple testing correction 
(Bonferroni), only CD44 expression remained significant (P = 0.024). Comparative histograms 
of CD44 expression illustrate the higher expression in recurrences versus cures (Figure 3.2A). 
When patients were divided into three groups of low, medium and high CD44 expression, 
split so that there were equal numbers of recurrences in each group, the odds of recurrence 
(number of recurrences divided by number of non-recurrences for each group) was 15.2 fold 
higher in the highest CD44 expression group compared with the lowest (P = 0.003, Figure 

http://clincancerres.aacrjournals.org/content/16/21/5329#ref-32
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3.2B). Expression of acute hypoxia genes was also associated with local recurrence, although 
significance was lost after correction for multiple testing. Radiosensitivity and proliferation 
genes showed no relationship with recurrence. 

Table 3.3. Logistic regression of gene sets with local recurrence. Range: lowest to highest 
value of either Pearson correlations against the weights of a gene set or, for gene sets 
without weights, the average expression (log2 scale) of the genes in the set. OR: odds ratios 
with corresponding confidence intervals and p-values were generated from a logistic 
regression of Pearson or average values of the gene sets with local recurrence data. In order 
to give comparable odds ratios, some Pearson correlations were multiplied by 5 or 10 (not 
changing the p-values). *From Gene Set Enrichment Analysis molecular signatures database; 
http://www.broadinstitute.org/gsea/msigdb. 

 
Table 3.4. Stem cell gene set, excluding CD44, gene symbols derived from various sources by 
the authors. 

After restriction of the dataset to those 8,317 probes that showed significant differences in 
expression between the tumors, thus removing uninformative probes, we performed a data-
driven analysis for which genes best predicted recurrence. When the univariate significance 
alpha level was set to P < 0.01, 34 probes (18 up and 16 down-regulated in tumors 
subsequently recurring) were found to be predictive (Table 3.5). The most significant 
upregulated marker discriminating between cures and recurrences was CD44 (P < 0.002). 
With the nearest centroid method only 23% of the patients were correctly classified with 
these 34 genes. In addition, false discovery rates, as calculated by the Benjamini-Hochberg 
method, were high. However, despite the predictive weakness of the signature as a whole, 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/Table-3_3.png
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of note was that all three probes for CD44 that were present on the array appeared in the 
top 10 highest ranking upregulated genes. Two of the probes (variants 4 and 5) map to the 
constant and largest exon (exon 18), while variant 1 maps to the first variable exon (exon 6). 
Expression of each probe was highly significantly correlated with expression of each of the 
other probes across the 52 tumors (all P-values <0.001; 1 vs 3, 1 vs 5, 3 vs 5). 

 
Figure 3.2. CD44 expression predicts local recurrence. A, histograms of CD44 mRNA 

expression for patients subsequently cured (open bars) or those subsequently suffering a 

recurrence (closed bars). B, odds of recurrence when patients are divided into three groups 

with increasing mRNA levels, split so that each group contains equal numbers of recurrences. 

OR: odds ratio of recurrence between highest and lowest CD44 expression groups. 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/Figure-3_2-1.jpg
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Table 3.5. Data driven classifier, showing top 34 most significant genes, all with a p-value 
<0.01. 

In addition to CD44, the remaining top ranking genes from Table 3.5 were most highly 
represented in a pathway relevant to “cell cycle, cellular development, cellular growth and 
proliferation” (from Ingenuity Pathway Analysis). This pathway contained EGF, VEGF, and 
HRAS as hub genes and of 35 genes on the pathway, 11 appeared in list of top ranking genes 
(Figure 3.3). 

 
 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/Table-3_5.png
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Figure 3.3. Highest ranking pathway from Ingenuity Pathway Analysis of the top 34 genes 
arising out of the data-driven analysis of cures versus recurrences (see table 3.5). Blue: up 
regulated in recurrences; yellow: downregulated in recurrences. For clarity, all genes are also 
listed on the right, indicating whether they are up or down regulated. 

CD44 protein level versus outcome 

CD44 mRNA correlates with immunohistochemical expression. 
Both frozen and paraffin embedded material was readily available from 20 tumors and used 
to compare RNA and protein expression. Antibodies were tested against an epitope common 
to all CD44 variants and one specific for the v6 variant. Figure 3.4 shows examples of CD44 
staining. All tumors showed some expression (with on average 24% of tumor cells staining 
with a low intensity and 52% with a high intensity) although the staining was heterogeneous 
in all cases. In tumors showing a clear differentiation pattern, the basal cell layers were more 
intensely stained than the more differentiated cells. Both the CD44 and the CD44v6 
immunostaining scores correlated significantly (P < 0.05) with the average for all three CD44 
mRNA probe levels (Figure 3.5). 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/Figure-3_3.png
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Figure 3.4. Examples of CD44 immunohistochemistry. Staining, using antibody 156-3C11, 

against an epitope common to all CD44 variants, on the tissue microarray for three 

representative cores at two different magnifications (100× and 400×). Scorings for these 

cores were: A: 40% intensity I. B: 95% intensity II. C: 80% intensity II. 

Figure 3.5. Correlation between mRNA expression and immunohistochemistry for CD44 (A) 
and CD44v6 staining (B). IHC: immunohistochemistry. 

CD44 expression in the validation series. 
We next tested whether immunohistochemical expression of CD44 correlated with clinical 
outcome. We used an independent matched series of laryngeal cancers with patient 
characteristics similar to the test series. Patient characteristics of this validation series, like 
the 52 patients in the test series, were predominantly male with a T1-2 glottic tumor and 
treated with radiotherapy alone (Table 3.2). CD44 expression, assessed immuno-
histochemically for percentage CD44-positive cells weighted according to staining intensity 
(see Materials and Methods), was significantly associated with clinical outcome. Histograms 
of the IHC scores showed higher CD44 protein expression in recurrences compared with 
cures (Figure 3.6A). As before, when patients were divided into three groups with low, 
medium and high CD44 expression, split to ensure equal numbers of recurrences per group, 
the odds ratio for recurrence was 6.1 fold higher in the highest group compared with the 
lowest (P = 0.005, Figure 3.6B). These data on protein expression thus confirm the mRNA 
expression data. 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/Figure-3_4.jpg
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Figure 3.6. CD44 IHC predicts local recurrence. A, histograms of CD44 IHC score for patients 
subsequently cured (open bars) or those subsequently suffering a recurrence (closed bars). B, 
odds of recurrence when patients are divided into three groups with increasing IHC scores, 
split so that each group contains equal numbers of recurrences. OR: odds ratio of recurrence 
between highest and lowest CD44 expression groups. 

Larynx cancer cell lines 

In addition to cellular radiosensitivity, the effectiveness of fractionated radiotherapy can be 
determined by microenvironmental factors such as hypoxia, repopulation rates during 
therapy, and the fraction of stem cells. As a first step in attempting to dissect the role played 
by CD44 on these factors, we studied a series of larynx cancer cell lines under well controlled 
in vitro conditions. As shown in Figure 3.7, CD44 mRNA levels (average for the three probes) 
correlated significantly with plating efficiency (P = 0.03). Since plating efficiency has been 
correlated with tumor initiating capacity in several studies, this is consistent with CD44 being 
a stem cell marker in this tumor type. In the same experiments, CD44 expression did not 
correlate with intrinsic radiosensitivity in these 9 larynx cancer cell lines (P-value = 0.71). 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/Figure-3_6.jpg
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None of the three CD44 probes individually showed a correlation with radiosensitivity, while 
two out of three CD44 probes show a significant correlation with plating efficiency (Table 
3.6). These data imply that CD44 expression is not monitoring intrinsic radiosensitivity but 
rather the fraction of stem cells. 

Figure 3.7. Correlation of plating efficiency (A) and radiosensitivity (B; as measured by area 
under the survival curve (AUC)) with CD44 mRNA levels (averaged over the 3 probes). 

 
Table 3.6. Correlation of CD44 expression with plating efficiency (PE) and radiosensitivity 
(area under radiation survival curves, AUC). V1, v4 and v5 are three separate probes for CD44 
mapping to exons 6, 18 and 18 respectively. *Significant at the 0.05 level (2-tailed). 
 

 Discussion 

 

The aim of this study was to find prediction markers for clinical outcome of larynx cancer 
after radiotherapy using gene expression profiling. We chose to study early stage tumors 
since these will be inherently less variable than advanced cancer both in terms of genetically 
different subpopulations and variability in blood flow and hypoxia. In addition, delivery of 
the radiotherapy is less complicated with less chance of geographical misses. Any 
recurrences are therefore likely to be due to inherent resistance of the tumor cells. 
Secondly, we chose to match recurrent and non-recurrent patients for the most important 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2013/04/Figure-3_7.jpg
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known clinical variables (T-stage, subsite, treatment, gender and age), so that these would 
not be confounding factors in the analysis. 

In the test series, we studied the expression of several sets of genes monitoring biological 
processes known to influence the outcome of radiotherapy. We found that CD44, chosen as 
a stem cell marker, showed the most significant correlation with local recurrence. Expression 
of genes monitoring proliferation and intrinsic radiosensitivity showed no correlation with 
outcome. A gene set defining acute hypoxia showed a trend, although not significant when 
corrected for multiple testing. In a separate data-driven analysis including over 8000 genes 
(after filtering out genes not showing significant expression or significant variation across the 
samples), the three probes for CD44 came out high in the ranking list of genes correlating 
with recurrence, one of the probes being the most significant of all genes tested. This non-
hypothesis-driven approach supported the hypothesis-driven approach, indicating that CD44 
is a good predictor of outcome after radiotherapy in these head and neck squamous cell 
carcinomas. Furthermore, in an independent validation series, CD44 protein expression 
measured immunohistochemically correlated significantly with outcome, such that higher 
CD44 scores were associated with a higher chance of local recurrence. Since both these were 
matched series, results are independent of the most important clinical predictors. 

In a previous expression profiling study from our own institute on a series of 91 HNSCC 
patients treated with concurrent radiation and cisplatin, CD44 was higher in tumors from 
patients which subsequently developed a recurrence, although this did not reach 
significance (P = 0.08) (ref. 25). Kawano et al found CD44s and CD44v6 staining correlated 
with prognosis in a series of 57 patients treated with surgery and radiotherapy (35). Zhao et 
al analyzed margins after surgery for 112 HNSCC patients and found that CD44v6 presence in 
these margins, detected with immunohistochemistry, was predictive of recurrence (36). 
Wang et al. (37) found that one CD44 isoform (v10) was associated with reduced disease 
free survival in HNSCC. These, together with the present study, support CD44 expression as a 
negative predictive factor. 

We chose CD44 as a stem cell marker for HNSCC, since Prince et al. (31) showed that CD44 
positive cells in this tumor type were up to an order of magnitude more tumorigenic than 
CD44 negative cells. These data indicated that CD44 positive cells are enriched in cancer 
stem cells. However, our and other (38) IHC studies showed a relatively high average 
percentage of cells staining for CD44, inconsistent with a small minority stem cell fraction. 
We and others also observed a gradient of CD44 staining, where cells in more basal-like 
areas stained more positively than cells in the more differentiated areas. Such patterns may 
reflect more stem like properties of cells in the basal-like areas, analogous to that in normal 
epithelia. 

Assuming that CD44 has a causal role in determining the chance of recurrence and is not 
simply an indirect marker for stem cell content or another unknown process, there are 
several possible explanations for this role in the many functions of CD44. CD44 is a 
transmembrane glycoprotein with many transcript variants and has hyaluronan, an 
extracellular matrix protein, as a ligand (39). Various functions of CD44 have been described, 
including promoting tumorigenesis, cell motility and invasion. CD44, when activated by 
ligand, can act as a co-receptor for several membrane receptors, triggering various 

http://clincancerres.aacrjournals.org/content/16/21/5329.long#ref-25
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intracellular signalling pathways. In one of these, CD44 acts as co-receptor for the ErbB 
family which can lead to activation of the PI3K/AKT pathway, a pathway known to promote 
survival after cytotoxic damage, including after irradiation. This suggests a possible link 
between CD44 expression and intrinsic radiosensitivity. However, we did not find a 
correlation between CD44 expression and radiosensitivity in the panel of larynx cancer cell 
lines. Alternatives therefore need to be sought to explain the relationship between CD44 
expression and radiocurability. 

Other possibilities are links with hypoxia or repopulating ability, both known to influence 
radiotherapy outcome. We found that CD44 expression correlated with expression of acute 
hypoxia genes (Figure 3.8) and a trend (P = 0.08) that expression of acute hypoxia genes 
correlated with chance of recurrence. No significant relationship with expression of chronic 
hypoxia genes was found. This is consistent with other studies indicating that cells hypoxic 
for relatively short times are more dangerous than those chronically exposed to hypoxia (40, 
41). We found no evidence of a link between CD44 expression and proliferation associated 
genes, or in this series between expression of proliferation genes and outcome. This is 
consistent with our earlier expression profiling studies on advanced head and neck tumors 
treated with radiotherapy and cisplatin, where proliferation genes were not predictive (25). 
Whether this is due to relatively slow repopulation rates in these tumors, or because the 
signatures do not adequately monitor repopulation capacity during fractioned radiotherapy 
is not known. 

  
Figure 3.8. CD44 gene expression, averaged for the three probes, versus acute hypoxia 
signature score from Chi et al14. 

A final possible explanation is that CD44 expression monitors the number of stem or cancer 
initiating cells. It is unlikely that all CD44-positive cells have stem cell properties, considering 
the rather ubiquitous expression of CD44 in normal tissues (www.genecards.org), and the 
relatively high average fraction of CD44-positive cells in the tumors studied here and 
elsewhere (37, 38). However, if the cancer stem cells are a constant subfraction of CD44-
positive tumor cells, the stem cell fraction (or tumor initiating fraction) will be directly 

http://clincancerres.aacrjournals.org/content/16/21/5329.long#ref-40
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correlated with the CD44-positive fraction. In the current study, this fraction varied by a 
factor of around 3. Based on Poisson statistics, such a three-fold change in the effective 
number of cells which need to be killed by radiation would lead to an absolute change in the 
cure probability of around 30%; e.g. 1 surviving cell on average would lead to 37% cure 
probability, whereas 3 surviving cells on average would lead to a 5% cure probability. It is 
therefore possible that the relationship between cure and CD44 expression is a reflection of 
the number of cancer initiating cells needed to be killed. This is independent of whether the 
putative stem cells are more or less radioresistant than bulk tumor cells. 

This contention is supported by the cell line data where CD44 expression correlated 
significantly with colony forming efficiency of unirradiated cells (and not with 
radiosensitivity). This suggests a correlation with cancer initiating properties, since several 
studies have shown a correlation between in vitro plating efficiency and the number of cells 
required to produce tumors in animals (42–44). In addition, the Glinsky signature (45), a 
putative stem cell signature, also showed a strong trend with outcome in the test series 
(Table 3.3). This BMI-1-driven signature was derived by comparing primary and metastatic 
prostate cancer. We performed an Ingenuity pathway analysis on this 11-gene signature, 
also including CD44. The only significant pathway resulting from the analysis showed a link 
between the Glinsky genes and CD44 through an interaction with TGFB1 (Figure 3.9). While 
not definitive, these data support the notion that CD44 is in some way monitoring stem cell 
capacity. 

 
Figure 3.9 Link between CD44 and the Glinsky signature genes. The figure shows the only 
significant pathway arising from an Ingenuity Pathway Analysis where the input gene list was 
CD44 plus the 11-gene Glinsky signature. For clarity, all genes are also listed on the right: 

http://clincancerres.aacrjournals.org/content/16/21/5329.long#ref-42
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genes in bold indicate those occurring on the input list. It can be seen that CD44 is linked 
indirectly to the Glinsky genes via interactions with TGFB1 and AGT. 

Various CD44 isoforms have been described with different functions (39). In the present 
study, correlations with outcome were found with mRNA probes for one of the constant 
regions, and with an antibody against a constantly expressed epitope. Whether variant 
isoform expression would provide better prediction or understanding of failure needs 
further study. 

Summary and Conclusion 

CD44 expression, both at the mRNA and protein levels in independent patient series, 
correlated with the probability of recurrence after radiotherapy for early stage larynx cancer. 
Possible explanations are that CD44 expression monitors the cancer stem cell fraction or 
that CD44 expression monitors the hypoxic fraction. It will be important to distinguish these 
two possibilities, since interventions to increase cure in patients with high CD44 expressing 
tumors will depend on the mechanism (attacking hypoxia, or attacking CD44 itself, or its 
downstream pathways, or other stem cell specific pathways). Predicting outcome is 
important partly to spare patients ineffective and toxic therapies. It will be equally or more 
valuable to provide alternative therapies for patients with resistant tumors. It is likely that 
CD44 expression, measured with standard immunohistochemical or perhaps PCR-based 
assays will contribute to better outcome prediction, and the next steps will be to confirm 
mechanisms and design effective interventions against the consequences of this over-
expression. The present data suggest that the association between CD44 and radioresponse 
reflects an increased number of cancer initiating cells that are usually resistant to radiation 
and result in a recurrence. CD44 might therefore provide a new marker to predict the 
radiotherapy response in a biopsy of the primary tumor before treatment is initiated. 

http://clincancerres.aacrjournals.org/content/16/21/5329.long#ref-39
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 Abstract 

 

PURPOSE 
Predominant causes of head and neck cancer recurrence after radiotherapy are rapid 
repopulation, hypoxia, fraction of cancer stem cells, and intrinsic radioresistance. Currently, 
intrinsic radioresistance can only be assessed by ex vivo colony assays. Besides being time-
consuming, colony assays do not identify causes of intrinsic resistance. We aimed to identify 
a biomarker for intrinsic radioresistance to be used before start of treatment and to reveal 
biologic processes that could be targeted to overcome intrinsic resistance. 

EXPERIMENTAL DESIGN 
We analyzed both microRNA and mRNA expression in a large panel of head and neck 
squamous cell carcinoma (HNSCC) cell lines. Expression was measured on both irradiated 
and unirradiated samples. Results were validated using modified cell lines and a series of 
patients with laryngeal cancer. 

RESULTS 
miRs, mRNAs, and gene sets that correlated with resistance could be identified from 
expression data of unirradiated cells. The presence of epithelial-to-mesenchymal transition 
(EMT) and low expression of miRs involved in the inhibition of EMT were important 
radioresistance determinants. This finding was validated in two independent cell line pairs, 
in which the induction of EMT reduced radiosensitivity. Moreover, low expression of the 
most important miR (miR-203) was shown to correlate with local disease recurrence after 
radiotherapy in a series of patients with laryngeal cancer. 

CONCLUSIONS 
These findings indicate that EMT and low expression of EMT-inhibiting miRs, especially miR-
203, measured in pretreatment material, causes intrinsic radioresistance of HNSCC, which 
could enable identification and treatment modification of radioresistant tumors. 

TRANSLATIONAL RELEVANCE 
In head and neck squamous cell carcinomas (HNSCC), radiation is a major treatment 
modality. Intrinsic radioresistance of tumor cells is one of the predominant causes of head 
and neck cancer recurrence. This phenomenon can only be examined by ex vivo colony 
assays, but these take too much time to be clinically useful and do not reveal the biologic 
mechanisms of intrinsic radioresistance. Using microRNA and mRNA expression profiles of 
HNSCC cell lines and tumors, we found that low expression of certain microRNAs that 
suppress epithelial-to-mesenchymal transition, measured prior to treatment, is causally 
related to intrinsic resistance to radiation. This finding provides an important step toward 
modification and thereby improvement of the treatment of radioresistant tumors. 
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 Introduction 

 

Radioresistance of head and neck cancer 

Radiotherapy is the most important treatment modality in head and neck cancer, with two 
thirds of patients treated with (chemo-)radiotherapy (1). With altered fractionated 
radiotherapy, the locoregional control rates for earlier stages are encouraging, but for stage 
III and IV tumors, locoregional control remains around 50% (2), leaving considerable need for 
improvement. Factors that contribute to control of the tumor are tumor site, stage, 
treatment schedule and dose, tumor volume, and HPV status (3–5). However, even after 
correcting for these factors, there are still differences in control rates. Such differences may 
result from differences in tumor microenvironment, tumor cell properties like hypoxia, rapid 
repopulation between fractions, the fraction of cancer stem cells or intrinsic radiosensitivity 
(6). 
Intrinsic or cellular radiosensitivity is a term used to describe the process of one tumor cell 
being more resistant than another on the basis of different intracellular mechanisms, 
independent of microenvironmental factors. 
An appropriate way to study intrinsic radiosensitivity is therefore in tissue culture in which 
potential confounding factors can be reduced or eliminated. It has indeed been shown that 
intrinsic cellular radiosensitivity significantly determines the outcome of radiotherapy in 
head and neck cancer (7). However, these data were attained using functional (cell survival) 
studies, giving limited or no information on genes or pathways involved and thus providing 
little help to the treating physician on how to improve treatment for patients with 
radioresistant tumors. We therefore searched for genetic and thus potentially assessable 
and targetable factors that affect intrinsic radioresistance in head and neck cancer. 

mRNA to study radioresistance 

mRNA profiling has been used to study radioresistance in cell lines. To date, however, such 
experiments have been mostly performed on either one or two cell lines only, or on the NCI-
60 cell line panel, which contains no head and neck squamous cell carcinoma (HNSCC) lines 
(8, 9). Because it is known that radiosensitivity is partly dependent on the tissue of origin 
(e.g., lymphomas are more sensitive than solid tumors), use of such a cell line panel to 
predict HNSCC radiosensitivity is of questionable value. Therefore, Hall and colleagues 
attempted to identify a robust gene signature associated with intrinsic radiosensitivity on a 
series containing 16 cervical and 11 HNSCC cell lines. Unfortunately, they failed to identify 
such a set (10). Possibly this could be attributed to the fact that mRNA levels alone give an 
incomplete picture of active processes in the cell, as other factors can influence translation 
to protein. Among these are microRNAs (miR). 

microRNAs 

miRs are genomically encoded small pieces of single-stranded RNA of around 22 nucleotides each of 
which can silence hundreds of genes (11). More than 1,000 miRs have been identified so far, 

http://clincancerres.aacrjournals.org/content/21/24/5630?iss=24#ref-1
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http://clincancerres.aacrjournals.org/content/21/24/5630?iss=24#ref-6
http://clincancerres.aacrjournals.org/content/21/24/5630?iss=24#ref-7
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estimated to regulate expression of at least 60% of all genes (12). miRs regulate gene expression 
by binding to their (partly) complementary sequence on mRNA molecules, resulting in 
reduced protein production (13, 14). miRs can reduce protein production by causing 
degradation of mRNAs or by inhibiting translation. Multiple modes of silencing thus seem to 
exist that can be active concurrently (15, 16). 
Ionizing radiation has been shown to induce significant changes in miR expression in 6 
cancer cell lines (17). miRs playing a role in radioresistance have been described, although 
experiments were done in cell line pairs and not in a larger panel of cell lines (18–20). 

Study goal 

The goal of this study was therefore to get a better insight into the genetic causes of intrinsic 
radioresistance in head and neck cancer cells focusing on miR expression. Using a large panel 
of HNSCC cell lines, we aimed to answer the following questions: (i) Do miR/mRNA 
expression changes induced by irradiation correlate with radioresistance?; (ii) Can we 
identify mRNAs that correlate with radioresistance?; (iii) Can we identify driving miRs that 
correlate with radioresistance?; (iv) If so, are these miRs and their targets related to certain 
pathways or processes?; and (v) Finally, do these miRs correlate with radiotherapy response 
in patients with laryngeal cancer? The answers to these questions should lead to a better 
understanding of radioresistance in this disease and therefore provide guidance toward 
more individualized treatment. 
 

 Materials and methods 

 

Cell line selection and culture 

Cell line selection. 
All cell lines for hypothesis generation were obtained from Professor R. Grénman (University 
of Turku, Turku, Finland), who has a unique panel of more than 100 well-characterized 
HNSCC cell lines with known radiosensitivity. We selected 32 HNSCC cell lines from different 
subsites (Table 4.1). Cell lines previously treated with chemotherapy or derived from 
metastatic sites other than regional lymph nodes were excluded.  
 
Cell culture. 
All cells were cultured in DMEM, supplemented with 1% l-glutamine, 1% nonessential amino 
acids, 10% FBS, and antibiotics. Cells were incubated in humidified air with 5% CO2 at 37°C. 
Depending on the doubling time, cells were subcultured every 3 to 14 days to ensure 
exponential growth. Cells were used for experiments when they were around 60% to 70% 
confluent. Preferably, low passages (10–20) were used. 
 

http://clincancerres.aacrjournals.org/content/21/24/5630?iss=24#ref-12
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Table 4.1. Overview of the properties of all 32 cell lines. p= primary tumor, r= recurrent 
tumor, pp = persistent primary tumor, T=from the primary tumor location, N = from the 
lymph node.  

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Table-4_1.png
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Validation cell lines. 
The UT-SCC-43A and UT-SCC-43A-Snail cell lines were developed and provided by Dr M. 
Takkunen (University of Helsinki, Helsinki, Finland; ref. 21). The FaDu-cDNA3 and FADU-
HIF1α(ΔODD) cell lines were developed and provided by Prof. Kou-Juey Wu (National Yang-
Ming University, Taiwan, ROC; ref. 22). Both cell lines are human HNSCC, transfected with 
either the transcription factor snail or HIF1α with a deleted oxygen degradation domain, 
thereby causing the cells to undergo epithelial-to-mesenchymal transition (EMT). 

Irradiation assay 

Radiosensitivity assay. 
Radiosensitivity of all cell lines was tested with a 96-well plate clonogenic assay, developed 
by Grénman and colleagues (23, 24). The radiosensitivity of a cell line was defined as the 
area under the survival curve, with measurements of the survival fraction at 6 different 
doses, each repeated at least 3 times. When a comparison was made between radioresistant 
and radiosensitive cell lines, the cutoff was set at a median area under the curve of 2.0. 
 
RNA collection after irradiation. 
Cells were irradiated using a 137Cs irradiation unit with a dose rate of 0.662 Gy/min. Mock-
irradiated cells were harvested for all cell lines, as well as cells at 2 and 6 hours after 4 Gy. At 
the given time points, cells were rinsed with ice-cold PBS twice and then collected in RNA-
Bee (Campro Scientific). 

RNA isolation from cell lines 

All steps from RNA isolation to microarray hybridization were performed at the Institute’s 
central microarray facility. Cells in RNA-Bee were used to extract total RNA. The sample was 
then split into two for analysis of miR and mRNA separately. mRNAs were further purified 
using the RNeasy Mini Kit and the RNase-Free DNase Set from Qiagen. The RNA was isolated 
and DNAse treated using the spin columns according to the manufacturer’s instructions. The 
Agilent 2100 Bioanalyzer was used to confirm the presence of intact RNA. 

mRNA/miR microarrays in cell lines 

mRNA. 
Biotin-labeled cRNA was generated using the Illumina TotalPrep RNA Amplification Kit 
(AMIL1791, Ambion Inc.). Briefly, to synthesize biotin-labeled cRNA, 350 ng of total RNA was 
reversed transcribed and subsequently amplified and labeled with biotin (in vitro 
transcription). Next, the cRNA (1,500 ng per array) was hybridized to v3 Illumina bead arrays 
according to the manufacturer’s instructions (Illumina, Inc.). Array signals were developed by 
Amersham fluorolink streptavidin-Cy3 (GE Healthcare Bio-Sciences) following the BeadChip 
manual. Fluorescence intensities were measured with the scanner and averaged per probe. 
Background adjustment was done using the method from the affy package, after which data 
were log2-transformed and robust spline normalized. As a final step, annotations were 
updated using the lumiHumanAll package (25) in R and subsequently the data were 

http://clincancerres.aacrjournals.org/content/21/24/5630?iss=24#ref-21
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aggregated per gene symbol: data from probes with the same gene symbol and a correlation 
greater than 0.7 were averaged. 

microRNAs. 
Using the Exiqon miRCURY LNA microRNA Array kit (fifth generation), 1 μg total RNA was 
labeled with Hy3 and hybridized in a TECAN HS4800 Hybridization Station against the slides 
together with a reference pool of all samples (Hy5). The slides were scanned in a DNA 
Microarray Scanner (Model G250B, Serial number US22502518) from Agilent Technologies, 
which uses Scan Control software (Version A.6.11). After subtraction of the mean 
background signal, arrays were log2-transformed and normalized using the LOWESS method 
(using Imagene 6.0 software). 

Patient series 

Patient selection. 
Thirty-four patients treated at The Netherlands Cancer Institute (Amsterdam, the 
Netherlands) between 2002 and 2010 were selected as a validation cohort. To avoid 
confounding by the addition of surgery or chemotherapy, a cohort consisting of patients 
with T2-3 laryngeal cancers was compiled. These patients were all treated with radiotherapy 
alone with a curative intent. The series was designed to be a matched cohort of 17 patients 
with local recurrences matched with 17 local cures. There were no significant differences 
between groups with and without local recurrence in age, gender, subsite, T-stage, or 
treatment year (Table 4.2). 

 
Table 4.2. Patient characteristics for the 34 patients in the validation cohort. 

miR extraction. 
Using the Roche High Pure miRNA Isolation Kit (REF: 05080576001), miRNAs were extracted 
from pretreatment biopsies. Briefly, 5 slides of 5-μm thickness were deparaffinized and 
macrodissected, assuring that the sample consisted of at least 50% tumor cells. miRs were 
further purified according to the manufacturer’s instructions. 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Table-4_2.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Table-4_2.png
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miRNA library preparation and sequencing 

The total RNA samples were quality-controlled and quantified with the Agilent Technologies 
2100 Bioanalyzer, using the RNA 6000 Nano kit. One microgram of total RNA in a volume of 5 
μL was used as input for the miR library preparation for Illumina sequencing (SR 50bp) using 
the TruSeq Small RNA Sample Preparation Kit (RS-200-0012) and Guide (Part # 15004197 
Rev. E). Shortly, stepwise RNA ligation of 3′ and 5′ adapters to miRs introduce a specific index 
to every sample. The product was PCR-amplified and pooled and purified using a 6% PAGE 
gel. Fragments of 145 to 160 bp were cut from the gel, washed and concentrated by ethanol 
precipitation, and resuspended in nuclease-free water. The small RNA library pools were 
quantified using a DNA 7500 chip with the Agilent Technologies 2100 Bioanalyzer. The pools 
were diluted to a concentration of 2 nmol/L and passed on for sequencing onto an Illumina 
HiSeq2000 machine and a stretch of 50 bp was sequenced according to manufacturer’s 
instructions. The FAST-Q data from the run were analyzed and quantified by comparing the 
data to the miR databases. 
Sequence reads (51 bp) were mapped using the mirExpress pipeline. The reads were 
trimmed for adapter sequences upon alignment. During the alignment, the identity was set 
to 0.9. Human mature and precursor sequences were downloaded from miRbase (version 
20). The miR expression results that were generated for each sample were combined for 
further analysis. miR counts were normalized to 100,000 reads per patient. 

Analysis 

Time course analyses were performed using the Biometric Research Branch (BRB) ArrayTools 
(http://linus.nci.nih.gov/BRB-ArrayTools.html). This is a tool that performs a regression 
analysis of time course data, finding patterns that correlate with time, class, or both. 
Pathways and networks were analyzed through the use of Ingenuity Pathway Analysis (IPA; 
Ingenuity Systems, www.ingenuity.com). Cell survival curves were generated and analyzed in 
GraphPad Prism 6.0. All other analyses were performed in R (26), using the Bioconductor 
packages (27) and our own scripts. 

miR target selection 

Because most miR–mRNA interactions are predicted interactions on the basis of the 
complementarity of their RNA sequences and not on experimentally validated interactions, a 
collection of the most likely mRNA targets was generated for each miR by analysis of 
validated interaction data from external databases. A maximum of 750 mRNA targets per 
miR were selected on the basis of our own prediction model trained to predict 
experimentally validated targets from Tarbase 6.0 (28) on miR and target properties from 
TargetScanHuman 6.2 (14, 29). A list of these 146,898 interactions is available online. 

http://linus.nci.nih.gov/BRB-ArrayTools.html
http://www.ingenuity.com/
http://clincancerres.aacrjournals.org/content/21/24/5630?iss=24#ref-26
http://clincancerres.aacrjournals.org/content/21/24/5630?iss=24#ref-27
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 Results 

 

Data overview 

All tested cell lines responded to irradiation by profound changes in gene expression. To 
investigate whether this response correlates with radioresistance, we determined the 
abundance of 18,913 unique mRNAs at 0, 2, and 6 hours after 4 Gy and of 279 unique miRs 
at 0 and 6 hours after 4 Gy in 32 HNSCC cell lines (Figure 4.1). 
 

 
Figure 4.1. Overview of data. 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-4_1.png
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MiR/mRNA expression changes 2 and 6 hours after 4 Gy do not correlate with 

radioresistance 

Thousands of mRNAs and miRs showed expression changes in one or more of the cell lines in 
response to 4 Gy. The time course plug-in in BRB array tools identifies cell lines with similar 
gene up- or downregulation after irradiation. An expression response pattern common to all 
32 cell lines involved 175 genes (Figure 4.2), none of them encoding miRs. When analyzing 
these common response genes in IPA, the most significant canonical pathways were 
associated with protein ubiquitination, cell-cycle regulation, and DNA double-strand break 
repair. 

 
Figure 4.2. Heatmap of common response, 2 and 6 hours after irradiation: Heatmap of the 
common response to 4 Gy irradiation in all 32 cell lines, adapted from the BRB-array tools 
time course plug-in output. 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-4_2.png
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When genes with an altered expression 6 hours after 4 Gy (compared with baseline 
expression) were subjected to cluster analysis, 2 main response clusters became evident. 
Genes that were different between the 2 response clusters were analyzed in IPA, which 
showed that 11 cell lines in the first cluster had an activated TP53 and HNF4A response, 
whereas this response was inhibited in the other 21 cell lines. However, the 2 clusters 
showed no correlation with radioresistance (t test; P = 0.82). 

The time course plug-in also searches for response patterns that are significantly different 
between 2 groups. Here we found that changes 2 and 6 hours after 4 Gy did not differ 
between the 14 radiosensitive and 18 resistant cell lines, neither in mRNA nor in miR 
expression.  

 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-4_3.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-4_3.png
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Figure 4.3. MiR and mRNA expression differences between resistant and sensitive cell lines. 
mRNA and miR expression differences between sensitive and resistant cell lines over time. 
The differences between sensitive and resistant cell lines at the individual time points were all 
individually significant (t test; P < 0.05), except for miR-141/200a and miR-200bc/429. The 
differences between sensitive and resistant cells for these two miR families were only 
significant, when the measurements at both time points were considered. Error bars, mean ± 
SEM. 

mRNAs and radioresistance 

The BRB time course plug-in further analyzes the difference between sensitive and resistant 
cell lines, independent of the time response. In this analysis, 1,226 genes with a stable 
expression over the 3 time points significantly correlated with radioresistance using a false 
discovery rate cutoff of <0.05 (Supplementary table 4.1). In addition, separate t tests were 
performed between the expression of the sensitive and resistant groups for each of the 3 
time points. The 3 resulting P values were then pooled per gene. The expression over time 
for the top 5 positively and negatively correlated genes (i.e., with the lowest pooled P value) 
is shown in Figure 4.3A and B. An IPA showed that these 1,226 genes corresponded mostly 
with the following molecular and cellular functions: cellular movement, cellular 
development, cellular growth and proliferation, cell-to-cell signaling, and interaction and cell 
morphology. These functions are suggestive of a role for EMT, which describes a process in 
the cell that leads to loss of polarity, increased migratory and invasive capacity, and reduced 
cell–cell contact (30). 

Identification of miRs that correlate with radioresistance 

To find driving miRs that influence radioresistance, we set 3 separate requirements: (i) to 
select miRs that were actively degrading their mRNA targets, there had to be a negative 
correlation between miR expression and expression of its targets; (ii) a correlation between 
miR expression and radioresistance; and (iii) an inverse correlation of the target expression 
with radioresistance (compared with the miR–radioresistance correlation). Using these 
criteria, the chance of finding false-positive results is brought down to a minimum and only 
relevant miRs are identified. 

For this analysis, miRs and mRNAs were filtered on the basis of the interquartile range (IQR) 
of expression between the 32 cell lines to exclude uninformative values. This left 200 miRs 
and 13,041 mRNAs with an IQR higher than 0.5 for the analysis. Of the 200 miRs, 39 were 
discarded because they had fewer than 5 predicted targets. After the filtering steps, the 
remaining 161 miRs had an average number of 506 predicted mRNA targets, as defined by 
our in silico generated miR–mRNA interaction database. Of these 161 miRs, 37 had a 
significantly negative miR target Pearson correlation after multiple testing correction. P 
values for the correlation between each miR and its targets were calculated using a two-
sided t test of the Pearson correlations of the predicted mRNA targets for each miR versus 
the Pearson correlations of all other (random) mRNAs with the miR expression. P values for 
the correlation between mRNA targets and radioresistance were calculated using the same 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Supplementary-table-4_1.pdf
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-30
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approach, comparing the difference between all P values for the Pearson correlations 
between the targets and radioresistance versus all P values for the correlations between the 
nontarget mRNAs and radioresistance. P values for the difference in miR expression between 
sensitive and resistant cell lines over the two time points were obtained using the BRB time 
course plug-in. A significant correlation of the miR and its targets with radioresistance was 
observed for 12 of these 37 miRs, belonging to 10 different miR families (Table 4.3). 
Expression over time for the top 5 miR families can be seen in Figure 4.3C. Of interest is that 
292 of the earlier identified 1,226 mRNAs that were significantly correlated with 
radioresistance are being regulated by one of these 12 miRs. 

Table 4.3. Relevant miRs correlated with radioresistance: Properties of the miRs and their 
associated mRNA targets that were significantly correlated with radioresistance. Column 1: 
miR name. Column 2: The number of predicted mRNAs that are being targeted by this miR. 
Column 3: A significant negative correlation between the miR and its predicted targets 
indicates that this miR is actively degrading its targets. Column 4: The direction of the miR 
expression in the group of resistant cell lines. Column 5a: p-values from the BRB array tools 
time course plug-in, representing the correlation between radioresistance (AUC) and the 
expression of the miR over the 2 measured time points. Column 5b: p-value of a 2-sided T-
test comparing the difference between all p-values for the Pearson correlations between the 
predicted mRNA targets and radioresistance versus all p-values for the correlations between 
the non-target mRNAs and radioresistance. Column 6: all references for the described miR 
functions can be found in Supplementary table 4.2. $Both member of miR family miR-
200bc/429/548a. *Both member of miR family miR-141/200a. 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Table-4_3.png
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EMT correlates with radioresistance 

From the data described in mRNAs and radioresistance and Identification of miRs that 
correlate with radioresistance, it appears that the loss of miRs downregulating EMT mRNAs 
were significantly correlated with the intrinsic radioresistance of these 32 HNSCC cell lines. 

To verify that EMT had a causal relation with radioresistance, we collected 2 HNSCC cell lines 
that had been forced to undergo EMT: UT-SCC-43A-Snail and FaDu-HIF1α(ΔODD). Both Snail 
and HIF1α are known transcription factors for EMT. In cell culture, the Snail- or HIF1α-
expressing cells were clearly mesenchymal, whereas the respective control cells lines UT-
SCC-43A and FaDu-cDNA3 had an epithelial growth pattern. In these pairs, we found that the 
cells that had undergone EMT were significantly more resistant to radiotherapy (Figure 4.4), 
with areas under the survival curve increasing from 2.7 to 3.9 (P < 0.0001) in the FaDu pair 
and from 2.6 to 4.6 (P < 0.0001) in the UT-SCC-43A pair. 

Figure 4.4. Induction of EMT causes radioresistance. Induction of EMT by HIF1α (left) or Snail 

(right) leads to increased radioresistance. 

We further tested the correlation between radiosensitivity and processes known to 
influence radiotherapy response in the 32 cell lines, by using published gene sets for reactive 
oxygen species (31), hypoxia (32, 33), proliferation (34), stem cells (single marker CD44 and 
the set from ref. 35), p53 (constructed ourselves, Supplementary table 4.3), DNA repair 
(constructed ourselves, Supplementary table 4.3), and intrinsic radiosensitivity (8, 9). We 
also constructed our own HNSCC EMT signature from the two pairs of HNSCC cell lines in 
which EMT was induced. This signature was constructed from genes with a fold change 
greater than 2 or under 0.5 between parental and EMT-induced strains. In addition, only 
genes were selected that showed a fold change in the same direction (up- or 
downregulation) in both cell line pairs, which resulted in a set of 1,189 genes 
(Supplementary table 4.4). 

For each cell line, a score was generated for each gene set, by either calculating the mean 
expression of the genes in the set or in the case of the HNSCC EMT signature by calculating 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-4_4.png
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the Pearson correlation between the expression of the cell line and the average expression 
in FaDu-HIF1α(ΔODD) and UT-SCC-43A-Snail cell lines for these 1,189 genes. Next, scores for 
the gene sets were compared with the radiosensitivity values. Of the different gene sets, the 
HNSCC EMT gene set was the best predictor of radiosensitivity (linear regression P: 0.001) in 
the panel of 32 HNSCC cell lines, with a Spearman correlation of 0.74 (P < 0.0001). A plot of 
the HNSCC EMT score against the radiosensitivity is shown in Figure 4.5, the individual scores 
per cell line can be seen in Supplementary table 4.5.  

Of note is that the two EMT-inducible cell lines, although HNSCC cells, were not part of the 
32 cell line panel and thus were an independent test system, strengthening the 
interpretation of an EMT-based mechanism for radioresistance. 

 
Figure 4.5. HNSCC EMT score versus radiosensitivity. Cells with a higher score for EMT (more 

mesenchymal) are more resistant to irradiation. 

miRs predicting radiotherapy response in patients 

The expression of the most significant miR in cell lines (miR-203) was tested in a pilot series 
of 34 patients with T2-3 larynx tumors treated with radiotherapy. The 12 top miRs were 
analyzed. When two groups created were divided by the median expression, a trend was 
seen for higher recurrence percentages with low expression of miR-452 (HR, 0.5; P = 0.1), 
miR-200b (HR, 0.7; P, 0.4), and miR-141 (HR, 0.6; P = 0.4). However, only low miR-203 
expression was significantly correlated with local recurrence in a multivariate Cox regression 
(Figure 4.6; HR, 0.364; log-rank P = 0.04). These findings are in line with the cell line data, 
that is, loss of miR-203 expression leads to radioresistance. 

 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Supplementary-table-4_5.pdf
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-4_5.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-4_5.png
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Figure 4.6. miR-203 in patients. Seventeen patients with a local recurrence after radiotherapy 

were matched with 17 patients without a local recurrence. Patients with a high miR-203 

expression had a significantly higher cure rate. The mean survival in this curve is 50% 

because of matching 1:1. 

 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-4_6.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-4_6.png
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 Discussion 

 

It is not clear why some cells are radiosensitive and others are intrinsically radioresistant. By 
identifying the underlying mechanisms of radioresistance, it should become possible to 
personalize therapy where necessary, thereby achieving better treatment success rates. In 
this study, we correlated expression of miRNA and mRNA to intrinsic radiosensitivity of head 
and neck cancer. In our HNSCC cell line panel, we found that a low expression of certain 
miRs was strongly correlated with radioresistance. Different analysis methods led to the 
conclusion that EMT was an important factor in radioresistance, namely, the top correlating 
mRNAs, miRs, and gene sets were all involved in EMT and these findings were validated by 
testing two different cell lines engineered to undergo EMT, which caused an increase in 
resistance. Next, we have shown that low expression of the top miR (miR-203) predicting 
intrinsic radiosensitivity indeed corresponded to more local recurrences after radiotherapy 
in a patient series of laryngeal carcinomas. Because it has previously been reported that no 
major difference was detected in miR profiles among laryngeal, oropharyngeal, or 
hypopharyngeal cancers, we believe that this cohort could be representable for all of these 
subsites (36). It should be noted that results were obtained using multiple testing on a small 
series, needing further validation in a larger cohort of head and neck squamous cell 
carcinomas, preferably including head and neck tumors from different subsites. 

Although separate EMT genes like fibronectin 1, Snail, Slug, and E-cadherin have already 
been associated with radioresistance (37–40), it has not been clarified why EMT would cause 
radioresistance. We hypothesize that simultaneous with acquiring a mesenchymal 
phenotype, the mechanisms by which cells can become more resistant to irradiation are 
altered. EMT is mainly a description of a phenotype, but the fact that the acquisition of this 
phenotype is correlated with radioresistance may indicate it affects at least one of the three 
known mechanisms that lead to resistance: less damage upon irradiation, better repair of 
irradiation damage, or less cell death upon damage. 

A first hypothesis could be that the evasion of DNA damage could lead to radioresistance 
(31). In a recent overview, Watson proposed that mesenchymal cancer cells possess 
heightened amounts of antioxidants that reduce damage caused by irradiation-induced 
reactive oxygen species (ROS; ref. 41). Gammon and colleagues showed that within 
mesenchymal cancer cells under normoxic conditions, a subpopulation of cells with low 
oxygen and ROS levels can be found (42). 

Second, a more effective DNA damage repair system can lead to increased survival of cells 
after radiotherapy. This appears to be the case in breast cancer cell lines, in which it was 
shown that HOXB9 induces both EMT and confers resistance to ionizing radiation by 
accelerating the DNA damage response (43). In another report, it was shown that ATM-
mediated Snail serine 100 phosphorylation regulates cellular radiosensitivity (44). 

http://clincancerres.aacrjournals.org/content/21/24/5630#ref-36
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-37
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-31
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-41
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-42
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-43
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-44
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Finally, damaged cells can evade cell death and thereby survive irradiation. Kurrey and 
colleagues propose a model in ovarian cancer, in which EMT transcription factors Snail and 
Slug can antagonize p53-mediated apoptosis (40). TGFβ is also known to simultaneously 
invoke EMT and block apoptosis via PI3K signaling (45). In addition, another EMT inducer, 
SIP1, has been ascribed antiapoptotic properties (46). With the acquisition of an EMT 
phenotype, cells have been shown to increase autophagy: a lysosomal degradation pathway 
that can be used to increase survival of cells (47). Rouschop and colleagues demonstrated 
that inhibition of autophagy sensitized xenografts to irradiation (48). 

In an attempt to confirm these hypotheses, we tested different gene sets for reactive oxygen 
species, DNA repair, cell-cycle phase, and several means of cell death against the EMT gene 
set (Table 4.4). From these analyses, it appears that there is no single explanation for the 
radioresistance of the mesenchymal phenotype. The acquisition of a heightened EMT gene 
expression profile corresponds to a higher expression of genes known to be expressed in G2, 
genes involved in DNA double-strand break repair and autophagy. This indicates that 
mesenchymal cells might become more resistant to radiotherapy by prolonging time spent 
in G2, more efficient double-strand break repair, and the use of autophagy as a possible 
mechanism to evade cell death. ROS scavenger or apoptosis gene sets showed no correlation 
with expression of EMT genes. 

Table 4.4. Results of testing gene sets for reactive oxygen species, DNA repair, cell cycle 
phase and several means of cell death against the EMT gene set. Spearman’s rank 
correlations. * p-value <0.05. 

Our study is the first to identify miRs with their mRNA targets that are involved in 
radioresistance in HNSCC. By analyzing miRs together with their targets, a more realistic 
representation of what occurs in cells can be obtained. A pitfall remains the allocation of the 
correct targets to every miR. Despite this possible confounding effect of wrongly allocated 
targets in the analysis, when studying the effect of all targets of one miR as a group, a 
reliable target effect can be observed. Future studies into correctly defining miR targets 
should improve this analysis method. The potential advantage of discovering miRs that are 
correlated with resistance is that, when used as therapeutic agents, they are able to target 
many genes at once, frequently within one pathway or network (49). 

http://clincancerres.aacrjournals.org/content/21/24/5630#ref-40
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-45
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-46
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-47
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-48
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Table-4_4.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Table-4_4.png
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-49
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We observed that constitutive but not radiation-responsive genes correlated with 
radioresistance. These findings are consistent with findings of Birrell and colleagues on the 
yeast deletion mutant library (50) and the findings in the gene expression series of 
Amundson and colleagues who concluded that in the NCI-60 cell line panel “basal expression 
patterns discriminated well between radiosensitive and more resistant lines, possibly being 
more informative than radiation response signatures” (8). 

In conclusion, the pre-irradiation miR-203 status, determined by integrative miR and mRNA 
analyses, was the most powerful predictor of radioresistance in our HNSCC cell line panel. 
This EMT-inhibiting miR was decreased in patients with a local recurrence after 
radiotherapy. The fact that radioresistance could be best predicted from baseline expression 
suggests that future studies into intrinsic resistance should not focus on response to 
irradiation. If these findings can be translated to the clinical setting, it should be possible to 
predict radiotherapy outcome from a pretreatment sample. 

The next step would be to reverse EMT in vivo, possibly by restoring expression of miR-203. 
Because one miR can target many genes, EMT caused via different routes could potentially 
be inhibited by a single miR. Inhibition of EMT in vivo could not only make cells more 
radiosensitive but also more chemosensitive and less invasive, which together should lead to 
better patient survival. 

http://clincancerres.aacrjournals.org/content/21/24/5630#ref-50
http://clincancerres.aacrjournals.org/content/21/24/5630#ref-8
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Due to the size of the files, supplementary information for this chapter is only available 

online. Below are the hyperlinks to the corresponding supplementary tables: 

Supplementary table 4.1 lists 1226 genes significantly correlated with radioresistance from a 
BRB time course plug-in analysis. 

Supplementary table 4.2 describes the references used for the definition of miR functions 
stated in table 4.3. 

Supplementary table 4.3 lists the genes in our p53 and DNA repair signatures. 

Supplementary table 4.4 lists the 1189 genes in the HNSCC-EMT signature. 

Supplementary table 4.5 lists the HNSCC EMT-scores for the 32 cell lines.
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 Abstract 

 

BACKGROUND AND PURPOSE 
Patients with hypoxic tumors poorly respond to radiotherapy and could benefit from hypoxia 
modification during radiotherapy. To identify these tumors, various gene expression profiles 
characteristic for hypoxic tumors have been suggested. 
 
MATERIALS AND METHODS 
Published profiles for hypoxia and in vitro obtained gene sets with early and late hypoxia 
response genes were compared using expression data from 224 head and neck cancer 
patients from three different datasets. The ability to predict local recurrence after 
chemoradiotherapy was tested for the different profiles. 

RESULTS 
Although only 3 genes were similar in the four validated hypoxia profiles, the profiles 
showed a near complete correlation with each other in categorizing the 224 patients. The 
published signatures correlated with the in vitro developed late hypoxia response, not with 
the early hypoxia response genes. Interestingly, the early hypoxia profile better predicted 
local recurrence after chemoradiotherapy. 

CONCLUSIONS 
Different sets of genes can be used interchangeably to study hypoxia status of tumors. Four 
published profiles were related to chronic rather than to acute in vitro hypoxia, while the 
acute profile better predicted local recurrence. For a better prediction of hypoxia status and 
the risk of recurrence, acute hypoxia profiles should be incorporated into existing models. 
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 Introduction 

 

Head and neck cancer 
The average overall survival for head and neck cancer patients is around 50% [1], but this 
varies greatly among different groups of patients. Applying clinical (TNM) staging to create 
different prognostic groups can only explain survival variation for 25% [2, 3, 4, 5]. We have 
previously shown that the addition of a prognostic gene expression profile can improve 
outcome prediction, suggesting that a substantial part of the survival variation is explained 
by tumor biology [6]. 
 
Hypoxia affects treatment outcome/prognosis 
One of the most studied biological factors affecting prognosis of head and neck cancers is 
tumor hypoxia [7]. Tumor cells can become hypoxic by chronic (diffusion limited) and acute 
(perfusion limited) mechanisms, which can have different effects on tumor cells and their 
microenvironment. Which of the two has the most prognostic implications is still unclear [8]. 
Because oxygen is essential to cause DNA-damage upon irradiation, hypoxic cells respond 
poorly to radiotherapy [9, 10, 11, 12]. Since approximately two third of all head and neck 
cancer patients is (partly) treated with radiotherapy, hypoxia can be a great obstacle in the 
treatment of these tumors [13]. A meta-analysis of clinical trials showed that in vivo 
modification of the acute and/or chronic oxygen status during radiotherapy can improve 
survival of head and neck cancer patients, demonstrating that hypoxia is an important factor 
in radioresistance [14]. Unfortunately, the hypoxia modification therapy comes with added 
toxicity and the benefit from hypoxia modification was modest in the whole series [14]. This 
led to the hypothesis that only patients with hypoxic tumors profit from such a therapeutic 
intervention, which was shown to be correct in two recent studies [15,16]. 
 
Selection of hypoxic patients 
Since selection of patients appears to be of importance, a robust approach to quantify 
hypoxia is essential. Different techniques have been applied to evaluate the level of hypoxia 
in a tumor and its impact on radiotherapy response [7], including an oxygen-sensitive needle 
probe inserted into the tumor [17, 18, 19, 20], exogenous immunohistochemical markers 
(e.g. pimonidazole [21]), endogenous markers (e.g. HIF1-alpha [22, 23, 24] or carbonic 
anhydrase IX [16, 22, 25, 26]) and imaging techniques like MRI [27] and PET [28]. None of 
these techniques is currently used in clinical practice. 
Hoping to better reflect the intricate cellular response to hypoxia, there have been reports 
of panels of markers or gene expression sets that correlate hypoxia status with prognosis 
[15, 22, 29, 30, 31, 32, 33]. Several published signatures have been validated to be 
prognostic or even predictive in head and neck cancer [15, 29, 30, 31]. These signatures 
appear to have only a few genes in common, raising the question which signature performs 
best for the assessment of the level of hypoxia within a tumor. In none of these series a 
distinction was made between acute and chronic hypoxia. 
With the intent to better select patients for hypoxia modification the NIMRAD study was 
recently initiated, aiming to ‘prospectively validate a gene signature that can be used in 
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clinical practice to personalize treatment and select appropriate patients for hypoxia 
modifying treatment’ *34]. 
 
Study goals 
We aimed to study the differences between the published hypoxia signatures that have 
been validated in head and neck cancer. First, we identified hypoxia signatures that have 
been validated to be prognostic or even predictive in head and neck cancer. We compared 
the genes included in these signatures and next the uniformity of these signatures in the 
classification of head and neck cancer patients into a ‘hypoxic’ and ‘less hypoxic’ group. In 
addition, we sought to compare these signatures with expression data of cell lines subjected 
to chronic/acute hypoxia. Lastly, the ability of the different signatures to predict 
radiotherapy response was tested in a series of 91 head and neck cancer patients who 
underwent chemoradiotherapy. 
 

 Materials and methods 

 

Published hypoxia gene sets 
To our knowledge, four gene expression sets for hypoxia that have been validated to predict 
outcome in head and neck cancer exist (table 5.1): 
1. Winter et al. [29] profiled 59 head and neck cancer patients and obtained a hypoxia 
metagene signature, selecting genes whose in vivo upregulation coincided with the 
upregulation of 10 well-known hypoxia genes. The 99-gene signature correlated with 
recurrence free survival in a published series of 60 head and neck cancer patients mostly 
treated with surgery followed by radiotherapy [35]. 
2. Buffa et al. [30] used hypoxia-regulated genes to select co-expressed genes in three head 
and neck and five breast cancer studies. The resulting 51-gene signature was validated in 4 
independent datasets. 
3. Toustrup et al. [15] generated a 15-gene signature from in vitro experiments and an 
association of gene expression data from 58 head and neck cancer biopsies with various 
hypoxia levels from previous eppendorf hypoxia measurements. The 15-gene hypoxia 
classifier was validated and proven to be predictive for hypoxia modification (nimorazole) 
benefit in 323 patients treated in a randomized study of nimorazole versus placebo during 
radiotherapy for head and neck cancer. 
4. Eustace et al. [31] generated a 26-gene reduced signature using the methods and starting 
genes from Buffa et al.. This signature was tested on 157 laryngeal cancer patients treated 
with radiotherapy alone or with carbogen and nicotinamide. The 26-gene signature 
predicted recurrence rate improvement upon hypoxia-modifying treatment. 
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Table 5.1: Overview of published hypoxia gene sets that have been validated in head and 
neck cancer. 

In vitro hypoxia response data 
To compare the published hypoxia signatures with acute and chronic hypoxia expression 
profiles, temporal transcription changes in response to hypoxia generated by Chi et al. were 
used [36]. They have studied hypoxia response patterns in epithelial cells using DNA 
microarrays. Gene signatures were extracted from cells at different time points between 1 
and 24 hours under <0.02% or 2% oxygen [37]. Time points between 0-6 hours were used to 
describe early response and time points 12 and 24 hours late response, resulting in 4 
signatures: early-0%, early-2%, late-0% and late-2%, consisting of respectively 70, 34, 65 and 
29 unique gene symbols. These signatures were used for comparison with the four published 
signatures. 
 
Patient data 
To compare the classification of the different signatures, we used pre-treatment gene 
expression data of three different patient cohorts, comprising a total of 224 patients (table 
5.2). More extensive patient characteristics for the cohorts can be viewed in the original 
publications and in Supplementary table 5.1-5.3. 

Table 5.2. Summary of characteristics of the three patient series. 

The first series of 91 patients treated with radiochemotherapy was previously published by 
Pramana et al [38]. Gene expression profiles were obtained from fresh-frozen pre-treatment 
material, analyzed using dual-channel Operon microarray slides. Follow-up data were 
updated and annotations of reporters for different probes on the microarrays were updated 
to the latest HUGO gene symbols. 
Data of the second series were partly published, methods are as described in de Jong et al.. 
For this analysis more patients were added to the series [39]. Briefly, gene expression of 99 
fresh-frozen larynx and oropharynx carcinomas, all treated with single modality 
radiotherapy, was measured using the Illumina beads microarray platform. Annotations of 
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reporters for different probes on the microarrays were updated to the latest HUGO gene 
symbols. 
The patient characteristics of the third series have been published previously [40]. This series 
consists of 34 larynx carcinomas, of which messenger RNA was isolated from paraffin 
embedded material and sequenced using the Illumina HiSeq2000, full methods for the 
mRNA extraction and sequencing can be read in the supplementary methods. 
 
Testing signatures 
All signatures consisted exclusively of genes that were upregulated under hypoxia. 
Therefore, the mean expression of the genes in each signature was calculated as a measure 
of hypoxia status for every tumor. In order to compare three patient series with expression 
data that were generated using different gene expression assays, scores were rank-
normalized per signature between 0 and 1 for each of the three patient series before they 
were combined. 
 
Hypoxia profiles and radiotherapy response 
In order to study the effect of the different hypoxia signatures on (chemo-)radiotherapy 
response prediction, local recurrence rates for different hypoxia scores were compared in 
the chemoradiotherapy cohort. Per gene profile (or per group of corresponding gene 
profiles), patients were divided into two groups by the median rank. Kaplan-Meier statistics 
were used to assess the difference in recurrence free survival between two groups. 
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 Results 

 

Few overlapping genes in four different hypoxia gene sets 
The four published gene sets for hypoxia that have been validated to predict outcome in 
head and neck cancer consisted of a total of 147 unique gene symbols. Of these gene 
symbols, 82% was only present in one of the four signatures, whereas 2% of the genes was 
present in all four signatures: ALDOA, P4HA1 and SLC2A1 (figure 5.1). Aldolase A is a 
glycolytic enzyme, the P4HA1 gene encodes a component of a key enzyme in collagen 
synthesis and the SLC2A1 (a.k.a. GLUT-1) gene encodes a glucose transporter. 

Figure 5.1. Four-way Venn diagram showing the overlapping genes in the 4 different 
signatures. 

Classification of patients using four different hypoxia gene sets is nearly identical 
Every tumor was ranked between 0 and 1 for each signature, representing the average 
expression of the genes in the different signatures. Scores between different signatures 
could then be compared, based on their classification of the 224 patients. As can be 
observed in figure 5.2, the average Spearman correlation between scores assigned by the 
different signatures was highly significant, with an average correlation of 0.82 (range 0.71-
0.90, all p-values < 0.0001). This indicates that the four signatures rank patients in an almost 
identical manner.  
 

http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-5_1.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-5_1.png


Comparing hypoxia signatures in head and neck cancer 

 

 

112 
 

Figure 5.2. Spearman correlations (upper right panels) and scatterplots (lower left panels) of 
all possible pairs of hypoxia signatures for 224 patients. All Spearman correlations were 
significant at the p < 0.0001 level.  
 
Published hypoxia gene sets resemble in vitro chronic hypoxia response 
Scores for the four published gene sets and four in vitro hypoxia gene sets (early and late 
response to 0% and 2% oxygen) were generated for all 224 patients. The average Spearman 
correlations between the scores for the published profiles and late-0% or late-2% O2 
response profiles were 0.60 and 0.49 respectively (both p<0.0001). The average correlations 
with early response were -0.09 (p=0.2) and 0.23 (p<0.001) for early-0% and early-2% O2 
respectively. All correlations and the corresponding scatterplots can be seen in figure 5.3. 
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Figure 5.3. Correlation of all published and in vitro hypoxia profiles: Spearman correlations 
(upper right panels), histograms of the normalized (0-1) scores for the signatures (diagonal 
panels) and scatterplots (lower left panels) of all possible pairs of hypoxia signatures for 224 
patients. The printed size of the Spearman correlations is a representation of the actual 
absolute size of the correlation. 

A clustering of the scores for the 224 patients can be seen in figure 5.4. The dendogram to 
the left of the heatmap shows that, again, the four published gene sets clustered together. 
Interestingly, the two in vitro profiles of late response to hypoxia clustered with these 
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published profiles (cluster 1), whereas no correlation was observed with the in vitro profiles 
of early response to hypoxia (cluster 2). 

 
Figure 5.4. Heatmap showing the scores for the expression of different genes/gene sets in 
224 patients. 

In vitro early hypoxia response profile predicts recurrence in 91 chemoradiotherapy 
patients 
The predictive value of the different hypoxia profiles on local recurrence rate after therapy 
was tested on the 91 chemoradiotherapy patients. Per gene signature, patients were divided 
into two groups by the median rank. Kaplan-Meier statistics were used to assess the 
difference in recurrence free survival between the two groups. Of the four published and 
four in vitro gene sets, only the ‘in vitro early 0% O2‘ set showed a significant difference (log 
rank p-value = 0.02) between high and low expression: patients with a low expression of in 
vitro early hypoxia genes had a lower recurrence percentage with a hazard ratio of 3.1 
(95%CI: 1.1−8.6). Curves and hazard ratio’s for all signatures can be seen in Supplementary 
figure 5.1. Since scores for the 4 published profiles and the two late in vitro profiles were 
similar, they were averaged per patient to obtain a joint chronic hypoxia score. These 
average scores indicated that low expression of chronic hypoxia genes tends to give a better 
recurrence free survival (HR=1.8, 95%CI: 0.69-4.5, p=0.2, Kaplan-Meier curves in 
Supplementary figure 5.2). In this analysis the effect was not significant. To learn whether 
the effects of the acute and joint chronic hypoxia signatures were independent, a crosstab 
was made showing local recurrence percentages for high and low acute and chronic hypoxia 
(figure 5.5). High and low expressors were defined as above or below the median expression 
for the whole group. 
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Next, a Kaplan-Meier curve was made for three groups: low acute and chronic hypoxia, high 
acute or high chronic hypoxia and high acute and chronic hypoxia (figure 5.5). The curves 
and the crosstab in figure 5.5 show that when both acute and chronic hypoxia expression 
scores were low, the chance of tumor recurrence was far lower than when both were high. 

 
Figure 5.5. Kaplan-Meier curve of freedom from local recurrence for 3 groups: low acute and 
chronic hypoxia, high acute or high chronic hypoxia and high acute and chronic hypoxia. 
Crosstab of local recurrence percentage per subgroup in 91 chemoradiotherapy patients. 
Definition of chronic hypoxia: the average of scores for late 0% and 2% hypoxia, Toustrup et 
al, Winter et al, Eustace et al and Buffa et al gene sets. Samples were divided into two groups 
using the median. Cells are colored in a color corresponding with the line color in the Kaplan-
Meier curve. 
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 Discussion 

 

We found that four published gene sets for hypoxia that have been validated to predict 
outcome in head and neck cancer had little overlap in terms of included genes. Nevertheless, 
they classified patients in an almost identical manner, indicating that they all reflect the 
same underlying process. This underlying biological process correlated with chronic, and not 
acute, in vitro hypoxia. While the validated prognostic profiles showed no resemblance to in 
vitro early hypoxia response, this acute response (and not the chronic response profile) was 
a significant predictor of local recurrence in 91 HNSCC patients treated with 
chemoradiotherapy. 

Same classification, different gene sets 
The phenomenon that signatures consisting of different genes can describe the same 
process, has been reported by Roepman et al [41]. They showed that multiple robust 
signatures to predict the presence of lymph nodes in head and neck cancer could be created 
from a larger group of predictive genes, which were not all needed to form an accurate 
predictor. Given the fact that over 4,000 genes are hypoxia-regulated, it seems reasonable 
to assume that multiple robust, but entirely different, hypoxia signatures can be assembled 
[42]. 
 
Acute and chronic hypoxia 
The terms acute and chronic hypoxia are obviously simplified terms to describe a spectrum 
of hypoxic cells in a tumor [43]. While an absolute distinction between the two cannot be 
made, many suggestions for the separate origin, measurement and treatment of the two 
entities have been published [44, 45, 46, 47]. 
Janssen et al. employed various staining protocols to study acute and chronic hypoxia in 
head and neck tumors [45]. They showed that tumors contained on average 15% acute 
hypoxic (proliferating cells around temporarily non-perfused vessels) and around 30% 
chronic hypoxic areas (cells at a large distance from blood vessels). The two types of areas 
showed no overlap. This was also reflected in gene expression profiles of cells. Cells that had 
been under hypoxia for a short time, showed a very different gene expression as compared 
to cells that were hypoxic for longer periods of time [37]. As described by Lendahl et al. in a 
colon carcinoma cell line, 4,047 genes were hypoxia-regulated, of which only 52 were 
specific for acute (1 or 2 hour) hypoxia response, 144 genes were up- or downregulated by 
both acute and chronic (24 hour) hypoxia, whereas the majority of the genes (4,005) were 
chronic hypoxia specific [42]. 
Nonetheless, all creators of hypoxia signatures have tried to generate one signature for 
‘general hypoxia’. The fact that these signatures correlated with in vitro chronic hypoxia 
could simply be due to the large excess of genes regulated by chronic hypoxia [42], but also 
to the methods used for the generation of the signature. For the Toustrup et al. profile an 
explanation could be that they correlated genes with eppendorf probe measurements. If 
indeed on average twice the amount of chronic hypoxic areas is present, as reported by 
Janssen et al, this could lead to a stronger correlation with chronic hypoxia genes. Winter, 
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Buffa and Eustace et al. started with 10 hypoxia ‘seed genes’ to develop their signatures. In 
our data, these 10 genes were not correlated with in vitro acute hypoxia and most showed 
some correlation to late in vitro hypoxia (Table 5.3). 
 

Table 5.3. Correlation of 10 ‘seed genes’ with in vitro acute and chronic hypoxia profiles. 
 

Acute hypoxia and prognosis 
The importance of acute hypoxia has been recognized for decades [48]. For example, Chan 
et al showed that a human lung squamous cell carcinoma cell line (H1299) became more 
radioresistant under acute hypoxia than under chronic hypoxia, with respective oxygen 
enhancement ratios of 1.96 and 1.37 [49]. Unfortunately, conclusive data on the separate 
and combined prognostic effects of acute and chronic hypoxia in head and neck tumors are 
lacking. This might be due to the fact that it is difficult to measure both types of hypoxia with 
immunohistochemistry. 
 
Cutoff and effect size of hypoxia status 
Using the median expression as a cutoff to create two groups, we found that patients with 
high acute or chronic hypoxia expression, had a 3.1 or 1.8 times higher risk of local 
recurrence, respectively. Although the latter was not significant, possibly due to the number 
of patients, the effect size appears comparable to previously reported hazard ratios for 
chronic hypoxia. Toustrup et al. found that the risk of locoregional recurrence was 1.85 
times higher for “more hypoxic” tumors compared to “less hypoxic” tumors. Eustace et al. 
reported in their series of larynx carcinoma patients that the “more hypoxic” tumors 
receiving accelerated radiotherapy had a 5-year recurrence rate of 19%, while the patients 
with “less hypoxic” tumors had a recurrence rate of 9%. Winter et al. also reported 
recurrence-free survival, but compared the highest quartile to the rest of the patients. Using 
this method, the HR was 3.6 in a univariate analysis and 2 in a multivariate model. Buffa et 
al. reported a HR of 6.25, though the confidence interval (0.83-47.2) indicated a high level of 
uncertainty. 
Hence for chronic hypoxia gene expression signatures, the general deduction is that more 
hypoxic tumors are approximately twice as likely to recur than the less hypoxic tumors. This 
effect could be underestimated due to a division of two hypoxia groups according to the 
median. Furthermore, acute hypoxia has not been studied in these series, but might well be 
more predictive than chronic hypoxia.  
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Conclusion 

Different sets of genes can be used interchangeably to study the extent of hypoxia-driven 
gene expression in head and neck cancer. Although they scarcely contain overlapping genes, 
published gene sets for hypoxia that have been proven to be prognostic in head and neck 
cancer classify patients into the same riskgroups. These published sets all correlate with 
chronic and not with acute in vitro hypoxia-induced gene expression profiles. However, the 
acute hypoxia profile correlates better with the risk of recurrence after chemoradiotherapy 
in our series. Acute hypoxia gene expression should therefore be incorporated into existing 
hypoxia-based prediction models. 
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 Supplementary information 

 

Due to the size of the files, supplementary information for this chapter is only available 

online. Below are the hyperlinks to the corresponding supplementary data: 

Supplementary methods 

Supplementary table 5.1: Patient characteristics series 1: 91 HNSCC stage III-IV 
radiochemotherapy patients. 

Supplementary table 5.2: Patient characteristics series 2: 99 larynx/ oropharynx 
radiotherapy patients. 

Supplementary table 5.3: Patient characteristics series 3: 34 larynx radiotherapy patients. 

Supplementary figure 5.1 Kaplan-Meier curves for all published and in vitro hypoxia profiles. 

Supplementary figure 5.2: Kaplan-Meier curve for the combined chronic hypoxia profile. 
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 6.1: The road to discovery of clinically 
relevant biomarkers for radiotherapy 
response 

 

The research presented in this thesis describes studies into the individual biological tumor 
properties of head and neck cancer, using messenger- and microRNA data to predict which 
tumors will be more radioresistant and to gain insight into the mechanisms behind this. 
Eventually this should lead to a better understanding of the causes for radiotherapy failure 
allowing an up-front adaptation of therapy to give each individual patient the best chance of 
survival with the least amount of toxicity (1, 2, 3). 

Since 2002, after the publications of Van de Vijver en Van ‘t Veer et al. showing that pre-
treatment gene expression can be used for the successful prediction of survival in breast 
cancer patients (4, 5), there has been a huge influx of papers trying to replicate these results 
for different tumor sites. Various authors reported the discovery of a gene expression profile 
to predict outcome in head and neck cancer (6, 7, 8, 9, 10, 11, 12). Most series were small 
and very heterogeneous in terms of patient characteristics and treatment regimens used. 
Often gene expression profiles were not validated on independent series, which is 
particularly important when prognostic genes are selected from a set of almost 20,000 
genes, even when the correct statistical methods are applied. Additionally, the reported 
prognostic gene expression profiles were not tested in a model with clinical factors that 
were already known to be prognostic. In the worst case scenario, one of these gene 
expression profiles would be a very complicated method to tell the gender of a patient (as 
mentioned previously being male is prognostically unfavorable) and not at all useful. 

Keeping this in mind, we first questioned whether gene expression would be able to add 
prognostic power to known clinical factors in head and neck cancer. In chapter 2, we show 
that gene expression (HPV-status and a profile published by Chung et al.) can improve the 
prediction model and adds valuable information to known clinical factors. However, this 
series was heterogeneous (different subsites, HPV positive and negative tumors) and 
chemotherapy was administered concomitantly with radiotherapy. 

In order to find a true predictor of response to radiotherapy, the next step was to study a 
more homogeneous series of patients, preferably all treated with only radiotherapy. Since 
gene expression could at the time of sample collection only be done on fresh frozen 
material, these scarce samples were recruited from various Dutch hospitals to collect a 
matched series of small larynx cancers, described in chapter 3. With the analysis of this 
small, but homogeneous series, we preferred a hypothesis-driven approach (test gene sets 
for known biological processes), as opposed to a data-driven approach (test all ~20,000 
genes) for two reasons. Firstly, this reduces the number of tests: 10 gene sets versus ~20,000 
separate genes, making the statistics more robust. To illustrate this: using a p-value of 0.05 
(which is of course not advised for the analysis of 20,000 genes) the chance of finding a false 

https://www.ncbi.nlm.nih.gov/pubmed/27009394
https://www.ncbi.nlm.nih.gov/pubmed/21430696
https://www.ncbi.nlm.nih.gov/pubmed/22748268
https://www.ncbi.nlm.nih.gov/pubmed/12490681
https://www.ncbi.nlm.nih.gov/pubmed/11823860
https://www.ncbi.nlm.nih.gov/pubmed/14729608
https://www.ncbi.nlm.nih.gov/pubmed/16912200
https://www.ncbi.nlm.nih.gov/pubmed/16289374
https://www.ncbi.nlm.nih.gov/pubmed/17416856
https://www.ncbi.nlm.nih.gov/pubmed/17931799
https://www.ncbi.nlm.nih.gov/pubmed/19117295
https://www.ncbi.nlm.nih.gov/pubmed/19228736
http://www.moniquedejong-research.eu/phd/chapter-2-2
http://www.moniquedejong-research.eu/phd/chapter-3-2
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positive is 5%, meaning less than 1 out of 10 gene sets, but 1,000 false positives out of 
20,000 tested genes would be found. Secondly, the hypothesis-driven approach will give 
results that are directly correlated to biological processes that could possibly be targeted to 
improve therapy. In this series we found cancer stem cell marker CD44 to be the only 
predictor of response to radiotherapy, which was validated on an independent series using 
immunohistochemistry (protein level). Since then many other authors have published this 
same finding, also in larger and non-laryngeal head and neck cancers (13, 14, 15, 16, 17, 18, 
19). 

A problem with the use of the hypothesis-driven approach is the acquisition of useful gene 
sets that correctly portray important biological processes. In neither of our patient series 
intrinsic radiosensitivity came up as a significant factor, while we know from clinical data 
that radiosensitivity measured by colony assays correlates with outcome after radiotherapy 
(20). We therefore concluded that we were not using an accurate messenger RNA set as a 
representative of this process and resolved to generate such a set. Another possibility was 
that messenger RNA levels alone were giving an incomplete picture of the active processes 
in the cell, since more factors can influence translation to protein. Among these are 
microRNAs, small pieces of RNA that can single handedly inhibit the translation of many 
messenger RNAs. The fact that it was reported that microRNA profiles were more accurate 
than messenger RNA profiles in the classification of poorly differentiated tumors (21), led us 
to hypothesize that they might also be more accurate in the prediction of intrinsic 
radiosensitivity. 

Chapter 4 describes the discovery of a microRNA (miR-203), which downregulation strongly 
correlates with intrinsic radiosensitivity in cell lines and response to radiotherapy in a series 
of laryngeal cancer patients. The loss of miR-203 correlates with a biological process called 
epithelial to mesenchymal transition (EMT). The induction of EMT in cell lines is shown to 
decrease radiosensitivity. 

Although a link between EMT and cancer stem cell marker CD44 has been described (22, 23, 
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34), we observed no correlation between CD44 
expression and intrinsic radiosensitivity (chapter 3), nor a correlation between CD44 and 
miR-203 in 34 laryngeal cancer patients (unpublished results chapter 4, after acquisition of 
messenger RNA data for the same patients). This suggests that although there might be a 
link between EMT and cancer stem cells, not all cancer stem cells possess the same 
radiosensitivity and therefore both factors are independently important in the prediction of 
response to radiotherapy. 

https://www.ncbi.nlm.nih.gov/pubmed/26755529
https://www.ncbi.nlm.nih.gov/pubmed/27442811
https://www.ncbi.nlm.nih.gov/pubmed/25751671
https://www.ncbi.nlm.nih.gov/pubmed/24410905
https://www.ncbi.nlm.nih.gov/pubmed/24156023
https://www.ncbi.nlm.nih.gov/pubmed/22213301
https://www.ncbi.nlm.nih.gov/pubmed/21514878
https://www.ncbi.nlm.nih.gov/pubmed/10656366
https://www.ncbi.nlm.nih.gov/pubmed/15944708
http://www.moniquedejong-research.eu/phd/chapter-4-2
https://www.ncbi.nlm.nih.gov/pubmed/27889319
https://www.ncbi.nlm.nih.gov/pubmed/26926234
https://www.ncbi.nlm.nih.gov/pubmed/18485877
https://www.ncbi.nlm.nih.gov/pubmed/19262571
https://www.ncbi.nlm.nih.gov/pubmed/19935649
https://www.ncbi.nlm.nih.gov/pubmed/20531305
https://www.ncbi.nlm.nih.gov/pubmed/23950932
https://www.ncbi.nlm.nih.gov/pubmed/26540568
https://www.ncbi.nlm.nih.gov/pubmed/25659582
https://www.ncbi.nlm.nih.gov/pubmed/25749385
https://www.ncbi.nlm.nih.gov/pubmed/23638097
https://www.ncbi.nlm.nih.gov/pubmed/26077342
https://www.ncbi.nlm.nih.gov/pubmed/23049743
http://www.moniquedejong-research.eu/phd/chapter-3-2
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 6.2 Is more research needed? 

 

After having studied 3 different patient series, we cannot conclude that HPV-status, Chung 
expression profile, CD44, hypoxia and miR-203 measurement on a pre-treatment biopsy 
should be the only markers we need to study in the future. Although important steps 
towards our understanding of head and neck cancer radioresistance, there are several 
reasons outlined below why more research is needed. 

6.2.1 Patient numbers 

First of all, the patient cohorts we have studied were all rather small, meaning just the 
largest effects in these series were statistically significant. For example, if we were to show a 
statistically significant (p-value < 0.05) effect for low versus high CD44 (or any other factor), 
assuming two groups of equal sizes, with an 80% probability to detect a statistically 
significant difference (power) in a group of head and neck cancer patients with a median 
survival of 2 years, a group 105 patients (65 events) would be needed to show the 
recurrence rate was twice as high (hazard ratio of 2.0), but only 17 patients (12 events) 
would be needed to show a five times worse recurrence rate (hazard ratio of 5.0) (35). To 
get an insight into patient numbers needed, different parameters can be entered into 
sample size calculators, for example on this website: sample size calculator. Keeping in mind 
that fairly large numbers of patients are needed to show a significant effect with a moderate 
difference between two groups, we could for example re-evaluate results found in chapter 
2. Low CD44 expression appeared to be a favorable factor in the group of patients in chapter 
2, but did not reach statistical significance. When compared to a similar but larger series 
recently published by Linge et al. (36), CD44 is significantly correlated with locoregional 
control as can be seen in figure 6.1. Meaning other factors in our analyses could have 
wrongly been judged to be ‘insignificant’, while they were only lacking sufficient patient 
numbers. 

6.2.2 Cutoff values 

Sample size will not only limit the detection to only the largest effects in a series, but also 
make it more difficult to find statistical significance if a factor is present in only a small 
subset of patients. Additionally, in many of our analyses, we split patients in two groups 
(using the median expression) for lack of knowledge of the actual cutoff. This is statistically 
sound to do if the cutoff is unknown and will produce stable results, but it might also miss 
factors that turn out to be important. In the unpublished plots in figure 6.2, it can be 
observed that if a cutoff at the first tertile instead of the median had been chosen, results 
would have been significant. 

 

https://www.ncbi.nlm.nih.gov/pubmed/6354290
http://www.sample-size.net/sample-size-survival-analysis
http://www.moniquedejong-research.eu/phd/chapter-2-2
http://www.moniquedejong-research.eu/phd/chapter-2-2
http://www.moniquedejong-research.eu/phd/chapter-2-2
http://www.moniquedejong-research.eu/phd/chapter-2-2
http://www.sciencedirect.com/science/article/pii/S2405630816300064
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Figure 6.1: Kaplan Meier curves for CD44 in two groups in two different series. Left panel: 
unpublished plot from 91 patients in chapter 2, right panel: Curves for 145 patients, adapted 
figure 2D from Linge et al. (36). 

Figure 6.2: Kaplan Meier curves for CD44 in two or three groups. Unpublished plots from 91 
patients in chapter 2. Comparison of a cutoff at the median (left panel) or in tertiles (right 
panel). 

http://www.moniquedejong-research.eu/phd/chapter-2-2
http://www.sciencedirect.com/science/article/pii/S2405630816300064
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-6_2.png
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-6_2.png
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6.2.3 Interactions between factors 

With small patient groups and numerous potential predictors of outcome, it is increasingly 
difficult to perform subgroup analyses or study different interactions between factors. 
Again, re-analyzing the data from chapter 2, where CD44 was not a significant factor, an 
interaction between HPV status and CD44 expression could have caused the ‘insignificance’ 
of CD44 in the original analysis (figure 6.3). Because laryngeal tumors are rarely HPV 
positive, this was not a confounder in the analyses of chapter 3, and again emphasizes the 
importance of the study of homogeneous groups of patients. 

Figure 6.3: The effect of high or low CD44 expression on locoregional recurrence in two 
subgroups: HPV negative tumors (left panel) and HPV-positive tumors (right panel). 

Not only HPV and CD44 show an interaction, but many correlations and interactions exist 
between different factors know to influence response to radiotherapy. Assuming that all 18 
clinical and biological factors as mentioned in the introduction (age, sex, hemoglobin, health, 
smoking, T-stage, tumor volume, N-stage, tumor subsite, grade, HPV status, hypoxia, 
repopulation, redistribution, intrinsic sensitivity, stem cells, microenvironment, energy 
metabolism) are of importance for the prediction of control after radiotherapy and we 
would have two levels for all of those factors, we could make 324 (182) different groups that 
could possibly all have their own response rates. Obviously, many of those 324 combinations 
would have the same cure rates, since there is only so much room to make subgroups 
between 0 and 100% response rates. However, two groups with the same response rates to 
radiotherapy could have very different reasons for their failures. Especially different 
biological reasons for failure would be important to distinguish, since they would most likely 
result in different proposed treatment adaptations. An overview of some of the interactions 
for the different biological processes thought to contribute to radiotherapy response can be 
seen in table 6.1. 

http://www.moniquedejong-research.eu/phd/chapter-2-2
http://www.moniquedejong-research.eu/phd/chapter-3-2
http://www.moniquedejong-research.eu/phd/wp-content/uploads/2017/10/Figure-6_3.png
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Table 6.1. Interactions and correlations between different biological processes thought to 
contribute to radiotherapy response described in literature. Click here for hyperlinks to 
references: 14, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81. 

6.2.4 Prognostic vs. predictive factors 

Another reason why we cannot start the immediate improvement of head and neck cancer 
radiotherapy with the use of HPV-status, Chung expression profile, CD44 and miR-203 
measurements, is that so far they are prognostic and not certainly predictive (yet). A 
prognostic biomarker only has the ability to foretell outcome (irrespective of treatment), 
while a predictive biomarker is able to separate responders from non-responders to a 
certain therapy, meaning it can help support treatment decisions (82). So far, there are few 
predictive markers for head and neck cancer. A few markers have been found using 
retrospective analyses on randomized trials comparing two treatment arms. In a trial of 
normal overall treatment time versus accelerated radiotherapy, patients with high EGFR 
expression benefitted from accelerated radiotherapy, while the acceleration added no 
benefit in the group of patients with low EGFR expression (83, 84). However, EGFR 
expression is not currently used to decide whether a patient should have accelerated 
radiotherapy. Another predictive marker was found in a trial of hypoxia modification and 
radiotherapy, only the patients with a high hypoxia gene expression showed an 
improvement upon addition of nimorazole to radiotherapy (85). This hypoxia profile is now 
evaluated in a large prospective study (86). Furthermore, there is progress in the discovery 
of predictive biomarkers for response to EGFR-inhibitors (87, 88). 
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Ultimately, prognostic markers can be turned into predictive markers if the right (targeted) 
therapy is available. If for example, a CD44 inhibitor would only improve radiotherapy if 
added when a patient has a high expression of CD44, it would be predictive. 

 

 6.3 Rubbish in, rubbish out (quote Adrian C. Begg) 

 

A well thought-out research plan and the accrual of reliable data is of the greatest 
importance for the generation of relevant, replicable results. Many factors should be taken 
into consideration when studying response to radiotherapy on pre-treatment tumor 
material. 

6.3.1 The pre-treatment sample 

Heterogeneity and tumor percentage 
Different parts of a tumor could consist of cells with different genetic characteristics and 
radiosensitivity that are not being detected when only sampling a small part of the tumor 
(89, 90). In our studies we have used conclusions from biopsies of several millimeters as a 
surrogate for a tumor of several centimeters. Had tumor heterogeneity been an enormous 
problem, we would not have been able to use pre-treatment biopsies for outcome 
prediction at all. However, it seems reasonable to assume that part of the information on 
the whole tumor is lost with this approach. Toustrup et al. tested how much information 
gets lost due to head and neck cancer heterogeneity by studying hypoxia gene expression in 
multiple (2-4) samples from 20 tumors (91). They showed that in 70% of the tumors all 
replicate samples were awarded the same hypoxia score. However, when only samples with 
the highest percentage of tumor cells were selected, only 10% of patients would have 
wrongfully been classified as having less hypoxia. This is another difficulty with tumor 
biopsies: it will mostly consist of both tumor cells and stroma, different percentages of these 
two in a studied biopsy might lead to different results. Roepman et al. conclude that there 
was a poor signature performance for a head-neck expression signature that predicts the 
presence of lymph node metastasis on samples that contain less than 50% tumor cells (92). 
 
Monitor during treatment? 
It is plausible that biology changes during treatment. Still, it appears that we are fairly 
capable of predicting the response to radiotherapy on a pre-treatment sample, for example 
chapters 2 and 3, ref. (20, 93) and many others. As shown in chapter 4, not the changes in 
gene expression after irradiation, but the baseline microRNA levels in unirradiated cells 
correlated with radiosensitivity. Similarly, we know that fast repopulation of tumors only 
starts around the fifth week of radiotherapy (94), but benefit from accelerated radiotherapy 
can be predicted on a pre-treatment sample (83, 84). However, we might miss some 
biological changes during treatment that would be useful to improve treatment by 
adaptation during therapy. A study taking multiple biopsies during treatment is hard to 
conduct and not very patient-friendly. Imaging modalities like MRI or PET are more 
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convenient to study biology during treatment and possibly adapt treatment for non-
responders (95, 96), although the monitoring of multiple biological processes will be far 
more challenging. There have been some reports suggesting that a change in certain PET 
tracers early during a course of radiotherapy better predicts treatment outcome than only 
pre-treatment uptake values (97, 98, 99). However, the opposite has been reported as well 
(100). Another possibility would be to monitor biomarkers in saliva or blood (101, 102, 103, 
104). 

6.3.2 Just (messenger) RNA? 

The studies in chapter 2 and 3 have used just messenger RNA to study the active biological 
processes in a tumor. As mentioned in the introduction, just messenger RNA might not 
entirely depict what happens in a cell. Therefore, microRNAs were integrated in the analysis 
in chapter 4, and one of them was shown to be the most useful predictor of radiosensitivity. 
Perhaps this is a result of the absence of a correct messenger RNA set for the same process, 
or the fact that there is less degradation of microRNAs during sample-handling, but could 
just as well result from the fact that messenger RNA alone is not enough, as has been shown 
by Jung et al. By combining data on methylation, DNA copy number, messenger RNA and 
microRNA they were able to better select patients at risk for metastases that with any of 
those methods alone (105). Another possibility is that we lose information because of the 
complicated statistics involved in the analysis of gene expression data. For example, before 
the final analysis, all samples in chapter 4 were normalized using the assumption that the 
total amount of microRNAs is the same in every sample, while there is evidence that levels 
of microRNA differ between samples (62, 106). 
Ideally, all possible pre-treatment information for a large group of patients would be 
collected (DNA methylation, DNA and RNA sequencing, protein levels and their 
phosphorylation status, different CT/MRI/PET scans, blood and saliva parameters) to filter 
out the most useful biomarkers for different therapeutic approaches (107). But even with all 
this information, it remains crucial to know which markers reliably represent certain 
processes and how we can target these processes to improve radiotherapy. 

6.3.3 Need for adequate biomarkers of processes 

Critics of gene expression profiles argue that many gene sets are not ready for clinical use 
because of the large differences between reported sets in literature. Results are not 
reproducible and therefore not deemed useful (1). According to our data, this is partly based 
on the misconception that different sets of genes per definition classify patients differently. 
In chapter 5 we show that for hypoxia different sets of genes have been reported, with 
almost no overlapping genes. However, almost entirely different sets of genes can come to 
the same conclusion. While this is true for hypoxia, there are other processes that are still 
lacking reliable methods to assess the absence or presence of a factor causing 
radioresistance. Another problem illustrated in chapter 5, is that while it was assumed by 
most authors that they were studying both acute and chronic hypoxia, the gene sets only 
corresponded with an in vitro chronic hypoxia profile, which has a different supposed origin 
(lack of perfusion and not diffusion) and could have consequences for the appropriate 
therapeutic intervention. 
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 6.4 How to individualize future treatment? 

 

With the ability to assess the possible causes for radioresistance of a tumor on a pre-
treatment sample, we would be able to allocate the best fitting radiotherapy schedule and 
biological agent combination, eventually leading to better survival and/or less toxicity. 
Therapeutic options consist, apart from surgery, of various radiotherapy doses and 
fractionation schedules, dose painting, as well as the addition of cisplatin, hypoxia 
sensitizers, EGFR-inhibitors, hopefully soon to be expanded with for example immune 
checkpoint- (108, 109), DNA repair- (110, 111) or CD44-inhibitors (112, 113). Having multiple 
therapy options is an asset, but only if we know when to use which treatment. 

Data-driven analyses on small patient series to find prognostic gene sets are not the way 
forward. Preferably we should focus on finding predictive markers in (randomized) studies, 
controlled for known factors. To move forward to the point where we know exactly which 
patient should get which treament(-s) we would have to study complete clinical and 
biological data from large numbers of patients that have been treated with different 
treatment alternatives (114). Within such a large cohort it would be possible to study 
subgroups and interactions between different biological factors and come up with the best 
predictive model (1). Furthermore, a subgroup could possibly be isolated that does not 
respond to any of the available treatments. Knowing the biological profile of these tumors 
could help design new ways to improve their treatment outcome. To achieve this, a 
database should be set-up across multiple countries, possibly combining already available 
data, with the ability to add data from new trials. 
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 Summary 

 

The average overall survival for head and neck cancer is around 50%, but can vary 
significantly between groups of patients with different characteristics. Currently only clinical 
characteristics are used and treatment choice (often including radiotherapy) is based on site 
and TNM stage, which explain only a small proportion of the variation in survival. The 
research presented in this thesis describes studies into the individual biological tumor 
properties of head and neck cancer, using messenger- and microRNA data to predict which 
tumors will be more radioresistant and to gain insight into the mechanisms behind this. 
Eventually this should lead to a better understanding of the causes for radiotherapy failure 
allowing an up-front adaptation of therapy to give each individual head and neck cancer 
patient the best chances of survival with the least amount of toxicity. 

Chapter 1 gives a general introduction into head and neck cancer and reviews existing 
knowledge on reasons for failure of radiotherapy. The general aims and outline of this thesis 
are also described in this chapter. 

The first question to be addressed was whether gene expression data could add useful 
information to known clinical factors in the prediction of outcome after (chemo-
)radiotherapy for head and neck cancer. In chapter 2 we show that gene expression can 
improve the prediction model and adds valuable information to known clinical factors for 
the prediction of local control after chemoradiotherapy for advanced head and neck cancer. 

We analyzed pre-treatment gene expression data from 75 advanced head and neck cancer 
patients treated with primary chemoradiotherapy. In this series a published high risk 
signature (Chung high-risk) and a HPV expression profile (Slebos) were analyzed in a model 
with known clinical predictors of local control: age at diagnosis, gender, tumor site, tumor 
volume, T-stage and N-stage. Only tumor site (oral cavity vs. pharynx, hazard ratio 4.2 [95% 
CI 1.4–12.5]), Chung gene expression status (high vs. low risk profile, hazard ratio 4.4 [95% CI 
1.5–13.3]) and HPV profile (negative vs. positive profile, hazard ratio 6.2 [95% CI 1.7–22.5]) 
significantly predicted local control after chemoradiotherapy in the multivariable model. 

Chapter 3 describes the analysis of a more homogeneous series of patients, treated with 
single modality radiotherapy. The hypothesis was that this series would give a better insight 
into the cause of radioresistance, without confounding by heterogeneity or clinical factors. 

Gene expression data were generated on pre-treatment biopsies of 52 T1-2 laryngeal cancer 
patients treated with radiotherapy. Since recurrence rates are low in this population, 
patients with a local recurrence were matched for T-stage, subsite, treatment, gender and 
age with non-recurrence patients (1:2). Gene sets for hypoxia, proliferation and intrinsic 
radiosensitivity did not correlate with recurrence, whereas high expression of the putative 
stem cell marker CD44 did (odds ratio 20.2 [95% CI 3.4-172.3]). Immunohistochemical 
analysis of CD44 expression on an independent validation series of 76 small laryngeal 
cancers confirmed CD44’s predictive potential. For more insight into the function of CD44, 
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gene expression data of eight larynx cancer cell lines with known radiosensitivity were 
analyzed. In these cell lines, CD44 expression did not correlate with intrinsic radiosensitivity 
although it did correlate significantly with plating efficiency, consistent with a relationship 
with stem cell content. 

In neither of the patient series in chapter 2 and 3 published intrinsic radiosensitivity gene 
sets were significantly correlated with recurrence after (chemo-)radiotherapy. This was an 
unexpected finding, since it is known that for head and neck tumors the ex vivo 
measurement of radiosensitivity correlates with outcome after radiotherapy. It was 
therefore concluded that an accurate gene expression set correlating with intrinsic 
radiosensitivity in head and neck cancer was lacking. 

Chapter 4 describes the search for an intrinsic radioresistance gene set. Having such a set 
would not only be helpful to predict sensitivity before start of treatment, but could also 
reveal biological processes that could be targeted to overcome intrinsic resistance. 
MicroRNA and messenger RNA expression was measured in irradiated and unirradiated 
samples of 32 head and neck squamous cell carcinoma (HNSCC) cell lines. Measurements on 
unirradiated cells correlated with resistance, whereas the response to radiotherapy seemed 
irrelevant for the prediction of resistance. The presence of epithelial-to-mesenchymal 
transition (EMT) and low expression of microRNAs involved in the inhibition of EMT were 
important radioresistance determinants. This finding was validated in two independent cell 
line pairs, in which the induction of EMT reduced radiosensitivity. For the most important 
microRNA (miR-203), downregulation strongly correlated with intrinsic radioresistance in cell 
lines and a higher recurrence rate after radiotherapy in a series of 34 laryngeal cancer 
patients. 

In chapter 5 we show that for hypoxia different sets of genes have been published, with 
almost no overlapping genes. However, almost entirely different sets of genes can come to 
the same conclusion. Four published gene sets were compared using expression data from 
224 head and neck cancer patients from three different datasets. Although only 2% of all 
genes were similar in the four validated hypoxia profiles, the profiles showed a near 
complete correlation with each other in categorizing the 224 patients. While it was assumed 
by most authors that they were studying both acute and chronic hypoxia, the gene sets that 
were published only corresponded with an in vitro chronic hypoxia profile, not with the early 
hypoxia response profile. Additionally, this early hypoxia profile better predicted local 
recurrence after chemoradiotherapy. 

Chapter 6 contains a general discussion of the work presented in this thesis. In this chapter 

possible pitfalls of the presented research are discussed. In the last part, directions for future 

research are explored. 
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 Samenvatting 

 

De gemiddelde overleving voor patiënten met hoofdhals kanker ligt rond de 50%, maar 
varieert sterk tussen verschillende groepen patiënten met verschillende eigenschappen. 
Voor het maken van behandelkeuzes worden momenteel alleen klinische eigenschappen 
gebruikt. De beslissing over welke behandeling gegeven moet worden, vaak onder andere 
bestaande uit radiotherapie, wordt gebaseerd op de locatie van de tumor en TNM 
stadiëring, eigenschappen die overigens maar een klein percentage van de variatie in 
overleving kunnen verklaren. Het onderzoek dat wordt gepresenteerd in dit proefschrift 
beschrijft studies naar individuele biologische eigenschappen van hoofdhals tumoren. 
Messenger- en microRNA data worden gebruikt om te voorspellen welke tumoren 
ongevoelig zijn voor bestraling en wat het mechanisme hier achter is. Uiteindelijk moet dit 
leiden tot een beter begrip van de oorzaken van resistentie tegen bestraling, zodat een 
behandeling hier van te voren op kan worden aangepast en hoofdhals kanker patiënten de 
best mogelijke overlevingskans hebben met zo min mogelijk toxiciteit. 

Hoofdstuk 1 geeft een algemene beschrijving van hoofdhals kanker en een overzicht van de 
bekende factoren die kunnen bijdragen aan het falen van radiotherapie. De doelstellingen 
en hoofdlijnen van dit proefschrift worden ook beschreven in dit hoofdstuk. 

De eerste te beantwoorden vraag was of gen expressie data iets kunnen toevoegen aan 
klinische factoren bij het voorspellen van de uitkomst van een behandeling met (chemo-
)radiotherapie voor hoofdhals kanker. In hoofdstuk 2 laten we zien dat de toevoeging van 
gen expressie data het voorspellen van de recidiefkans na behandeling verbetert en 
waardevolle informatie toevoegt aan de bestaande klinische factoren die gebruikt worden 
om een inschatting te maken van de kans op locale controle na chemoradiotherapie voor 
gevorderde stadia van hoofdhals kanker. 

Gen expressie data gemeten vóór behandeling van 75 hoofdhals kanker patiënten met een 
gevorderd stadium behandeld met chemoradiotherapie werden geanalyseerd. In deze serie 
werden een gepubliceerd hoog-risico profiel (Chung high-risk) en een HPV expressie profiel 
(Slebos) geanalyseerd in een model met bekende klinische voorspellers van locale controle: 
leeftijd ten tijde van diagnose, geslacht, tumor locatie, tumor volume, T-stadium en N-
stadium. Alleen tumor locatie (mondholte vs. farynx, hazard ratio 4.2 [95% CI 1.4–12.5]), 
Chung gen expressie status (hoog vs. laag risico profiel, hazard ratio 4.4 [95% CI 1.5–13.3]) 
en HPV profiel (negatief vs. positief profiel, hazard ratio 6.2 [95% CI 1.7–22.5]) waren 
significante voorspellers van locale controle na chemoradiotherapie in een multivariaat 
model. 

Hoofdstuk 3 beschrijft de analyse van een meer homogene serie patiënten, behandeld met 
alleen radiotherapie. De hypothese was dat deze serie een beter inzicht zou geven in de 
oorzaak voor stralingsongevoeligheid, zonder ruis veroorzaakt door heterogeniteit of het 
effect van klinische factoren. 
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Gen expressie werd bepaald op biopten genomen voor start van de bestraling van 52 
patiënten met een T1-2 larynxcarcinoom. Aangezien het recidiefpercentage laag is in deze 
populatie, werden patiënten met een locaal recidief 1:2 gematcht met patiënten zonder 
recidief voor de volgende factoren: T-stadium, locatie, behandeling, geslacht en leeftijd. Gen 
expressie profielen voor hypoxie, proliferatie en intrinsieke stralingsgevoeligheid 
correleerden niet met het krijgen van een recidief. Daarentegen was er een correlatie tussen 
de kans op recidief en een hoge expressie van vermeende stamcelmarker CD44 (odds ratio 
20.2 [95% CI 3.4-172.3]). Met behulp van immunohistochemie werd deze bevinding in een 
onafhankelijke serie van 76 patiënten met kleine larynxtumoren gevalideerd. 

Om meer inzicht te krijgen in de functie van CD44 werden gen expressie data van acht 
larynxcarcinoom cellijnen met een bekende gevoeligheid voor bestraling geanalyseerd. In 
deze cellijnen werd gezien dat CD44 expressie niet correleert met intrinsieke 
stralingsgevoeligheid, maar met plating efficiency, wat past bij een verband met 
kankerstamcellen. 

In geen van de patiënten series in hoofdstuk 2 en 3 waren eerder gepubliceerde gen sets 
voor stralingsgevoeligheid significant gecorreleerd met recidiefkans na (chemo-
)radiotherapie. Dit was een onverwachte bevinding, aangezien het bekend is voor hoofdhals 
tumoren dat een ex vivo meting van stralingsgevoeligheid overeenkomt met recidiefkans na 
bestraling. Er werd daarom geconcludeerd dat er voor hoofdhals kanker geen adequaat gen 
expressie profiel bestond voor het voorspellen van intrinsieke stralingsgevoeligheid. 

Hoofstuk 4 beschrijft de zoektocht naar een gen set voor intrinsieke stralingsgevoeligheid. 
Deze set zou niet alleen nuttig zijn voor het voorspellen van stralingsgevoeligheid voor de 
start van een behandeling, maar zou ook kunnen bijdragen aan het ontdekken van 
processen die gericht kunnen worden aangepakt om intrinsieke stralingsongevoeligheid op 
te heffen. MicroRNA en messenger RNA expressie werden gemeten in bestraalde en 
onbestraalde cellen. In het totaal werden 32 hoofdhals plaveiselcelcarcinoom cellijnen 
meegenomen in de analyse. De metingen in onbestraalde cellen correleerden met 
stralingsgevoeligheid, terwijl de gemeten respons op bestraling niet voorspelde welke cellen 
stralingsongevoelig waren. De aanwezigheid van epitheliale-naar-mesenchymale transitie 
(EMT) en een lage expressie van microRNAs die EMT inhiberen, waren belangrijke 
voorspellers van stralingsongevoeligheid. Deze bevinding werd bevestigd in twee 
onafhankelijke cellijn paren, waarin EMT werd geïnduceerd, leidend tot een verminderde 
gevoeligheid voor bestraling. Lage expressie van de belangrijkste microRNA (miR-203) 
correleerde sterk met intrinsieke stralingsongevoeligheid in cellijnen en tevens met een 
hoger recidief percentage na radiotherapie in een serie van 34 larynxcarcinoom patiënten. 

In hoofdstuk 5 laten we zien dat er verschillende sets van genen zijn gepubliceerd om 
hypoxie aan te tonen met haast geen overlappende genen tussen de verschillende sets. 
Niettemin komen deze zeer verschillende genen sets tot dezelfde conclusie. Vier 
gepubliceerde genen sets werden vergeleken met behulp van gen expressie data van 224 
hoofdhals kanker patiënten uit drie verschillende datasets. Hoewel in de vier gevalideerde 
hypoxie profielen maar 2% van de genen in alle vier voorkwam, waren de onderlinge 
correlaties bij het categoriseren van de 224 patiënten erg hoog. De meeste auteurs gingen er 
van uit dat hun profiel een maat was voor acute en chronische hypoxie, maar de 
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gepubliceerde sets correleerden alleen met een in vitro gegenereerd chronisch hypoxie 
profiel en niet met een acuut hypoxie profiel. Bovendien voorspelde het acute hypoxie 
profiel beter welke patiënten een locaal recidief kregen na chemoradiotherapie. 

Hoofdstuk 6 betreft een algemene discussie van het onderzoek beschreven in dit 
proefschrift. In dit hoofdstuk worden mogelijke tekortkomingen van dit onderzoek 
bediscussieerd. In het laatste gedeelte worden perspectieven voor toekomstig onderzoek 
besproken. 
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February 12, 1946 – January 29, 2014 
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Dear Adrian, 
 

You get to have your own acknowledgements page in this thesis. Not because you died 
before it was finished (well, maybe a little), but because this thesis would not have been 
written without you. Even before I knew you personally, I knew I wanted to work with you 
because of your research interests. Apparently you told people: ‘Monique just came into my 
office one day and sort of hired herself’. I still consider this to be one of the best decisions I 
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researcher and supervisor. In the seven years I had the pleasure of working with you, I 
always admired your intelligence, spirit and enthusiasm. 
 
As a supervisor you gave me the freedom to try and figure things out for myself (even when I 
wanted to learn to program from Google I had your support). Whenever I got stuck, you 
were there with historical radiobiological knowledge, recent literature or one of your famous 
excel sheets with a simulation of our current problem or, if nothing else worked, a good joke 
(‘that’s great, let’s send it to the journal of insignificant results’). I remember always leaving 
our discussions feeling enthusiastic about new ideas for experiments and analyses. I know I 
was not the only one to benefit from discussions with you, your door was always open for 
others with radiobiological questions, whether a first-year PhD student or a professor. 
As a researcher you often surprised me with your lateral thinking. Whenever you read an 
interesting paper on a (according to me) totally unrelated subject like the fruit fly genome, 
you were able to extract ways to use that knowledge, or a similar experimental approach, in 
our research. Your ability to make connections was not just limited to literature but led to 
collaborations with many clinicians, making the research you did both biologically interesting 
and clinically relevant. 
 
Dear Adrian, thank you for your mentorship, your knowledge, your kindness, your 
enthusiasm and your support. Although I wish you could have been here to see this thesis 
finished and continue our research, I am very grateful that I had the opportunity to work 
with you. Feeling sorry for everyone that will not be able to meet you in person anymore, I 
include these links to your obituary and lectures: 
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Obituary 
Obituary Adrian Begg ESTRO 

Lectures given by Adrian Begg at the MAASTRO Clinic 2011/2012: 
The Linear-Quadratic (LQ) Model – all you wanted to know but were afraid to ask 
Flow cytometry: principles, and (mainly) cell cycle applications in radiation oncology 
Good and bad ways to assess treatment response 
Exploiting DNA repair to improve radiotherapy 
Tumor proliferation: basic concepts and therapeutic possibilities 
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