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1.1. Introduction 

1.1.1. Functional Inoperability 
Cancer treatment could have serious functional consequences due to multiple vital 
functions in the head and neck region, for example; swallowing, speech and mastication. 
The clinical decision-making process relies strongly on both limitations created by vital 
anatomical structures (anatomical inoperability) and the expected function loss after 
treatment. The last aspect still remains a difficult estimation. To set the borders for 
inoperability in the functional domain, the term functional inoperability was coined [1], 
which designates tumours that lead to too severe consequences on vital function if 
surgically removed. A worldwide survey was conducted among head and neck specialists 
to see to what extent this term is used in clinical practice and whether it influences their 
daily clinical practice. Unfortunately, no clear picture emerged from these studies. Instead, 
a great difference in estimating functional inoperability was found [1,2]. Although these 
studies were published in 2009 and 2011, estimating functional inoperability still is 
subjective and thus remains a major issue. 

Nevertheless, the prediction of function loss after treatment is becoming increasingly 
important in the weighing between surgical treatment and organ sparing (chemotherapy 
and) radiotherapy or photodynamic therapy [3,4]. In case of anatomical inoperability, the 
assessment is obvious and most specialists will agree on the matter. Examples of 
anatomical inoperability are tumours that surround the carotid artery, or tumours that 
invade the skull base. However, assessing functional inoperability is far more difficult. As 
found by Kreeft et al. worldwide specialists in the field of head and neck oncology have a 
whole other judgment whether tumours are to be surgical resected and the consequences 
of the surgery on vital functions, like speech and swallowing [2]. Especially in the United 
States of America professionals will often opt for surgery, despite the reasonable possibility 
of severe loss of function. 

On the other side of the coin is the patient and his or her treatment preference, which is 
based on social and professional commitments and life expectancy. These personal aspects 
might play a role in quitting surgical options and choosing for an organ sparing alternative 
like radiotherapy, chemotherapy or chemoradiotherapy which can lead to other side 
effects but with the chance of preservation of speech1.  

As the term, functional inoperability is relatively new and the application of it is still 
subjective and not evidence based, it is an interesting and important field of research 
where a lot of improvement can be made. To indicate the limited usage, we applied Google 
trends to discover usage across the world but this led to zero results due to insufficient 
search queries over the past decades. In fact, when inserting a quick exact phrase 
“functional inoperability” in Google search only 650 search results – or hits – emerged on 
September 12th, 2017 (and only 162 hits in Google Scholar, see Figure 1.1).   

                                                             
1 The subtle definition differences between voice, speech, and language can be found here: 

https://www.nidcd.nih.gov/health/what-is-voice-speech-language 
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We also tried a quick Bing search (584) together with a search on Microsoft Academic 
(only 6 hits, of which were 3 relevant). The first authors to appear in the list that mentioned 
functional inoperability were Fryjordet and Klevmark in 1971. These authors evaluated the 
operability in 515 patients with bronchial carcinoma based on electronic data [5]. Although 
major surgery has an enormous impact on vital functions, so far minor scientific attention 
from the perspective of functional inoperability can be found in the literature. This leaves 
a major challenge for the improvement of healthcare. 

 

Figure 1.1 The trend of the search terms: “functional inoperability” and “organ sparing approach” 
in the search engine of Google Scholar on September 12th, 2017. 

1.1.2. Virtual Therapy Group 
Introduction 
The Virtual Therapy Group (VTG) started with an explorative internship into functional 
inoperability and possibilities to predict postoperative function loss in 2009. Hitherto, this 
led to the start of six doctoral theses of which two are already completed and a steady flow 
of technical medicine students pursuing their clinical research internships. The group 
formulated the following mission statement in 2015 [6]:  

“Medical cancer treatments can have serious side effects which under circumstance can be 
debilitating. When tumour board members discuss possible treatments, they often have to 
make important decisions with little insight into the extent of such consequences. As a 
result, patients and physicians have to rely on personal experience and intuition when 
selecting between possible (surgical) interventions.  

To give evidence-based foundations to such choices, we will construct a personalised, 
detailed, high resolution functional digital model of each individual patient, a genuine virtual 
lookalike. This virtual patient will combine data obtained from medical imaging and other 
biomechanical technologies in one functional model. High quality 3D animations 
incorporate the anatomy, physiology, and neuron-musculature of the virtual patient.  
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Physicians will “apply” the curative treatment options to this virtual patient to realise an 
audio-visual dynamic representation of the functional sequelae of treatment. The virtual 
patient will simulate the effect on important functions, e.g., mastication, swallowing, and 
audible speech in head and neck cancer. This gives the tumour board and the patient direct 
access to the use of a functional predictive tool, to realise evidence based decisions on 
treatment proposals. Furthermore, it enables tailoring of the proposed treatment to the 
individual patient, to improve functional outcome and decide on additional pre- and post-
treatment therapy. It will also clarify the individual functional consequences of the 
proposed treatment in an audio-visual manner during the counselling procedure.  

In ten years, we want to be able to construct a digital model not only for head and neck 
cancer patients, but for each cancer patient where treatments could impair mechanical 
functions.  

These digital models will store all medical images, physiological data, and all state-of-the-
art knowledge of therapy consequences and functional side effects. High quality 3D 
animations will visualise the likely outcomes of treatments, and their development over 
time, to the tumour board and patients. Before treatment, these visualisations will guide 
important decisions about treatment options and selection.” 

Proposed solution 
The proposed solution in assessing functional outcome is the development of a digital 
doppelgänger, which could be incorporated in the multidisciplinary decision making and 
counselling of the patient. Figure 1.2 shows the current workflow in blue and the proposed 
addition to improve the clinical care in orange. 

  

Figure 1.2 Flow chart of proposed clinical work flow including patient-specific modelling and 
virtual treatment simulation. Accentuated orange texts show the importance of this work. 

1.1.3. Why does a digital doppelgänger require perioral muscles and their activations patterns? 
While the lips are important for speech and facial expressions, most tumours and resection 
of these tumours usually do not result in severe function loss because reasonable function 
can be restored with various surgical techniques [7–10]. The main focus of lip 
reconstruction on function is to conserve intraoral mucosal lining and retain the surface 
area of the oral aperture [10]. In addition, the aesthetic outcome is of great importance. 
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The main purpose of the experiments in this thesis is to demonstrate the feasibility of such 
methods in an easy-to-access environment so they can be extrapolated to more complex 
environments. 3D tracking measurements of the lips and lip motion is easily done using 
stereo-camera or multi-camera set-ups. Surface electromyography (sEMG) recordings to 
register an estimation of the muscle activation patterns of facial muscles is a bit more 
complex because of the overlapping and intertwining structure of the facial musculature 
[11,12]. Also, the small size of these facial muscles makes it more difficult to measure than 
for instance the biceps brachii and triceps brachii muscles. Despite these challenges, it is 
relatively easy in comparison to intraoral EMG measurements of the tongue and in 
particular the surface EMG measurements. Secondly, it is important to be able to simulate 
the appearance of patients and their remaining function as it can improve patient 
counselling. 

1.1.4. Facial anatomy and characteristics 
The face, itself, gives us our identity and it plays a major role in communication, as it is the 
interface between individuals. The underlying facial muscles carry out some of the most 
important functions of everyday life, yet they are often overlooked. In fact, people only 
realise the importance when they are faced with negative effects caused by genetical 
defects, disease, surgical treatment, radiotherapy, chemotherapy, or the aging process. The 
importance was already reflected by Cicero who considered facial expressions as “Imago 
Animi Vultus”, the image of the soul [13].  

The facial muscles are also known as the mimetic muscles (Greek: μίμησις or mimesis, 
imitation) [12]. It is an important group of striated skeletal muscles and they are innervated 
by the facial nerve (cranial nerve VII). The facial nerve branches off extracranially into five 
important facial branches (Figure 1.3) [12,14]: 1. temporal branch, 2. zygomatic branch,  
3. buccal branch, 4. marginal branch, and 5. cervical branch. 

 

Figure 1.3 The facial nerve (CNVII) and its branches (yellow) located below the parotid gland (semi-
transparent). 1: temporal branch, 2. zygomatic branch, 3. buccal branch, 4. marginal branch, 5. 
cervical branch. Adapted from [15]. Image created by Patrick Lynch. 
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Besides facial muscle control, taste sensations of the anterior two-thirds of the tongue are 
received by branches of the facial nerve [14]. The origin, insertion, innervation, and 
function of relevant facial muscles are denoted in Table 1.1. 

Table 1.1 Origin, insertion, innervation, and function of relevant facial muscles, adapted from [14] 

Muscle Origin Insertion Innervation Function 
LLS Inferior orbital 

margin 
Skin and muscle of 
the upper lip 

Zygomatic branch 
facial nerve 

Elevates and everts 
upper lip 

LLSan Upper part of the 
frontal process of the 
maxilla 

Skin of lateral 
nostril and upper 
lip 

Buccal branch 
facial nerve 

Dilates nostril and 
elevates upper lip 

ZYG Lateral aspect of 
zygomatic bone 

Modiolus Zygomatic and 
buccal branches of 
facial nerve 

Elevates the corners 
of the mouth in 
lateral direction 

ZYGm Anterior aspect of 
zygomatic bone 

Skin and muscle 
of the upper lip 

Buccal branch of 
facial nerve 

Elevates and everts 
upper lip 

LAO Canine fossa 
(maxilla) 

Modiolus Buccal branch of 
facial nerve 

Draws the corners of 
the mouth upwards 

RIS Deep fascia of face 
and parotid 

Modiolus and skin 
at angle of mouth 

Buccal branch of 
facial nerve 

Retracts angle of 
mouth 

BUC Alveolar processes of 
the maximallary 
bone, mandible, 
temporo-mandibular 
joint 

Mucous membrane 
of the cheeks, 
modiolus, 
orbicularis oris 

Buccal branch of 
facial nerve 

Compresses cheek 
against the teeth and 
gums 

DAO Anterolateral base of 
mandible 

Modiolus Mandibular 
branch of facial 
nerve 

Draws the corners of 
the mouth 
downwards and 
laterally 

DLI Platysma and 
anterolateral body of 
the mandible 

Muscular tissue 
and mucosa of the 
lower lip 

Mandibular 
branch of facial 
nerve 

Helps to depress 
and/or evert the 
lower lip 

MEN Anterior mandible Skin of the chin 
(mentolabial 
sulcus) 

Mandibular 
branch of facial 
nerve 

Elevates and 
protrudes lower lip, 
elevates skin of chin 

PLA subcutaneous tissue 
of infraclavicular and 
supraclavicular 
regions 

base of mandible; 
skin of cheek and 
lower lip; 
modiolus; 
orbicularis oris 

Cervical branch 
facial nerve 

Draws the corners of 
the mouth inferiorly 
and widens it.  
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Table 1.1 (continued) Origin, insertion, innervation, and function of relevant facial muscles, 
adapted from [14] 

Muscle Origin Insertion Innervation Function 
OOI  
and 
OOS 

Maxilla and 
mandible, deep 
surface of perioral 
skin, modiolus 

Mucous membrane 
of the lips 

Buccal branch 
facial nerve 

Narrows orifice of 
mouth, purses lips 
and puckers lip 
edges 

TEM Temporal lines on 
the parietal bone of 
skull superior 
temporal surface of 
sphenoid bone 

Coronoid process 
of the mandible 

Deep temporal 
nerves, anterior 
branches of 
mandibular nerve 

Elevation and 
retraction of 
mandible 

MAS Zygomatic arch and 
zygomatic process of 
maxilla 

Lateral surface of 
angle and lower 
ramus of mandible 

Mandibular nerve Elevates mandible 

DIG Mastoid notch 
(digastric fossa) 

Hyoid bone mandibular 
division (V3) of 
the trigeminal 
(CN V) via  
mylohyoid nerve  

Depresses mandible, 
opening mouth, 
and/or elevates 
larynx 

DIGp mastoid process of 
temporal bone 

Hyoid bone facial nerve (CN 
VII) 

Depresses mandible, 
opening mouth 

Apart from the important function in everyday life and their small sizes, the facial muscles 
are known to be special. They have a unique anatomical architecture. Normal skeletal 
muscles have tendons that attach to bony parts, while the facial muscles also have 
nontendinous attachments to soft tissue of the skin or other muscles. Some facial muscles 
even have both their origin and insertion to nontendinous attachments [11,14]. Another 
aspect is the absence of muscle spindles and fasciae [11,16]. The facial muscles also overlap 
and intertwine more drastically than other skeletal muscles [12,14]. 

There is a high inter- and intra-individual variability of facial muscle locations and their 
morphology. For example, Shimada and Gasser described the variations in arrangement of 
the muscles that insert in the vicinity of the mouth angle, which is called the modiolus, in 
relation to the angle of the mouth [17]. Classical text books describe the modiolus being 
the point lateral to the mouth’s angle where several facial muscles converge. However, 
Shimada and Gasser found three distinctive groups: convergence point is lateral to the 
mouth’s angle, convergence point is above the mouth’s angle, and convergence point is 
below the mouth’s angle. The latter two being most present in their 147 studied cadavers 
[17]. Others described the variations in risorius and zygomatic minor muscles, sometimes 
being completely absent or having only a few fibres [18,19].  
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Their motor nucleus is the largest among all motor nuclei of the human brain stem [13]. 
Additionally, histochemical studies showed that the facial muscles have multiple 
myoneural junctions distributed in round or oval-shaped clusters over the muscle’s region, 
and in contrast to classic motor unit structure where only a few are located near the centre 
of the muscle fibre and distributed within a narrow band in the muscles [20].  

The neural command of facial muscles can be distinguished in two groups: voluntary and 
emotional involuntary control. Morecraft et al. found a potential anatomical substrate that 
may contribute to the clinical dissociation of emotional and voluntary facial movement 
[21]. When examining the motor control of facial muscles using electromyography, isolated 
muscle contractions of these muscles is very difficult probably because they lack practice 
as the orofacial functions require an orchestra of activating multiple muscles 
simultaneously. These recruitment patterns differ from person to person [22], like other 
functional movements in humans, such as in locomotion [23]. 

The facial acting coding system (FACS) is an extensive tool developed for the field of 
neuropsychology [24]. FACS uses action units (AU) that describe the contraction or 
relaxation of one or more muscles to systematically categorise different facial expressions. 
This is also very useful in facial animation, because a virtual model can be controlled using 
these AUs producing the whole spectrum of facial expressions by only defining the AUs 
and place them in a sequence. Subsequently, Lapatki extensively described the visual 
examination of facial muscle contractions [11].  

Perioral Muscles 
The perioral muscles are the muscles surrounding the buccal orifice (Figure 1.4). According 
to Lapatki these muscles can be functionally divided into three groups that control the 
shape of the buccal orifice [11]: 

1. Retractors of the upper lip 
a. levator labii superioris alaeque nasi (LLSAN) 
b. levator labii superioris (LLS) 
c. zygomaticus minor (ZYGm) 

2. Closure and sealing of the oral commissure 
a. levator anguli oris (LAO) 
b. zygomaticus major (ZYG) 
c. buccinator (BUC) 
d. depressor anguli oris (DAO) 
e. orbicularis oris region (OOR) muscles 

3. Retractor and elevator of the lower lip 
a. depressor labii inferioris (DLI) 
b. mentalis (MEN) 

1
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Figure 1.4 The facial muscles (left, adapted from [27]. Original image ©201έ 3ÐÒÉÎÇÅÒɊ
and digastric muscle (right, adapted from [28]) with its anterior and posterior 
part.  

The other perioral muscles are: the risorius, the platysma, and the muscles in the 
orbicularis oris region. The latter muscles are addressed differently in various studies. 
orbicularis oris superior (OOS) and inferior (OOI), or as subdivision of orbicularis oris 
peripheralis (OOP) [25], marginalis (OOM) [25], and having tangential fibres (OOT) [26], 
and the incisivus labii superioris (ILS) and inferioris (ILI) [11].  

Other involved muscles 
The anterior belly of the digastric muscle (DIG) is important for opening of the mouth and 
was therefore taken into account. The posterior belly of the digastric muscle (DIGp), the 
temporalis (TEM) and masseter (MAS) muscles are important for chewing and not directly 
involved in facial movements. 

To conclude, the facial musculature is an intriguing and complex subject. For the 
experiments described in this thesis the following muscles were considered relevant and 
as such were included in the measurements: OOS, OOI, LLSAN, DAO, RIS, ZYG, MEN, 
and DIG. 
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2.1. Electromyography 

2.1.1. A brief history 1 
Francesco Redi (February 18th, 1626 – March 1st, 1697) discovered a highly specialised 
muscle in the electric eel that generates electricity. His experiments are widely 
recognised as the first documented EMG experiments [1]. Luigi Aloisio Galvani 
(September 9th, 1737 – December 4th, 1798) demonstrated the relationship between 
electricity and muscle contraction [2]. Decades later, Emil du Bois-Reymond (November 
7th, 1818 – December 26th, 1896) discovered the nerve action potential and pioneered the 
possibility of measuring electrical activity during voluntary muscle contraction in 
humans [3]. It was Étienne-Jules Marey (March 5th, 1830 – May 15th, 1904) who performed 
the first actual recordings, and he was the one who in 1890 called this measurement 
technique ‘Electromyography’ [4]. The technique was adopted by many research groups 
around the world with all kinds of scientific advancements. In 1965, the International 
Society of Electrophysiological Kinesiology (ISEK) was founded, which still exists today. 
The advancements also led to the first clinical use of surface EMG (sEMG), designed by 
Hardyck et al. in 1966 [5]. In the early 1980s, Cram and Steger created a sEMG sensing 
device for use in the clinic to scan a variety of muscles. A couple of years later, a 
normative database with data from 104 healthy volunteers was built by Cram and 
Engstrom [6]. The database functions as a source of reference values to compare to 
clinical experiments and is still in use today. Although multichannel sEMG 
measurements were already proposed in 1979 by Nishizono et al. to measure conduction 
velocity [7], the advances in computing power, analysis techniques, and electrode 
fabrication allowed for the introduction of high-density surface electrodes with 
minuscule electrodes and very small interelectrode distances. Many more scientists have 
contributed to the history of electromyography – too many to acknowledge them all. 
However, Carlo John De Luca (1943 – July 20th, 2016) and colleagues of the 
NeuroMuscular Research Center (NMRC) deserve special attention, as they were pivotal 
for the understanding of muscle physiology and measuring methods, especially for 
spectral analysis of the sEMG signals in relation to muscle fatigue [8]. A few of the 
aforementioned contributing persons are pictured in Figure 2.1. 

Redi Galvani Du Bois-Reymond Marey De Luca 

     
Figure 2.1 Some important persons in the history of electromyography. Figures adopted from 
 [9–13]. 

                                                             
1 The history template is based on Cram’s introduction to surface electromyography [4]. 
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2.1.2. Principles of electromyography 
Origin of bioelectrical activity 
A muscle cell at rest has a steady-state equilibrium of ion concentrations: a high 
concentration of potassium on the inside and a low concentration of potassium on the 
outside of the cell. For sodium, it is the opposite: a low concentration on the inside and a 
high concentration on the outside. This steady state results in a corresponding 
membrane potential of about -80 to -90 mV, whereas for neural cells, this resting 
membrane potential is in the range of -60 to -70 mV. Differences exist between species 
but are also observed in the same animal in different tissues, as well as in the same tissue 
under different environmental conditions. The resting potential can be calculated using 
the Nernst equation or, more accurately, using the Goldman-Hodgkin-Katz equation:  

 
[ ] [ ] [ ]
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[ ] [ ] [ ]

K o Na o Cl i

K i Na i Cl o

P K P Na P ClRTE
F P K P Na P Cl

  
    

  (2.1) 

Where E  is the equilibrium transmembrane resting potential when the net current 
through the membrane is zero [14], R  is the universal gas constant: 8.31 /J mol K . T  is 
the absolute temperature in K . F  is the Faraday constant: 96500 /C equivalent . MP  
describes the permeability of the membrane for ionic types M . [ ]o  and [ ]i  are the 
extracellular and intracellular ion concentrations in /mol L  [14].  

The muscle cell membrane or sarcolemma contains a sodium-potassium pump (the 
Na+/K+ ATP-ase pump, which pumps 3 Na+ ions out of the cell for every 2 K+ ions pumped 
into the cell at the cost of ATP), a voltage-gated potassium pump, and a voltage-gated 
sodium pump (Figure 2.2).  

 

Figure 2.2 Schematic illustration of the sodium-potassium pump. From left to right: three sodium 
ions are transported from the intracellular space to the extracellular space at the cost of ATP, 
with two potassium ions transported in exchange from the extracellular space to the intracellular 
space, adopted from [15]. 
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Figure 2.3 The neuromuscular junction and the delivery of a neural command from the nerve 
cells to the muscle cells, adopted from [16].  

Neural impulses or so-called action potentials travel via the motor neuron to the 
neuromuscular junction. The neuromuscular junction allows for the transition of neural 
command via nerve cells to muscle cells (Figure 2.3). In this junction, the neuron releases 
the neurotransmitter acetylcholine, which binds to receptors. This binding process 
results in depolarisation of the muscle fibre membrane, causing the voltage-gated 
sodium pump to open and allowing a rapid influx of sodium ions, which further increases 
the potential. The sodium pump then closes, and the potassium pump opens. Sodium 
can no longer flow into the cell, and potassium exits the cell, effectuating repolarisation.  

At this point, the initial ion concentrations are restored by the Na+/K+ ATP-ase pump, 
and the cell prepares for a new action potential. This recovery time is called the 
‘refractory period’, which is divided into an absolute and a relative part  
(Figure 2.4). In the absolute part, no stimuli can generate a new action potential, whereas 
in the relative part, only intense stimuli may generate a new action potential. The 
electrical impulse travels down the transverse tubules of the muscle fibres. Because of 
this depolarisation wave, L-type voltage-gated calcium channels in the transverse tubule 
membrane open and release calcium stores in the sarcoplasmic reticulum. Calcium ions 
then trigger muscle contraction. This process of depolarisation and repolarisation over 
the muscle fibres is the origin of the EMG signal [14]. 
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Figure 2.4 A schematic display of the action potential, adapted from [26]. 

The ensuing muscle contraction can be described by the “sliding filament theory” first 
proposed by two independent research teams [17,18]. Huxley called it the ‘swinging cross-
bridge theory’ [19]. Sliding occurs by cyclic attachment and detachment of myosin on 
actin filaments. Contraction takes place when the myosin pulls the actin filament 
towards the centre. It detaches from an actin molecule and creates a force (stroke) to 
bind to the next actin molecule, which is possible in the presence of calcium ions because 
then these binding sites on the actin molecule are available. When calcium ions are 
actively pumped back into the sarcoplasmic reticulum, the binding sites on the actin 
molecule become blocked again, and contraction ceases. Over the years, improvements 
have transformed the swinging cross-bridge theory into the swinging lever arm model 
[20–22]. 

From the origin of the EMG signal to the electromyogram 
The origin of motion starts in the brain in the motor cortex. The motor cortex is 
responsible for planning, control, and execution of voluntary movement. Motor axons 
originating from the motor neurons innervate single or multiple muscle fibres, forming 
the smallest functional units, called ‘motor units’ (MUs) (Figure 2.5).  

The MU action potentials (MUAPs) detected by the electrodes have typical triphasic 
patterns, reflecting the superposed signal of the entire MU (Figure 2.7) [23,24].  

The electric dipole model explains why a single muscle fibre depolarisation is measured 
as a bipolar signal by monopolar electrodes (Figure 2.7).  

Muscle force is produced by activating MUAPs. To increase force, one can recruit more 
MUAPs, increase the firing rate of the recruited MUAPs, or both. The retained muscle 
contraction is established by so-called MUAP trains (MUAPT) (Figure 2.7). The MUAPT 
can be denoted mathematically as a series of Dirac impulses ( )t : 1

( )K
kk

t t


 , 
convoluted with a filter that resembles the MUAP’s shape (Figure 2.7) [25].  
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convoluted with a filter that resembles the MUAP’s shape (Figure 2.7) [25].  

Thus, the MUAPT can be expressed as: 
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Where ih  is the impulse response of the filter, kt  are the points in time at which the 
MUAPs occur. t  contains the interpulse intervals, i  is the thi particular MU and K  is 
the total number of interpulse intervals in a MUAPT. The integer k  denotes a specific 
event (Figure 2.7). 

 

Figure 2.5 Illustration of a motor unit, adopted from [27] with permission of Pearson Education, 
Inc. ©2013 Pearson Education, Inc. 

 

Figure 2.6 Architecture of a skeletal muscle, adopted from [28] with permission of The McGraw-
Hill Companies, Inc. ©2003 The McGraw-Hill Companies, Inc. 

2



30

  
Figure 2.7 Left: Schematic representation of the generation of the motor unit action potential. 
Right: Model for a motor unit action potential train (MUAPT) and the corresponding Fourier 
transform of the interpulse intervals (IPIs), the motor unit actions potentials (MUAP), and the 
MUAPT. Adapted from [25]. Original image ©2006 John Wiley & Sons, Inc. 

A model of the EMG signal s  may be described as a linear summation of MUAPTs 
(Figure 2.7), where p  is the number of total MUs contributing to the potential field, 

( )n t  is the measurement noise [25]: 
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( ) ( ) ( )
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   (2.3) 

The filtering properties of the recording electrodes are accommodated in ih . The 
generated force depends on the firing rate and recruited MUs. Thus, it depends on the 
statistics of the interpulse intervals lt . The technique of sEMG uses surface electrodes 
that are placed on top of the skin, ideally above the centre of the muscle belly. They 
acquire signals of the underlying muscles. In contrast to intramuscular electrodes, sEMG 
is noninvasive and easy to use but measures individual muscles less selectively, is more 
prone to artefacts, and it has a relatively low signal-to-noise ratio (SNR). These are the 
two different ways of acquiring signals from muscle action potentials. The surface 
electrodes are available in all kinds of dimensions and materials, whereas intramuscular 
electrodes can be fine wire or needle electrodes that are inserted into the muscle using a 
guiding needle. The intramuscular electrodes measure activity in their direct 
surroundings, usually the activity of a few sarcomeres. The two types of electrodes and 
their advantages and disadvantages are presented in Table 2.1.  

Factors influencing the surface electromyogram and measurement standards 
The sEMG signal is a crude estimate of neural command because many factors influence 
the relationship between motor control innervation and the measured sEMG signal. 
Farina et al. and De Luca et al. extensively described these intrinsic and extrinsic factors 
[29–31]. Because of these factors, the ISEK endorsed Merletti’s proposed standards on 
how to report on EMG data to minimise the differences when replicating the experiments 
of others in 1999 [32]. Farina et al. listed these factors that affect the measured signals as 
shown in Table 2.2. 
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Table 2.1 Comparison of the advantages and disadvantages of surface and intramuscular 
electrodes. Adapted from [33]. 

Electrode type Advantages Disadvantages 
Surface 
electrodes 

Easy to use Can only measure the surface muscle 
EMG 

Noninvasive Low SNR 
Safer  Poor selectivity of muscles and MUAPs 
Large recording region More prone to artefacts 
Less hinder of movement   

Intramuscular 
electrodes 

Capable of detecting MUAP Difficult to use 
Better selectivity of muscles and MUAPs Invasive 
High SNR Movement obstructing 
Able to measure deep muscles Hazardous 

In the next paragraphs, several muscle properties are described that are essential for 
modelling: force-amplitude relationship, force-velocity relationship, and length-tension 
relationship. 

Force-Amplitude relationship 
With so many contributing factors (as listed above in Table 2.2), sEMG amplitude is not 
simply equivalent to force. Nevertheless, there is some correlation between increased 
force and increased sEMG amplitude. This is illustrated in Figure 2.8 for the normalised 
forces produced by the biceps, deltoid, and first dorsal interosseous (FDI) muscles and 
corresponding normalised values of the sEMG feature extractor. The three muscles all 
show a different transfer function from sEMG feature extractor to produced force. The 
FDI muscle has the most linear curve, whereas the biceps muscle shows a more nonlinear 
relationship. This is because muscles that predominantly contain one fibre type possess a 
more linear relationship than muscles with mixed fibre types. As in the case of the biceps 
muscle, these relationships are more curvilinear with their breaking point at around 50% 
MVC [4]. Unfortunately, constructing similar curves for facial muscles is difficult because 
lifting predetermined weights with isolated muscle contractions is cumbersome. 
However, using displacements and e.g. finite-element models, internal forces may be 
calculated. 

Muscle fatigue and sEMG changes 
Muscle fatigue, or the inability to sustain or generate force, can be the result of two 
underlying factors: metabolic fatigue and neural fatigue. Metabolic fatigue is caused by a 
shortage of fuel, such as ATP, glycogen, and creatine phosphate, or the pollution within a 
muscle fibre by substrates that interfere with the calcium ions [34,35]. Neural fatigue is 
inadequate motor command in the motor cortex [34]. The effect of muscle fatigue on 
sEMG was first noticed by Piper, who noticed a ‘slowing’ of surface myoelectric signals 
during static contraction [35,36]. Nowadays, high-density sEMG is used to decompose 
the underlying MUs from the superposed sEMG signal. High-density sEMG is defined as: 
“a non-invasive technique to measure electrical muscle activity with multiple (more than 
two) closely spaced electrodes overlying a restricted area of the skin” by Drost et al. [37]. 
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It can measure both spatial and temporal activity. Farina and Holobar demonstrated the 
muscle fatigue characteristics using the high-density sEMG technique (Figure 2.9) 
[35,38]. The main findings show a decrease in conduction velocity and a change in MU 
shape.  

Table 2.2 Factors that influence the surface EMG. Adopted from [29]. 

Type Subtype Source 
Non-
physiological 

Anatomic Shape of the volume conductor 
Thickness of the subcutaneous tissue layers 
Tissue inhomogeneities 
Distribution of the motor unit territories in the muscle 
Size of the motor unit territories 
Distribution and number of fibres in the motor unit territories 
Length of the fibres 
Spread of the endplates and tendon junctions within the motor units 
Spread of the innervation zones and tendon regions among motor units 
Presence of more than one pinnation angle 

Detection 
system 

Skin-electrode contact (impedance, noise) 
Spatial filter for signal detection 
Electrode size and shape 
Inclination of the detection system relative to muscle fibre orientation 
Location of the electrodes over the muscle 

Geometrical Muscle fibre shortening 
Shift of the muscle relative to the detection system 

Physical Conductivities of the tissues 
Amount of crosstalk from nearby muscles 

Physiological Fibre 
membrane 
properties 

Average muscle fibre conduction velocity 
Distribution of motor unit conduction velocities 
Distribution of conduction velocities of the fibres within the motor units 
Shape of the intracellular action potentials 

Motor unit 
properties 

Number of recruited motor units 
Distribution of motor unit discharge rates 
Statistics and coefficient of variation for discharge rate 
Motor unit synchronisation 
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It can measure both spatial and temporal activity. Farina and Holobar demonstrated the 
muscle fatigue characteristics using the high-density sEMG technique (Figure 2.9) 
[35,38]. The main findings show a decrease in conduction velocity and a change in MU 
shape.  

Table 2.2 Factors that influence the surface EMG. Adopted from [29]. 

Type Subtype Source 
Non-
physiological 

Anatomic Shape of the volume conductor 
Thickness of the subcutaneous tissue layers 
Tissue inhomogeneities 
Distribution of the motor unit territories in the muscle 
Size of the motor unit territories 
Distribution and number of fibres in the motor unit territories 
Length of the fibres 
Spread of the endplates and tendon junctions within the motor units 
Spread of the innervation zones and tendon regions among motor units 
Presence of more than one pinnation angle 

Detection 
system 

Skin-electrode contact (impedance, noise) 
Spatial filter for signal detection 
Electrode size and shape 
Inclination of the detection system relative to muscle fibre orientation 
Location of the electrodes over the muscle 

Geometrical Muscle fibre shortening 
Shift of the muscle relative to the detection system 

Physical Conductivities of the tissues 
Amount of crosstalk from nearby muscles 

Physiological Fibre 
membrane 
properties 

Average muscle fibre conduction velocity 
Distribution of motor unit conduction velocities 
Distribution of conduction velocities of the fibres within the motor units 
Shape of the intracellular action potentials 

Motor unit 
properties 

Number of recruited motor units 
Distribution of motor unit discharge rates 
Statistics and coefficient of variation for discharge rate 
Motor unit synchronisation 

 
Figure 2.8 Effects of muscle on sEMG signal-force relationship. FDI: first dorsal interosseous 
muscle. N = average number of isometric contractions for each muscle group. Adopted from 
Lawrence and De Luca [39]. 

Electrode configuration 
Detection of sEMG signals can be performed in various electrode placement 
configurations. The ideal placement of the surface electrodes is at the midline of the 
muscle belly, parallel to the muscle fibres. Laptaki et al. investigated the optimal 
placement of surface electrodes in the lower face using high-density sEMG grids [40], 
which can serve as a guideline. The main distinct configurations are: monopolar, bipolar, 
and tripolar. In all cases, a common ground reference electrode is placed at an electrically 
neutral site (usually a bony part). The monopolar configuration is the optimal 
configuration for sEMG acquisition since, in this configuration, the signal will contain all 
information that can be recorded from the detection volume [41]. However, it is more 
prone to artefacts and crosstalk; the bipolar configuration, therefore, is widely used. With 
the upcoming use of high-density sEMG, the choice of configuration has become less 
relevant, because multiple electrode deductions can be made. In this way, the optimal 
configuration can be obtained [41,42]. 

2.1.3. EMG processing: from sEMG signals to muscle activation signals 
Adequate sEMG recording requires proper skin preparation, the right choice of 
electrodes, and accurate electrode positioning. Abrasive gel and alcohol are used to 
remove hair and dead skin cells. Smaller electrodes will increase spatial resolution and 
decrease crosstalk, but they will also increase the skin-electrode impedance values. The 
electrodes measure the unamplified EMG signal, which typically is in the range between 
a few µV and 2-3 mV. As stated by Nyquist, the signal should be sampled at at least twice 
its maximum frequency. SENIAM, the European initiative on surface electromyography 
noninvasive assessment of muscles, has given important recommendations to 
standardise these facets (Tale 2.3) [43]. 
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Figure 2.9 Discharge patterns of nine motor units identified by convolution kernel compensation 
decomposition from 64-channel surface EMG of the abductor pollicis brevis muscle during 27 
repetitions of isometric linearly increasing and decreasing contractions (with force ranging from 
0% to 10% of the maximum). In this example, ischemia was induced in the hand with a cuff 
around the forearm inflated at 180 mmHg to increase fatigue. Each dot indicates a single motor 
unit discharge at a given instant, whereas its relative vertical displacement codes the 
instantaneous motor unit discharge rate. Different motor units are depicted in different colors 
and are active for different proportions of time. Thus, they demonstrate different levels of 
fatigue. Motor units 1 to 7 gradually decrease their average conduction velocity (CV) across 
different contractions, whereas motor units 8 and 9 maintain the initial conduction velocity from 
the first to the 18th contraction, but then their conduction velocity decreases after the 18th 
contraction. Average motor unit discharge rates per contraction (DR) do not vary significantly 
over time [panel (b)]. The MUAPs of motor units 1 to 7 change significantly over the 27 
contractions, while much smaller changes are observed for motor units 8 and 9. Corresponding 
colours in panels (a), (b), and (c) represent the results of the individual motor units. In panel (d), 
the various colours represent distinct contractions. Adopted from [38] with permission of IEEE. 
©2016 IEEE. 

Feature Extraction  
To obtain useful information from the measured surface electromyographic signals, a 
mathematical process called ‘feature extraction’ is required. Thirty-seven time domain 
and frequency domain features were investigated by Phinyomark et al. [44]. They found 
that most were redundant and could be classified into four main groups according to 
their mathematical properties: energy and complexity, frequency, prediction model, and 
time-dependence [44]. Despite root mean square being the most well-known feature, the 
mean absolute value proved to be the recommendation for the energy information 
method. The wavelength feature was recommended for the complexity information 
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Feature Extraction  
To obtain useful information from the measured surface electromyographic signals, a 
mathematical process called ‘feature extraction’ is required. Thirty-seven time domain 
and frequency domain features were investigated by Phinyomark et al. [44]. They found 
that most were redundant and could be classified into four main groups according to 
their mathematical properties: energy and complexity, frequency, prediction model, and 
time-dependence [44]. Despite root mean square being the most well-known feature, the 
mean absolute value proved to be the recommendation for the energy information 
method. The wavelength feature was recommended for the complexity information 

method, the Willison amplitude for the frequency information group, autoregressive 
coefficients performed best for the prediction model methods, and, lastly, MAVS for the 
time-dependency method. The frequency domain features proved inferior in sEMG signal 
classification. Table 2.4 presents the equations of the above winners per mathematical 
class. 

Tale 2.3 SENIAM recommendations. Adapted from [45]. 

Part Parameter Recommendation 
Electrodes Material Ag/AgCl with pre-gelled surface 
 Size and shape Circular electrodes with a diameter  

< 10mm 
 Interelectrode distance (IED) < 20mm or < ¼ of muscle length, whichever is smaller 
 Location   

  Longitudinal 
 
  Transversal 
Bipolar configuration 

 
Halfway the distal motor endplate zone and the distal 
tendon 
Maximise geometrical distance to other muscles 
Parallel to muscle fibres 

 Reference electrode location Wrist, ankle, spinous process of C7, or other 
electrically inactive areas 

Amplifier High-pass filter  
  For EMG spectral analysis 
  For movement analysis only 

 
< 10 Hz 
~ 20 Hz 

 Low-pass filter  
  For general applications 
  For wideband applications 

 
~ 500 Hz (sampling frequency> 1000 samples/s) 
~ 1000 Hz (sampling frequency> 2000 samples/s) 

 Input referred voltage noise 
level (IRVNL) 

< 1 µVRMS (bandwidth 10 – 500 Hz) 

 Input referred current noise 
level (IRCNL) 

< 10 pARMS (bandwidth 10 – 500 Hz) 

 Input impedance 
  Conventional electrodes 
  Pasteless ‘dry’ pin electrodes 

 
> 100 MΩ 
> 1000 MΩ  

 Gain Suitable to bring the signal into the input range of the 
A/D converter with desired input resolution 

Sampler and 
A/D converter 

Sampling frequency (fs) > 1000 Hz (general applications 
> 2000 Hz (wideband applications) 

 N bits of A/D 12 (requires amplifier with variable gain) 
16 (fixed gain amplifiers may be used) 

Normalising the sEMG features 
For most applications in biomechanical modelling, the sEMG features have to be 
normalised to obtain values between zero and one. Halaki and Ginn extensively 
described the normalisation of EMG signals, as will be briefly discussed below [46]: 

1. Maximum (peak) activation levels during maximum contractions: this is the most 
common method. The EMG recorded during the maximum voluntary isometric 
contraction (MVIC) task is used as the 100% reference value. Sometimes, the EMG 
during the task produces higher EMG than the MVIC.  
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To prevent this from occluding the results, researchers used the task under 
investigation performed at maximum effort as the 100% reference value. 
Unfortunately, as individuals complete tasks with different motor control schemes, 
this method does not allow for comparison between volunteers. 

2. Peak or mean activation levels obtained during the task under investigation: using 
the peak or mean activation levels obtained during the task under investigation as 
the reference value. 

3. Activation levels during submaximal isometric contractions: this was suggested as 
an alternative to the MVIC because volunteers are often unable to mobilise 
maximum potential. Other limiting factors were the increased risk of injury and 
pain. Unfortunately, comparison between individuals is, again, impossible.  

4. Peak-to-peak amplitude of the maximum M-wave (M-max): an M-wave can be 
recorded after stimulation of a peripheral motor nerve. To obtain maximum M-
wave, we can increase the stimulus amplitude until the M-wave peak-to-peak 
amplitude increases no further. Despite the potential, repeatability is still 
questionable. 

Table 2.4 Mathematical definitions of different EMG feature extractions: MAV: mean absolute 
value, RMS: root mean square, WL: wavelength, WAMP: Willison amplitude, AR: autoregressive 
coefficients, MAVS: mean absolute value slope. 
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To prevent this from occluding the results, researchers used the task under 
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2.2. Biomechanical Modelling 

2.2.1. A brief history 2 
De Motu Animalium (On the Movement of Animals), written by Aristotle (384–322 BC) 
in ±350 B.C., can be seen as the first written history of the study of biomechanics [47]. 
The term ‘biomechanics’ (1899 A.C. [48]) comes from the ancient Greek words βίος (bios) 
and μηχανική (mēchanikē), which respectively mean life and mechanics. Biomechanics is 
the study of structure and function of biological systems using methods of mechanics. 
Leonardo di ser Piero Da Vinci (April 15th, 1452 – May 2nd, 1519), the ultimate universal 
genius (Homo Universalis), was also interested in biomechanics. He studied joint 
function and analysed the forces on muscle tendons from origins to insertions. He 
applied animal concepts into his inventions, e.g., a bird’s flight anatomy for his well-
known flying machines [54]. René Descartes (March 31st, 1596 – February 11th, 1650; Cogito 
ergo sum – Je pense, que je suis – I think therefore I am) was a notable French intellectual 
in the Dutch Golden Age, who stated that we are all mere machines governed by 
mechanical laws, with the exception of our soul [55]. Giovanni Alfonso Borelli (January 
28th, 1608 – December 31st, 1679), encouraged by this idea, studied all kinds of movement 
using mechanics [56]. Isaac Newton January 4th, 1643 – March 31st, 17273) published his 
book “Philosophiæ Naturalis Principia Mathematica” in 1687, which lay the foundations 
for classical mechanics [57]. The generally known equations of motion also play an 
important part in this dissertation. Ernst Heinrich Weber (June 24th, 1795 – January 26th, 
1878) and Wilhelm Eduard Weber (October 24th, 1804 – June 23rd, 1891) published their 
work “Mechanik der menslichen Gehwerkzeuge” in 1836 [58]. However, modern motion 
analysis was first applied by Étienne-Jules Marey (March 5th, 1830 – May 16th, 1904), who 
used cinematography to investigate locomotion and correlated this to ground reaction 
forces. He published “Du mouvement dans les fonctions de la vie” in 1868 and “Le 
Mouvement” in 1894 [59,60].  

Aristotle Da Vinci Descartes Borelli Newton 

     

Figure 2.10 Some important persons in the history of biomechanics. Figures adopted from 
[49–53]. 

                                                             
2 The history template is based on the presidential lecture given by Martin at the 23rd annual conference of 
the American society of biomechanics [102]. 
3 The British Empire adopted the Gregorian calendar in 1752 in favour of the Julian calendar. The Julian 
calendar dates are: December 25th 1642 and March 20th 1727.  
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Research in human gait analysis (and thus biomechanics) was taken to a higher level by 
Christian Wilhelm Braune (July 17th, 1831 – April 29th, 1892), who published “Der Gang des 
Menschen” together with Otto Fisher (1861 - 1917) in 1895 [61]. 

The field of computational biomechanics has grown with the increase of computing 
power since the 1940s. Nowadays, the finite-element method is widely used in modern 
technological and medical research, with future applications in daily clinical practice 
[62–68]. 

2.2.2. From statistical modelling towards biomechanical modelling 
Statistical models are great for modelling relationships and representing real-world data 
in rather straightforward mathematical equations. There are so-called black-box models, 
in which the model’s internal workings are unknown, and grey-box models, in which the 
model’s internal workings are known but the real-world physical workings are not 
represented. In our case, we want to look at the relationship between sEMG features and 
3D lip positions, velocities, and accelerations. If these relationships exist, biomechanical 
models that incorporate physiological features could be utilised to provide an anatomical 
and physiological realistic model. This would be a so-called white-box model because we 
know the internal workings of the model, e.g., equations of motion, the muscle activation 
and contraction dynamics, et cetera. 

The statistical models described in this dissertation use principal component analysis 
(PCA) and an extended version of the generalised regression neural network (GRNN). 
PCA was first described by Pearson in 1901, whereas GRNN was proposed by Specht in 
1999 [69,70]. After first obtaining information on a static relationship, we must prove this 
relationship for a dynamic case, too, incorporating dynamics into the model by using 
state-space representation. We optionally applied a Kalman filter4 [71–73]. 

Upon accepting the existence of a plausible relationship between dynamic 3D lip 
movement and sEMG features, we can move on to more complex biomechanical models 
that better represent real-world physiological processes. The biomechanical models can 
be divided into modelling subparts: rigid bodies (i.e., bones), deformable tissues (i.e., soft 
tissues), and muscles (i.e., active parts which produce forces). These parts can all be 
presented with simple or more complex mathematical descriptions. Models can be either 
static or dynamic. Static models disregard effects over time. Surgery planning in 
maxillofacial surgery as described by Mollemans et al. is one example of using a static 
model [74]. 

Dynamic simulations are models in which forces that act on the model are time-
dependent. One such model was developed by Chabanas et al. [65,75] and Gladilin et al. 

                                                             
4 The Kalman filter’s first implementation was in the Apollo navigation computer. Stanley F. Schmidt 
realised that the filter could be divided into two distinct parts: one part for time periods when no sensor 
outputs are available and another part when sensor outputs are available to incorporate the 
measurements. This partitioning of the estimation problem was advantageous for the Apollo mission 
because hours could elapse between sensor outputs. [103] 
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[76,77], who resected the bones of their digital model, and reconstructed the jaw at the 
optimal location. They then visualised the effects of the new bone structure on outer 
appearance by simulating the effects of bone reposition on soft tissues. They also defined 
the facial muscles and through dynamic simulation assessed the effects of muscle 
activation on soft tissues [65,75]. The facial muscles can be activated with simulated 
(arbitrary) muscle activation patterns, or they can be supplied with an approximation of 
the real muscle activation patterns, with the use of sEMG features as derivations of the 
muscle activity. This is called ‘forward dynamics’ or ‘forward modelling’. In our case, 
forward modelling will drive a model with sEMG features that can accurately describe the 
measured 3D lip movement. Forward modelling will be essential for our future 
application because it will show the 3D movement when using patient-specific muscle 
activation patterns. If the model is accurate enough, this will result in similar movement 
as the captured movement. Also, when the model is adjusted virtually to incorporate 
surgical changes, forward modelling with an adjusted model and patient-specific muscle 
activation patterns may show us potential limitations in the form of the expected 
functional problems. Biomechanical modelling may also be used to track the outputs, the 
3D lip movements, in order to obtain the muscle activation patterns required to establish 
such movements. This is called ‘inverse dynamics’ or ‘inverse modelling’. Inverse 
modelling plays a major role as it may unravel the possible compensatory mechanisms 
for vital functional movements. By applying inverse modelling – tracking the movements 
that produce a vital function and calculating which muscle activation patterns are 
involved – we could make the model account for resected or damaged muscles. This may 
be valuable in assessing which nerves and muscles must be spared to maintain the vital 
functions.  

 

Figure 2.11 Schematic representation of forward and inverse modelling with muscle activations 
and 3D movement. 

2.2.3. Muscle modelling 
Zajac rigorously described the mathematical modelling of a muscle and its tendon in 
1989 [78]. His text is based on the classical work of Hill, now commonly known as the 
Hill’s muscle model [79]. The Hill-type muscle is shown in Figure 2.12.  

In the next paragraphs, two muscle properties are described, which are essential for 
modelling: force-velocity relationship and length-tension relationship. These can also be 
found in Zajac’s extensive overview. The exerted muscle force depends on the activation 
levels, the aforementioned force-generation properties, and the tendon properties [78].  
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Figure 2.12 Hill-type muscle model. (A) The muscle model consists of a contractile element (CE) 
arranged in parallel with an elastic element (PE), which primarily represent the mechanical 
properties of the muscle fibres. Both of these elements are in series with another elastic element 
(SE), primarily representing the mechanical properties of the tendon. (B) Tendon force depends 
nonlinearly on tendon length and is related to muscle force according to the formula: FT=FM cosα, 
where FT is tendon force, FM is muscle force, and α is pennation angle. (C) Isometric muscle force 
is taken to be equal to the sum of passive force and active force, both of which depend 
nonlinearly on muscle length. Muscle length and tendon length are related to total 
musculotendon length according to the formula: LMT=LT+LM cosα, where LMT is musculotendon 
length, LT is tendon length, and LM is muscle length. LMO, optimal muscle length; LTS, tendon 
slack length; FMO, peak isometric muscle force. Adopted from [80], who adapted it from [81] with 
permission of IEEE and The Company of Biologists Ltd. ©1990 IEEE and ©2013 The Company of 
Biologists Ltd. 
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Force-Velocity relationship 
Exerted muscle force (or, more specifically, active tension) also depends on contraction 
velocity (Figure 2.13). The contraction velocity, in turn, depends on the cross-bridging of 
sarcomeres. During concentric (muscle actively shortening) actions and when velocity is 
high, forming the necessary cross-bridges is more difficult because of the sliding 
filaments cycle time, whereas in low-velocity circumstances there is more time to form 
more cross-bridges and thus more force. In eccentric (muscle actively lengthening) 
actions, muscle force is high where velocity is high, and muscle force is low where 
velocity is low. 

 
Figure 2.13 Velocity-active tension relationship for muscle. 0P  describes the force or tension at 
isometric (muscle actively held at fixed length) and 0V  is the maximum velocity under zero 
tension. Adapted from [82].  

 
Figure 2.14 Tension-length curves for isolated muscle. Blue curve: passive elastic tension ET  in a 
muscle passively stretched to increasing lengths. Black curve: total tension TT  exerted by muscle 
contracting actively from increasing initial lengths. Orange curve: developed tension DT  
calculated by subtracting elastic tension values on curve 1 from the total tension values at 
equivalent lengths on curve 2 ( D T ET T T   ). Adapted from [83]. Original image ©1988 Williams 
& Wilkins. 
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Length-Tension relationship 
Muscle force also depends on the resting length of the muscle. The total tension depends 
on the active and passive tension in the muscles. The active tension-length relationship 
describes the degree of overlap of the actin and myosin filaments and thus cross-bridge 
effectiveness, whereas the passive tension-length relationship describes the exerted force 
due to passive stretch of the muscles including elastic elements. This is shown in  
Figure 2.14. 

2.2.4. Optimisation techniques  
In biomechanical modelling, forces are the central point. Inherently, the equations of 
motion developed by Newton come into play, in particular Newton’s second law [84]: 

 ( , , )t f q u Mu  (2.4) 

In which, q  is a vector containing positions, u  is a vector with velocities, and t  is time. 
M  is the diagonal matrix containing masses. The force vector ( , , )tf q u  can be divided 
into a passive (muscle stretch, ligaments, scar tissue) and an active part (forces due to 
muscle activation): ( , , ) ( , ) ( , , ( ))p at t f q u f q u f q u a , in which ( )ta  contains the muscle 
activations between 0 and 1. In the Hill-type muscle models, the relationship between 
activation and force is linear. The relationship between force, length, and shortening 
velocity is nonlinear. This is described mathematically as: 

 ( , )a f Λ q u a  (2.5) 

The matrix Λ  relates the activations in vector a  to the system forces. Because of these 
basic equations, the forward and inverse problems can be solved using optimisation 
techniques. Erdemir et al. provided an extensive work on model-based estimation of 
muscle forces [85]. Because the human body has many joints, and multiple muscles act 
on these joints, estimating the muscle forces distributed over these muscles is difficult. 
Moreover, distinct muscle activation patterns can achieve the same movement of the 
joint. This so-called ‘muscle redundancy’ or ‘load-sharing problem' can be solved by 
minimising a cost or objective function. Unfortunately, the choice of the objective 
function or cost terms will determine the outcome of estimated muscle forces, which will 
often differ from the measured indication of active muscles. The various optimisation 
techniques that can be used to solve the optimisation problem can be grouped into the 
following strategies [85]: a) inverse dynamics-based static optimisation, b) forward 
dynamics assisted data tracking, c) optimal control, and d) other strategies.  
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2.3. Aim and outline 
This dissertation aims to demonstrate the feasibility and importance of muscle activation 
signals calculated from sEMG recordings in biomechanical models of the face, for 
application in a virtual therapy toolkit. Much research has been conducted into 
biomechanical modelling with sEMG of the lower and upper limbs (see Erdemir et al. 
[85]). Studies of the facial muscles, face models, and EMG, however, are scarce. Research 
describing facial EMG measurements has been performed in the context of speech 
interfaces – mostly silent-speech interface [86] and multi-modal speech synthesis [87] – 
lipreading [88], human machine interfaces [89,90], psychophysiology [91,92], and 
medical assessments [93,94]. Few studies reported on the estimation of lip shapes or lip 
movement incorporating EMG [95,96], while facial models are widely present [76,97–101]. 

Part II describes the statistical exploration into the practical use of sEMG as a predictor 
or estimator of facial expressions and visemes, which are groups of speech sounds that 
visually look the same: e.g., mama and papa. Chapter 3 classifies 3D lip shapes with 
sEMG, essentially indicating that sEMG of the facial muscles can convey enough 
information to create personalised 3D lip models. Chapter 4 extends this work towards 
dynamic movements and also incorporates dynamics into the statistical model.  

In Part III, sEMG applicability is further explored in biomechanical models. In Chapter 5, 
facial expressions are simulated with a biomechanical face model that uses sEMG signals 
as a derivative of the person-specific activation signals. The opposite procedure, inverse 
modelling to obtain realistic person-specific activations signals, is performed in 
Chapter 6. This chapter evaluates whether sEMG could help in solving the ambiguity 
problem that occurs in inverse modelling, as described above. As inverse-modelling in a 
finite-element model will be a rather time-consuming approach, Chapter 7 evaluates 
different methods with a simplified model of the arm with two degrees of freedom. This 
chapter aims to give us an indication of which algorithms can be best pursued in the 
more complex models of the face and tongue. The performance assessment of two 
inverse-modelling algorithms, with and without sEMG assistance, may serve as a first 
indicator.  

Finally, Part IV wraps up the work by presenting a short summary per chapter, general 
conclusions, a general discussion, and future perspectives in Chapter 8. A general 
summary in English and in Dutch follow in Chapters 9 and 10. 

The appendices have been accommodated in Part V. 
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Abstract 

Aim  
The aim of this study is to prove that facial surface electromyography (sEMG) conveys 
sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we 
could train a neural control model for activation of biomechanical models by 
simultaneously recording sEMG signals and their associated motions.  

Materials and methods 
With a stereo-camera set-up, we recorded 3D lip shapes and simultaneously performed 
sEMG measurements of the facial muscles, applying principal component analysis (PCA) 
and a modified general regression neural network (GRNN) to link the sEMG measurements 
to 3D lip shapes. To test reproducibility, we conducted our experiment on five volunteers, 
evaluating several sEMG features and window lengths in unipolar and bipolar 
configurations in search of the optimal settings for facial sEMG. 

Conclusions 
The errors of the two methods were comparable. We managed to predict 3D lip shapes 
with a mean accuracy of 2.76 mm when using the PCA method and 2.78 mm when using 
modified GRNN. Whereas performance improved with shorter window lengths, feature 
type and configuration had little influence. 
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3.1. Introduction 
Treatment choice for oral cavity carcinoma still depends on the subjective judgements of 
treating physicians and multidisciplinary tumour boards. The primary choice of treatment 
will normally be surgery, with or without adjuvant radiotherapy [1]. If the functional 
consequences of surgery would reduce the quality of life to an unacceptable extent, the 
tumour is considered ‘functionally inoperable’ [2], and organ-sparing chemoradiation 
treatment will provide a better alternative. Yet, ‘functional inoperability’ is a subjective 
label and as such not very reliable [3].  

To predict functional consequences more objectively, we have been developing a virtual-
therapy tool that comprises a patient-specific biomechanical model of the oral cavity and 
oropharynx [4]. To further individualise this model, we proposed implementing 
electromyographic (EMG) signals to estimate volunteer-specific muscle activations during 
specific tongue movements. Since surface EMG (sEMG) of the tongue is difficult to 
perform, we decided first to look at lip shapes, which are easier to capture in 3D images, 
while their underlying muscle activation patterns are easy to assess with sEMG, yet the 
facial musculature is still complex enough to prove our concept. 

Most research efforts with facial EMG have focussed on speech interfaces, mostly silent-
speech interfaces [5] and multimodal speech synthesis models [6]. Their general aim has 
been to categorise phonemes, words, articulatory features, or gestures by facial and tongue 
EMG signals [7–14]. Honda et al. [15] and Lucero & Munhall [16] have both published on 
predicting lip shapes. Honda et al. [15] used video imaging to estimate lip shapes, but the 
images were in 2D, and their model did not account for jaw movements. Lucero & 
Munhall’s [16] finite-element model (FEM) of the face and lips estimated 3D lip positions, 
but their lip marker correlation coefficients were relatively low (mean<0.71).  

We are now taking a step forward by investigating two methods to estimate 3D lip shapes. 
Our first objective was to show that facial sEMG can adequately estimate volunteer-specific 
3D lip shapes. If sEMG conveys sufficient information to estimate lip shapes, we could use 
that information together with simultaneous video recordings of the pertaining motions 
to train a neural control model for the activation of a personalised biomechanical model 
that in the end will present the effects of treatment in a virtual-therapy environment. 
Furthermore, this could perhaps bring us closer to solving the load-sharing problem of 
inverse dynamics [17]. Finally, accurate sEMG-based lip modelling would also be helpful in 
other fields, such as silent-speech interfaces and multimodal speech synthesis [5,6,11].  

Our second objective was to see if we could identify any volunteer-independent settings 
for sEMG feature extraction, which would greatly benefit our future application: an 
individualised biomechanical simulation model for lip and oral cancer patients. Not having 
to optimise the settings per patient would save us a lot of time and effort. 
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3.2. Materials and methods 
3.2.1. Volunteers and data acquisition 
To test reproducibility, we recruited five volunteers (four males and one female) aged 
between 24 and 25. In our recruiting e-mail, we briefly explained about our experiment 
and on the test day itself, we once again informed them of the procedure and of their rights 
as volunteers, including the right to withdraw at any moment without stating a reason. All 
volunteers gave their informed consent and their approval for publication of anonymised 
results. This experiment was approved by the Medical Research Ethics Committee of the 
Netherlands Cancer Institute and conducted in accordance with Dutch legislation, 
including the Agreement on Medical Treatment Act, Personal Data Protection Act, and 
the Code of Conduct for Responsible Use of the Federa (Dutch Federation of Biomedical 
Scientific Societies). 

With a black skin marker, we marked ten points on the lips for measuring 3D lip positions 
and six on the face (two infraorbitally, two supraorbitally, and two on the nose) to 
compensate for head movements, see Figure 3.1. Our camera set-up consisted of two 
consumer cameras (Casio® EX-FC100), which we calibrated with a 10x10x10 cm wireframe 
cube with 27 nodes at known positions before placing it in front of the volunteer. To 
quantify the measurement error of our camera measurement device, we calculated the root 
mean square (RMS) of the distances between the actual 3D node positions and their 3D 
positions as calculated from the two stereo images. Using a leave-one-out method, we 
calibrated with 26 nodes and rotated the remaining node so that we obtained 27 error 
distances, from which we calculated the RMS measurement error, being 0.63 mm. 

Led by human lip anatomy and a paper by Lapatki et al. [19], we decided to perform sEMG 
measurements of the zygomaticus major (ZYG), the risorius (RIS), the orbicularis oris 
superior (OOS) and inferior (OOI), the mentalis (MEN), the depressor anguli oris (DAO), 
and the levator labii superioris alaeque nasi (LLSAN) muscles. We further included the 
digastric muscle (DIG) to represent jaw opening in our model.  

For performing sEMG measurements, we used a Porti-system from TMSi (Oldenzaal, the 
Netherlands) with sintered disc-shaped sEMG micro-electrodes (1.5 mm diameter, 
Ag/AgCl) with shielded cables, see Figure 3.1. As the size of the electrodes prohibited 
interelectrode distances (IEDs) smaller than 10 mm, we used 10-mm IEDs. Because of 
individual differences in face dimensions, we could not use a ruler to apply the electrodes, 
so we placed them according to Figure 3.1 and then fine-tuned their positions by searching 
for maximum sEMG output. Finally, we placed a self-adhesive common ground reference 
electrode on the left wrist. 

3.2.2. Instructions to volunteers 
We asked our volunteers to adopt thirteen poses (including a rest pose) by making seven 
facial expressions (voluntary smiling, pursed lips, raised upper lip, mouth open, depressed 
mouth corners, blowing, and pouting; see Figure 3.2) and five vowel sounds 
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(/a/, /e/, /i/, /o/, /u/) for four seconds each, in random order. Between each pose, they 
were to adopt a rest pose with closed mouth and relaxed muscles to serve as our reference 
when defining the magnitude of marker position displacements in the other poses, since 
only displacements can be inferred from sEMG signals.  

 
Figure 3.1 Surface electrode and facial marker positions. Volunteer with sEMG electrodes in bipolar 
configuration placed on the zygomaticus major (ZYG), risorius (RIS), orbicularis oris superior 
(OOS) and inferior (OOI), mentalis (MEN), depressor anguli oris (DAO), levator labii superioris 
alaeque nasi (LLSAN), and digastric (DIG) muscles, and showing ten markers on the lips and six 
infraorbitally, supraorbitally, and on the nose (muscle anatomy adapted from [18]). 

 
Figure 3.2 Rest pose and seven facial expressions as instructed to the volunteers. A: rest,  
B: voluntary smiling, C: pursed lips, D: raised upper lip, E: mouth open, F: depressed mouth 
corners, G: blowing, H: pouting. 
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The seven facial expressions correspond with isolated facial muscle contractions [19]. For 
nontrained volunteers, it is very difficult to perform the poses without any cocontractions 
of other muscles. Since multiple variables are involved in model training, these 
cocontractions are embedded in the model and automatically disentangled during the 
prediction phase. We took pictures of each pose with both cameras and simultaneously 
performed sEMG measurements, repeating our data acquisition four times with a pause 
between repetitions.  

3.2.3. Data processing and analysis 
After manually selecting the marker positions in the images and coming up with a set of 
40 lip pixel coordinates for each pose (ten markers, 2D positions with two cameras), we 
reconstructed these coordinates into a vector, 30( , )p r X , which held the 30 
coordinates of the ten markers in 3D space. Here, 0, ,12p    gives the pose number, and 

1, ,5r    the repetition number. Referring to the facial markers, we used them to register 
all poses to the same reference frame to correct for head motion.  

Our manual selection of the image points induced an error. To assess this error, as well as 
the error induced by imperfect head motion compensation, we estimated the RMS of the 
differences between two selection runs, the so-called intraobserver error  
( obse  ). Let  ,1 ,  1 , ···, 30mx p m  denote the coordinates of the marker position of pose p   
in the first selection run and  ,2 mx p  the ones in the second run, then we defined obse  as 
the RMS of the Euclidean length of the differences, calculating it over the ten markers and 
thirteen poses (including the rest pose) as follows: 

     
12 30 2

,1 ,2
0 1

1
130 m m

p m
obse x p x p

 

   (3.1) 

The RMS intraobserver error turned out to be   2.34 mmobse  , which implies that the 
measurement error ( 0.63 mm ) will not have had a large impact on our position estimation. 
After all, the measurement and observer errors are independent. Therefore, the total of 
errors follows from the root of the sum of squares. Neglecting the measurement error 
would result in an underestimation of the total error of   2 2 22.34 / 0.63  2.34   0.97   . 
Notably, the intraobserver error involved two selection runs, which implies that the error 
of a single run would equal  / 2obse   , with the assumption of uncorrelated errors.  

To assess the magnitude of marker position variations, we calculated the RMS of the 
Euclidean distance between the ten markers of a pose and the corresponding markers in 
the rest position (   0p ), which we then averaged over the twelve poses and the five 
repetitions: 

     
5 12 30 2

1 1 1

1 , 0,
600RMS m m

r p m

d x p r x r
  

   (3.2) 
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1, ,5r    the repetition number. Referring to the facial markers, we used them to register 
all poses to the same reference frame to correct for head motion.  

Our manual selection of the image points induced an error. To assess this error, as well as 
the error induced by imperfect head motion compensation, we estimated the RMS of the 
differences between two selection runs, the so-called intraobserver error  
( obse  ). Let  ,1 ,  1 , ···, 30mx p m  denote the coordinates of the marker position of pose p   
in the first selection run and  ,2 mx p  the ones in the second run, then we defined obse  as 
the RMS of the Euclidean length of the differences, calculating it over the ten markers and 
thirteen poses (including the rest pose) as follows: 
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The RMS intraobserver error turned out to be   2.34 mmobse  , which implies that the 
measurement error ( 0.63 mm ) will not have had a large impact on our position estimation. 
After all, the measurement and observer errors are independent. Therefore, the total of 
errors follows from the root of the sum of squares. Neglecting the measurement error 
would result in an underestimation of the total error of   2 2 22.34 / 0.63  2.34   0.97   . 
Notably, the intraobserver error involved two selection runs, which implies that the error 
of a single run would equal  / 2obse   , with the assumption of uncorrelated errors.  

To assess the magnitude of marker position variations, we calculated the RMS of the 
Euclidean distance between the ten markers of a pose and the corresponding markers in 
the rest position (   0p ), which we then averaged over the twelve poses and the five 
repetitions: 
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Here,   ,mx p r  denotes the thm  element from the vector  ,p rX . We also corrected the 
magnitude of variation ( RMSd ) for the intraobserver error ( obse ) between two selection 
runs to correct the two selections   ,mx p r  and   0,mx r  as follows: 
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To estimate lip positions from our sEMG recordings, we used two methods: nonlinear 
regression with principal component analysis (PCA) and nonlinear regression with a 
modified version of general regression neural network (GRNN). We have described these 
methods below. To assess the accuracy of the positions  ˆ ,p rX  as estimated by both 
regression methods, we calculated the RMS of the Euclidean length of the differences 
between marker positions of the estimated pose and the reference pose: 
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where   ˆ ,mx p r  is the thm  element of the vector  ˆ ,p rX . We corrected this RMSe  for the 
manual selection error by applying the factor  / 2obse  , introducing the factor 1/ 2  
because the obse  was based on two manual selections runs, whereas in equation (3.4), we 
have only one selection run: 

 2 21
2c RMS obse e e   (3.5) 

To compare between volunteers, we defined the ratio of the error to position deviation  
( re ) as follows: 

 c
r

c

e
e

d
  (3.6) 

To compare our results with literature [16], we calculated correlation coefficients between 
  ˆ ,mx p r  and   ,mx p r  per volunteer and per coordinate, coming up with a total of 30 

correlation coefficients, which we then averaged to find the mean correlation coefficient 
of each volunteer. 

3.2.4. sEMG preprocessing 
The sEMG signals were recorded with a sample frequency of 2,048 Hz. We applied a 
fourth-order Butterworth bandpass filter with 15 and 500 Hz cut-off frequencies. Thanks 
to the actively shielded electrode cables, which significantly reduced the mains 
interference and motion artefacts, we found no significant AC power line interference. 
Therefore, we omitted a 50 Hz notch filter. We recorded the signals in two configurations: 
unipolar and bipolar, extracting four types of sEMG features: mean absolute value (MAV), 
root mean square (RMS), waveform length (WL), Willison amplitude (WAMP) with 
thresholds at  1 0 mVlims   and   20 mVlims  . Table 3.1 shows the equations for all features, 
which we chose because they had performed well in a recent experiment [20].  
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We defined the features for six window lengths: 50, 100, 150, 200, 250, and 300 ms and used 
a sliding window with maximum overlap (all-but-one sample) to calculate the features: if 
there were n  sEMG samples in a record and the window length was p  samples, the 
resulting EMG feature record had  –    1 n p  samples. Our reason for using a maximum 
overlap was to get a maximum number of feature vectors per record. Notwithstanding the 
inevitable autocorrelation within the features, maximising the number of features results 
in better performance of both estimation methods. 

We decided to truncate the calculated features of approximately four seconds to three 
seconds exactly (i.e. 6145 samples) to achieve an equal amount for each feature set 
 , ,i p rg . There are 60 feature sets  , ,i p rg  containing the features of 8 sEMG channels 

with  1 , ···, 6145i  (the samples),  1 , ···,1 2p  (the poses), and  1 , ···, 5r  (the repetitions).  

Table 3.1 sEMG feature types and their equations. 
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3.2.5. Principal component analysis based estimation 
We trained our PCA-based regression method using a database that included observed 
marker positions and associated feature vectors. As we used static poses, we considered 
the raw sEMG signals to be stationary during each pose. Consequently, the statistics of 
features calculated for a sliding window were considered constant. Therefore, for each lip 
position  ,p rX , we needed only one sEMG feature vector rather than the whole set of 
6,145 sEMG feature vectors  , ,i p rg , thus avoiding a huge dimension of the measurement 
space.  

We first averaged the vectors in a set over the time samples to yield a single 8D feature 
vector  ,p rg . As we figured we could not perform a linear mapping from this 8D feature 
space to the 30D position space, we decided to apply nonlinear regression. We did try using 
linear regression at first, but ended up with large errors. The simplest way of approximating 
a nonlinear mapping is using a truncated Taylor series expansion of only the quadratic 
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terms. So, to implement nonlinear regression, we augmented these feature vectors with 
the ½ 8 9  36    quadratic terms that could be formed from the eight elements in  
 ,p rg , thus obtaining a set of 44D data vectors  ,aug p rg . Next, we concatenated this 

vector with the 30 coordinates  ,p rX  of the pose, which gave us the following 74D vector 
 ,p rz : 
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 (3.7) 

The training of the PCA model was combined with cross-validation to avoid any 
performance evaluation bias. The PCA model was trained with pooled data from four 
repetitions of twelve poses each. Testing was done on the remaining repetition. We 
reiterated this procedure four times while rotating the five repetition sets in the training 
pool and the test set. Each training pool comprised a 74 48  matrix  trainZ , the columns of 
which were vectors  ,p rz , with a corresponding test set comprising a 74 12  matrix

 testZ . 

Before developing the PCA model, we first normalised our data with respect to the mean 
and variance because there were two different physical dimensions and units. For each of 
the 74 elements in the training set, the average and sample variance were calculated. These 
two parameters were used to shift and scale the data such that the average was zero and 
the variance was one. We also performed this operation on the test set. 

The PCA model Y  is a 74 D  matrix, containing the D  most dominant eigenvectors dy  
that result from        T

train train d d dZ Z y y , where d  are the eigenvalues. We normalised the 
eigenvectors, i.e. the principal components, to get   T YY I  and sorted the eigenvectors 

dy  in 1     , ···, [ ]dY y y  to get the condition  1 d d    for the corresponding eigenvalues. 

PCA is basically an encoding/decoding method. Any data vector from the test set testZ  , say

 testz , could be encoded into a lower D-dimensional coefficient vector b : 

 T
testb Y z   (3.8) 

Decoding from b  uses the same model: 

 test z Yb  (3.9) 

Equations (3.8) and (3.9) were not directly helpful in estimating lip positions. In the test 
set, we wanted to estimate lip positions from the sEMG features, so we could use only that 
part of the vector testz  that contained the sEMG features. We adapted equation (3.9) 
accordingly and defined the submatrix gY  of Y , which contained the sEMG features only 
(the lower 44 rows of Y ). We then had: 

 aug g g Y b v  (3.10) 
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Where v contained the residuals that represented the approximation error in equation 
(3.9), and augg  was the part of testz  that contained the 44 sEMG features. We regarded 
equation (3.10)  as a linear observation model of b , gY  being the observation matrix and 
v  the observation noise. Least Square Error (LSE) estimation of b  is then straightforward 
[21]:  

 
  1ˆ T T

LSE g g g aug


b Y Y Y g

 (3.11) 
ˆ
LSEb  being the estimated coefficient vector. From that, we could estimate the full vector

 testz , including the 30 lip position coordinates X  by applying equation (3.9): 

 
ˆLSE LSEz Yb

 
(3.12)

 
Undoing the normalisation finalised the estimation. 

An extension of this estimation of b  is the Minimum Mean Square Error (MMSE) 
estimation. This method exploits the prior knowledge that the PCA coefficients are 
uncorrelated, with zero means. The covariance matrix bC  of b  is diagonal with diagonal 
elements  d . With uncorrelated residuals v , the covariance matrix is proportional to the 
unity matrix 2   v vC I . The unbiased MMSE estimate  

ˆ
MMSEb , based on the sEMG features, 

then follows [21]: 

 
2 1 1(ˆ )T T

MMSE g g v b g aug   b Y Y C Y g
 (3.13) 

Obviously, when v  is set to zero,  
ˆ
MMSEb  equals  

ˆ
LSEb . So, the MMSE estimate 

encompasses the LSE estimate, and there is no need to treat it separately.  

3.2.6. Extended general regression neural network estimation 
The second regression method is an extension of the general regression neural network 
(GRNN). GRNN is a nonlinear interpolation method based on Parzen kernel density 
models [22]. We combined the design and evaluation of GRNN with cross-validation in the 
same way as outlined before. First, we defined a linear index over the poses and repetitions: 

12( 1)
def

c r p    

Assuming the vectors cX  and cg  are associated, we had a population of pairs available in 
a training pool  ,    1{  , ···, }4( | 8)c c cX g . Given a new sEMG vector g , GRNN estimates the 
associated vector X̂  by: 
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where ( ), cs g g  is a similarity measure between g  and cg  derived from a Parzen estimate 
of the underlying probability density. We replaced the Parzen kernel that uses isotropic 
Gaussians based on Euclidean distances with the likelihood function  |  p cg , assuming 
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nonisotropic Gaussians with pose-dependent Mahalanobis distances. This alteration of the 
standard GRNN would induce better adaptations to the feature vectors’ statistical 
properties. We defined all 48 poses in a training pool as individual classes. For each class, 
a feature set  , ,i p rg  was available, which we used to train the likelihood function 
 |  p cg . In the assumption of normal distributions for the likelihood function 
               –  , | c cp c Ng g µ C , learning boils down to estimating the mean cµ  and the 

covariance matrix  cC , as in ˆ c c g . We defined the similarity measures associated with a 
new vector g  as follows: 

 
2( , ) ( , )c c cs N    g g g g C I  (3.15) 

The introduction of factor 2  improved the generalisation capability. For each pose, only 
four repetitions in a training pool were available. Therefore, poses were not well populated 
in the 8-dimensional feature space. By spreading the Gaussian kernels with the factor  

2 , we increased the overlap between kernels. We added the term  I  to improve 
numerical stability, but the choice of   (around 610 ) was not critical. 

For each regression method, we determined the best performing combination of feature 
type, window length, and configuration (of 60 possible combinations) using the cross-
validation technique mentioned before. With the PCA method, we evaluated the 
parameter v  for each combination over the range of   0, 0.05, ···, 0.3v   and the PCA 
dimension D  over the range of  1 , 2, ···, 48D . With the GRNN method, we analysed the 
parameter   over the range of  1 , 2, ···,1 0  . 

To estimate the mean optimal settings, we averaged the error values ce  over the five 
volunteers and looked which settings gave the minimum error: 
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 (3.16) 

In the GRNN method, we interchanged the parameters D  and v  with . 

We applied the one-sided paired Student’s T-test to check for significant differences 
between the PCA-based regression methods and to test for significant differences between 
volunteer-independent and volunteer-specific parameters. After all, since the PCA-LSE is 
in fact included in the PCA-MMSE at   0v  , it can never be better than the PCA-MMSE. 
The same holds true for volunteer-specific parameters, which will always outperform or be 
equivalent to volunteer-independent parameters. We compared the GRNN with the PCA-
MMSE using the two-sided paired Student’s T-test, because we did not know whether the 
GRNN method would perform better or worse than the PCA-based regression method. 
Finally, we performed a repeated-measures ANOVA test to look for statistically significant 
influences of the various sEMG feature extraction settings and parameters. 
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3.3. Results 
Figure 3.3 gives an idea of the accuracy showing the 3D lip shapes of volunteer 5 with 
volunteer-specific settings for both PCA-MMSE (in orange) and modified GRNN (in blue). 
Table 3.2 presents the optimal results of the five individual volunteers for both methods. 
Table 3.3 shows the results for the mean optimal settings as calculated by equation (3.16). 
Both with volunteer-specific (   0.01P ) and with volunteer-independent settings  
(   0.01P ), the PCA-MMSE method performed significantly better than the PCA-LSE 
method. However, we found no significant difference between the modified GRNN 
method and the PCA-MMSE method (volunteer-specific settings:  ~ 0.17P  and volunteer-
independent settings:  ~ 0.99P ), nor did we find any significant difference between the 
volunteer-specific settings and the volunteer-independent settings (PCA-LSE:  ~ 0.82P , 
PCA-MMSE:  ~ 0.15P , GRNN  ~ 0.06P ). In the PCA-based estimation, dimension D   
(   0.01P ), and parameter v  (   0.01P ) were both statistically significant, whereas 
feature type (  ~ 0.14P ), window length (  ~ 0.06P ), and configuration (  ~ 0.06P ) were not. 
In the modified GRNN-based estimation, parameter   (   0.01P ) and window length  
(   0.01P ) were statistically significant, whereas feature type (  ~ 0.07P ) and 
configuration (  ~ 0.58P ) were not. The averaged data showed somewhat lower error 
measures ce  and re  when we used the PCA method. Nevertheless, with volunteer-specific 
settings, the GRNN method performed better in four volunteers. 

 

 

Figure 3.3 Rest pose and seven facial expressions in 3D of volunteer 5 averaged over the five 
repetitions. Green: lip shapes tracked by 3D image reconstruction using a stereo-camera set-up. 
Orange: lip shapes estimated by the PCA-based nonlinear regression. Blue: lip shapes estimated 
by the extended GRNN-based nonlinear regression. A: rest (not estimated), B: voluntary smiling, 
C: pursed lips, D: raised upper lip, E: mouth open, F: depressed mouth corners, G: blowing,  
H: pouting. 
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by the extended GRNN-based nonlinear regression. A: rest (not estimated), B: voluntary smiling, 
C: pursed lips, D: raised upper lip, E: mouth open, F: depressed mouth corners, G: blowing,  
H: pouting. 

 

 

Table 3.2 The lowest error values for ce  and re  by volunteer with the corresponding settings. 
 

ec (mm) er ρ Config.a Feat.b Window 
(ms) 

D σv α 

 
P G P G P G P G P G P G P  G 

1 2.71 2.69 0.24 0.24 0.90 0.90 1 1 1 1 200 200 10 0.05 3 

2 3.00 3.12 0.29 0.31 0.88 0.86 2 2 2 3 300 150 17 0.25 5 

3 2.41 2.25 0.23 0.22 0.91 0.92 1 1 1 1 300 50 12 0.10 2 

4 1.99 1.42 0.23 0.17 0.91 0.94 1 2 1 4 300 50 7 0.05 2 

5 2.94 2.39 0.33 0.27 0.87 0.90 1 1 1 5 100 200 6 0.05 3 

a. The monopolar configuration is represented by 1 and the bipolar configuration by 2. 
b. Optimal features are represented by numbers as follows:  

1. WAMP slim = 10 mV; 2. WAMP slim = 20 mV; 3. WL; 4. MAV; 5. RMS. 
c. The different methods are represented by capitals: P for PCA and G for GRNN 

Table 3.3 The error values for ce  and re  by volunteer with the mean optimal settings, i.e. 
volunteer-independent settings (see equation (3.16)). 

 rmse (mm) ce (mm) re    

Volunteer PCAa GRNNb PCAa GRNNb PCAa GRNNb PCAa GRNNb 

1 3.18 3.68 2.71 3.28 0.28 0.33 0.90 0.89 
2 3.94 3.58 3.57 3.17 0.36 0.32 0.85 0.85 
3 2.95 2.95 2.45 2.44 0.25 0.25 0.91 0.91 
4 2.60 2.18 2.01 1.42 0.20 0.14 0.91 0.94 
5 3.40 3.80 2.97 3.42 0.30 0.35 0.88 0.86 
Averaged 3.21 3.24 2.74 2.75 0.28 0.28 0.89 0.89 
Corrected 
Average 

2.76 2.78       

a. PCA settings: configuration = unipolar; feature = WAMP slim = 10 mV;  
window length = 300 ms; D = 9; σv = 0.05.  

b. GRNN settings: configuration = bipolar; feature = MAV; window length = 50 ms; α = 2 

We found the lowest mean error in the unipolar configuration when estimating positions 
with PCA and in the bipolar configuration when using GRNN. However, three volunteers 
performed better in the unipolar configuration. When we interchanged configurations, the 
corrected error with mean optimal settings ( ,c mine ) became 3.78 mm when using PCA and 
3.01 mm when using GRNN. The PCA method showed more consistency with respect to 
the chosen feature than the GRNN method. In all volunteers, the WAMP feature showed 
the best results – in four volunteers at  1 0 mVlims  , which also showed the lowest mean 
error rates, and in one at   20 mVlims  . The GRNN method showed a preference for the 
MAV feature in the averaged results. Two volunteers performed better when we used the 
WAMP feature at  1 0 mVlims  . In one volunteer, WL gave the best results, and in another, 
RMS. 



66

 

 

Table 3.4 lists the optimal settings for both methods per feature, averaged over the 
volunteers (see equation (3.16)), with the corresponding error measures. In the PCA 
method, WAMP at  1 0 mVlims   clearly performed better. The error measures between the 
different features were much smaller when we used GRNN, showing a maximum difference 
in ce  of 0.31 mm between MAV and WAMP at   20 mVlims  . The methods showed 
differences in preferred window lengths, with 300 ms in the PCA method and 50 ms in 
GRNN. However, influence of window length appeared much more profound in GRNN 
than in PCA, producing maximum ce  differences of merely 0.02 mm in PCA and no less 
than 0.68 mm in GRNN. 

In all volunteers, we found good correlation coefficients (  ). With the PCA method,   
ranged between 0.87 and 0.91 and with the GRNN method,   ranged between 0.86 and 
0.94. The mean   was 0.89 with both methods (see Table 3.2). Between features,   
ranged between 0.87 and 0.89.  
 
Table 3.4 The mean optimal results (see equation (3.16)) by feature obtained with PCA and GRNN 
and the corresponding settings. 

 RMS MAV WL WAMP 

 1 0 mVlims    
WAMP 

  20 mVlims    
 

PCA GRNN PCA GRNN PCA GRNN PCA GRNN PCA GRNN 

ce  mm) 3.31 2.81 3.33 2.78 3.28 2.88 2.76 2.84 3.27 3.09 

re  0.34 0.29 0.34 0.28 0.33 0.29 0.28 0.29 0.33 0.31 

   0.87 0.89 0.87 0.89 0.87 0.89 0.89 0.89 0.87 0.88 

Config. Mono Bi Mono Bi Mono Mono Mono Mono Mono Mono 
Window 
(ms) 50 50 50 50 50 50 300 150 200 50 

D 7 NA 7 NA 9 NA 9 NA 16 NA 

σv 0.05 NA 0.05 NA 0.05 NA 0.05 NA 0.1 NA 

α NA 2 NA 2 NA 2 NA 3 NA 2 

The optimal PCA dimension D  ranged between 6 and 17 in our volunteers and showed an 
optimum in the averaged results at 9. By evaluating the results for all different dimensions, 
we found that the first four to five principal components had a large influence on shape 
prediction. When we used eight principal components, the error values reached a plateau, 
after which only small changes in the errors occurred. When using nine principal 
components, we found explained variances in the PCA model of 92 to 96% in our 
volunteers.  

We never found the optimal value for v  to be zero, which means that the MMSE analysis 
performed better. We noted a clear trend towards higher ce  values when increasing v . 
A 0.05 increase of v  produced a mean error increase of 0.11 (range: 0.10 to 0.13).  
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This trend occurred in four of five volunteers; volunteer 2 was the only one to show a small 
error decrease as v  was raised to 0.25. 

The averaged results showed the lowest error at parameter   2  . Only volunteer 2 clearly 
deviated with the lowest error at   5.  In this volunteer, the error was 0.50 mm larger at 

  2  , with the other settings unchanged. 

When comparing volunteers by values in  re , we found the PCA method to be more 
consistent than the GRNN method: the former gave a value range of 0.23 to 0.33 and the 
latter a range of 0.17 and 0.31. Both methods gave a value of 0.28 for re  with the averaged 
data. 

3.4. Discussion  
Our study has shown that it is, indeed, possible to estimate static 3D lip shapes from 
volunteer-specific sEMG measurements of facial muscles and the digastric muscle. The 
tested methods, PCA-based nonlinear regression and a modified GRNN, gave comparable 
results with an average accuracy of about 2.8 mm in five measured volunteers.  

In the PCA approach, MMSE performed significantly better than LSE. The MMSE method 
uses the additional knowledge that the values in the coefficients b  are uncorrelated, with 
zero means and with variances that are known from the PCA model [21]. Therefore, the 
growth of the coefficients is controlled, and a higher PCA dimension can be achieved, 
which will lead to a more accurate estimation. The corrected RMS error of 2.76 mm and 
correlation coefficient of 0.89 are promising results. The modified GRNN method 
produced almost identical results. Both models seem generally applicable, but PCA was 
more consistent between volunteers, whereas in four volunteers, the modified GRNN 
method produced more accurate position estimates.  

A disadvantage of using the modified GRNN method could be the fact that GRNN can be 
regarded as an interpolation method with a lookup-table that is filled by the training set 
and probed by the sEMG feature vector of the unknown pose. The method performs well 
as long as the feature vector probes in the vicinity of feature vectors in the table, as was 
the case in this study. The results are less predictable if the feature vector probes in a white 
area of the lookup-table, which can occur when a pose is adopted that is not present in the 
training set. As PCA behaves smoother in the untrained regions, this method may be of 
better use for our ultimate goal: to predict post-treatment function loss, we will need 
maximum accuracy in predicting not only 3D lip shapes, but also functional movements 
that result from multiple muscle activations, even though we could never create a 
volunteer-specific training set that includes all possible poses. 

Since most models in literature do not give quantitative values, we have difficulty 
comparing our results with previous findings. Lucero & Munhall’s finite-element model of 
the face and lips uses intramuscular facial EMG measurements (ZYG, LLS, DAO, MEN, 
OOS, OOI, and the depressor labii inferioris and levator anguli oris muscles) [16].  



68

 

 

They placed five markers on the lips and estimated vertical displacements and protrusions 
of these markers, finding mean correlation coefficients of 0.71 and 0.28 for vertical 
displacement and protrusion, respectively.  

Although our methods performed much better than this finite-element approach, our 
models could only describe phenomena, whereas a FEM could establish a one-to-one 
correspondence between anatomy and physiology on the one hand and mathematical 
structures on the other, which renders it more suitable for a practical application to predict 
post-treatment function loss. Moreover, the FEM approach can include the (nonlinear) 
dynamics of anatomy and physiology. Some poses, e.g. the pose adopted when articulating 
the vowel sounds /a/ and /e/, require little persistent muscle activation. When we 
disregard the muscle activation patterns (and associated sEMG patterns) that produce 
these poses, it is much harder to distinguish between them. 

We cannot draw any decisive conclusions as to an optimal configuration, feature, or 
window length for processing sEMG signals. The PCA method showed a preference for 
unipolar sEMG measurements in combination with the WAMP feature at  1 0 mVlims   and 
calculated over longer time windows (on average, 300 ms). The GRNN method performed 
best in a bipolar configuration with the MAV feature determined over a 50-ms time 
window. However, the optimal settings varied between volunteers, especially in the GRNN 
method. In the PCA method, we did not find a single best setting for window length either, 
but the effects on the error with PCA were marginal – probably because we evaluated static 
poses only with an sEMG-feature sequence averaged over three seconds. The GRNN 
method performed significantly better with smaller window lengths than with larger ones, 
possibly because small windows have more fluctuations in the sEMG features, thus 
expanding the covariance matrix and leading to a better kernel coverage in the  
8-dimensional feature space. For the purpose of this study, a volunteer-specific model 
coupling sEMG to positions, we did not find it necessary to determine one single best 
configuration for all volunteers, since the parameters could be fine-tuned during the 
training process with each volunteer’s individual data. Nevertheless, narrowing down the 
parameter ranges and evaluating only the best performing features would definitely reduce 
computation time. 

Meltzner et al. used a modified Mel-frequency cepstral coefficients (MFCC) algorithm for 
feature extraction from sEMG [12,13]. MFCCs are frequently used in automatic speech 
recognition with acoustical signals. Despite the fact that sEMG signals possess different 
properties than acoustical signals, Meltzner et al. found that an MFCC algorithm tailored 
to their needs outperformed the other processing algorithms they tested [12,13]. More 
recently, Längkvist et al. reviewed the applications of deep learning for feature extraction 
from time series [23], and Wand & Schultz showed the use of deep neural networks in 
EMG-based speech recognition [24]. These are interesting topics that might improve our 
results, but we would probably need much more training data. Since the current accuracy 
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has the same order of magnitude as the observation error, these improvements will be 
marginal.  

Future experiments may benefit from the inclusion of advanced feature extraction 
algorithms like the ones mentioned before in combination with high-density sEMG grids. 
Staudenmann et al. showed that these grids improved sEMG-based muscle force 
estimation by some 30% [25]. Another good thing about these grids is that they eliminate 
the need for precise microelectrode placement.  

When tested on our five volunteers, our methods produced satisfying initial results and 
our models showed comparable accuracy in all volunteers. Despite our relatively small 
sample size, our results indicate that sEMG of the perioral muscles conveys sufficient 
information to estimate 3D lip positions, and we have identified important parameters.  
A larger sample size might reveal that window length, configuration, and feature type also 
have significant influence on the RMS errors. On the other hand, a large sample size may 
produce significant differences of small RMS errors, which do not have any practical 
meaning.  

Despite similar performances, we favour the PCA-based regression model because of the 
advantages discussed before, the possible disadvantages of modified GRNN, and the 
computational load of the estimators, which is in favour of the PCA method. 

It must be noted that training sets are volunteer-specific and cannot be used for the 
estimation of lip poses of other volunteers. This problem also occurs in EMG-speech 
recognition, as described by Schultz & Wand [10]. They showed that generic independent-
speaker models might be feasible but at the cost of higher error. Meltzner et al. argue that 
speaker-dependent systems do have practical applications and that the minimal amount 
of training data necessary per individual is not too big of a burden [12]. For our ultimate 
goal, these volunteer-specific models are key, as each patient is unique.  

Variance in facial muscle anatomy, small muscles and electrodes hampers the exact 
identification of muscles and electrode locations, which may cause small differences 
between volunteers in muscle activation measurements or amount of crosstalk picked up 
in the signals. Lapatki et al. showed there is a high risk of crosstalk in the facial musculature 
due to cocontraction of adjacent muscles [26]. Even when using high-density grids, 
crosstalk remains visible, even if it is reduced. We saw coactivation in all volunteers and 
all poses in varying degrees. Apparently, either the volunteers were not always able to 
perform isolated muscle contractions, or crosstalk occurred.  

Our most important conclusion is that features extracted from facial sEMG can estimate 
lip shapes in 3D with high accuracy. This finding is an essential step forward in 
constructing a virtual-therapy model to predict post-treatment function loss. We found 
our sEMG processing parameters to be generally applicable and could use them in our 
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future application for oral and lip cancer patients, so we will not have to optimise our 
sEMG parameters for each patient individually.  

These settings might not only benefit researchers in the field of silent-speech interfaces, 
but might also be interesting for researchers in the field of human machine interfaces 
(HMI) – for instance, in projects like Hamedi et al.’s, who used facial sEMG to classify 
emotions [7,27]. The results of our study seem promising for controlling machines via HMI 
with support of up to 13 control commands (the thirteen poses). Our models would be able 
to classify emotions and present them visually in 3D, too. Moreover, as suggested by Honda 
et al., the models could produce visual output for physiological vocal-tract models in 
speech production and speech synthesis. Or they could provide visual feedback in EMG-
based speech recognition. 

For the development of a virtual-therapy model that could predict functional outcome, the 
current models should be extended to incorporate dynamics as well as unilateral lip 
movements. Such extension would require video capturing of the lips and bilateral sEMG 
measurements. 

Our recommendation for future research would be to combine FEM with nonlinear 
regression and apply the estimation techniques to model the neural activation of simulated 
muscles instead of lip positions, thus separating activation modelling from dynamic 
modelling. The first step in developing such an activation model of the lips has been taken. 

3.5. Conclusion 
This study shows that static 3D lip shapes can be estimated from volunteer-specific sEMG 
measurements of facial muscles and the digastric muscle. The tested methods – PCA-based 
nonlinear regression and a modified GRNN – gave comparable results with an average 
accuracy of about 2.8 mm in the five measured volunteers.  
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Abstract 

Aim 
In oral cancer, loss of function due to surgery can be unacceptable, designating the tumour 
as functionally inoperable. Other curative treatments can then be considered. Currently, 
predictions of these functional consequences are subjective and unreliable. We want to 
create patient-specific models to improve and objectify these predictions.  

Materials and methods 
A first step was taken by controlling a 3D lip model with volunteer-specific sEMG activities. 
We focus on the lips first, because they are essential for speech, oral food transport, and 
facial mimicry. Besides, they are more accessible to measurements than intraoral organs. 
3D lip movement and corresponding sEMG activities are measured in five healthy 
volunteers, who performed 19 instructions repeatedly, to create a quantitative lip model 
by establishing the relationship between sEMG activities of eight facial muscles bilaterally 
on the input side and the corresponding 3D lip displacements on the output side. The 
relationship between 3D lip movement and sEMG activities was accommodated in a state-
space model.  

Conclusions 
A good relationship between sEMG activities and 3D lip movement was established with 
an average root mean square error of 2.43 mm for the first-order system and 2.46 mm for 
the second-order system. This information can be incorporated into biomechanical models 
to further personalise functional outcome assessment after treatment. 
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4.1. Introduction 
Oral cancer, including that of the lips, is the sixth most common cancer worldwide [1]. 
Surgery is still standard care [2] and can lead to deterioration of speech, swallowing, and 
mastication with serious consequences on quality of life [3]. If surgical resection of a 
tumour results in an unacceptable loss of function, the tumour is designated as 
functionally inoperable, and other curative treatment options such as chemoradiotherapy 
or radiotherapy can serve as alternative treatments [4]. 

Accurate prediction of the functional consequences of surgery is an urgent need to make 
the right choice of treatment [5]. Functional prediction using virtual surgery is complex 
and involves several aspects of patient-specific anatomical geometry, biomechanical tissue 
properties, branching and distribution pattern of the nervous system, and the muscle 
activation signals that control a particular function. Biomechanical modelling, including 
the muscular system, in the oral and oropharyngeal region, has been the subject of ongoing 
research [6–9]. 

This paper focuses on the lips, since these are essential for speech, oral food transport, and 
facial mimicry. To create a predictive model, a continuum of 3D lip shapes is needed 
ultimately to perform virtual surgery on a model. Former research on lip modelling, 
utilising surface electromyography (sEMG) of facial muscles, is more phonetic in nature 
and is mainly focused on the categorisation of facial expressions [10], categorisation of 
vowels [11], and words [12]. 

To our knowledge, only two studies have described lip shape modelling in combination 
with quantitative lip pose estimation using facial electromyography (EMG). Honda et al. 
recorded lip motion in the 2D frontal projection of the face and sEMG signals from only 
one side [13]. They used a direct linear mapping of EMG to the lip coordinates based on 
multiple regression analysis. A visual comparison between the measured and modelled lip 
shapes was made. Lucero and Munhall acquired intramuscular EMG data, using hooked-
wire bipolar electrodes, of one side of the face, and simultaneously measured lip and face 
displacements on the other side [14]. The relationship between EMG activity and marker 
displacements was based on a facial finite element model and the connection between 
EMG feature and the steady-state force generated by the corresponding muscle was 
presumed to be linear. The quantitative evaluation was expressed in terms of cross-
correlation between model-predicted and measured displacements of the individual 
markers. For markers on the lips, these cross-correlations were rather low (mean values: 
0.0 - 0.91) with very low cross-correlation for protrusion. The instructions in these studies 
differed, Honda et al. used five Japanese vowels, and the subject in the study of Lucero and 
Munhall was asked to produce an English sentence. Both models were tested on one 
volunteer. 

The goal of this study is twofold. First, we want to demonstrate that sEMG signals contain 
enough information for controlling 3D dynamic models of facial expressions, particularly 
lip movements. The second goal is to establish the optimal processing configuration to 
extract information from facial sEMG data. To avoid the complexity and pitfalls of detailed 
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biomechanical models, we first focus on an empirical model. If the results of this empirical 
model are promising, the premise is justified that sEMG signals are very useful to solve the 
ambiguity problems in inverse dynamic modelling [15]. In addition, our study also should 
reveal which sEMG processing configuration, e.g. sEMG feature type and time window, is 
most promising for sEMG-based inverse modelling. The ambiguity problem of inverse 
dynamic modelling stems from the fact that a desired movement can be accomplished in 
various ways [15]. The activation pattern that causes the desired movement is not unique. 
The addition of the sEMG could provide further information about a patient-specific 
activation pattern. 

4.2. Methods 
4.2.1. Volunteers and data acquisition 
Data were obtained from five healthy volunteers ( 1, ,5k   ) consisting of two males and 
three females, age ranging from 21 to 30. The recording sites of the skin were cleansed with 
NuPrep abrasive gel and alcohol. The sEMG signals were recorded using a TMSi® Porti™ 
system (TMSi ®, Oldenzaal, the Netherlands). The micro-sEMG sintered disc-shaped 
surface electrodes (1.5 mm diameter, Ag/AgCl, with shielded cables) were placed above 
eight muscles on both sides of the face ( 1, ,16n   ), as shown in Figure 4.1. The locations 
were chosen based on human lip anatomy and a study of Lapatki et al. showing the effects 
on lip shapes [16]. Additionally, a common ground reference electrode was applied with a 
self-adhesive button electrode on the left wrist. In Table 4.1 the measured muscles, their 
functions and electrode number, corresponding to the numbering in Figure 4.1 are given. 
Sixteen facial markers were defined using a skin marker. Ten markers covered the lip 
contour ( 1, ,10m   ). The other six markers ( 1, ,6ORm   ) were located on the face 
(cheeks, nose and forehead; see Figure 4.1) and were used to compensate for head 
movement. The volunteers were positioned in front of a triple-camera set-up consisting of 
three cameras (Basler avA1000-100gc), which recorded the lip movement at 100 frames per 
second. 

 
Figure 4.1 Left: Locations of electrodes, orientation markers, lip markers, and facial markers. 
Right: Measured facial muscles (excluding the digastric muscle), adapted from [17], with 
permission of Springer. ©2012 Springer-Verlag Berlin Heidelberg. 
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Table 4.1 Muscle, muscle function, and corresponding electrode number. 

Muscle  Function Electrodes number 
(right/left) 

Zygomaticus major 
(ZYG) 

Elevates the corners of the mouth in lateral 
direction 

11, 12 / 27,28 

Risorius (RIS) Retracts angle of mouth 9, 10 / 25, 26 
Orbicularis oris 
superior (OOS) 

Narrows orifice of mouth, purses lips and 
puckers lip edges 

1, 2 / 17, 18 

Orbicularis oris 
inferior (OOI) 

Narrows orifice of mouth, purses lips and 
puckers lip edges 

3, 4 / 19, 20 

Mentalis (MEN) Draws up the skin of the chin and causes the 
lower lip to protrude 

13, 14 / 29, 30 

Depressor anguli oris 
(DAO) 

Draws the corners of the mouth downwards 
and laterally 

7, 8 / 23, 24 

Levator labii superioris 
aleaque nasi (LLSAN) 

Elevates and everts upper lip 5, 6 / 21, 22 

Digastricus (DIG) Depresses mandible, opening mouth, and/or 
elevates larynx 

15, 16 / 31, 32 

4.2.2. Instructions to volunteers 
A study of van Son et al., showed that Dutch (experienced) lip readers were able to 
recognise five consonantal and five vowel visemes [18]. Visemes are groups of speech 
sounds that are visually indistinguishable. These Dutch viseme instructions were used in 
this study. Besides these visemes, six facial expressions that maximised independent 
contraction of the measured muscles were included. These selected expressions were based 
on the work of Lapatki et al. [16]. Lastly, two asymmetric motions were performed from 
left to right to left with closed lips, and with open lips, and one dynamic motion transfer 
between two expressions; purse lips to smiling to purse lips. Each volunteer was asked to 
repeat the 19 instructions ( 1, ,19i  ) five times ( 1, ,5r   ). The instructions are shown 
Table 4.2. 

4.3. Data processing and analysis 
4.3.1. sEMG preprocessing 
The sEMG signals ( , , )ns t i r  were recorded in bipolar configuration with a sample 
frequency of 2,048 Hz. Here, t  is the time index, i  is the instruction and r  is the repetition 
number. All recorded signals were bandpass filtered with a high- and low-pass fourth-
order Butterworth filter with cut-off frequencies of, respectively, 15 and 500 Hz, in 
accordance with van Boxtel [19]. 

Many different sEMG feature types have been proposed in the literature. Based on the 
results of Phinyomark et al., who examined 37 feature types, and our results of a 
preliminary experiment, we chose to investigate four feature types given in Table 4.3 [20]. 
Thresholds for the WAMP feature lim( )x  were set to 10 and 20 mV. With all 16 sEMG 
channels stacked in a vector the result is denoted: 16( , , )f t i r g ,  
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with 1, ,5f    the feature type. Features were calculated over a sliding window with 
maximum overlap. The different window lengths examined were: 50, 100, 150, 200, 250, and 
300 ms. 

Table 4.2 Instructions: visemes (1-10), facial expressions (11-17), and asymmetric movements (18-19). 

# Viseme Phonemes Description/Location Instruction 

1 1 [p], [b], [m] Bilabial consonants APA 
2 2 [f], [v], [ʋ] Labiodental consonants AVA 
3 3 [s], [z], [ʃ] Nonlabial front fricatives AZA 
4 
5 

4a 
4b 

[t], [d], [n], [j], [l] 
[k], [χ], [ʀ], [ŋ] 

Other nonlabial front consonants 
Other nonlabial back consonants 

ATA 
AKA 

6 5a [i], [I], [e], [ɛ] Close and half-close front vowels (unrounded) KIEK 
7 5b [ɛi], [a], [o] Half-open and open vowels (unrounded) KAK 
8 6 [u], [y], [œ], [ɔ] Short back vowels (rounded) KOEK 
9 7 [Ø], [o] Long back vowels (rounded) KOOK 
10 8 [au], [œy] Closing and rounding diphthongs KAUK 

11 

 

12 13 14 15 16 

17 

 

18 

 

19 

 

The videos were recorded concurrently with the sEMG. To synchronise the recorded sEMG 
signals with the video recordings a synchronisation pulse was fed to the TMSi® Porti™ 
system when the cameras started their recordings. Thereafter the sEMG signals were cut 
and resampled to 100 Hz, equivalent to the frame rate of the cameras.  
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

 

 

There is a small time delay between a sEMG activity and the corresponding muscle 
activation. It is difficult to define a default value for this delay. Honda et al. used 70 ms 
[13], whereas Vatikiotis et al. used different delays varying from 0 to 100 ms [21]. By 
minimising the estimation errors of the lip marker positions, we empirically determined a 
mean muscle activation delay of 30 ms, which we compensated in all records. 

4.3.2. Video preprocessing 
The facial markers were tracked in the images of the three cameras, and the 2D coordinates 
were reconstructed to a set of 3D coordinates. The root mean squared (RMS) error of the 
3D localisation of markers, obtained via the leave-one-out method, was 0.73 mm. The 
resulting 3D positions of the ten markers on the lip, corrected for head movement, are 
denoted by 30( , , )t i r X . 

4.3.3. The measurement model 
State-space estimation requires the availability of a measurement model that links the 
sEMG features ( , , )f t i rg  to marker positions ( , , )t i rX . The relationship between these 
quantities is nonlinear, whereas a linear model was preferred. To arrive at a linear 
approximation, a truncated Taylor series in ( , , )f t i rg  up to order two was used. For this, 
the 16D  feature vector ( , , )f t i rg  was augmented with all the 136 quadratic terms and 
cross products of its elements yielding a 152D  vector ( , , )f t i rg .  

To establish the measurement model, first a principal component analysis (PCA) was 
applied. Suppose that a training set consisting of J  observed sEMG features ( )jg  and 
corresponding marker positions ( )jX , with 1, ,j J  , is available. The exact 
construction of this training set will be explained later. PCA was applied to the 
concatenation of these vectors: 
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( )

( )
( )

def j
j

j
 

  
 

X
z

g
 (4.1) 

The dimension of the vectors ( )jz  is 182. The set was normalised with respect to mean 
and variance of each element before applying the PCA, because the sEMG features and the 
3D coordinates present two different physical dimensions. The PCA resulted in a 182D  
dimensional orthogonal matrix Y  containing the first D  principal components of the set. 
Encoding of a vector z  in a D -dimensional coefficient vector b , and subsequent 
decoding, occurs according to: 

 
     (encoding)

ˆ        (decoding)

T

b Y z
z Yb

 (4.2) 

The mean of the coefficient vector b  is zero, and the covariance matrix bC  is diagonal 
with the elements sorted in descending order. 

To arrive at a (pseudo-) linear measurement model, we constructed the matrix gY  from 
Y  by leaving out the first 30 rows corresponding to the positions X . We then have: 

 ˆ  gg Y b  (4.3) 

Suppose that the residuals of ĝ  are given by v , such that ˆ g g v , then: 

  gg Y b v  (4.4) 

This can be regarded as a linear measurement model of b  with g  the measurement vector, 

gY  the measurement matrix, and v  the measurement noise. The covariance matrix VC  
of v  is a 152 152  dimensional matrix which can easily be estimated from the training 
set. Due to augmentation of g  with quadratic terms, the measurement noise is not 
guaranteed to be uncorrelated, and the matrix VC  might be nondiagonal.  

4.3.4. State-space modelling 
For dynamic modelling, two state-space models were implemented, a first-order and a 
second-order system. In the first-order system, a time series ( )tb  was modelled 
dynamically with: 

 ( 1) ( ) ( )t t t  b Fb w  (4.5) 

( )tb  is the D -dimensional state vector, and F  is the D D  system matrix. The process 
noise ( )tw  was assumed to be zero mean and uncorrelated in time. Its covariance matrix 
is wC . The system matrix F  was estimated from the training set using 
E ( 1) ( ) E ( ) ( )T Tt t t t       b b F b b .  

Here,  E  is the expectation operator; hence,   1ˆ ( 1) ( ) ( ) ( )T Tt t t t


 F b b b b .  
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The dimension of the vectors ( )jz  is 182. The set was normalised with respect to mean 
and variance of each element before applying the PCA, because the sEMG features and the 
3D coordinates present two different physical dimensions. The PCA resulted in a 182D  
dimensional orthogonal matrix Y  containing the first D  principal components of the set. 
Encoding of a vector z  in a D -dimensional coefficient vector b , and subsequent 
decoding, occurs according to: 

 
     (encoding)

ˆ        (decoding)

T

b Y z
z Yb

 (4.2) 

The mean of the coefficient vector b  is zero, and the covariance matrix bC  is diagonal 
with the elements sorted in descending order. 

To arrive at a (pseudo-) linear measurement model, we constructed the matrix gY  from 
Y  by leaving out the first 30 rows corresponding to the positions X . We then have: 

 ˆ  gg Y b  (4.3) 

Suppose that the residuals of ĝ  are given by v , such that ˆ g g v , then: 

  gg Y b v  (4.4) 

This can be regarded as a linear measurement model of b  with g  the measurement vector, 

gY  the measurement matrix, and v  the measurement noise. The covariance matrix VC  
of v  is a 152 152  dimensional matrix which can easily be estimated from the training 
set. Due to augmentation of g  with quadratic terms, the measurement noise is not 
guaranteed to be uncorrelated, and the matrix VC  might be nondiagonal.  

4.3.4. State-space modelling 
For dynamic modelling, two state-space models were implemented, a first-order and a 
second-order system. In the first-order system, a time series ( )tb  was modelled 
dynamically with: 
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( )tb  is the D -dimensional state vector, and F  is the D D  system matrix. The process 
noise ( )tw  was assumed to be zero mean and uncorrelated in time. Its covariance matrix 
is wC . The system matrix F  was estimated from the training set using 
E ( 1) ( ) E ( ) ( )T Tt t t t       b b F b b .  

Here,  E  is the expectation operator; hence,   1ˆ ( 1) ( ) ( ) ( )T Tt t t t


 F b b b b .  

The covariance matrix wC  can be estimated from the training set using 
( ) ( 1) ( )t t t  w b Fb . Preliminary experiments showed that both F  and wC  are 

diagonal. This was expected as the PCA decorrelated the coefficients ( )tb . In addition, the 
system matrix F  appeared to approximate the identity matrix I . This was also expected 
as the sampling period, 10 ms, is rather small compared to the expected time constant of 
lip motions. 

In the second-order system, the state vector was defined as: 
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with associated state equation: 
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Preliminary experiments showed that the submatrices 1F  and 2F  are diagonal which again 
is in line with the uncorrelatedness of the coefficients ( )tb . Equation (7) models D  
decoupled second-order autoregressive (AR) models, one for each coefficient ( )nb t  in 

( )tb  , i.e.,  

 ( 1) ( ) ( 1) ( ) with 1, ,n n n n n nb t b t b t w t n D         (4.8) 

where n  is a diagonal element from 2F , and n  a diagonal element from 1F . The AR 
models represent second-order differential equations in the continuous time that are 
characterised by their natural frequencies nf  and relative damping n  given by:  
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where T  is the sampling period. The natural frequency determines the bandwidth of the 
corresponding coefficient. The damping determines the spectrum of the signal around the 
natural frequency. We used these parameters to fine-tune the state-space model during 
training. 

The process noise ( )tw  has zero elements in the first D  elements. Thus, the covariance 
matrix is built as follows: 

 
22

w
 

  
 

0 0
C

0 C
 (4.10) 

22C  is a diagonal matrix as the coefficients of a PCA are uncorrelated. Preliminary results 
showed that this was indeed the case.  
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To determine the influence of dynamic modelling we also performed static modelling by 
enforcing the Kalman filter, which is described below, to use only measurements, and to 
ignore the predictions. This was effectuated by setting the standard deviation of the 
process noise to almost infinity.  

4.3.5. Estimation 
The estimation of the coefficients of the PCA was done with a discrete Kalman filter. The 
dimension of the state vector is in the first-order system D , and in the second-order 
system 2D . In practice, D , being the result of the PCA, is much smaller than the 
dimension of the measurement vector, ( )tg , which is 152. Therefore, the Kalman filter was 
used in the following form: 

  
 

11 1

1 1

ˆ ˆ( | 1) ( 1 | 1)
prediction

( | 1) ( 1 | 1)

( | ) ( | 1)
updating

ˆ ˆ( | ) ( | ) ( | 1) ( | 1) ( )

T
w
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t t t t
t t t t

t t t t
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C FC F C

C C H C H

x C C x H C g

 (4.11) 

This is computationally more efficient than the typical form. In equation (11), H  is the 
measurement matrix, which equals gY  in the first-order system and   g0 Y  in the 
second-order system. 

4.3.6. Training and testing 
The algorithm needs training data to find the PCA components Y , the covariance matrices 

VC  and wC  and in case of the first-order system the system matrix F  and in case of the 
second-order system, its submatrices 1F  and 2F . The dimension D  of the PCA is a design 
parameter. Additional design parameters were introduced to fine-tune the models. These 
were as follows: 

▪ The measurement noise covariance matrix VC  was corrected with a 
regularisation parameter vc . Instead of VC , the matrix (1 ) ( , )v vc c v vC C I , 
with ( , )vC  the average of the diagonal elements, was used. 

▪ The process noise covariance matrix wC  was corrected with a regularisation 
parameter wc . That is, the submatrix 22C , was replaced by the matrix 

22 22(1 ) ( ( , ))w wc c diag C C . Here, 22( ( , ))diag C  is the diagonal matrix that is 
built with a smoothed version of the diagonal elements of 22C . 

▪ The diagonal matrices 1F  and 2F , which holds the second-order AR parameters 

n  and n , respectively, were corrected by application of a proportionality 
constant to the corresponding natural frequencies and damping by constants fc  
and dc . So, instead of nf  and n , the parameters f nc f  and d nc   were used. 
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The algorithm needs training data to find the PCA components Y , the covariance matrices 

VC  and wC  and in case of the first-order system the system matrix F  and in case of the 
second-order system, its submatrices 1F  and 2F . The dimension D  of the PCA is a design 
parameter. Additional design parameters were introduced to fine-tune the models. These 
were as follows: 

▪ The measurement noise covariance matrix VC  was corrected with a 
regularisation parameter vc . Instead of VC , the matrix (1 ) ( , )v vc c v vC C I , 
with ( , )vC  the average of the diagonal elements, was used. 

▪ The process noise covariance matrix wC  was corrected with a regularisation 
parameter wc . That is, the submatrix 22C , was replaced by the matrix 

22 22(1 ) ( ( , ))w wc c diag C C . Here, 22( ( , ))diag C  is the diagonal matrix that is 
built with a smoothed version of the diagonal elements of 22C . 

▪ The diagonal matrices 1F  and 2F , which holds the second-order AR parameters 

n  and n , respectively, were corrected by application of a proportionality 
constant to the corresponding natural frequencies and damping by constants fc  
and dc . So, instead of nf  and n , the parameters f nc f  and d nc   were used. 

This resulted into three design parameters, D , vc , and wc , for the first-order system and 
five design parameters, D , vc , wc , fc , and dc , for the second-order system. These 
parameters were optimised using training data. 

We performed cross-validation for training and testing. The procedure is depicted in 
Figure 4.2. It was applied per volunteer, per feature type, and per window size. Data from 
the various instructions were pooled by concatenating the data: 

( , ) ( ,1, ) ( ,19, )f f ft r t r t r    g g g . The data from four repetitions were pooled to get 
the training data: ( ) ( ,1) ( , 4)f f ft t t    g g g . Testing was performed on the fifth 
repetition. Cross-validation took place by rotating the repetitions. The final evaluation 
criterion was defined as the RMS of the error calculated over all marker coordinates and 
all repetitions. The design parameters were obtained by minimisation of the RMS error by 
varying these parameters one by one and applying successive parabolic optimisation. The 
one-sided paired Wilcoxon test was used to test for significant differences between the 
static and the two dynamic systems. The one-sided test was justified because the static 
model is in fact included in the dynamic model as a special case, and as such the optimised 
performance of the dynamic model cannot be less than the static model.  

 

Figure 4.2 The optimisation and evaluation of design parameters using cross-validation. 

4.4. Results 
The best results for the static, first-order, and second-order state-space models are 
summarised in Table 4.4 for the individual subjects and on average. The first-order system 
for state-space modelling performed best on average, with a RMS error of 2.43 mm on 
average. The first-order and the second-order system showed statistically significant better 
results than the static system ( 0.03p  ). No significant difference was found between the 
two dynamic systems. Four subjects showed the best results when the WAMP feature was 
used. The optimal threshold limx  differed between the subjects. A window length of  
200 ms performed best on average. The average RMS error was 2.46 mm for the second-
order state-space model, also using the WAMP feature with limx  10 mV and a window 
length of 200 ms. As expected, static modelling showed poorer results, but performed also 
best when the WAMP feature was used. 
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Table 4.4 Mean RMS error and standard deviation  , optimal feature, and window, found per 
volunteer and on average for the static, first-order, and second-order dynamic model. 

 
The RMS errors for the different features for the first-order and second-order system are 
presented in Table 4.5. It can be seen that for both limx  10 mV and limx   20 mV the 
WAMP feature performance was comparable. Regarding the other features, the WL 
performed slightly worse compared to the WAMP. RMS and MAV showed the poorest 
results. 

Table 4.5 Optimal settings averaged over the volunteers obtained per feature and system order. 

 RMS MAV WL WAMP10 WAMP20 

System order 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

RMS error (mm) 2.74 2.70 2.67 2.64 2.50 2.50 2.43 2.46 2.45 2.46 

Window (ms) 200 200 250 200 200 200 200 200 200 200 

 

The influence of the different parameters and window length on the error in the second-
order system can be seen in Figure 4.3. Each graph shows the influence of one parameter 
on the RMS error while the others are set to values which lead to the optimal results on 
average. The dimension of the PCA, D , shows a plateau after 20 components. Optimal 
values of 0.1 and 3.4 were found for vc  and fc , respectively. The regularisation parameter 

dc  had the minimum error at a factor of 0.7. The constant wc  showed little influence but 
had an optimum on average at 0.2.  

Volunteer 1 2 3 4 5 Average 

Static        

RMS error (mm)  

   

2.34  

(0.21) 

2.55  

(0.21) 

3.02  

(0.12) 

2.32  

(0.15) 

2.92 

(0.14) 

2.70  

(0.19) 

Feature WAMP 

(20mV) 

WAMP  

(20 mV) 

WAMP  

(20 mV) 

WAMP  

(10 mV) 

WAMP 

 (10 mV) 

WAMP  

(10 mV) 

Window (ms) 200 200 300 250 300 250 

First-order system      

RMS error (mm)  

  

2.10 

(0.17) 

2.29  

(0.19) 

2.64 

(0.17) 

2.10  

(0.19) 

2.66  

(0.19) 

2.43  

(0.18) 

Feature WAMP 

 (20 mV) 

WL WAMP 

(20 mV) 

WAMP 

 (10 mV) 

WAMP  

(10 mV) 

WAMP  

(10 mV) 

Window (ms) 200 200 200 250 250 200 

Second-order system      

RMS error (mm)  

  

2.02  

(0.19) 

2.42  

(0.18) 

2.58  

(0.18) 

2.13  

(0.21) 

2.66  

(0.21) 

2.46  

(0.18) 

Feature WAMP  

(20 mV) 

WL WAMP  

(20 mV) 

WAMP  

(10 mV) 

WAMP  

(10 mV) 

WAMP  

(10 mV) 

Window (ms) 200 250 150 200 200 200 



87

4

Table 4.4 Mean RMS error and standard deviation  , optimal feature, and window, found per 
volunteer and on average for the static, first-order, and second-order dynamic model. 

 
The RMS errors for the different features for the first-order and second-order system are 
presented in Table 4.5. It can be seen that for both limx  10 mV and limx   20 mV the 
WAMP feature performance was comparable. Regarding the other features, the WL 
performed slightly worse compared to the WAMP. RMS and MAV showed the poorest 
results. 

Table 4.5 Optimal settings averaged over the volunteers obtained per feature and system order. 

 RMS MAV WL WAMP10 WAMP20 

System order 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

RMS error (mm) 2.74 2.70 2.67 2.64 2.50 2.50 2.43 2.46 2.45 2.46 

Window (ms) 200 200 250 200 200 200 200 200 200 200 

 

The influence of the different parameters and window length on the error in the second-
order system can be seen in Figure 4.3. Each graph shows the influence of one parameter 
on the RMS error while the others are set to values which lead to the optimal results on 
average. The dimension of the PCA, D , shows a plateau after 20 components. Optimal 
values of 0.1 and 3.4 were found for vc  and fc , respectively. The regularisation parameter 

dc  had the minimum error at a factor of 0.7. The constant wc  showed little influence but 
had an optimum on average at 0.2.  

Volunteer 1 2 3 4 5 Average 

Static        

RMS error (mm)  

   

2.34  

(0.21) 

2.55  

(0.21) 

3.02  

(0.12) 

2.32  

(0.15) 

2.92 

(0.14) 

2.70  

(0.19) 

Feature WAMP 

(20mV) 

WAMP  

(20 mV) 

WAMP  

(20 mV) 

WAMP  

(10 mV) 

WAMP 

 (10 mV) 

WAMP  

(10 mV) 

Window (ms) 200 200 300 250 300 250 

First-order system      

RMS error (mm)  

  

2.10 

(0.17) 

2.29  

(0.19) 

2.64 

(0.17) 

2.10  

(0.19) 

2.66  

(0.19) 

2.43  

(0.18) 

Feature WAMP 

 (20 mV) 

WL WAMP 

(20 mV) 

WAMP 

 (10 mV) 

WAMP  

(10 mV) 

WAMP  

(10 mV) 

Window (ms) 200 200 200 250 250 200 

Second-order system      

RMS error (mm)  

  

2.02  

(0.19) 

2.42  

(0.18) 

2.58  

(0.18) 

2.13  

(0.21) 

2.66  

(0.21) 

2.46  

(0.18) 

Feature WAMP  

(20 mV) 

WL WAMP  

(20 mV) 

WAMP  

(10 mV) 

WAMP  

(10 mV) 

WAMP  

(10 mV) 

Window (ms) 200 250 150 200 200 200 

The window lengths showed a similar trend in all subjects, with the best results for 
medium length windows. For the first-order system, comparable values were found. 

 

Figure 4.3 The dependence of the RMS error on the various parameters and window length in the 
second-order system. 

4.5. Discussion 
For the prediction of the functional and aesthetic consequences of treatment in oral 
cancer, dynamic models of the lips are required. Biomechanical modelling is physics based 
and as such the most direct method to predict these consequences. However, finding the 
patient-specific muscle activation signals needed for the biomechanical models is difficult 
[22]. sEMG signals may contain information to help in finding these patient-specific 
activations signals. To find the optimal sEMG processing configuration and to prove that 
sEMG signals contain sufficient information to do so, the current study describes an 
empirically derived model that is able to estimate the dynamics of lip displacements with 
an average RMS error of 2.43 mm.  

This empirical model is sEMG driven, which incorporates volunteer-specific information. 
As far as we know, we are the first who expressed distance errors of lip motion prediction 
based on sEMG features. 
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The approach used here, incorporated the dynamics of the system by means of a state-
space model. To test whether dynamical modelling was superior to static modelling, we 
implemented both. As expected, incorporation of dynamics improved the model. In 
comparison with the static system RMS errors decreased in every volunteer, with an 
average of 0.27 mm for the first-order system and 0.24 mm for the second-order system. 
An advantage of a dynamic system is that bandwidth can be sacrificed to improve the 
signal-to-noise ratio. Apparently, in the current application such a sacrifice pays off, but 
not drastically. 

The difference between the first-order and second-order system is negligible. A higher-
order system has more parameters which have to be estimated, making the filter more 
sensitive for deviations in those parameters to the optimum settings. An optimal 
equilibrium has to be found between modelling accurate dynamic behaviour for which 
higher-order systems are beneficial, and confining the impact of errors in the estimated 
parameters for which a lower-order system is preferred. In this study, the advantages of a 
second-order system over a first-order system did not outweigh the errors induced by the 
deviations in the estimated parameters. 

The fudging parameters were used to optimise the model per volunteer and hence make it 
volunteer- specific. Only the regularisation parameter wc  for the process noise covariance 
matrix wC  did not have much influence. For each parameter, a similar trend was seen 
regarding the optimal values, but the level of influence differed per volunteer. The optimal 
values found in this study can be used to set the limits for future volunteers, thereby 
decreasing computational time of the parabolic optimisation. The dimension of the PCA 
reached a plateau at 20, four dimensions more than the original 16 dimensions, suggesting 
that the cross products of the sEMG provided additional information. Preliminary 
experiments indicated that leaving out all the nonlinear cross products seriously 
deteriorated the results. Hence, the nonlinearity of the system is substantial. Finally, 
window length was optimal at medium lengths. A possible explanation is that short 
window lengths are prone to noise, whereas longer window lengths smooth the signals too 
much.  

The different features also had a noticeable influence on the RMS error. The WAMP 
features with limx  10 and limx   20 mV were most promising. Perhaps that thresholds in-
between these values could perform better. One can also think of optimising limx per 
muscle channel for optimal results. The widely used RMS feature performed worse. This 
was also found by Phinyomark et al. [20]. 

Because of different error assessments, the differences of our model compared to studies 
in the literature will be discussed qualitatively. The main differences are stated in 
Table 4.6. The current model showed results for a more extensive set of instructions, 
including asymmetric movements. Furthermore, more 3D lip markers and more muscles 
were included. Our model predicts 3D movement of the lips based on measurements on 
both sides of the face and therefore is more realistic. Honda et al. used a linear statistical 
approach, which is inadequate for modelling nonlinear soft tissue changes. 
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that the cross products of the sEMG provided additional information. Preliminary 
experiments indicated that leaving out all the nonlinear cross products seriously 
deteriorated the results. Hence, the nonlinearity of the system is substantial. Finally, 
window length was optimal at medium lengths. A possible explanation is that short 
window lengths are prone to noise, whereas longer window lengths smooth the signals too 
much.  

The different features also had a noticeable influence on the RMS error. The WAMP 
features with limx  10 and limx   20 mV were most promising. Perhaps that thresholds in-
between these values could perform better. One can also think of optimising limx per 
muscle channel for optimal results. The widely used RMS feature performed worse. This 
was also found by Phinyomark et al. [20]. 

Because of different error assessments, the differences of our model compared to studies 
in the literature will be discussed qualitatively. The main differences are stated in 
Table 4.6. The current model showed results for a more extensive set of instructions, 
including asymmetric movements. Furthermore, more 3D lip markers and more muscles 
were included. Our model predicts 3D movement of the lips based on measurements on 
both sides of the face and therefore is more realistic. Honda et al. used a linear statistical 
approach, which is inadequate for modelling nonlinear soft tissue changes. 

Table 4.6 Differences in experimental setup in related studies. 

 Current study Honda et al. Lucero & Munhall 

Dimension 3D 2D 3D 

Measurement Bilateral Unilateral Unilateral 

Muscles 16 6 7 

Lip markers 10 7 5  

EMG Surface Surface Hooked-wire 

Jaw movement Digastric muscle Omitted Manual 

Model PCA MMSE + Kalman Multiple regression FEM 

Instructions Visemes and facial 

expressions (19) 

Japanese vowels (5) English sentence  

Volunteers 5 1 1 

Error 

assessment 

RMS distance Visual Visual and cross-

correlations 

 

To allow the model to cope with nonlinear behaviour, we calculated the cross products of 
the sEMG signal features to add nonlinearity. The model of Honda et al. did not include 
the factor of jaw movement, making the estimation of vertical movement prone to errors. 
Lucero and Munhall controlled jaw movement by tracking an optical marker instead of 
EMG signals. Nonsurprisingly, the modelled facial tissue followed this movement well. We 
added sEMG measurements of the digastric muscle to make the prediction of jaw 
movement possible. Both Honda et al. and Lucero and Munhall measured EMG signals on 
one side of the face, disregarding asymmetry in facial morphology and lip movement as 
described by Campbell [23]. The use of hooked-wire, as used by Lucero and Munhall, or 
needle electrodes is attractive to overcome the problem of crosstalk, but for clinical 
applications this will be impractical because they are invasive and consequently patient-
unfriendly. Therefore, in generating future personalised 3D models controlled by EMG 
signals, sEMG will have our preference, being easy applicable and patient-friendly. 
Furthermore, we tested our model in five subjects, indicating it is general applicable. 

A limitation of the proposed set-up is the high number of required sEMG electrodes. This 
makes the current approach time-consuming which is inconvenient in future clinical 
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to identify less influential muscle channels for the estimation of motion, and include only 
those channels that affect motion prediction most. 

Another difficulty is the variability in muscle anatomy, and overlying soft tissue, which 
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functions usually require simultaneous contraction of various muscles. These muscles 
therefore lack training in isolated contractions, resulting in relatively high co-contraction 
of muscles. Also, volunteers can use different muscle activation patterns to perform the 
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same instruction. We saw similar results when facial expressions were performed as 
described by Schumann et al. [25]. Most volunteers were able to selectively activate the 
LLSAN, whereas most volunteers had difficulty in pulling their lip corners down (DAO). 
Purse lips, pout, and voluntary smiling all induced multiple muscle activations, showing 
the difficulty in selective muscle activation of facial muscles. 

The two main pillars of our study were to demonstrate that sEMG signals contain sufficient 
information to control 3D dynamic models of lip movements and to determine the best 
sEMG processing configuration for this purpose. These two steps are necessary for our 
ultimate goal to enable inverse biomechanical modelling of the lips, oral cavity, and 
tongue, in order to retrieve patient-specific muscle activation signals inducing oral 
functions. These activation signals are needed to enable prediction of functional 
consequences after surgery. Besides patient-specific activation signals, patient-specific 
anatomical information and tissue parameters are required for simulating treatment 
effects. The current model does not account for these aspects yet. However, a 
biomechanical model should incorporate this physical relationship and patient-specific 
parameters before mimicking performed treatments. The simulated activations 
controlling the biomechanical model should be similar to the actual muscular control of 
the patient. sEMG is an instrument to provide the information for these simulated 
activations. Unfortunately, sEMG is a rough estimate, because of a nonlinear relationship, 
crosstalk, misplacement of electrodes, and other artefacts. We showed that the 
relationship between 3D lip motion and sEMG can be accurately described by a statistical 
model. So it can be expected that with our approach the ambiguity problem of inverse 
modelling can be solved. Our next studies will focus on the relationship between activation 
signals and sEMG in biomechanical models.  

4.6. Conclusion 
This study presented a next step towards the personalisation of the functional outcome 
assessment after treatment of oral cancer. The two dynamic modelling methods proved 
that a continuum of 3D lip positions can be predicted based on volunteer-specific sEMG 
features. The discrete Kalman filter with a first-order state estimation performs slightly 
better than a second-order system, with a mean RMS error of 2.43 mm. The optimal sEMG 
processing configuration was found to be the WAMP feature with limx = 10 mV and a 
window length of 200 ms. In future studies, this method may be used to solve the problems 
concerning inverse modelling in biomechanical models, by reduction of the solution space 
and including patient-specific information. 
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Abstract 

Aim 
Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To 
assess functions of lips and tongue, biomechanical models are required. Apart from 
adjusting generic models to individual anatomy, muscle activation patterns (MAPs) 
driving patient-specific functional movements are necessary to predict remaining 
functional outcome. We aim to evaluate how volunteer-specific MAPs derived from 
surface electromyographic (sEMG) signals control a biomechanical face model. 

Materials and methods 
Muscle activity of seven facial muscles in six volunteers was measured bilaterally with 
sEMG. A triple-camera set-up recorded 3D lip movement. The generic face model in 
ArtiSynth was adapted to our needs. We controlled the model using the volunteer-
specific MAPs. Three activation strategies were tested: activating all muscles ( allact ), 
selecting the three muscles showing highest muscle activity bilaterally ( 3act ) – this was 
calculated by taking the mean of left and right muscles and then selecting the three with 
highest variance – and activating the muscles considered most relevant per instruction  
( relact ), bilaterally. The model’s lip movement was compared to the actual lip movement 
performed by the volunteers, using 3D correlation coefficients (  ). 

Conclusion 
The correlation coefficient between simulations and measurements with relact  resulted 
in a median   of 0.77. 3act  had a median   of 0.78, whereas with allact  the median   
decreased to 0.45. We demonstrated that MAPs derived from noninvasive sEMG 
measurements can control movement of the lips in a generic finite element face model 
with a median   of 0.78. Ultimately, this is important to show the patient-specific 
residual movement using the patient’s own MAPs. When the required treatment tools 
and personalisation techniques for geometry and anatomy become available, this may 
enable surgeons to test the functional results of wedge excisions for lip cancer in a virtual 
environment and to weigh surgery versus organ-sparing radiotherapy or photodynamic 
therapy.  
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5.1. Introduction 
Surgical treatment in advanced head and neck cancer can lead to severe function loss, 
including chewing deficits, dysphagia, and speech impairment. If this function loss is 
expected to be unacceptable, then other treatments, like radiotherapy, chemotherapy, 
and photodynamic therapy, can be considered [1]. Although alternative curative 
treatments like radiotherapy have their own effects on functional outcome, in the future 
we will focus on surgical effects first by developing a virtual surgery tool because these 
are relatively easier to model. Unfortunately, it is difficult to predict functional outcome 
of the aforementioned treatments accurately. In fact, the prediction depends heavily on 
the subjective judgements by members of the multidisciplinary tumour board and 
therefore can differ greatly among specialists [2].  

To tackle the problem of preoperative prediction of surgical outcome, biomechanical 
models are preferred as these models can be adjusted to represent the actual anatomy 
and pathological anatomical changes and they can simulate physical processes. 
Biomechanical models of the head and neck region have been developed. In particular, in 
the field of animation and facial surgery planning [3–7], these models mainly predicted 
aesthetic outcome. A couple of those models also predicted functional outcome, like 
effects of scar tissue on tongue mobility [8,9], intraoral swallowing effects [10], and facial 
expressions after maxillofacial surgery [11].  

The models can be controlled by simulated muscle activation patterns. These activation 
patterns contract the models’ muscles (elements) resulting in a visible movement. This 
process is called forward modelling: the determination of motion calculated from known 
forces. Each person learns to perform functional tasks (e.g. mastication, speech, and 
swallowing) with a specific motor control strategy. These strategies differ per person. 
Moreover, muscular compensatory mechanisms might be used after impairment.  

Forward modelling is a prerequisite for prediction of functional consequences after 
surgery using biomechanical models. When a tumour is virtually resected in a model, 
forward modelling may give insight in residual movement when controlling the adapted 
model with the patient’s muscle activation strategies, whereas inverse modelling 
(calculating the required muscle activation patterns from known movement) may give 
insight in compensatory possibilities. This residual movement can then be addressed by 
the multidisciplinary medical team, and function loss may be estimated.  

Modelling of the perioral region is of interest because it is easily accessible and can serve 
as a proof of principle for more complex organs like the tongue. Besides, surgery of the 
lips could lead to both cosmetic and function deficits. Lip cancers are surgically treated 
by wedge excision and primary closure with consequences for pursing the lips and 
opening the mouth. Larger defects require reconstruction with local or free flaps. In 
those last cases, function preservation is even more at stake.  
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The obtained information on function loss with the use of our future models may deliver 
patient and physician an overview of the possible cosmetic and function deficits of the 
different treatment options, both surgical and nonsurgical curative alternatives such as 
radiotherapy or photodynamic therapy. This also increases the quality of patient 
counselling. In other words, it makes objective and more informed choices in treatment 
options possible.  

Biomechanical models have been created for many parts of the human body: upper and 
lower limb, shoulder, elbow, and wrist (see Erdemir et al. for an overview [12]). These 
models are commonly used for calculating forces on regions of interest. The models are 
controlled by muscle activation patterns, which can also be derived from 
electromyographic (EMG) signals. Research in EMG-controlled biomechanical models of 
the perioral region is still a subject of ongoing research [13–18]. Lucero and Munhall used 
intramuscular EMG as input for standard Hill-type muscles in their biomechanical face 
model with a multilayer deformable mesh [18]. Although reasonably good correlation 
coefficients were obtained between the model’s movement and measured movement in 
general, markers around the lips performed poor in anterior-posterior direction. Flynn et 
al. developed a model of the face with a complex anisotropic multilayer skin with in vivo 
tension [17]. They, and others, tested their model by manually activating facial muscles to 
obtain simulated facial expressions [13,19,20].  

Before embarking on complex personalised biomechanical models including the patient’s 
as well as the tumour’s geometry and anatomy, we investigated in this study whether we 
could supply such models with patient-specific motor control by means of sEMG 
measurements.  

In previous research we demonstrated that noninvasive surface EMG (sEMG) conveys 
sufficient information to predict static facial expressions and volunteer-specific lip 
motion [21,22]. However, these statistical models lack the physiological relationship 
required to predict surgical outcomes. Therefore, we aim to demonstrate that a 
biomechanical 3D lip model can be controlled by muscle activation patterns derived from 
volunteer-specific sEMG signals of facial muscles to simulate facial expressions.  

These principles will be applicable in our future projects in which we will add a virtual 
surgery tool and in which we plan to take the step towards intraoral sEMG measurements 
of the tongue muscles to make tongue models more patient specific. The results 
demonstrated in this study may not only be of interest in speech research or in facial 
animation but also in biomechanics research with an important prelude for our virtual 
surgery models. Demonstrating the feasibility of driving biomechanical face models via 
individual sEMG measurements is important because it forms the basis for affected 
function by patient-specific motor control. When a virtual surgery tool or radiotherapy 
tool becomes available, it will show the movement in the affected situation based on 
personalised innervation signals. 



101

5

The obtained information on function loss with the use of our future models may deliver 
patient and physician an overview of the possible cosmetic and function deficits of the 
different treatment options, both surgical and nonsurgical curative alternatives such as 
radiotherapy or photodynamic therapy. This also increases the quality of patient 
counselling. In other words, it makes objective and more informed choices in treatment 
options possible.  

Biomechanical models have been created for many parts of the human body: upper and 
lower limb, shoulder, elbow, and wrist (see Erdemir et al. for an overview [12]). These 
models are commonly used for calculating forces on regions of interest. The models are 
controlled by muscle activation patterns, which can also be derived from 
electromyographic (EMG) signals. Research in EMG-controlled biomechanical models of 
the perioral region is still a subject of ongoing research [13–18]. Lucero and Munhall used 
intramuscular EMG as input for standard Hill-type muscles in their biomechanical face 
model with a multilayer deformable mesh [18]. Although reasonably good correlation 
coefficients were obtained between the model’s movement and measured movement in 
general, markers around the lips performed poor in anterior-posterior direction. Flynn et 
al. developed a model of the face with a complex anisotropic multilayer skin with in vivo 
tension [17]. They, and others, tested their model by manually activating facial muscles to 
obtain simulated facial expressions [13,19,20].  

Before embarking on complex personalised biomechanical models including the patient’s 
as well as the tumour’s geometry and anatomy, we investigated in this study whether we 
could supply such models with patient-specific motor control by means of sEMG 
measurements.  

In previous research we demonstrated that noninvasive surface EMG (sEMG) conveys 
sufficient information to predict static facial expressions and volunteer-specific lip 
motion [21,22]. However, these statistical models lack the physiological relationship 
required to predict surgical outcomes. Therefore, we aim to demonstrate that a 
biomechanical 3D lip model can be controlled by muscle activation patterns derived from 
volunteer-specific sEMG signals of facial muscles to simulate facial expressions.  

These principles will be applicable in our future projects in which we will add a virtual 
surgery tool and in which we plan to take the step towards intraoral sEMG measurements 
of the tongue muscles to make tongue models more patient specific. The results 
demonstrated in this study may not only be of interest in speech research or in facial 
animation but also in biomechanics research with an important prelude for our virtual 
surgery models. Demonstrating the feasibility of driving biomechanical face models via 
individual sEMG measurements is important because it forms the basis for affected 
function by patient-specific motor control. When a virtual surgery tool or radiotherapy 
tool becomes available, it will show the movement in the affected situation based on 
personalised innervation signals. 

5.2. Methods 
5.2.1. Volunteers and data acquisition 
For detailed information regarding the data acquisition, we refer to Eskes et al. 
(Chapter 4) [22]. Here follows a summary: six healthy volunteers participated, three 
males and three females, ages ranging from 21 to 30. We measured sEMG signals  
( ms , signal per muscle channel m ) with the TMSi® Porti™ system (TMSi®, Oldenzaal,  
the Netherlands) of seven facial muscles bilaterally (see Figure 5.1). A common ground 
self-adhesive reference electrode was placed on the left wrist. Six optical face markers – 
for head orientation – and ten optical lip markers – to follow lip movement – were drawn 
using a skin marker (Figure 5.1) and tracked at 100 frames per second with our triple-
camera set-up [22,23]. The Medical Research Ethics Committee of the Netherlands 
Cancer Institute approved this study, and the volunteers gave their informed consent.  

 
Figure 5.1 Left: Surface electrode locations, orientation markers, and lip markers. Right: Anterior-
posterior view and lateral view of the model and the model’s muscle bundles and lip markers. 
The muscles are abbreviated as follows: zygomaticus major (ZYG), risorius (RIS), levator labii 
superioris alaeque nasi (LLSAN), levator anguli oris (LAO), buccinator (BUC), orbicularis oris 
peripheralis (OOP) and marginalis (OOM), depressor labii inferior (DLI), depressor anguli oris 
(DAO), and mentalis (MEN), subscript L for ten left-sided muscles and subscript R for ten right-
sided muscles. 

5.2.2. Instructions to volunteers 
Volunteers performed four facial expressions to maximise independent muscle 
contraction of the recorded muscles: A. purse lips, B. raise upper lip, C. depress mouth 
corners, and D. voluntary smile, an asymmetric motion: E. left-right-left with closed lips, 
and a combination of two expressions: F. purse lips and closed mouth smile (Figure 5.2). 
These facial expressions were based on the work of Lapatki et al. and Schumann et al. 
[24,25]. At the start of the experiment the instructions were shown to the volunteer in 
combination with a live demonstration by the experimenter. Oral feedback on the 
volunteer’s performance was given, while he or she was repeating the instructions four 
times with two seconds rest in between.  
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Figure 5.2 Instructions to volunteers: A. purse lips, B. raise upper lip, C. depress mouth corners, 
D. voluntary smile, E. left-right-left with closed mouth, F. purse lips-closed mouth smile-purse 
lips. 

5.2.3. Finite element face model 
We used the reference finite element face model in ArtiSynth that was originally 
developed with ANSYS® software at the ICP/GIPSA and TIMC-IMAG laboratories in 
Grenoble [15,16,26–28]. It is described in detail in Nazari et al. [14]. The most important 
details are as follows. The soft tissues of the face are represented by three layers of 
elements and includes 6,342 elements (6,024 linear hexahedral and 318 linear wedge) and 
8,720 nodes. The epidermis and dermis are contained in the outer layer of about 1.5 mm 
thick. The hypodermis comprises the inner and centre layers that vary between 4 and 11 
mm in thickness. All layers were given the same passive tissue properties, including 
tissue density of 31,040 kg/m , and material stiffness specified as a Mooney – Rivlin 
constitutive equation given by: 

 2 2
10 1 20 1( 3) ( 3) (ln )

2
W C I C I J

      (5.1) 

where W  is the stress energy, and 10 2.5 kPaC  , 20 1.175 kPaC  , and 25 kPa   are 
the material parameters. The left Cauchy – Green tensor: TB FF  is used to calculate 

1 trace( )I  B , and det( )J  F . The distortional part of the deformation gradient F  is 
described by 1/3jF F . 

The facial muscles were represented by muscle fibres within the finite element mesh, and 
they are organised into 20 muscle groups (Figure 5.1). During simulations finite element 
muscles were used in which the elements surrounding the fibres were assigned as muscle 
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The facial muscles were represented by muscle fibres within the finite element mesh, and 
they are organised into 20 muscle groups (Figure 5.1). During simulations finite element 
muscles were used in which the elements surrounding the fibres were assigned as muscle 

elements with transversely isotropic material properties described by Blemker et al. [29]. 
Elements that were within a radius of 5 mm of the muscle fibres were considered a 
muscle element. In the case of the orbicularis oris peripheralis (OOP) and marginalis 
(OOM) muscle elements were manually assigned.  

Common muscle model parameters were used across volunteers. They are based on 
values from the literature [17]: maximum stretch *λ 1.4 , where the force-stretch 
relationship becomes linear, exponential stress coefficient 1 0.05P  , and uncrimping 
factor 2 6.6P  . The maximum stress of the muscle elements max , as exception, was 
optimised per volunteer by decreasing the maximum stress with 10 % each time inverted 
elements occurred, starting at 300 kPa . 

The mandible and maxilla underlying the face tissue model were represented as rigid 
bodies. Gravity acted on the model with acceleration set to -9.8 m/s2 in vertical direction.  

5.2.4. Boundary conditions, collision behaviour, and incompressibility 
Nodes on the inner surface of the finite element face model were attached to the 
underlying mandible and maxilla (similar to the attachments shown in Stavness et al. 
Figure 3 [28]). The nodes of the centre and the outer layer were dynamic. Contact of 
elements, which is especially important when pressing the lips together, is handled with 
the mesh-based collision behaviour in ArtiSynth. Interpenetration of the upper and lower 
lip surfaces is detected; node penetrations are corrected with impulse-based contact 
constraints [30]. The friction coefficient for contacts was set to zero. Instead of 
constraint-based soft tissue incompressibility, we used nodal soft incompressibility with 
a quadratic bulk potential and a bulk modulus of 25 kPa . Soft incompressibility tries to 
ensure that the volume of the finite element model remains locally constant by 
generating a restoring pressure based on a potential field. 

5.2.5. sEMG to normalised model activations 
sEMG measures the total contribution from motor units beneath the electrodes as well as 
contributions from neighbouring motor units. sEMG is, by its nature, indiscriminate, and 
therefore crosstalk is inevitable. Moreover, in the complex face region muscles overlap 
and intertwine. A monopolar measurement configuration is more prone to crosstalk as it 
measures the deeper and surrounding muscle signals, whereas in a bipolar configuration, 
the acquisition depth and pickup of crosstalk depend on the interelectrode distance. 
Therefore, we recorded sEMG signals in bipolar configuration with a sample frequency of 
2048 Hz. A fourth-order Butterworth bandpass filter with a high- and low-pass cut-off 
frequency of 15 and 500 Hz was used to filter the recorded sEMG signals, as 
recommended by Van Boxtel [31]. The placement of our microelectrodes was done by 
considering the generic facial muscle anatomy and the optimal placement as described 
by Lapatki et al. [32]. A limiting factor was the face dimension of the volunteers and the 
corresponding availability of skin to place the electrodes, which was usually directly 
adjacent to each other (Figure 5.1). Occasionally, no signal was sensed because of the tiny 
surface of the electrodes and the small surface of the underlying muscle belly. This 
occurred mainly when acquiring signals of the risorius muscle.  
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In these cases, replacements of the microelectrode over 1-2 mm yielded good signal-to-
noise ratios. Thus, a ruler-based placement strategy appeared to be impractical.  

To generate input for the activation patterns of the ArtiSynth model, a transformation 
function was required that converted the sEMG signals from our seven bilaterally 
measured muscles into usable activations for ten bilateral muscles of the model. The 
design of this transformation was based on the study of Schumann et al. describing 
monopolar sEMG profiles of 30 healthy males for various instructions and on the 
activation patterns described by Flynn et al. [17,25].  

The measured muscles are: the orbicularis oris superior (OOS, electrodes 1, 2, 15, 16), the 
orbicularis oris inferior (OOI, electrodes 3, 4, 17, 18), the risorius (RIS, electrodes 9, 10, 23, 
24), the zygomaticus major (ZYG, electrodes 11, 12, 25, 26), the levator labii superioris 
alaeque nasi (LLSAN, electrodes 5 , 6, 19, 20), the depressor anguli oris (DAO electrodes 
7, 8, 21, 22), and the mentalis (MEN, electrodes 13, 14, 27, 28). The missing muscle 
activations were determined as follows: 

 0.50 ( )OOP OOS OOIs s s   (5.2) 

 0.10 ( )OOM OOP OOIs s s   (5.3) 

 0.50 ( )BUC RIS ZYGs s s   (5.4) 

 0.75LAO LSSANs s  (5.5) 

 0.75DLI DAOs s  (5.6) 

In the ArtiSynth model, the orbicularis oris muscles are defined as peripheralis (OOP) 
and marginalis (OOM). Therefore, a combination of OOS and OOI was used for the OOP 
(equation (5.2)). Based on Flynn et al. [17], a fifth of the OOP was used for the OOM 
(equation (5.3)). The electrodes associated with the RIS were probably also influenced by 
the buccinator (BUC). Presumably, the electrodes of the ZYG were also influenced by the 
BUC. Therefore, we set BUC as a combination of ZYG and RIS activity (equation (5.4)). 
The levator anguli oris (LAO) is close to the LLSAN. Thus, the LAO was set to 75% of 
LLSAN (equation (5.5)). The depressor labii inferior (DLI) is adjacent to the DAO, which 
is why we chose 75% of the DAO as DLI activation (equation (5.6)). The MEN, ZYG, RIS, 
DAO, and LLSAN muscles were set to their corresponding measurements.  

In previous research in which we used statistical models [21,22], the best performing 
sEMG feature extractor was Willison amplitude (WAMP) with a threshold lim 10s   mV 
and a sliding window of 200 ms with maximum overlap. In preliminary experiments for 
the current study we also tested the transfer function described by Buchanan et al. [33]. 
Eventually, the WAMP feature again proved to be best and therefore this feature was 
used for all the experiments described in this study. It can be calculated as follows for all 
sliding windows: 
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( )ms t  is the measured sEMG of muscle m , and t  is the time index. n  is the running 
time index within each sliding window consisting of N  samples. There were six 
instructions: 1, ,6i  . Each instruction was repeated four times: 1, ,5r  . As there 
are ten muscles on both sides of the face, the muscle index runs from 1 to 10 (left) and 11 
to 20 (right). 

We tested three different activation strategies:  

▪ allact : all the muscles in the model are activated. 
▪ 3act  : only the three muscles that were most active measured bilaterally 
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▪ relact : the muscles that are considered most relevant for an instruction  
(Table 5.1).  

Table 5.1 The muscles used with the relevant muscle strategy per instruction.  

Instruction Relevant muscles ( relact ) 

A. Purse lips OOP, OOM, BUC 
B. Raise upper lip LLSAN 
C. Depress mouth corners DAO, MEN 
D. Voluntary smile LLSAN, RIS, ZYG, LAO, DAO, DLI 
E. Left-right-left with closed mouth OOP, OOM, LLSAN, RIS, ZYG, LAO, BUC 
F. Purse lips – closed mouth smile – purse lips  OOP, OOM, LLSAN, RIS, ZYG, LAO, BUC 

The model’s activation range is from zero to one. Therefore, min-max normalisation was 
applied over the time index. It linearly transformed the data from original minimum and 
maximum to data between zero and one.  
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5.2.6. Synchronisation of repetitions and model output 
As volunteers performed the repetitions with different speed and because the model’s 
output showed a different timing, a time shift and time scaling were performed. First, to 
create equally sized time series, we resampled the measurements (i.e. positions and 
features) in order to have them matched to the ArtiSynth sampling period. To 
synchronise the measurements, for each instruction and each repetition a principal 
component analysis (PCA) was applied to reduce the 30D space (ten 3D markers) to a 1D 
space. This was done both for the model-predicted positions and for the measured 
positions.  

The PCA was implemented using singular value decomposition (SVD) of the 30 T  
matrix X  containing in each column the X-, Y-, and Z-coordinates of the 10 markers. The 
number T of columns equals the number of time samples. Application of SVD yields: 

 TX UΣV  (5.9) 

The matrix 30 30U  contains the principal components. The squares 2
j  of the 

diagonal of the matrix Σ  contain the variances of the principal components. These 
variances are sorted, 2 2

1j j   . A coefficient vector Tb  was determined from the 
first principal component 30

1 u  from U : 

 1
Tb u X  (5.10) 

We obtained estb and measb  the coefficient vectors for the model-predicted positions and 
the measured ones, respectively. The maximisation of the cross-correlation function 

( )t  between estb  and measb  gave the synchronisation difference at argmax ( )t . The 
procedure was repeated for each instruction and repetition. Figure 5.3 shows the 
synchronisation process of two repetitions of one volunteer. The optimal shifting 
determined in the PCA domain was applied on the resampled data. 

5.2.7. Performance measures 
Figure 5.5 and the online videos provide a qualitative visual impression. Quantitative 
performance measures are given by correlation coefficients for 3D quantities as provided 
by Pitermann and Munhall [34]: 
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Equation (5.11) gives the mean position v  of a 3D landmark trajectory of samples 
 , ,i i i iv x y v . The standard deviation v  of the 3D node trajectory iv  is given by 

equation (5.12). vw  is the 3D correlation coefficient between 3D landmark trajectories iv  
and iw , and is calculated with equation (5.13).  

 
Figure 5.3 Synchronisation example. The first principal component coefficient vectors of the 
measurement measb and the model output estb  are shown. Together with the resampled 
coefficient vector, and the resampled and aligned coefficient vector. 

5.3. Results 
Fair performance for all activation strategies was seen in qualitative assessment (in 
Figure 5.5 visuals are given for volunteer 2). Comparable results were obtained in all 
datasets (online videos show the performance of all volunteers). Activating the relevant 
facial muscles gave visual results that best matched the intended instructions. In general, 
the amplitude of the model’s movement was less than the volunteer’s movement. The 
three highest activated muscles differed among volunteers and sometimes also within 
repetitive measurements within one volunteer. This can be derived from Figure 5.4 that 
gives the distribution of activation patterns of the symmetric instructions A – D. 
Instruction B (raise upper lip) showed the most selective contraction followed by 
instruction A (purse lips). Instruction C (depress mouth corners) showed a lot of 
cocontraction of the risorius muscle. Instruction D (voluntary smile) showed that indeed 
a lot of facial muscles come into play when producing voluntary smiles.  

In all cases, at least one of the most important muscles ( 3act ) was also present in the 
relevant muscle strategy. Comparing the model’s movements with those of the 
volunteers visually, the most difficult instruction was ‘pursed lips to closed mouth smile 
to pursed lips’ resulting in small displacements of the model. The easiest instruction was 
‘raise upper lip’. Selectively depressing the lip corners was difficult to perform for most 
volunteers inducing a lot of cocontraction in the perioral region.  
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Pursing the lips (A) with 3act  resulted in a small opening between the lips in all 
volunteers, whereas allact  only had a minuscule opening in volunteer 2 and volunteer 3. 

relact  had no opening between the pursed lips.  

Raising the upper lip (B) with allact  showed less pronounced results, but more 
compressed lips drawn upwards in volunteers 2, 4, and 5.  

Depressing the mouth corners (C) was difficult for the volunteers, but also to simulate 
with the model. Only relact  gave visual satisfying results. 3act  had fair results in 
volunteers 2, 3, 5, and 6, though with an opening between the lips.  

Voluntary smile (D) showing an open mouth smile was only possible with relact , while 

allact  and 3act  resulted in closed mouth smiles except in volunteer 4 which had a 
modest open smile with act3.  

The instruction left-right-left with closed lips (E) in general showed modest 
displacements, but recognisable instructions with all activation strategies.  

The instruction purse lips-closed mouth smile-purse lips (F) with allact  showed a small 
opening during closed mouth smile in volunteers 2, 4, 5, and 6, while in all volunteers 

3act  induced a small opening between the pursed lips in the model. 

 
Figure 5.4 Boxplot of normalised sEMG features per instruction and per muscle including data of 
all volunteers and repetitions. High standard deviations indicate the volunteer-specific 
differences in activation strategies. The median is shown with a horizontal line and the mean 
with a dot. The median is shown with a horizontal line and the mean with a dot. The boxes give 
first to third quartiles and the outer horizontal lines reflect minimum and maximum values. (‘au’  
is for ‘arbitrary units’). 
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with a dot. The median is shown with a horizontal line and the mean with a dot. The boxes give 
first to third quartiles and the outer horizontal lines reflect minimum and maximum values. (‘au’  
is for ‘arbitrary units’). 

  

Figure 5.5 
Qualitative simulation 
results for volunteer 2. 
The different instructions 
are represented by the 
capitals:  
A. purse lips,  
B. raise upper lip,  
C. depress mouth corners,  
D. voluntary smile,  
E. left-right-left with    
     closed lips  
     (left-right is shown),  
F. purse lips-closed mouth    
     smile-purse lips  
     (purse lips-closed  
     mouth smile is shown).  
The three different 
activating strategies are 
given by the numbers:  
1.   relact ,  
2.   allact ,  
3.   3act . 
The ten cyan dots on the 
model’s lips are the nodes 
that are being compared 
to the volunteers’ tracked 
lip markers as shown in 
Figure 5.1.  
For performance of all 
volunteers, scan the QR- 
code to go to  the online 
videos. 

  



110

The boxplots in Figure 5.6 show the distribution of correlation coefficients between 
volunteers, instructions, and markers. Here, we have the following observations: 

The performance between volunteers differed, especially using allact . 3act  and relact  had 
similar results. 

Although visually assessed instruction B was best executed by the volunteers, the 
corresponding correlation coefficients were not maximal. Instead, instructions E and F 
showed the best correlations. Again, allact  performed worst and act3 and relact  had 
similar results except for instruction C.  

The distribution of correlation coefficients between markers had a clear pattern: lateral 
markers showed higher correlations than centre markers, and upper lip markers had 
better results than lower lip markers in general. The overall mean values were: 

0.26
allact  ,

3
0.55act  , 0.53

relact  , with overall standard deviations: 0.63
allact  ,

3
0.51act  , and 0.52

relact  , respectively. The medians were: 0.45
all

median
act  ,

3
0.78median

act  , and 0.77
rel

median
act  . 

 

Figure 5.6 Boxplots of correlation coefficients per volunteer, per instruction, and per marker for 
the three activation strategies. 

5.4. Discussion 
To our knowledge, this is the first study demonstrating that volunteer-specific activation 
patterns calculated from sEMG measurements can be used to control a generic 
biomechanical model to generate asymmetric facial expressions with qualitative fair 
results. When visually assessed, the performance looked best when only the subset relact  
of all muscles was activated. These muscles were assumed to be most relevant for the 
specific instruction. Visual performance seemed to be less when activating all muscles 

allact , which should be the ideal situation containing all measured information. This loss 
of generality can be caused by different limitations of the method: (a) occurrence of 
cocontraction of pairs of muscles, (b) crosstalk in the sEMG signals, (c) shortcomings in 
the transfer function from sEMG feature to activation signal, and (d) shortcomings in the 
biomechanical model, e.g. deviations from its optimal parameter setting, and deviation 
from the geometry.  
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The quantitative results: the correlation coefficients, showed a large standard deviation 
also caused by the limitations as mentioned above. Predicted mobility of the 3D lip 
markers was less than measured in volunteers.  

This can be explained by inaccuracies in the tissue parameters (e.g. soft versus stiff skin 
parameters) and the resolution of the finite element model. Increasing the temporal step 
size and the number of elements will probably improve the accuracy. Improving the 
stability of the model for large deformations (possibly through model remeshing) is also 
essential. Lip shapes and thus the corresponding lip markers differed in volunteers. 
Subsequently, they did not match the generic face model’s geometry completely. This 
inaccuracy contributes to the mediocre values and high standard deviation of the 
correlation coefficients. Besides, instead of using an isotropic skin – all three layers had 
the same tissue parameters – a more sophisticated approach might be superior. This 
might be accomplished by giving each layer, or even regions within layers, specific 
material properties. This anisotropic skin model was first demonstrated by Flynn et al. 
[17].  

The sEMG to muscle activation and finally muscle contraction is governed by a complex 
process. During recordings crosstalk is inevitable. A solution could be the use of the 
crosstalk equation of Lapatki et al. to determine whether an electrode is flooded with 
neighbouring signals [35]. Crosstalk of adjacent muscles can explain why the model 
activated the OOP and OOM in all instructions. OOS and OOI electrodes 
1, 2, 3, 4, 15, 16, 17, and 18, used to calculate OOP and OOM, could measure activity from 
e.g. MEN, DAO, and LLSAN during those specific instructions. This results in OOP and 
OOM activity in the model. Intramuscular or needle EMG electrodes are more selective 
and are able to measure contributions of the single muscle, with less crosstalk and 
reducing false input activity. However, we feel that a patient-friendly method and a less 
time-consuming method is preferred. Especially when aiming at future preoperative 
modelling of patients to predict functional postoperative risk. sEMG crosstalk problems 
might further be minimised by using high-density sEMG (HD-sEMG) [35]. Another point 
of attention is the arbitrary composition of the BUC, the DLI, and the LAO, out of 
neighbouring muscles. This induces an additional error. A future increase of bipolar or 
HD-sEMG measurements should compensate for this problem too. 

Also, the muscle models may be improved. Instead of spherical muscles containing the 
surrounding elements within a radius of 5 mm of the muscle fibre, this radius can be 
optimised per muscle. Possibly by obtaining literature values or using patient-specific 
sizes to be determined in MRI scans of the patient, furthermore, one can manually assign 
elements or even improve the muscle representation using more than one muscle fibre, 
as was done by Wu et al. [20]. Another activation strategy option instead of act3 is to 
determine the muscle channels showing activity that exceeds a certain threshold. The 
choice of three recruited muscles is arbitrarily, and the number of active muscles 
definitively differs per instruction and per person.  
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This is demonstrated in the high standard deviations in the sEMG results of our 
experiments (Figure 5.4) as well as the performance of relact  versus 3act (Figure 5.6). 

Although trivial we showed that asymmetric movement is possible in our modelling 
experiments, in contrast to previous research [18], creating unique opportunities for 
visualising possible consequences of surgery with a 3D render of the patient to get 
objective patient-specific information. This is particularly important as people never 
perform perfect symmetric movements, as is described by Campbell [36].  

Many articles address the issue of facial surgery planning with a common goal of 
predicting aesthetics after facial surgery [5,7,37,38]. Typically, surgical alteration 
(resection or replacement) of the bony structures underlying the face is applied to a 
virtual model and the resulting passive effects on soft tissues are then simulated. These 
principles of surgical alteration in static and dynamic situation and of rigid structures are 
important and will be addressed in our future models. A virtual surgery tool that can be 
used to simulate tumour resection in soft tissues is currently being developed in our 
institute. The tumour will be extracted from segmented MRI data before insertion into 
the model. Thereafter, the surgeon is able to perform a virtual resection of lip cancer 
followed by simulation of wound closure. The patient-specific sEMG measurements can 
then be used to control the adapted model to show residual movement after treatment, 
which is an essential part of the personalisation of the model. The promising results of 
our sEMG experiments are an important step in this process. We will first focus on the 
prediction of dynamic functions which are established by movement. Therefore, 
incorporating motor control strategies into the model as well as methods to assess motor 
control is essential. This is why we investigated the use of sEMG.  

The results we created with forward dynamics took about five seconds per time step; 
each instruction was normalised to 160 time steps resulting in 800 s (13 min and 20 s) on 
a workstation with an Intel Xeon processor (3.40 Ghz). Guidelines in head and neck 
cancer care suggest 30 days from diagnosis to treatment [39]. Considering this time frame 
and the possibility of 24/7 runs of the analyses, we think the approach is definitively 
feasible within the given time. Even with the current set-up and without optimisation the 
analysis can be performed within the waiting time to treatment.  

In the current workflow (Figure 5.7), a patient is diagnosed and undergoes all kinds of 
scans and tests (imaging and histology). The case is presented to the multidisciplinary 
team to agree upon treatment. The proposed treatment plan is then explained to the 
patient. If the patient agrees, treatment is started. 

In the future workflow (Figure 5.7), after patient diagnosis and the standard imaging are 
performed several additional tests are done to obtain information on the specific patient. 
With all these data, a patient-specific model is built. Specific treatment modalities are 
tested, and the functional outcome (swallowing, speech, aesthetics, etc.) is simulated.  
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Figure 5.7 The top blue flow chart resembles the current workflow in clinical practice. The 
bottom orange flow chart shows the additional steps implementing virtual therapy to 
personalise and optimise the treatment per patient. The orange accentuated text shows the 
importance of the current study. 

 

The patient is again discussed at the multidisciplinary team meeting using the patient-
specific modelling and simulations as objective aid. Next, the patient is informed about 
various treatment options considering survival, appearance, and functional outcome. 

These outcomes are made visible to the patient, who is also able to hear the post-
treatment voice, if relevant. Together with the treating physician the patient decides 
which treatment is best suited for his/her expectations. 

Our future experiments can be improved by using volunteer-specific biomechanical 
models. Recently, Bucki et al. have described a method to adapt a model to volunteer-
specific anatomy using personal imaging data and a Mesh-Match-and-Repair algorithm 
[40], while earlier Chabanas proposed a mesh correction algorithm after a mesh-
matching procedure [11]. Additionally, we set the friction coefficient to zero as was done 
in previous models [14]. However, there is usually some amount of friction between the 
lips despite saliva, etc. Hence, this is probably not the best option. Future studies on 
simulation of facial expressions or bilabial and plosive speech articulations may benefit 
inclusion of a nonzero friction coefficient, though it should be investigated what the 
optimal value should be. 

Patient-specific anatomy of in vivo muscle bundles may be extracted using diffusion 
tensor magnetic resonance imaging (DT-MRI), as suggested by Wu et al. [13]. Also, 
appropriate selection of most relevant personal parameters for inclusion in the model’s 
elements could be optimised per volunteer, such as tissue stiffness (which also depends 
on age), and muscle properties such as shortening. 
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Future experiments should also focus on inverse modelling. A known issue in 
biomechanical modelling is the ambiguity problem when sharing forces among a 
redundant set of muscles. In the case of multiple inverse solutions for the same motions, 
the resulting solution is based on mathematical properties instead of patient-specific 
factors. Using inverse modelling the required muscle activation patterns are calculated 
based on measured movement. It might be expected that incorporation of sEMG signals 
in the cost term, used to solve the inverse algorithm, contributes to the solution of the 
ambiguity problem [41]. Inverse modelling is also essential if one wants to incorporate 
compensatory muscle activity, which is important for the final functional result after 
surgery, and thus of importance in virtual therapy. 

Other challenges concern preventive and rehabilitation exercises. Kraaijenga et al. 
showed that senior healthy subjects are able to significantly increase swallowing muscle 
strength and muscle volume after a six-week training period [42]. Van der Molen et al. 
demonstrated beneficial effect of preventive swallowing exercises in patients undergoing 
chemoradiotherapy for advanced head and neck cancer [43]. Given these facts, 
preventive and rehabilitation therapies can influence the functional outcome and thus 
the prediction of functional outcome. In the future, we hope to add decision support to 
point out the patients that benefit from pre- and postoperative speech, swallowing or 
other physical therapies. Besides, a virtual surgery tool and other treatment tools like 
radiotherapy should be implemented by utilising radiotherapy planning fields to 
determine which anatomical structures will be affected and to what extent.  

To conclude, the use of sEMG opens new ways for patient-specific facial modelling, 
finally, enabling us to predict the functional and cosmetic outcome after surgery. We 
applied a novel method to register two time sequences of vectors using the first principal 
components of these two vectors. Our experiments serve as a proof of principle for other 
opportunities as modelling of the oral cavity and tongue to predict function deficits after 
oral surgery, e.g. partial glossectomy, considering personalised muscle activation 
patterns. Although the extraction of muscle activation signals from tongue muscles is 
challenging, the epidermal electrodes described by Kim et al. could be a promising 
option [44].  

5.5. Conclusion 
Simulation of facial expressions using a biomechanical face model controlled by muscle 
activation signals estimated from volunteer-specific sEMG signals of facial muscles is 
feasible and may be useful for simulating function losses in the individual patient. 
Further experiments should focus on personalising the anatomical geometry of the 
model using MRI, CT, and DT-MRI, and development of methods to minimise crosstalk 
between neighbouring muscles using HD-sEMG and advanced data processing 
techniques. Finally, these models can be expanded to other subsites of the head and neck 
like tongue, oropharynx, and larynx, while incorporating a virtual surgery tool and other 
treatments like photodynamic therapy, radiotherapy, and preventive and rehabilitation 
exercises.   
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Abstract 

Aim 
We propose a surface-electromyographic (sEMG) assisted inverse-modelling (IM) 
approach for a biomechanical model of the face to obtain realistic person-specific muscle 
activations (MA) by tracking movements as well as innervation trajectories.  

Materials and methods 
We obtained sEMG data of facial muscles and 3D positions of lip markers in six 
volunteers and, using a generic finite-element (FE) face model in ArtiSynth, performed 
inverse static optimisation with and without sEMG tracking on both simulation data and 
experimental data. 

Conclusions 
IM with simulated data and experimental data without sEMG data showed good 
correlations of tracked positions (0.93 and 0.67) and poor correlations of MA (0.27 and 
0.20). When utilising the sEMG-assisted IM approach, MA correlations increased 
drastically (0.83 and 0.59) without sacrificing performance in position correlations (0.92 
and 0.70). RMS errors show similar trends with an error of 0.15 in MA and of 1.10 mm in 
position. 

Therefore, we conclude that we were able to demonstrate the feasibility of an sEMG-
assisted inverse modelling algorithm for the perioral region. This approach may help to 
solve the ambiguity problem in inverse modelling and may be useful, for instance, in 
future applications for preoperatively predicting treatment-related function loss. 
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Abstract 
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We obtained sEMG data of facial muscles and 3D positions of lip markers in six 
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correlations of tracked positions (0.93 and 0.67) and poor correlations of MA (0.27 and 
0.20). When utilising the sEMG-assisted IM approach, MA correlations increased 
drastically (0.83 and 0.59) without sacrificing performance in position correlations (0.92 
and 0.70). RMS errors show similar trends with an error of 0.15 in MA and of 1.10 mm in 
position. 

Therefore, we conclude that we were able to demonstrate the feasibility of an sEMG-
assisted inverse modelling algorithm for the perioral region. This approach may help to 
solve the ambiguity problem in inverse modelling and may be useful, for instance, in 
future applications for preoperatively predicting treatment-related function loss. 

 

6.1. Introduction 
Biomechanical modelling aims to represent human body dynamics as accurately as 
possible with mathematical equations, simulating and evaluating human movement and 
motor control while estimating the resulting internal and external forces. This can be 
useful in preoperative decision making. For instance, in children with cerebral palsy, 
Lofterød et al. evaluated the effect of providing 3D gait analysis information on 
preoperative surgical planning, finding that in the majority of cases surgical planning had 
been modified to incorporate important gait analysis data [1]. 

Similar models are urgently needed in the field of Head and Neck Surgery, as well. 
Modelling of the perioral region may improve treatment and counselling of head and 
neck cancer patients, particularly by assessing functional inoperability, when surgical 
resection of a tumour will lead to unwanted severe loss of function [2], and other organ-
sparing treatments should be considered instead, e.g. chemotherapy, radiotherapy, 
photodynamic therapy, or any combination thereof. Human estimation of post-surgical 
function loss is by nature subjective and unreliable [3]. Therefore, there is urgent clinical 
need for tools that can predict patient-specific function loss objectively and 
quantitatively [4–8]. Promising results have been obtained with patient-specific 
biomechanical models of the face [9–11], oral cavity [12,13] and tongue [4,14,15] , including 
models that can simulate pharyngeal bolus transport [13,16]. Adding patient-specific 
neural control to such models by means of surface EMG (sEMG)-assisted inverse 
dynamics will be an essential step forward, as this will provide insight into 
pathophysiological dynamics and potential compensatory mechanisms after virtual 
resection of specific muscles.  

There are two main types of modelling dynamics in biomechanics. Forward modelling, or 
forward-dynamics simulation, is the process of controlling a biomechanical model with 
given (muscle) activation signals, calculating the resulting forces with the equations of 
motion to ultimately obtain the corresponding functional movement. Inverse modelling, 
or inverse-dynamics simulation, is the opposite process, estimating the underlying 
muscle activation signals from measured actual forces or movements by using a 
biomechanical model with a mathematical optimisation criterion.  

Inverse problems in biomechanical modelling are often mathematically ill-posed because 
of muscle redundancy: similar functional movements can be performed by different sets 
of muscles. This so-called load-sharing problem [17,18] poses a significant challenge: to 
predict a patient’s motor behaviour accurately, the simulations must “share” muscle 
activations in the same way the patient does.  

Literature reports various strategies to tackle the load-sharing problem, but these 
generally apply to models of the arms or legs. A recent paper by Yamasaki et al. shows 
that higher-order derivatives in static optimisation and forward-inverse dynamics can 
improve the estimation of muscle activation in highly dynamic motions within a simple 
musculoskeletal model that includes a one-degree-of-freedom (1DOF) hinge joint [19]. 
Some authors enforced co-contraction of antagonistic muscles using 1DOF hinge joint 
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models [20–22] or multi-body models [23], while others used energy-based load-sharing 
cost terms [24,25]. Hybrid models have combined forward and inverse modelling by 
using algorithms that can derive neural activation strategy information from the muscle 
activation signals obtained with EMG. Such so-called EMG-assisted, EMG-informed, 
EMG-calibrated, or EMG-tracking algorithms were successfully applied in biomechanical 
models of the trunk [26–28], shoulder and arm [29], and legs [30,31]. Another feat has 
been the creation of a toolbox for calibrated EMG-informed neuro-musculoskeletal 
modelling (CEINMS)[32]. Reports on inverse modelling of the perioral region are scarce 
[33–35], and only few involve EMG measurements [36].  

This paper aims to establish an sEMG-assisted inverse-modelling method that can be 
applied to 3D lip movements. We hypothesise that the addition of sEMG will allow for 
realistic inverse modelling solutions incorporating patient-specific activation strategies. 
If true, an sEMG-based model will be able to show the immediate functional outcome of 
surgery and also, if patients prove unable to relearn their functions, the final outcome. 
The proposed method is an adaptation of the so-called tracking-based inverse controller 
in ArtiSynth created by Stavness et al. [15]. This paper has been organised as follows. 
Section 2 summarises the static optimisation algorithm and introduces our adaptations. 
Section 3 describes the acquisition of experimental data and the pre-processing required. 
Section 4 reports on the use of these data in three experiments conducted to test the 
algorithm. Section 5 contains the discussion. The paper ends with our conclusion.  

6.2. EMG-assisted static optimisation 
Our EMG-assisted inverse modelling algorithm is based on the inverse tracking 
controller in ArtiSynth developed by Stavness et al. [15]. They used a combined 
movement target term and an 2l -norm regularisation term, which resulted in a quadratic 
programming problem. In the current paper, we stacked the position coordinates of a set 
of ten tracked 3D marker points on the lips in a 30D  vector ( )t kz  where k  is the 
discrete time index. For brevity, we shall use the notation tz  instead of ( )t kz . The 
model-predicted positions ( )kz  depend on ( 1)k a , which is the vector of muscle 
activations at time 1k  , and on the previous state ( 1)k z . This is denoted by 

 m( ) ( 1), ( 1)k k k  z f a z , where m ()f  is a state-space description representing the 
biomechanical model. For brevity, we shall write a  instead of ( 1)k a  and m ( )f a  instead 
of  m ( 1), ( 1)k k f a z . Note also that the elements of a  are limited to the interval [0,1] . 
The technology of sEMG provides indirect measurements of the innervation of each 
muscle. These measurements provide quantitative indications of the activations and are 
therefore denoted by ta , which gives rise to the following quadratic cost function: 

 
   
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With ( 2)prev k a a . The matrices ,  , M A D , and E  are matrices that weigh different 
cost aspects. The term with M  assures that model positions are close to measured 
positions. The term with A  is a regulation term to tame the found activation signals. The 
term with D  prevents large fluctuations of the found activations. Finally, the term with 
E  assures that the estimated activations are consistent with the measured sEMG signals. 
In our experiments, the numerical values of the matrices were as follows: (1)diagM , 

(0.05)diagA , (0.005)diagD , and ( )valdiag emgE  or (0)diagE  in case inverse 
modelling is performed without sEMG tracking. valemg  was determined during the 
experiments.  

To minimise the cost function in equation (6.1), the expression was worked out to a form: 

 T T T T

[0,1]

1ˆ arg min -
2

   
 a

a a H Ha a H b   (6.2) 

in which irrelevant terms in equation (6.1) were dropped, and a linearised approximation 
of the state-space model was used based on Taylor series expansion. Equation (6.2) is 
recognised as a quadratic programming problem for which stable, numerical solutions 
are available. The seed for the inversion was always set to the estimated muscle activity 
of the previous frame. The initial frame’s seed was always set to zero muscle activity. 

6.2.1. Data acquisition and pre-processing 
Volunteers and data acquisition 
To perform inverse modelling experiments, we used data of six healthy volunteers (three 
males, three females), with a mean age of 25 years (range 21 to 30 years), whom we had 
recruited for our previous studies [6,7]. For details, see Eskes et al. (Chapter 4) [6]. 
Essentials are summarised below. The data are available on the Open Science Framework 
[37]. Written consent was obtained for publishing the photograph in Figure 6.1. 

sEMG signals ms (m  muscle channels) were recorded with the TMSi® Porti™ system 
(TMSi ®, Oldenzaal, the Netherlands) and micro-sEMG electrodes (1.5 mm diameter, 
Ag/AgCl, disc-shaped, with actively shielded cables). The following muscles were 
measured in bipolar configuration according to the optimal placement described by 
Lapatki et al. [38]: the orbicularis oris superior (OOS), the orbicularis oris inferior (OOI), 
the depressor anguli oris (DAO), the mentalis (MEN), the risorius (RIS), the zygomaticus 
major (ZYG), and the levator labii superioris alaeque nasi (LLSAN) (Figure 6.1). The 
sEMG signals were bandpass filtered with high-pass and low-pass cut-off frequencies of 
15 and 500 Hz, respectively. 

To acquire 3D lip movements, we tracked six optical face markers ( 18
OR X ) for head 

orientation and ten optical lip markers ( 30X ) at 100 frames per second using a triple-
camera set-up (avA1000-100gc, Basler AG, Ahrensburg, Germany), which we had 
developed for assessing tongue mobility and capturing tongue movement after 
hypoglossal nerve stimulation [8,39] (Figure 6.1).  
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We asked the volunteers to perform six different instructions once: A. purse lips, B. raise 
upper lip, C. depress mouth corners, D. voluntary smile, E. draw mouth corner to the left, 
then to the right, and again to the left, and F. purse lips to closed-mouth smile to purse 
lips (Eskes et al. [7], Chapter 5, Figure 5.2). The experiments were approved by the 
Medical Research Ethics Committee of the Netherlands Cancer Institute and all 
volunteers gave written informed consent. 

 

Figure 6.1 Left: Surface electrode locations, orientation markers, and lip markers. Right: 
Anterior-posterior view and lateral view of the model and the model’s muscle bundles and lip 
markers. The muscles are abbreviated as follows: zygomaticus major (ZYG), risorius (RIS), levator 
labii superioris alaeque nasi (LLSAN), levator anguli oris (LAO), buccinator (BUC), orbicularis 
oris peripheralis (OOP) and marginalis (OOM), depressor labii inferior (DLI), depressor anguli 
oris (DAO), and mentalis (MEN). Subscript L is for left side and subscript R for right side. 
Adopted from Eskes et al. [7]. 

Finite-element face model 
We performed inverse modelling on the generic face model (Figure 6.1) used in Eskes  
et al. (Chapter 5) [7], which was based on the work performed at ICP/GIPSA and TIMC-
IMAG laboratories in Grenoble [40,41], with details published by Nazari et al. [42]. Their 
ANSYS® model was ported to ArtiSynth and was named the reference face model [43–45]. 
With soft tissues represented in three layers of elements, this model had 6,342 elements 
(6,024 linear hexahedral and 318 linear wedge) and 8,720 nodes. Fourteen muscle groups 
were available as muscle fibres. We created finite-element muscles, which were defined 
as the elements surrounding the muscle fibres within a radius of 5 mm. The elements of 
the orbicularis oris muscles were manually assigned. All these muscle elements were 
given muscle properties as described by Blemker et al. [46]. The bony parts, the mandible 
and maxilla, were modelled as rigid bodies. We used literature-based common muscle 
model parameters for all volunteers [7,11], with the exception of maximum muscle stress 
( max ). We optimised the stress parameter per volunteer starting at 300 kPa and 
gradually decreased max  repeatedly with 10 percent until the simulation ran smoothly 
without creating inverted elements. Simulations were performed on two workstations 
with intel Xeon core and one laptop computer with an intel i7 core. 
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sEMG to normalised model activations 
The model used orbicularis oris peripheralis (OOP) and marginalis (OOM) definitions. 
Therefore, these activations were constructed from the measured OOS and OOI 
activations, taking into account the information about activation patterns described by 
Flynn et al. [11]. The buccinator (BUC), the depressor labii inferior (DLI), and the levator 
anguli oris (LAO) were not directly measured but derived from the measured muscles as 
follows: 

 0.50 ( )OOP OOS OOIs s s   (6.3) 

 0.10 ( )OOM OOP OOIs s s   (6.4) 

 0.50 ( )BUC RIS ZYGs s s   (6.5) 

 0.75 LAO LSSANs s  (6.6) 

 0.75 DLI DAOs s  (6.7) 

For the different instructions, the following muscles were considered relevant [7,11]: 

A. OOP, OOM, and BUC 
B. LLSAN 
C. DAO and MEN 
D. ZYG, RIS, LAO, LLSAN, DAO, and DLI 
E. OOP, OOM, LLSAN, RIS, ZYG, BUC, and LAO 
F. OOP, OOM, LLSAN, RIS, ZYG, BUC, and LAO 

In previous research, we found the following procedure to be optimal for transforming 
measured sEMG signals into normalised muscle activations [5–7]. We first calculated the 
Willison Amplitude with lim 10 mVs   over sliding windows of 200 ms with maximum 
overlap:  
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The feature ( , , )mg t i r  was calculated from the measured sEMG ( )ms t  of muscle m , 
where t  was the time index of the EMG signals, and n  the running time index within 
each sliding window consisting of N  samples. This was done for all instructions i  and 
repetitions r  (in this case 1r  ). The feature ( , , )mg t i r  was normalised according to: 
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Registration of measured 3D lip markers to generic face model 
As each face has unique dimensions, we had to apply a registration to allow for 
movement tracking and root mean square (RMS) error comparison of the generic face 
model’s lip markers with the measured lip markers. We registered each measured 
coordinate according to equation (6.10): 

  ( ) ( )
X

norm Z Xd
d d d dZ

d

Z k Z k


 


 
   

 
 (6.10) 

( )dZ k  is the d th  element from the original measured position vector ( )t kz  . The 
normalised measured positions are denoted by Z ( )norm

d k . In equation (6.10), Z
d  is the 

mean of the measured position coordinates, and X
d the mean of the model’s position 

coordinates. The standard deviation of the model’s position coordinates is denoted by 
X
d , whereas the standard deviation of the measured position coordinates is given by 
Z
d .  

Performance measures 
To perform quantitative evaluation, we used the RMS error, pose , that was calculated 
over time and over the markers via: 

 
  2

1 1
( ) ( )

3

K D norm
d dk d

pos

Z k Z k
e

KD
 



 

 (6.11) 

With k  being the discrete time index, K  the number of time samples, and ( )dZ k  the 
model’s lip marker position coordinates. 30D  reflects the dimensions, i.e. 10 markers 
with 3 coordinates each. The factor 3  was introduced because we wanted to express 
the RMS in terms of distances, rather than in terms of coordinates. 

The 3D correlation coefficients were calculated as described by Pitermann et al. [36]. The 
mean position Zμ  of a 3D lip marker trajectory, with samples  , ,t t t tx y vZ , was 
calculated with equation (6.12): 
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The standard deviation Zσ  of tZ  was calculated with equation (6.13): 
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The 3D correlation coefficient 3D  between 3D landmark trajectories tZ  and tX  was 
calculated with equation (6.14): 
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The RMS error was also calculated for the activations ( acte ) according to equation (6.15) 
with ( )tg  being the normalised feature values and ( )ta  the inverse calculated activation 
values, whereas Pearson’s correlation coefficient was used as an activation correlation 
measure. 
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  (6.15) 

For all experiments, we compared the inverse calculated activation signals with the 
original sEMG features using the RMS error and Pearson’s correlation coefficient. Also, 
the movement tracking errors ( pose  and 3D ) were calculated for all experiments. 
Together, these measures give an indication of performance.  

6.3. Experiments 
In this study, we performed three different experiments to investigate the added value of 
sEMG-assisted inverse modelling:  

I. A simple muscle contraction to test feasibility of the model and implementation 
of the inverse methods 

II. Inverse simulations with synthetic data produced by the sEMG-driven forward 
model. Inverse modelling was guided by 3 different sEMG constraints: no 
constraint, using all muscles ( allact ), and using relevant muscles ( relact ). By 
comparing the results of these three constraints, we could test our method for 
feasibility inside the mathematical universe of the face model.  

III. Inverse simulations with measurement data containing 3D position data of ten 
lip markers and sEMG data of fourteen facial muscles. This experiment was 
conducted to assess the contribution of sEMG in a realistic situation.  

6.3.1. Experiment I: Test Cost term implementation by means of a simple point-mass system 
Goal and experimental set-up 
To test our implementation of the cost function, we first created a simulated muscle 
activation pattern, contracting the north-north-east, north-east, and east-north-east 
muscle bundles of the point-mass system as shown in Figure 6.3 [47]. It should be noted 
that the muscles have different maximum isometric forces, the thick muscles being more 
powerful than the thinner muscles. Next, inverse modelling was performed, first 
alternating the cost terms and finally using all cost terms at once. We expected to find 
that IM with each cost-term alone would not result in calculated IM activations that were 
similar to the simulated activation patterns, except for IM with the sEMG term, which 
would probably mimic the forward simulation. When using all cost terms together, we 
expected there would be a trade-off between the different cost terms, which would likely 
cause a result that was less perfect but more usable in the real application. In line with 
logic, when testing a cost term alone, we set its weighing factor at one. When testing all 
cost-terms together, we set the various weighing factors as described in section 2: 

(1)diagM , (0.05)diagA , (0.005)diagD , and ( )valdiag emgE  with in this case 
0.05emgval  .  
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Results 
For the point-mass system, movement tracking errors were similar in all simulations, 
whereas activation patterns differed greatly. Using the motion term alone produced a 
very stiff system, whereas the 2l -norm distributed the forces over the different muscles 
in the same way the damping term did. Including only the sEMG term showed minimal 
differences between the inverse calculated activation and the simulated activation and 
resulted in a good forward solution ( pose ). When using all cost terms together, including 
our sEMG term, we found that muscle activation patterns were still good (Figure 6.2) 
while used muscle activation strategies improved considerably over performance with 
individual cost terms or all cost terms combined with exclusion of the sEMG term. 
However, it should be noted that the solution depends on the weighing factors of the 
cost terms, e.g. when too much sEMG information is used, the result will mimic the 
forward solution.  

The results were not perfect because of the other cost terms in the objective function and 
because of integration, which adds noise. Even when we activated only the sEMG target 
term, there was still a small error between the inverse calculated activations and the 
simulated sEMG pattern used in forward modelling. Larger errors occurred when we 
applied all cost terms in the inverse modelling of the point-mass model, which is a direct 
consequence of taking into account all cost terms, where the sum of all terms should be 
small, instead of only minimising the sEMG term. 

 

 

Figure 6.2 Inverse modelling with all cost terms active except for the sEMG term. Left: the 
estimated activations when not using the sEMG term. Right: estimated activations when using all 
cost terms including the sEMG term (‘au’ is for ‘arbitrary units’). 
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Figure 6.3 The top row shows the point-mass model with simulated forward movement to the 
northeast corner. The muscles’ red colour intensities illustrate the extent of activation. The eight 
graphs below show the influence of the different cost terms on the estimated muscle activations 
of five muscles during inverse modelling. The original simulated activations are given in the 
lower right corner (‘au’ is for ‘arbitrary units’). 

Conclusion 
To conclude, these experiments justified our approach and showed that sacrificing only a 
little performance in movement tracking resulted in major improvement in muscle 
activation tracking. Neither the use of any original cost term by itself nor any combined 
use of cost terms resulted in the correct muscle activation strategy. Incorporation of the 
sEMG cost term greatly improved the estimated muscle activations while keeping 
movement tracking orders in the same range. The weighing factors influence the result 
and should be determined experimentally for the next experiments. 
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6.3.2. Experiment II: Inverse modelling using simulated data  
Goal and experimental set-up 
To test the inverse modelling approach within the mathematical universe of the face and 
assess its feasibility, we started with a standard inverse-modelling approach [15]. To first 
evaluate this approach in a simple situation, we used our forward-modelling results as 
motion targets for this experiment [7]. After activating the relevant muscles per 
instruction ( relact ), the forward simulation produced 3D trajectory data of the lip 
markers. Since this movement lies within the range of the model (position, acceleration) 
there is no need for registration, which could induce error, and the movement can 
function as a first indicator of feasibility. Figure 6.4 depicts the mean activations and 
their standard deviations based on all volunteers for the measured muscles. For use as 
input for the forward model, they were adjusted with equations (6.3) to (6.7). In this 
experiment, we used three constraints for the IM sEMG term: no sEMG, including all 
muscle activations ( allact ), and including relevant muscle activations ( relact ). Thus, the 
sEMG term’s penalty matrix E  was set to zero if no activation targets were used, while 
we experimentally obtained the optimal value using three different values for valemg  to 
get an idea of the influence of the sEMG term: 55 10 , 45 10 , and 35 10 . Now, a 
trade-off between muscle activation tracking and movement tracking will be made. In 
this experiment, all muscles were used ( allact ). After obtaining the optimal valemg  , the 
constraints allact  and relact  were tested.  

 

Figure 6.4 Muscle activation patterns calculated from sEMG features of the instruction  
‘purse lips’ as input for forward modelling. The mean and standard deviations of all volunteers 
are shown for all measured muscles. High standard deviations show the volunteer-specific 
activations, with asymmetry in the DAO and LLSAN muscles, in particular. (‘au’ is for ‘arbitrary 
units’). 
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Results 
The influence of the sEMG cost term and thus the optimal weighing factor can be derived 
from Figure 6.5. All volunteers show the same pattern: a weighing factor of 35 10  
actually results in forward modelling as it depends too much on the muscle activations 
patterns, whereas 45 10  appears to be the optimal value of all tested factors.  

 
Figure 6.5 Influence of the sEMG cost weighing factor on the 3D correlation coefficients of 
movement and on Pearson’s correlation coefficients of calculated muscle activations and sEMG 
features. The median is shown with a horizontal line and the mean with a dot. The boxes give 
first to third quartiles and the outer horizontal lines reflect minimum and maximum values. 

Table 6.1 gives the RMS error between the target lip markers and the models’ lip markers 

pose  averaged over all instructions and volunteers for experiments II and III, as well as 
the acte  between the models’ calculated activations and measured muscle activations. 
Similarly, Table 6.2 shows the 3D correlation coefficients 3D  between model markers 
and measurement markers and Pearson’s correlation coefficients   between calculated 
model activations and measured muscle activations.  

As we evaluate these experiments, some comments have to be made. The experiments 
confirm the load-sharing problem: three different activation strategies showed similar 
performances in 3D lip movement tracking with a mean 3D  of 0.93 (no constraint), 0.93 
( allact ), and 0.92 ( relact ), while the correlation with the normalised sEMG features 
varied: 0.27 (no constraint), 0.44 ( allact ), and 0.83 ( relact ), respectively, illustrating 
different activation strategies. The forward solution was created with relact , leading to 
good correlations in the experiment with relact  constraint (mean 0.83  ). Like in 
experiment I, the correlations were not perfect because of the other cost terms in the 
objective function and because of the noise added by integration.  
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Although we cannot perform statistical tests that will be reliable because of our small 
data set, some clear trends can be seen. Looking at the RMS errors, we note that the 

pose of no sEMG constraint was about the same as with allact  constraint, whereas for 

relact  the pose  was always higher than the other two. The activations errors acte  were 
always lower for relact  constraint than the other two constraint, except for OOM and 
BUC. More surprisingly, the relact  constraint resulted in a higher pose , while we had 
expected the most accurate results from the use of relact  as it was used in the forward 
simulation. Presumably, the influences of other cost terms and integration and the 
optimisation of muscle stress must have caused inaccuracies that resulted in better 
(though not perfect) estimated activations, sacrificing a little in motion tracking 
performance. 

Conclusion 
The ideal 45 10valemg    enabled a reasonable sEMG-assisted IM appraoch. The sEMG 
cost term improved the correlations of activations as well as RMS errors while sacrificing 
only little in motion tracking performance.  

6.3.3. Experiment III: Inverse modelling using measured data 
Goal and experimental set-up 
The goal of experiment III was to apply our new sEMG-assisted IM approach on real data 
and test its performance. To do so, we used measurement data obtained from healthy 
volunteers. The motion targets were obtained from recorded position data registered to 
the generic face model with equation (6.10). The sEMG term’s penalty matrix E  was set 
to 0valemg   in case of no sEMG constraint and to 45 10valemg    in case of the sEMG 
constraint allact  (as determined during the previous experiment, see Figure 6.4). 

Results 
Table 6.1 and Table 6.2 show the RMS errors and the correlation coefficients, respectively. 
Congruence between measured muscle activations and calculated activations via inverse 
modelling was similar between volunteers, showing huge standard deviations and a mean 
around zero in correlations when using no sEMG constraint and reasonable to high 
correlations using allact  (Figure 6.6). 3D movement correlations were similar, too. 
Remarkably, when using no constraint we found that volunteer 6 showed a deviating 
higher error in the movement pose (Figure 6.6). The 3D s of lip movement were always 
equal or higher compared to no constraint. Except for the marker 7. The mean 3D s 
showed a moderate to good correlation ( ~ 0.7 ). The pose  was always lower in the 
sEMG-assisted approach, suggesting that the IM without constraint got stuck in a local 
minimum.  

Calculating correlation coefficients for lip marker performance, we found that the lateral 
lip markers 1, 2, 6, and 7 performed better than the centre markers, similarly to the 
forward modelling results [7]. This can be explained by the fact that the volunteers’ 
centre markers moved notably, whereas the model’s centre markers only slightly 
deviated from their original position due to symmetry in the model.  
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equal or higher compared to no constraint. Except for the marker 7. The mean 3D s 
showed a moderate to good correlation ( ~ 0.7 ). The pose  was always lower in the 
sEMG-assisted approach, suggesting that the IM without constraint got stuck in a local 
minimum.  

Calculating correlation coefficients for lip marker performance, we found that the lateral 
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Figure 6.6 RMS errors and 3D correlation coefficients (movement) and Pearson’s correlation 
coefficients (activations) of the different volunteers for experiment III with and without sEMG 
cost term. The median is shown with a horizontal line and the mean with a dot. The boxes give 
first to third quartiles and the outer horizontal lines reflect minimum and maximum values (‘au’ 
is for ‘arbitrary units’). 

There was a lack of correlation without the sEMG constraint for the activations, caused 
by too many degrees of freedom in the muscle space. The sEMG-assisted inverse-
modelling approach showed clear tendency of producing better, realistic and consistent 
muscle activations patterns. 

Zooming in on the errors and correlation coefficients of the activations, those muscles 
whose activations were derived from measured muscles (DLI, BUC, LAO) performed 
worse than the muscles that were measured directly. This helps to explain why our 
forward model showed lower correlation coefficients in previous studies [7]. The OOP 
and OOM, derived from OOS and OOI measurements, also showed lower correlations 
(values), ~ 0.5  versus ~ 0.7 . This is actually an interesting result, suggesting that 
the measurements do contribute a lot and can provide useful information. It would be 
interesting to look into the effects of only tracking the measured muscles instead of using 
derived muscle activations as we did here and to compare the results with experiments in 
which the DLI, BUC, and LAO are also measured directly. 
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Conclusion 
In conclusion, adding sEMG tracking does not reduce 3D movement tracking accuracy, 
whilst giving better solutions in muscle activation tracking, as we already expected after 
experiments I and II. In essence, adding sEMG tracking tailors the inverse solution to a 
personalised activation strategy with equal performance. Apparently, surface EMG is 
sufficiently accurate without requiring any invasive needle approaches. However, 
challenges remain, as the inversion without constraint gave some questionable results, 
suggesting that the inversion may have got stuck in a local minimum. This would mean 
that including the sEMG constraint would be a way to avoid the inversion getting stuck 
in that miminum. However, it also hampers the general goal of seeking compensatory 
mechanisms by means of other muscle activation strategies. Also, because of a small data 
set no statistical test could be performed. However, clear trends were observed and 
should be confirmed by future experiments. 

 

6.4. General results 
Muscle stress varied per volunteer, per instruction, and per experiment (Table 6.3). 
Variation was highest between instructions and between experiments. The required 
computational time varied across simulations. Experiment III without the sEMG 
constraint may serve as a good example for computational times, as it was run 
completely on one workstation whereas the other experiments were distributed over the 
two workstations and the laptop computer, requiring longer computational times per 
simulation.  

 

 

Table 6.3 Maximum muscle stress and computational times. 

 sEMG 
constraint 

Maximum muscle 
stress 
µ (σ) [kPa] 

Computational time  
µ (σ)  

EXPERIMENT II Without  4 46.5 10 (5.1 10 ) 
  

06h 06m 55s (00h 57m 09s)
 

 allact  4 43.2 10 (2.6 10 ) 
 

11h 04m 17s (05h 57m 01s)
 

 relact  4 46.8 10 (5.7 10 ) 
 

07h 41m 32s (4h 02m 17s)  

EXPERIMENT III Without  4 43.3 10 (2.5 10 ) 
 

05h 31m 15s (06h 45m 46s)
 

 allact  4 43.3 10 (2.7 10 ) 
 

07h 24m 35s (04h 46m 19s)
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6.5. General discussion 
To our knowledge, this is the first study to describe the feasibility of sEMG-assisted 
inverse modelling of 3D lip movements using a biomechanical model of the face and lips. 
We have shown that implementing a simple sEMG cost term can direct the calculated 
muscle activations towards the derived muscle activations calculated from sEMG 
measurements. Adding the sEMG cost term showed a clear trend towards superior 
overall performance with regard to 3D lip marker trajectories as well as muscle activation 
patterns when compared with regular inverse modelling.  

Our inverse-modelling approach has inherited the limitations of the model described by 
Eskes et al. (Chapter 5) [7]. First and foremost, the generic model does not account for 
individual physical geometry. Although our volunteers’ measurements were entered into 
the model initially, inaccuracies could build up during simulations due to mismatches in 
patient and model morphology. To account for individual geometry and anatomy, our 
future models should use the mismatch-and-repair algorithm or similar methods [48,49], 
including diffusion-tensor magnetic resonance imaging (DT-MRI) to reveal muscle fibres 
and their trajectories [50]. Such combined approach may yield better approximation of 
muscle dimensions, orientations, and trajectories.  

Furthermore, we may improve our simple skin model by introducing anisotropicity and 
viscoelasticity. Although the simplified soft representation does induce inaccuracies, 
these are negligible in the light of the larger errors caused by suboptimal registration and 
sEMG to force mapping. Our conclusions would probably not change if we would use 
more advanced models with anisotropic and viscoelastic properties.  

Inverse modelling without sEMG tracking resulted in estimated activation patterns that 
totally lacked any correlation with the sEMG signals measured. It may even got stuck in a 
local minimum. Future experiments to address this could use the sEMGs as starting point 
and from there calculate the inverse activations. As expected, adding sEMG tracking gave 
calculated muscle activation patterns that resembled the measurements more closely. 
Pitermann et al. already highlighted the load-sharing problem by demonstrating that 
their calculated muscle activations patterns did not show any correlation with the 
measured intra-muscular rectified and integrated EMG patterns [36]. Varying the initial 
conditions resulted in different solutions to the inverse problem, including solutions with 
negative muscle activity. To address this issue, they restricted the inverted EMG to 
positive values, only, but they found no significant difference in performance between 
the methods with and without this positive constraint. This illustrates the difficulty of 
getting volunteer-specific muscle activation patterns when muscle redundancy causes an 
ill-posed inverse-dynamics problem. Nevertheless, they produced good correlation 
coefficients for 3D lip marker coordinates [36], even when they applied a volunteer-
specific face model to a different volunteer and restricted registration to general linear 
scaling.  
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These promising results encouraged us to make the step towards patient-friendly 
measurements. Pitermann’s team measured intramuscular EMG using invasive needle 
electrodes, but we chose to acquire muscle activation signals with the noninvasive 
technique of sEMG. Another improvement we made in the experimental set-up was 
measuring sEMG and 3D lip markers bilaterally. Pitermann et al. measured EMG on the 
left and facial movement on the right side, which may have induced errors as volunteers 
may not have performed each instruction with perfect symmetry. Our results suggest 
that surface EMG is sufficiently accurate to replace the invasive technique of 
intramuscular EMG with intramuscular needle placement.  

Terzopoulos & Waters created one of the first physics-based face models using discrete 
mass-spring systems to estimate muscle activity from video employing interactive 
deformable contours (snakes) [33]. They were able to resynthesize facial expression from 
estimated muscle activity using a simple, yet powerful algorithm, which called for further 
research in this direction. Where they mapped static facial expression to muscle activity 
in 2D, our results relate to 3D musculature. Incorporating improved tissue biomechanics, 
the ArtiSynth model uses a continuum mechanics based FE formulation as well as an 
advanced orbicularis oris muscle, in contrast to the two fiducial points used in 
Terzopoulos & Waters’ model. Furthermore, we increased the number of perioral 
muscles to 20, where Terzopoulos & Waters studied merely 4. 

Kim & Gomi and Kim et al. created a discrete model of lumped nodal masses connected 
via viscoelastic elements [34,35]. Despite much lower computational costs, a major 
drawback of their set-up is the simplified representation of reality provided by their 
continuum-based finite-element model. Moreover, their inverse-modelling approach 
involved a gradient descent search with optimisation per trial instead of per sample and 
without quantitative reporting. However, if sufficiently accurate, such model may be a 
useful addition to our virtual-therapy toolbox for rapidly simulating new inverse 
solutions. Our computational times, were quite high, especially when simulating the 
instruction set proposed in Eskes et al. for all essential functional movements [6].  

To exert similar force on the elements in the model across experimental conditions, 
maximum muscle stress had to be variable. Although muscle stress differed per volunteer 
and per instruction, we found that mean muscle stress was similar in experiments II and 
III, at 43.3 10 kPa . The variance can be explained by the fact that muscle activation 
amplitudes differed, as did the extent of co-contraction. The different amplitudes may be 
explained by sEMG-technical issues. Signal amplitude may have been affected by 
numerous factors including sensor placement [51]: inaccurate sensor placement will 
inevitably contribute to crosstalk.  

Another important paper by Hirayama et al. [52] reports on inverse dynamics of 
articulatory trajectories. Using a supervised-learning algorithm, they followed the direct 
inverse-modelling approach as described by Jordan & Rumelhart [53]. However, theirs 
was a statistical model, while we prefer biomechanical models that also account for 
physical laws to simulate the effects of surgical interventions.  
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solutions. Our computational times, were quite high, especially when simulating the 
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To exert similar force on the elements in the model across experimental conditions, 
maximum muscle stress had to be variable. Although muscle stress differed per volunteer 
and per instruction, we found that mean muscle stress was similar in experiments II and 
III, at 43.3 10 kPa . The variance can be explained by the fact that muscle activation 
amplitudes differed, as did the extent of co-contraction. The different amplitudes may be 
explained by sEMG-technical issues. Signal amplitude may have been affected by 
numerous factors including sensor placement [51]: inaccurate sensor placement will 
inevitably contribute to crosstalk.  

Another important paper by Hirayama et al. [52] reports on inverse dynamics of 
articulatory trajectories. Using a supervised-learning algorithm, they followed the direct 
inverse-modelling approach as described by Jordan & Rumelhart [53]. However, theirs 
was a statistical model, while we prefer biomechanical models that also account for 
physical laws to simulate the effects of surgical interventions.  

All of the above publications confirm the difficulty of validating computed muscle 
activations with the actual muscle activation strategy. Most researchers have used EMG 
data as reference values to test algorithm performance. This method is even less reliable 
when EMG information is used to best track the muscle activation patterns. Recently, 
Nikooyan et al. reported on a new method to validate forces (and activation levels) in 
patients with shoulder prostheses, measuring the glenohumeral-joint reaction forces in 
vivo [29]. Similar data obtained with knee prostheses were made available for the “Grand 
Challenge Competition to Predict In Vivo Knee Loads” [54,55]. Unfortunately, this type of 
direct-force data cannot be obtained for facial muscles.  

Despite these challenges, we were able to demonstrate that performance in 3D 
movement tracking did not decrease drastically - in fact, it had a tendency towards 
improvement - while the activation tracking improved. We think this will open new ways 
of obtaining realistic person-specific activation strategies.  

6.6. Conclusion 
We have demonstrated the feasibility of an sEMG-assisted inverse-modelling algorithm 
for the perioral region. Our method means an important step in the development of a 
virtual-surgery toolkit for the preoperative estimation of function loss after lip and oral 
cavity cancer surgery.  
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Abstract 

Aim 
The eventual goal of our work is to evaluate possible inverse modelling procedures to be 
used on more complex models of the face, lips, and tongue with the goal of a virtual head 
and neck therapy tool, which requires both forward and inverse models that resemble 
physiologically realistic patient-specific motion and muscle activation patterns. As a first 
step, the purpose of the current chapter is to test which method can be used best in 
surface electromyography-assisted inverse modelling. The requirements are 
computational effort, accuracy, and physiologically realistic volunteer-specific solutions. 

Materials and methods 
We used data of eight healthy volunteers performing two types of biceps curling 
experiments with different weights: stiff and relaxed flexion of the elbow. Surface 
electromyography recordings of the biceps brachii and triceps brachii muscles were 
made. Simultaneously, shoulder, elbow, and wrist positions were tracked in 3D.  

With these data different experiments were carried out on a simple 2D arm model. 
Forward modelling and inverse modelling with and without sEMG assistance were tested. 
Static optimisation and dynamic optimisation were both evaluated. 

Conclusions 
The sEMG-assisted approaches taking into account volunteer-specific muscle activation 
signals improved the estimation of muscle activations with inverse modelling in a simple 
arm model. The physiological cocontractions as recorded during the measurements were 
also seen in the sEMG-assisted inverse dynamics experiments but not in the experiments 
without sEMG tracking. Of the tested methods, the dynamic solution proved most 
feasible, with adequate results, acceptable computational time, and capability to 
generalise to higher-order models. 
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 Introduction 
Movement is one of the most important functions in life and is set in motion by neural 
motor control via electrochemical impulses. One or more motor units (the alpha-neuron 
and its innervated muscle fibres) are activated and ultimately cause the muscle to 
contract. A crude estimate of the number of motor units activated is the surface 
electromyogram (sEMG) , which measures bioelectrical signals generated in the muscles 
via surface electrodes [1,2]. Unfortunately, the relationship between muscle activation 
patterns and the measured EMG is highly nonlinear and nondeterministic for mixed type 
muscle fibres – there are three main types of muscle fibres: type I, slow twitch fibres, type 
IIA, fast oxidative fibres, and type IIB, fast glycolytic fibres, which may be present as a 
mixture in various muscles [3] – and for larger muscles with more motor unit recruitment 
possibilities, such as the biceps and triceps muscles [4]. Nevertheless, sEMG is widely 
used in musculoskeletal modelling [5–8], which has two classic approaches: forward 
modelling (FM) [6,9] and inverse modelling (IM) [10,11]. In FM an estimate for muscle 
activation – usually a form of feature extraction from processed EMG – is used to drive a 
biomechanical model [12,13], whereas in IM movement and/or forces are measured to 
estimate the muscle activations that led to the recorded movement [11,14–16]. Hybrid 
approaches (hybrid modelling, HM) have also been described combining both FM and 
IM to make use of the advantages of both methods [6,8,10,17–20]. 

Solving the inverse dynamics problem has inherent difficulties in estimating correct and 
volunteer-specific muscle activation patterns. Multiple muscles can be responsible for 
the same movement. This redundancy inherent to the musculoskeletal system plays a 
major role in many movements. It has been shown that standard IM does not predict 
cocontractions, whereas these are common in human movement. Therefore, IM may fail 
to estimate physiological realistic muscle recruitment patterns [21]. This is commonly 
known as the load-sharing problem [22,23].  

Estimating the muscle activation patterns can be done using the approaches described 
above (FM, IM, and HM) combining various optimisation methods and different cost 
functions as described by Yamasaki et al. [24], and Erdemir et al. [7]. The estimation of 
muscle forces requires optimisation when using forward modelling, as well as when using 
inverse modelling [7,25,26]. Erdemir et al. categorise the force estimation methods as 
follows [7]: 

1. Inverse dynamics static optimisation  
2. Forward dynamics assisted data tracking  
3. Optimal control 
4. Other 

The methods 1-2 are static optimisation methods, in which ‘static’ means applying an 
optimisation of the control input for each time step individually. The third approach is a 
dynamic optimisation, in which the whole trajectory of the control inputs are optimised 
as a single entity.  
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Dynamic optimisation is computationally inefficient: the computational time is more 
than 1000 times that of static optimisation according to Anderson and Pandy. [27]. This, 
combined with the fact that static optimisation and dynamic optimisation obtained 
remarkably similar results in terms of predicted muscles forces and joint contact forces in 
gait analysis, lends favour to the static optimisation approach [27]. Nevertheless, 
recently, Morrow et al. performed a comparison between static and dynamic 
optimisation for the upper extremity during wheelchair propulsion [28]. They found a 
less profound similarity between static and dynamic optimisation. They concluded that 
in their case static optimisation is not a direct replacement for dynamic optimisation and 
they proposed that for motions greatly influenced by muscle activation dynamics or 
motions with significant cocontraction, dynamic optimisation may be the preferred 
approach. Because of these contradictory results, we assessed both static and dynamic 
optimisation methods.  

Various EMG-assisted and HM approaches were proposed to overcome the muscle load-
sharing problem [18,29]. Buchanan et al. used a forward-inverse dynamics model [6], 
Lloyd and Besier used a calibrated model for inverse dynamics [19]. Yamasaki et al. 
proposed a new method using static optimisation and forward-inverse dynamics using 
higher-order derivatives [24]. These derivatives should account for (a) the forward 
dynamics problem of activation and contraction dynamics by error correction of their 
state vectors, (b) inverse dynamics problem of skeletal system, and (c) the load-sharing 
problem as static optimisation problem of neural excitations [24].  

As described in literature [6,7,24,30], dynamics of the musculoskeletal system are usually 
modelled as three processes: activation dynamics, contraction dynamics and skeletal 
dynamics. Therefore, Yamasaki et al. argue that estimated muscle activity is inherently 
associated with estimation of higher-order derivatives of kinematic data [24].  

The eventual goal of our work is to evaluate possible inverse modelling procedures to be 
used on more complex models of the face, lips, and tongue with the goal of a virtual head 
and neck therapy tool [9,10,31–37], which requires both forward and inverse models that 
resemble physiologically realistic patient-specific motion and muscle activation patterns. 
Therefore, we pursue a method that is able to produce these realistic muscle activation 
patterns.  

As a first step, the purpose of the current chapter is to test which method can be used 
best in sEMG-assisted IM. The requirements are computational effort – which becomes 
even more important in clinical practice, where time of diagnostics to treatment should 
not be excessively large –, accuracy, and physiologically realistic volunteer-specific 
solutions. In contrast to previous hybrid models [8,17], we applied the sEMG information 
as extra cost term in the objective function, which just recently has been reported by 
Bélaise et al. [38], and by Eskes et al. (Chapter 6) [10]. To the best of our knowledge, these 
are the only two studies utilising the approach of marker tracking and sEMG tracking in 
a cost function in a forward-dynamics assisted data tracking or optimal control approach.  
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as extra cost term in the objective function, which just recently has been reported by 
Bélaise et al. [38], and by Eskes et al. (Chapter 6) [10]. To the best of our knowledge, these 
are the only two studies utilising the approach of marker tracking and sEMG tracking in 
a cost function in a forward-dynamics assisted data tracking or optimal control approach.  

Bélaise et al. used simulated sEMG data in contrast to Eskes et al., who worked with 
volunteer-specific sEMG measurement data. The dynamic optimisation variant in this 
study is based on optimal control.  

Many different parts of the body have been studied in musculoskeletal modelling:  
wrist [39], elbow [40], shoulder [11], ankle [41], and knee [19]. We chose the upper 
extremity for easy recording of sEMG and optical tracking. Moreover, only a limited 
number of muscles span the elbow joint. This simple arm model can serve as a proof of 
principle for the more complex models of the face, lips, and tongue.  

 Theoretical background 
This section elaborates on the theoretical modelling background. It describes state-space 
modelling, inverse modelling using forward dynamics assisted data tracking, extended 
Kalman filtering, and optimal control. 

7.2.1. State-space modelling 
State-space modelling provides a general framework for describing the different 
approaches to forward and inverse dynamic modelling. These models are built on a state 
vector ( )tx  with dimension D  and a control input vector ( )tu  with dimension N . In 
continuous time, the model is given by a system equation: 

  ( ) ( ), ( )t t tx f x u   (7.1) 

As an example, a model of the lower arm, simply described by a pendulum, is a 2nd order 
system, 2D  , in which ( )tx  contains an angle and an angular velocity. The control 
vector ( )tu  contains the activation signals of the biceps brachii and triceps brachii 
muscles. 

In discrete time, we use a simple approximation of the continuous state-space model: 

 
 

 

1 ,

,

k k k k

def

k k

   



x x f x u

x u
 (7.2) 

 ,k kx u  is the discrete time system function.   is the sampling period; k  is the 
discrete time index. Note that kx  and ku  corresponds to ( )ktx  and ( )ktu , respectively, 
with kt k  .  

To enable state estimation, we define a measurement vector kz  which contains those 
state elements that are measured: 
 k kz Hx  (7.3) 

In the current study, only the angle is measured. Thus, H  is a measurement matrix that 
selects this measured state element, and  1 0H . 
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7.2.2. Forward dynamics assisted data tracking with sEMG improvement 
The static optimisation procedure described in this section uses a quadratic cost term for 
the state variables that are observed together with a quadratic cost term for the sEMG 
signals that are observed. Quadratic programming is used in each time step.  

The measured state variables are represented by the vector kz  for which the following 
model holds: k kz Hx . At step k , assuming knowledge from the previous state and 
control vector, i.e. kx  and ku , the measurement for 1k   is predicted by:  

    1ˆ , ,
def

k k k k k  z H x u g x u   (7.4) 

In order to formulate the inverse problem as a quadratic programming problem we apply 
linearisation. Assuming that we have two pivots u  and x , we define ( , )z g x u . 
Applying a truncated Taylor series expansion with  u u ε  yields: 

  ( , ) ( , ) ( , ) ( , )     z g x u g x u G x u ε z G x u u u  (7.5) 

in which ( , )G x u  is the Jacobian matrix of ( , )g x u  evaluated at pivots x x  and u u . 
Embedding this in equation (7.2) with kx x , 1ku u , and ( , )kz g x u , we have: 

 
 1ˆ ( , )

( , )
k k   

 

z z G x u u u

z G x u 
  (7.6) 

The real measured state variables, denoted by 1kz , are the targets for the predicted 1ˆ kz . 
The sEMG signal ks  are targets for the activation signals ku . With that, we define the 
cost function as follows: 

        T TT T
1 1 1 1

1 1 1 1ˆ ˆ( )
2 2 2 2k k k k k k k k k kJ           ε z z M z z u Au ε Dε u s E u s (7.7) 

With M ,A ,D , and E  the penalty matrices for states, 2 -regularisation term, damping 
term, and sEMG term, respectively. Substitution of k  u u   yields: 
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u Au u Aε ε Aε
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u s E u s u s Eε ε Eε

  (7.8) 

Cancelling irrelevant terms, i.e. terms not depending on  , substitution of 

1( , )k kG G x u , and rearrangement of terms of the same kind give: 

     1
1 2( ) ( )T T T T

k kJ         ε ε Au E u s G M z z ε A D E G MG ε   (7.9) 
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Cancelling irrelevant terms, i.e. terms not depending on  , substitution of 

1( , )k kG G x u , and rearrangement of terms of the same kind give: 

     1
1 2( ) ( )T T T T

k kJ         ε ε Au E u s G M z z ε A D E G MG ε   (7.9) 

Finally, substitution of: 
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c Au E u s G M z z
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gives the canonical form of a quadratic programming problem: 

 1
2( ) T TJ  ε ε c ε Rε   (7.11) 

Without additional constraints, and assuming that the inverse of R  exists, the solution 
is given by: 

 1 ε R c   (7.12) 

so that the found control vector is: 

 1k k u u    (7.13) 

7.2.3. Extended Kalman filtering 
Kalman filtering is applied to estimate the state vectors using observations of these 
vectors. As spin-off, the Kalman filter can also deliver estimates of the input vectors, 
which can be used as a first solution for our IM problem. For this, the state-space model 
in equation (7.2) and (7.3) must be augmented with the unknown part kw  of the control 
vector, and with process noise kw  that drives this unknown part. We define 
T T T
k k k   y x w  and we define ku  as the known part of the control vector, so that 

k k k u u w : 
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  (7.14) 

  is a forgetting factor which assures that kw  will not fluctuate wildly. kw  is the 
process noise, and is modelled as white noise with covariance matrix wC . Since only the 
last two elements of the process noise drive kw , we choose 2 2

1 2diag(0,0, , ) wC . The 
measurement noise kv  is assumed to be white noise with covariance matrix vC .  

The sEMG vectors ks  are an indication of the control vectors. However, since maybe not 
all muscles are monitored by sEMGs, we define a binary vector b  which indicates 
whether a muscle is measured. That is, 0nb   specifies that muscle n  is not measured, 
whereas 1nb   specifies that the sEMG of that muscle is available.  
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With that, the known part of the control vector is: 

 

1

2

0 0
0
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 

u Bs B   (7.15) 

Effectively, the elements of the control vectors that are measured by means of sEMG are 
replaced with the sEMG features. All other elements of the control vectors are set to zero. 

The Kalman filter keeps track of the estimates |ˆ k ky  with covariance matrices |k kC , and 
with the one-step-ahead predictions 1|ˆ k ky  with covariance matrices 1|k kC . To by-pass 
the nonlinearity in  ,y u  the extended Kalman filter uses the approximation 
     , , ,   yy u y u y u     . Starting with an initial condition 1|0 0ˆ  y x  and 

1|0 0 C C , the extended Kalman filter iterates as follows: 
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  (7.16) 

The final estimate of the control vectors follows from 

 |ˆ ˆk k k k u u w   (7.17) 

7.2.4. Optimal Control  
Instead of optimisation per time step, optimal control theory provides a framework to 
derive an optimal trajectory of control vectors. In continuous time, the problem is stated 
as follows: 

Given, the initial condition, that is 0(0) x x  at time 0t  , and given measurements 
( )tz  and sEMG signals ( )ts  during the time period of the experiment, i.e. for 0 t T  , 

reconstruct the trajectory of the control vector that optimises a criterion. First, we want 
control vectors such that the resulting ( )tx  is most compatible with the measurement 
vector ( )tz . Second, we want ( )tu  to be compatible as much as possible with the sEMG 
signals ( )ts . For that purpose, we define the objective function: 

    
0

( ) ( ), ( )
T

t

J t C t t dt


 u x u   (7.18) 

in which (,)C  is a benefit function that should be tailored to the application.  
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( )tz  and sEMG signals ( )ts  during the time period of the experiment, i.e. for 0 t T  , 

reconstruct the trajectory of the control vector that optimises a criterion. First, we want 
control vectors such that the resulting ( )tx  is most compatible with the measurement 
vector ( )tz . Second, we want ( )tu  to be compatible as much as possible with the sEMG 
signals ( )ts . For that purpose, we define the objective function: 

    
0

( ) ( ), ( )
T

t

J t C t t dt


 u x u   (7.18) 

in which (,)C  is a benefit function that should be tailored to the application.  

For that, we define the observed state vector ( )t  as indicated by the measurement 
vector ( )tz . The observed state vector ( )t , having the same dimension as ( )tx , 
contains the measured state variables at the same locations as in ( )tx , but since maybe 
not all state variables are measured, as indicated in the measurement matrix H , some 
locations will be void. We also define a binary vector p . The connotation of p  is that if 
its element 0dp  , the state variable ( )dx t  is not measured; whereas 1dp   specifies 
that that state variable is measured, and so ( )d t  is a valid element.  

( )tx  must be consistent with ( )t , and ( )tu  must be consistent with the sEMG vectors 
( )ts . So, we define: 

          ( ), ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TC t t t t t t t t t t      x u x P Q x P u Bs R u Bs   (7.19) 

where Q  and R  are weighing matrices that determine the balance between the two 
requirements. The matrix P  is a selection matrix that is derived from p : 
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The minus sign in equation (7.19) turns the quadratic cost function into a quadratic 
benefit function, so that the objective function needs to be maximised rather than 
minimised. 

The objective is to determine a control signal ( )   0t t T u  such that  ( )J tu  is 
maximised. However, in general there maybe constraints on the solution space. In our 
case, each control signal must be within the range of 0 and 1. 

Several strategies exist to find the solution of the optimal control problem. In 
biomechanical applications, the method called ‘parameter optimisation’ is a brute force 
procedure [42]. First, the problem is rephrased in discrete time so that a finite number of 
control vectors ku  with 0, ,k K  represents the solution. These vectors are stacked to 
a single ( 1)N K   dimensional vector. This turns the dynamic optimisation problem into 
a parameter optimisation problem. The disadvantage is that the dimension of the 
parameter vector is huge, which makes the procedure impractical. 

Another strategy is ‘dynamic programming’ [43]. By discretising not only the time, but 
also the control space, the optimal solution can be regarded as a path on an orthogonal 
lattice. Dynamic programming is an efficient algorithm to find the optimal path as the 
computational complexity is on the order of 2( 1)K N u , in which Nu  is the number of 
samples in the control space. This makes this approach also impractical as, for instance, 
in a 2-dimensional control space that is populated with, for instance, 

4100 100 10N   u  samples, the complexity is too large.  
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7.2.5. Maximum principle of Pontryagin 
An elegant strategy is the application of the maximum principle of Pontryagin [43]. This 
principle transforms the dynamic optimisation problem also into a parameter estimation 
problem but unlike the ‘parameter optimisation’ mentioned above, the parameter vector 
to optimise has the same dimension as the state vector. The recipe is as follows. 

First, the so-called adjoint equation is defined: 

    ( ) ( ), ( ) ( ) ( ), ( )T Tt t t t C t t  x xf x u x u    (7.21) 

The D -dimensional vector ( )t  is called the adjoint vector.  , )xf x u  is the Jacobian 
matrix with respect to x .  ( ), ( )C t tx x u  is the derivative of (,)C  with respect to the 
vector x . The initial condition of the adjoint equation is not given, but instead there is a 
terminal condition at the terminal time T . In the absence of a possible cost function on 

( )Tx , this terminal condition is simply: 

 ( )T  0   (7.22) 

The maximum principle of Pontryagin states that the optimal control vector at each 
point in time maximises the so-called Hamiltonian function ( ( ), ( ), ( ))H t t t x u : 

 arg max ( , , )    with  ( , , ) ( , ) ( , )
def

T
opt H H C  

u
u x u x u f x u x u    (7.23) 

The problem that is left, is that the initial condition (0)  of the adjoint equation in 
equation (7.21) is not given. If it was, then we could solve the system equation and the 
adjoint equation simultaneously by numerical integration, and find ( )tu  for each time 
step by applying the principle of Pontryagin. A numerical approximation of that with   
being the time step is: 
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 (7.24) 

The iteration starts at 0k   with 0 (0)x x  being the (known) initial condition, and 
with some 0  substituted for the (yet unknown) initial condition (0) . The terminal 
time is reached when k K  with K T  . This yields a terminal condition K , which 
obviously depends on the choice of 0 . We therefore introduce the function ( )g  as 
follows:  

 0( )K  g    (7.25) 

The numerical evaluation of 0( )g   is accomplished by iterating according to (7.24). 
Finding the optimal control boils down to finding a 0  such that 0( ) g 0 . This can be 
regarded as a parameter optimisation problem if we define an objective function 

2
0 0( ) ( )pontJ  g  . 
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The iteration starts at 0k   with 0 (0)x x  being the (known) initial condition, and 
with some 0  substituted for the (yet unknown) initial condition (0) . The terminal 
time is reached when k K  with K T  . This yields a terminal condition K , which 
obviously depends on the choice of 0 . We therefore introduce the function ( )g  as 
follows:  

 0( )K  g    (7.25) 

The numerical evaluation of 0( )g   is accomplished by iterating according to (7.24). 
Finding the optimal control boils down to finding a 0  such that 0( ) g 0 . This can be 
regarded as a parameter optimisation problem if we define an objective function 

2
0 0( ) ( )pontJ  g  . 

7.2.6. Linear quadratic control 
For linear systems, and with the target set to zero, i.e. k z 0  for all k , the optimal 
control problem with quadratic cost functions has an elegant feedback solution: 

 k k u Lx   (7.26) 

This is called linear quadratic regulation. With a finite terminal time T , the feedback 
matrix L  depends on time. However, with infinite horizon, i.e. T  , the matrix is 
constant [43]. In the current nonlinear system, a linear approximation of the system 
function ( , )x u  is needed to calculate L . Define the Jacobian matrices ( , )x x u  and 

( , )u x u  with respect to x  and u , respectively. The feedback matrix L  follows from the 
discrete Ricatti equation [43]: 
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Embedding this in the situation with a nonzero target and with knowledge of the sEMG 
signals is done in a feedforward-feedback framework with error correction. See Figure 7.1. 
The first step is the application of the extended Kalman filter, which produces an 
estimate ˆ kx  of the state vector, as well as an estimate ˆ ku  of the control vector. This 
allows a new state-space model for the error. Define a state-space vector ˆk k k e x x  
with control input ˆk k k u u , and assuming 1ˆ ˆ ˆ( , )k k k x x u : 
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Application of this linear model in equation (7.27) provides for each time step k  a LQR 
solution for the feedback matrix kL  which now becomes time dependent. Note that in 
order to comply with the constraints on the control signal, the control inputs are limited 
so as to assure that it is within the allowed range, i.e. ˆk k k  u u  .  

The proposed method is an implementation of an error-correction method using LQR 
feedback, and with extended Kalman filtering to provide the input. This is summarised in 
Figure 7.1. In this diagram, the ks  is used instead of ks . This allows us to compare 
results with full support of the sEMG signals, 1  , or fully without this support 0  . 

The strategy represented here can be considered an approximation of the solution of the 
optimal control problem. The approximation is done by linearisation of the system. The 
merit is that this linearisation is with respect to the error that is brought forth in the 
Kalman filter. We expect that this approximation is more accurate than a linearisation 
with respect to the state vector. 
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Figure 7.1 LQR feedback error correction using extended Kalman filtering as input. 

 

 Methods 
7.3.1. Volunteers and data acquisition 
Data of eight right-handed healthy volunteers ( 1, ,8)k    were acquired: four males and 
four females, ages ranging from 23 to 33 years ( 25.5   and 2.9  ). The recording 
sites of the skin were cleansed with NuPrep abrasive gel and alcohol to reduce skin 
impedance. The TMSi® Porti™ system (TMSi ®, Oldenzaal, The Netherlands) was used to 
record the sEMG signals. Pre-gelled disposable surface electrodes (Covidien Kendall  
12 mm diameter, with shielded cables) were placed above the long head of the biceps 
brachii and the long head of the triceps brachii ( 1, ,4)n    of the right arm (see Cram et 
al. [44], and Figure 7.2), with an interelectrode distance of two centimetres. In addition, a 
common ground reference electrode was applied on the bony part of the forehead. The 
Polaris Spectra optical tracking system (NDI, Ontario, Canada) tracked the shoulder, 
elbow and wrist joints via optical markers attached to the joints. Volunteers gave their 
informed consent for the experiments, which were approved by the Ethics Committee of 
the University of Twente. 

7.3.2. Instructions to volunteers 
The volunteers were asked to steady their elbow by placing it against their side. The 
forearm was in supinated position. The range of elbow joint angle was from 0° to ~160°, 
fully extended to fully flexed, respectively. The tasks described below were performed in 
random order for 50 seconds with a predefined pace of 40 bpm (~0.67 Hz) using a 
metronome, resulting in eight to nine repetitions per measurement, the first eight of 
which were used. This was done with counterweights of 0 kg, 1 kg, 2 kg, 3, kg:  

1. Normal Biceps flexion (NBF); Lifting the lower arm by focusing on contracting 
only the biceps.  

2. Stiff Biceps flexion (SBF); Lifting the lower arm by focusing on contracting both 
the biceps and the triceps.  
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Figure 7.2 Left: bipolar electrode placement on biceps muscle, right: bipolar electrode placement 
on triceps muscle. Adapted from Cram et al. [45]. Original image ©2010 Jones and Bartlett 
Publishers, LLC. 

The instructions were first demonstrated by the experimenter. Thereafter, volunteers 
practiced the instructions beforehand until they felt familiar with the procedures. To 
prevent muscle fatigue, 100 seconds of rest was given between trials. Finally, isometric 
maximum voluntary contraction (MVC) experiments were performed for normalising the 
sEMG signals. The MVC experiments were performed at an elbow joint angle of 90°. 

7.3.3. Data processing and analysis 
sEMG signals ( , , )ns t i r  were recorded in bipolar configuration with a sample frequency 
of 2,048 Hz. Here, t  is the time index, i  is the instruction, and r  is the repetition 
number. The recorded sEMG signals were bandpass filtered with a high- and low-pass, 
zero-phase delay, fourth-order Butterworth filter with cut-off frequencies of 20 and  
450 Hz, respectively [46]. The optical tracking position data of the shoulder 

( , , )shoulderp t i r , the elbow ( , , )elbowp t i r , the wrist ( , , )wristp t i r were captured at a frequency 
of 30 Hz. The position data were filtered with a low-pass, zero-phase delay, fourth-order 
Butterworth filter with a cut-off frequency of 5 Hz.  

Synchronisation 
To synchronise the sEMG signals with the optical tracking data, both data acquisition 
software packages were installed on the same laptop. The recording of both software 
packages was started simultaneously with a script using the internal clock of the CPU as 
timing, resulting in a maximum synchronisation difference of 1 ms. Thereafter, the sEMG 
signals were resampled to 30 Hz to match the position data. 
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Registration 
To register the different volunteers to the same generic model, the elbow joint angle   
was calculated from the smoothed position data using: 

 1 ( ( ) ( ))( ) cos
( ) ( )

SE t WE tt
SE t WE t

   
   

 
 (7.29) 

With SE  being the vector from elbowp  to shoulderp  and WE  being the vector from elbowp  to 

wristp . The joint angles in time were used to calculate wrist positions  mod el
wristp  in time 

using the model’s defined locations of shoulder, elbow, and wrist.  

7.3.4. sEMG to muscle activation model 
Buchanan et al. described the mathematical transformation from EMG via neural 
activation to muscle activation, and eventually muscle force [9]. Their method follows 
below: 

 1 2( ) ( ) ( 1) ( 2)u t e t d u t u t         (7.30) 

 , 1 , and 2 are the parameters that map processed sEMG ( e ), which is also full-wave 
rectified, to neural activation ( u ). The electromechanical delay d  is included in the 
equation. There is a small time delay between sEMG activity and the corresponding 
muscle activation, which is called the electromechanical delay [25]. The 
electromechanical delay varies per subject, per muscle, and per movement. Norman et al. 
found different values for the biceps and triceps in concentric and eccentric conditions. 
We used the averaged values of 46 ms for the biceps, and 30 ms for the triceps [48]. The 
following is essential to form a stable equation: 

1 1 2     2 1 2    1 1   2 1   1 2 1      

We used the simple form, also reported in Manal et al. [49], to describe the step from 
neural activation to muscle activation, which incorporates the nonlinear mapping from 
sEMG to muscle activation: 

 
( ) 1( )

1

Au t

A

ea t
e





 (7.31) 

The Manal parameter A  is the nonlinear shape factor that can vary from 3  to 0 , 
representing highly nonlinear to linear. 

7.3.5. Normalisation  
The normalisation of sEMG data is still a matter of debate [50–52]. However, the 
processed sEMG has to be scaled between zero and one before calculating the activations 
according to equation (7.31).  
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The Manal parameter A  is the nonlinear shape factor that can vary from 3  to 0 , 
representing highly nonlinear to linear. 

7.3.5. Normalisation  
The normalisation of sEMG data is still a matter of debate [50–52]. However, the 
processed sEMG has to be scaled between zero and one before calculating the activations 
according to equation (7.31).  

The data in this study were normalised ( e ) by the peak value of processed sEMG ( e ) of 
the MVC trials, with the following equation ( n  indicates the muscle): 

 
min( )

max( ) min( )
n n

n
n n

e e
e

e e
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
 (7.32) 

7.3.6. The arm model 
We used a simple upper extremity model, containing the biceps brachii and triceps 
brachii muscles, depicted in Figure 7.3.  

The following quantities are defined: 

▪ The lower arm length is given by . 
▪ The mass of the lower arm is modelled as a point 

mass m  located at the extreme end of the lower arm. 
▪ The biceps brachii exercises a force 1 1 max,1F u F  at a 

point of action that is at a distance 1r  from the 

rotation axis of the joint. 
▪ The triceps brachii exercises a force 2 2 max,2F u F  at a 

point of action that is at a distance 2r  from the 

rotation axis of the joint. 
▪ The orientation of the lower arm is defined by an 

angle   with respect to the vertical direction. 

▪ The arm’s moment is denoted with M   

Figure 7.3 Simple arm model. 

The dynamics of the system are described by the force balance according to Newton’s law 
applied tangential to the circular trajectory of the mass: 

 
1 max,1 1 2 max,2 2

sin

sin

gravity friction biceps tricepsma F F F F
u F r u F rDm mg



  

    
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  (7.33) 

We converted this to a state-space model by defining a state vector  ( ) ( ) ( ) Tt t t x  
and a control vector  1 2( ) Tt u uu : 

  
2

1
max,1 1 max,2 2

2 1 2 1 22 2 2

( ) ( ), ( )
sin( )

xx
t t t F r F rg dx x x u u

m m m

 
               

x f x u   (7.34) 

Here ( )tx  is the state vector with positions and/or velocities with dimension 2D  . 
( )tu  is the control vector, i.e. the activation signals with dimension 2N  .  
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The activations are bounded between 0 and 1. That is, for each muscle n , we have 
0 ( ) 1nu t  .We used the parameters as given in Table 7.1 [24].  

Table 7.1 Model parameters adopted from [24] 

Parameter  Biceps ( 1n  ) Triceps ( 2n  ) Unit 

d   0.2 0.2 Nms 

nr    0.03 -0.03 m 

n    0.12 0.12 m 

max,nF   2600  2000 N 

 

 Experiments 
A number of experiments were performed to compare the proposed static optimisation 
method with the dynamic optimisation method using LQR feedback error correction. For 
each run, the root mean square (RMS) error was calculated between the measured angles 
of the elbow and the model based estimated angles. Next, the average RMS  of these 
RMSs was tabulated along with its standard deviation. The same was done for the 
measured muscle activations, i.e. the sEMG features, and the model based estimated 
muscle activations, yielding RMSe . Pearson’s correlation coefficients were determined 
between the measured muscle activations and the estimated ones, and between the 
measured angles and estimated ones. This was done for each run, again obtaining an 
average e (activations) and  (angles) and corresponding standard deviation. The last 
performance measure was computational time, which becomes even more important in 
clinical practice, where time of diagnostics to treatment should not be excessively large.  

For the static optimisation the following parameters were used: 

▪ the Jacobian step size    610   
▪ the penalty matrix for the motion cost term  diag(1,1)M   
▪ the penalty matrix for the activation cost term diag(0.005,0.005)A   
▪  the penalty matrix for the damping cost term diag(0.0025,0.0025)D   
▪ the penalty matrix for the sEMG cost term  diag(0.25,0.25)E   

 or E 0  (no sEMG)  

For the dynamic optimisation method using LQR feedback error correction the 
parameters were: 

▪ forgetting factor of estimated control signals 0.9   
▪ covariance matrix of measurement noise   2 20.1  radvC   
▪ covariance matrix of process noise   2 2diag(0,0,10 ,10 ) wC  
▪ Cost matrix state vector    diag(1000,0)Q   
▪ Cost matrix control input    diag(1,1)R  
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These values were chosen in such a way, that the correlation coefficient of the biceps 
activities were about the same for static optimisation and dynamic optimisation.  

The following experiments were conducted: 

Experiment 0: Forward modelling 
The sEMG features were directly fed into the biomechanical model. 
To see which degree of nonlinearity performs best, this was repeated 
with four different instances of the Manal parameter A , that A  is 
set to 0,  1,  2,   and 3 . The parameter A  that performed best 
was used in consecutive experiments. 

Experiment I:  Static optimisation without sEMG assistance 
Experiment II: Static optimisation with sEMG assistance 
Experiment III: Dynamic optimisation without sEMG assistance 
Experiment IV Dynamic optimisation with sEMG assistance 

 Results 
In experiment 0 (forward only), the found RMSs of the angle were as follows: 

0 0.52 0.21
1 0.54 0.16
2 0.52 0.18
3 0.51 0.19

A
A
A
A














  
   
   
   

 

The results do not significantly differ. Since there was a slightly higher correlation for 
1A   , this was selected for all other experiments. We depicted the mean of the found 

input neural activation levels with corresponding standard deviations as well as the 
average and standard deviations of the found angles. This was done for experiment 0 
(Figure 7.4 and Figure 7.5), experiment I (Figure 7.6 and Figure 7.7), experiment II 
(Figure 7.8 and Figure 7.9), experiment III (Figure 7.10 and Figure 7.11), and experiment 
IV (Figure 7.12 and Figure 7.13). 

Table 7.2 denotes the results of the different algorithms, showing the mean and standard 
deviation of the Pearson’s correlation coefficients between the measured activations and 
the IM calculated activations and between the measured angles and tracked angles. In 
the tables, the following abbreviations are used:  

▪ FM:   forward modelling 
▪ SO:  static optimisation 
▪ DO:  dynamic optimisation using Kalman filtering and  

LQR feedback error correction 
▪ sEMG: sEMG-assisted approach 

Table 7.1 shows the mean and standard deviation of the RMSs between the measured 
activations and the IM-calculated activations and between the measured angles and 
tracked angles. The computational effort is given in Table 7.4. 
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Table 7.2 Mean Pearson’s correlation coefficients of activation signals and angle for the methods 
tested over all instructions and all volunteers. FM: forward modelling, SO: static optimisation, 
DO: dynamic optimisation. 

 FM  

( )   

SO 

( )   
sEMG-SO ( )    DO 

( )   
sEMG-DO ( )   

Biceps brachii   ~1 (~0) 0.38 (0.35) 0.79 (0.22) 0.18 (0.38) 0.72 (0.31) 
Triceps brachii   ~1 (~0) -0.06 (0.30) 0.72 (0.26) -0.05 (0.36) 0.57 (0.35) 
Angle   0.54 (0.16) ~1 (~0) ~1 (~0) ~1 (~0) ~1 (~0) 

 

Table 7.3 Mean RMSe  of activation signals and angle for the methods tested over all instructions 
and all volunteers. FM: forward modelling, SO: static optimisation, DO: dynamic optimisation. 

 FM  

( )   

SO 

( )   

sEMG-SO 

( )    

DO 

( )   
sEMG-DO

( )    
Biceps  
brachii  

not 
applicable 

0.05 
(0.04) 

0.03 (0.02) 0.05 (0.03) 0.03 (0.01) 

Triceps 
brachii 

not 
applicable 

0.03 (0.03) 0.02 (0.02) 0.02 (0.03) 0.03 (0.03) 

Angle (rad) 21.25 (25.81) 0.25 (0.21) 0.25 (0.21) 0.003 
(0.002) 

0.007 (0.006) 

 

Table 7.4 Computational effort per method FM: forward modelling, SO: static optimisation, DO: 
dynamic optimisation. 
 FM  

( )   

SO 

( )   
sEMG-SO ( )    DO 

( )   
sEMG-DO ( )   

Time (s) 
(k=500) 

0.017 (0.002) 4.35 (0.11) 4.34 (0.06) 0.87 (0.03) 0.87 (0.03) 

 
 

     

 Discussion 
The goal of this chapter was to evaluate different methods for inverse dynamical 
modelling (IM) assisted by sEMG. As evaluation metrics we used: computational effort, 
accuracy, and physiologically realistic volunteer-specific solutions. For this test, we used 
a general framework based on state-space modelling. We tested two main approaches 
solving the IM problem: static optimisation (SO) and dynamic optimisation (DO). For 
both approaches, we developed a method based on the state model. We tested these 
models on an idealised 2nd order arm model. The dynamic variant outperformed the 
static one with respect to accuracy of angle tracking while in both cases the similarity 
between measured sEMG activity of the biceps and found activation pattern was kept to 
about 70%. The dynamic approach was 5 times more computationally efficient.  
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 Discussion 
The goal of this chapter was to evaluate different methods for inverse dynamical 
modelling (IM) assisted by sEMG. As evaluation metrics we used: computational effort, 
accuracy, and physiologically realistic volunteer-specific solutions. For this test, we used 
a general framework based on state-space modelling. We tested two main approaches 
solving the IM problem: static optimisation (SO) and dynamic optimisation (DO). For 
both approaches, we developed a method based on the state model. We tested these 
models on an idealised 2nd order arm model. The dynamic variant outperformed the 
static one with respect to accuracy of angle tracking while in both cases the similarity 
between measured sEMG activity of the biceps and found activation pattern was kept to 
about 70%. The dynamic approach was 5 times more computationally efficient.  

The forward modelling experiment with the simple model produced poor results: the 
average correlation was 0.54  and the average RMS error was 1,218RMS    
(Figure 7.5). The input activations from sEMG (Figure 7.4) mostly resulted in inadequate 
outcomes (Figure 7.5). Only a few instructions of a few volunteers had some resemblance 
with the supposed arm movement. Most of the movements resulted in a flexed arm that 
ran into the upper boundary of the model. The expected relaxation to an extended arm 
posture did not follow because the produced forces based on sEMGs and resulting 
torques favoured the biceps muscle. Gravity forces and exerted triceps muscle forces 
could not counteract the biceps force. Consequently, the forward model performed 
somewhat better when cocontraction was stimulated during the stiff biceps curling (SBC) 
(Figure 7.5).  

Without sEMG assistance, both SO and DO showed poor correlations between IM 
calculated activations patterns and measured activation patterns (Table 7.2). SO did not 
estimate cocontraction (Figure 7.7), whereas DO did (Figure 7.11). The correlation 
between the measured and tracked angle was high in SO, but unfortunately the RMS  was 
also high (14 ). There was a systematic offset in the SO approach that apparently was 
not sufficiently penalised by the objective function (Figure 7.7). The DO method 
performed well on both measures ( 0.2RMS   , ~ 1  ). 

To obtain more realistic and volunteer-specific activation patterns, the sEMG-assisted 
approaches were introduced. Inclusion of the sEMG measurements drastically improved 
the correlations between measured activations and IM calculated activations, especially 
the biceps contribution (Table 7.2). SO triceps activations showed a reasonable e , 
whereas DO triceps activations were somewhat lower. Again, in SO the systematic error 
was present (14 ); see Figure 7.9. When comparing DO with sEMG against DO without, 
the error rose to 0.4RMS   . 

The computational time was low in both cases (Table 7.4). However, computational cost 
will drastically increase in the SO implementation for higher order systems because for 
each time step it iteratively optimises the objective function, and each iteration requires 
evaluating Jacobian matrices. DO has been reported to be 1000 times slower than SO 
[27]. In our case, this was avoided and even improved, because of the approach taken. 
LQR feedback is an approximation that is optimal for linear systems, and with time going 
to infinity, the feedback matrix becomes time invariant. Biological systems are usually 
nonlinear and with a finite time. Thus, our DO solution, which applies a linearisation of 
the system function, approximates the optimal control solution. Another advantage of 
the DO solution is that it is embedded in a state-space framework, thus enabling 
generalising capabilities e.g. enabling higher order models.  

Although delivering promising results, some remarks have to be given. The influence of 
the design parameters of both SO and DO have not been fully optimised, e.g. by means 
of an extensive parameter search, and it has not been investigated how the cost matrices 
are optimised. This may alter the results significantly. Future research should therefore 
include a strategy to optimise all parameters (or perform sensitivity analysis). 
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The sEMG-assisted inverse modelling approaches enabled the difficult cocontraction 
prediction without the use of other cost terms as proposed by Forster et al. who 
considered joint stability an important factor aside from muscle efficiency [53]. They 
added a corresponding cost term. Shabani and Stavness also investigated a target joint 
stiffness cost term on postural stability and a short-range stiffness muscle model [54]. 
Another option was postulated by Raikova et al. who enforced cocontraction by allowing 
negative weighing factors [55]. Although both methods show cocontraction, those 
probably are not volunteer-specific. The approach we used may present more realistic 
volunteer-specific muscle activations. 

The 2nd order arm model is a very simple approximation of reality. Given the forward 
results (Figure 7.5), it is by no means perfect in transforming sEMG features to 
corresponding forces and induced angles. This relationship may be improved by 
incorporating higher order systems, such as described by Yamasaki et al. [24]. The 
parameters of the arm model that we took from the literature do not represent 
volunteer-specific properties (Table 7.1), such as arm length, mass, muscle fibre 
orientations, etc. Follow-up studies may incorporate volunteer-specific data. Eventually, 
we aspire to implement these methods in even more complex systems, such as the face 
and lips, and tongue.  

Also, this simple arm model contained only the long heads of the biceps and the triceps 
muscles. In reality, the short head of the biceps, the medial and lateral head of the 
triceps, the brachioradialis, and the brachialis muscle also play a role in flexion and 
extension of the elbow. Unloaded flexion of the arm showed low activity in triceps and 
biceps long head (Figure 7.4). This can be explained by the fact that unloaded elbow 
flexion is mainly performed by the brachialis [40,56]. Another limitation was that the 
shoulder joint was fixed, and so the motion was limited to the anterior-posterior and 
cranial-caudal axis. Enforcing a 2D plane instead of 3D movements caused an 
underestimation of internal loads of up to 60% in the lower extremity [57]. However, the 
2D view can be used as a reasonable estimate of main movements. Unfortunately, 
movement of the upper extremity is more versatile and rotations of the shoulder joint 
lead to nonintuitive descriptions of rotational kinematics [58]. 

Other interesting cost terms such as optimising muscle stress or oxygen consumption 
were not considered here, but may add useful information. Praagman et al. suggested 
that oxygen consumption is the better candidate for an energy-related cost term [59]. It 
resulted in more realistic muscle activation patterns during inverse dynamics of a simple 
arm model.  

The proposed sEMG-assisted inverse modelling approach can help to obtain 
physiologically correct and person-specific muscle activation patterns and can establish 
the naturally occurring cocontraction of antagonists. The work described here may now 
be extended to the more challenging environment of the lips, where many muscles 
operate to perform the various facial expressions, and thus the ambiguity problem is 
more apparent.  
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The sEMG-assisted inverse modelling approaches enabled the difficult cocontraction 
prediction without the use of other cost terms as proposed by Forster et al. who 
considered joint stability an important factor aside from muscle efficiency [53]. They 
added a corresponding cost term. Shabani and Stavness also investigated a target joint 
stiffness cost term on postural stability and a short-range stiffness muscle model [54]. 
Another option was postulated by Raikova et al. who enforced cocontraction by allowing 
negative weighing factors [55]. Although both methods show cocontraction, those 
probably are not volunteer-specific. The approach we used may present more realistic 
volunteer-specific muscle activations. 

The 2nd order arm model is a very simple approximation of reality. Given the forward 
results (Figure 7.5), it is by no means perfect in transforming sEMG features to 
corresponding forces and induced angles. This relationship may be improved by 
incorporating higher order systems, such as described by Yamasaki et al. [24]. The 
parameters of the arm model that we took from the literature do not represent 
volunteer-specific properties (Table 7.1), such as arm length, mass, muscle fibre 
orientations, etc. Follow-up studies may incorporate volunteer-specific data. Eventually, 
we aspire to implement these methods in even more complex systems, such as the face 
and lips, and tongue.  

Also, this simple arm model contained only the long heads of the biceps and the triceps 
muscles. In reality, the short head of the biceps, the medial and lateral head of the 
triceps, the brachioradialis, and the brachialis muscle also play a role in flexion and 
extension of the elbow. Unloaded flexion of the arm showed low activity in triceps and 
biceps long head (Figure 7.4). This can be explained by the fact that unloaded elbow 
flexion is mainly performed by the brachialis [40,56]. Another limitation was that the 
shoulder joint was fixed, and so the motion was limited to the anterior-posterior and 
cranial-caudal axis. Enforcing a 2D plane instead of 3D movements caused an 
underestimation of internal loads of up to 60% in the lower extremity [57]. However, the 
2D view can be used as a reasonable estimate of main movements. Unfortunately, 
movement of the upper extremity is more versatile and rotations of the shoulder joint 
lead to nonintuitive descriptions of rotational kinematics [58]. 

Other interesting cost terms such as optimising muscle stress or oxygen consumption 
were not considered here, but may add useful information. Praagman et al. suggested 
that oxygen consumption is the better candidate for an energy-related cost term [59]. It 
resulted in more realistic muscle activation patterns during inverse dynamics of a simple 
arm model.  

The proposed sEMG-assisted inverse modelling approach can help to obtain 
physiologically correct and person-specific muscle activation patterns and can establish 
the naturally occurring cocontraction of antagonists. The work described here may now 
be extended to the more challenging environment of the lips, where many muscles 
operate to perform the various facial expressions, and thus the ambiguity problem is 
more apparent.  

If this is successful and computational time does not exceed unacceptable limits, the last 
hurdle is to apply it on complex muscular structures like the tongue muscle, with its 
intertwining muscle fibres. Simulating orofacial structures is required for our ultimate 
goal of virtual head and neck surgery. Inverse modelling remains an essential 
component, as new activation patterns – based on physiological realistic patterns – need 
to be calculated after the virtual surgery on a digital model in order to estimate post-
operative functional movements. Challenges, related to measuring sEMG, such as 
crosstalk, have to be tackled, too, in anatomical locations with many overlapping 
muscles, like the perioral region and face.  

 Conclusion 
The sEMG-assisted approaches described here taking into account volunteer-specific 
muscle activation signals improved the estimation of muscle activations with inverse 
dynamics modelling in a simple arm model. The physiological cocontractions as recorded 
during the measurements were also seen in the sEMG-assisted inverse dynamics 
experiments but not in the experiments without sEMG tracking. The DO solution (LQR 
method) proved most feasible, with adequate results, acceptable computational time, 
and capability to generalise to higher-order models. 
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8

 Summary per chapter 

8.1.1. Chapter I Clinical background 
Chapter 1 outlines the clinical framework that has motivated the work presented in this 
dissertation. The term ‘functional inoperability’ is still relatively new, and despite its use 
being an upcoming trend, its exact definition – or, possibly, interpretation – is still no 
common ground among professionals. The fact that various advanced cases of head and 
neck cancer may be considered functionally inoperable by one group of professionals but 
operable by another illustrates that both the choice of treatment and the choice to treat or 
not to treat are mostly subjective. Rather than drawing on theoretical knowledge alone, 
clinicians largely base their decisions on personal experience. Additionally, complex 
patient-specific variations in anatomy, geometry and motor control tend to blur the 
expectations of the multidisciplinary treatment team on functional outcome.  

The Virtual Therapy Group was established in 2009 and started off with an exploration 
into the uncultivated field of research on functional inoperability and methods to improve 
predictions of patient-specific functional outcome. The idea has been to create patient-
specific biomechanical models, incorporating patient-specific geometry, anatomy, realistic 
physiology, motor control, and treatment modules. With the final creation of a digital 
doppelgänger, we aim to significantly improve patient counselling by showing potential 
aesthetic appearances as well as demonstrating synthesised pathological speech and 
estimating possible function loss, for instance with respect to mastication or swallowing.  

8.1.2. Chapter II Technical background  
Chapter 2 describes the bare technical essentials required for this dissertation, giving a 
short introduction of the world of muscle physiology and muscle modelling alongside the 
milestones in the history of electromyography (EMG). This chapter touches upon the 
origins of bioelectrical activity and the methods of measuring the activity of the tiny facial 
muscles. It then continues with a brief history of biomechanics, starting with Aristotle’s 
“On the movement of animals,” which was considered the first study in biomechanics, and 
finally arriving in the field of modern computational biomechanics, which, with its 
exponential increase of computational powers, has boosted biomechanical research. 

We have explained the use of statistical models in Chapter 3 and Chapter 4. Before 
embarking on a journey with difficult biomechanical models that incorporate numerous 
adjustable parameters and require more computational power, we had to demonstrate the 
practical use of electromyography and the information it can convey on facial muscle 
activation. After all, only few studies had used facial surface electromyography (sEMG) 
before to predict lip shapes or movements, and they all had their drawbacks. Our 
successful demonstration calls for further incorporation into biomechanical models. 
Realistic forward modelling will be crucial to simulate movements with an adjusted model 
after virtual therapy, whereas inverse modelling will be vital to obtain possible muscle 
activation patterns that may compensate resected muscles in critical functional 
movements.  
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8.1.3. Chapter III Statistical shape modelling 
In Chapter 3 we have investigated whether surface electromyography could convey enough 
useful information about the activations of facial muscles to establish a statistical 
relationship between volunteer-specific lip shapes and features calculated from measured 
surface electromyographic signals. The statistical models based on either principal 
component analysis or an extended form of the generalised regression neural network 
indeed demonstrated the hidden information in these sEMG features. We were able to 
predict 3D lip shapes with good accuracy and with an average of about 2.8 mm root mean 
square (RMS) error for both methods. Despite the roughly equal performance of both 
methods, principal component analysis proved more consistent and was better able to 
adapt to unknown shapes. We evaluated many features and processing parameters, such 
as window length, principal component analysis dimension, electrode configuration, and 
tuning parameters. Five volunteers participated in testing general applicability. To the best 
of our knowledge this is the first study that accurately predicted 3D lip shapes for an 
extensive set of instructions. based on patient-friendly sEMG.  

8.1.4. Chapter IV Implementation of dynamics 
Whereas in Chapter 3, we demonstrated the feasibility of estimating static 3D lip shapes 
with sEMG features, this fourth chapter builds upon the satisfactory results and 
incorporates dynamics. Dynamics are extremely important for functional movements. We 
captured 3D lip movements for all Dutch visemes (combined speech sounds that visually 
look the same to [expert] lip readers; e.g., /mama/ and /papa/), meaningful facial 
expressions, and a couple of dynamic motion transfers in five volunteers, who followed 19 
different instructions four times over. Simultaneously, we recorded sixteen sEMG signals 
from eight muscles bilaterally, which produced a major improvement over the results 
described in the previous chapter. We used state-space representation to describe the 
relationship between 3D lip positions and sEMG features. Because the principal 
component analysis method had proved more consistent, as described in the previous 
chapter, this method was used to establish the relationship between sEMG features and 
3D lip positions as the estimator in the measurement model. We used a truncated Taylor 
series of order two to account for potential nonlinearities. The dynamics were provided by 
a first-order and a second-order Kalman filter. We applied an extensive search 
optimisation to attain optimal fudging parameters that were used to fine-tune the system. 
This dynamic 3D lip model proved more accurate than the one described in Chapter 3. The 
first-order system resulted in a 2.43 mm RMS error and the second-order system in a 2.46 
mm RMS error. These promising results will lead us further to application in 
biomechanical models.  

8.1.5. Chapter V A step towards biomechanical models: forward modelling 
After our statistical exploration had proved that there is valuable information to be had 
from sEMG, which may be used in predicting 3D lip shapes and 3D lip movements, we were 
able to take a step towards application in biomechanical face models.  
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After our statistical exploration had proved that there is valuable information to be had 
from sEMG, which may be used in predicting 3D lip shapes and 3D lip movements, we were 
able to take a step towards application in biomechanical face models.  

The generic face model in the ArtiSynth simulation environment was adapted to meet our 
requirements. The finite-element face model’s soft tissue was represented by three layers 
of 6,342 elements (6,024 linear hexahedral and 318 linear wedges), and 8,720 nodes. Twenty 
finite-element facial muscles were modelled. Tissue and muscle parameters were based on 
literature values. While six volunteers performed six different facial expressions five times 
over, we recorded their muscle activity using sEMG and their 3D lip movements using a 
high-speed triple-camera set-up. The biomechanical face model was controlled with 
features calculated from the sEMG signals under three different activation strategies: 
activation of all muscles, activation of the muscles considered relevant per instruction, and 
activation of the three muscles that showed the highest activity. The corresponding 
simulated movements were compared to the actual movement measured with 3D 
correlation coefficients. The median 3D correlation coefficient for the three different 
activation strategies were: 0.45, 0.77 and 0.78, respectively. These promising results on 
generic models will pave the way towards personalised biomechanical models with person-
specific motor control. 

8.1.6. Chapter VI Inverse dynamics and sEMG-assistance 
Crucially, forward modelling of 3D lip movement proved feasible in generic models. It will 
be evident that inverse modelling needs to be addressed, too. Inverse modelling will be 
essential for estimating which muscle activation patterns may compensate if specific 
muscles are set inactive to simulate nerve damage, or if muscle tissue is resected virtually. 
It may provide insight into residual ability to perform important functional movements, 
and it may indicate which muscle activation patterns could still produce those elementary 
functions. In this Chapter, we have introduced a novel forward-dynamics-assisted data 
tracking approach, in which we tracked not only 3D lip movement but also muscle activity 
of fourteen facial muscles using calculated features from measured sEMG. To our 
knowledge, only Bélaise et al. came up with a similar innovative idea, around the same 
time as we did [1]. However, they used simulation data, whereas we used real 
measurements. First, to test the applicability of the inverse algorithm, we performed 
inverse modelling on the simulated data of the previous chapter – the forward solution. 
Good results were obtained with mean 3D correlation coefficients of about 0.93 for 3D lip 
movement. Without sEMG-tracking, mean muscle activation correlations were around 
0.27, which improved to about 0.44 when we tracked all muscles, and even more when we 
tracked only relevant muscles: 0.84. Switching to real measurement data, mean 3D 
correlations of lip movement were 0.67 (without sEMG-tracking) and 0.70 (with sEMG-
tracking). The mean muscle activation correlations were 0.21 and 0.60, respectively. With 
these satisfactory results, we have concluded that the novel idea of including a sEMG-
tracking cost term in forward-dynamics assisted data tracking produces more realistic 
volunteer-specific muscle activations, without sacrificing accuracy in 3D movement 
tracking.  
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8.1.7. Chapter VII Feedback, optimal control and sEMG-assisted solutions for inverse modelling 
The first attempt toward inverse-modelling of 3D lip movement with realistic muscle 
activation patterns has been described in Chapter 6. Although the first results were 
promising, it is not clear whether this method would be the most suited, considering 
computational time, accuracy, and realistic muscle activation patterns as outcomes. This 
chapter aims to compare two inverse modelling methods both with and without sEMG 
tracking to obtain realistic volunteer-specific muscle activation signals. A simplified model 
of the arm containing the triceps and biceps muscles was used. We recorded sEMG data of 
the biceps and triceps muscles from eight volunteers, who performed stiff and normal 
biceps curling experiments with dumbbells varying in weight: 0, 1, 2, and 3 kg. Meanwhile, 
the shoulder, elbow, and wrist joints were optically tracked using the NDI Aurora system. 
Elbow angle and angular velocity were calculated and used as motion targets. sEMG signals 
were transformed to muscle activation signals following the approach described by 
Buchanan et al. [2]. Static optimisation by means of forward-dynamics assisted data 
tracking was performed as described in the previous chapter. Theoretically, optimal 
control theory would bring the best solutions for our inverse problems [3]. However, direct 
application of this theory exploiting, for instance, dynamic programming or the maximum 
principle of Pontryagin appeared infeasible due to the computational load. The optimal 
control approach can be approximated with an LQR feedback regulator used for error 
correction and applied in an extended Kalman framework. 

 From generic to personalised models 
Generic biomechanical models are very useful to simulate complex in vivo 
pathophysiological processes. However, in this era of personalised treatment, it has 
become increasingly important to focus on the personalisation of generic models. The 
virtual therapy project aims to predict the functional outcome of head and neck cancer 
treatment and to tailor treatment to the individual patient. This is done by acquiring lots 
of patient-specific data that may serve as input for generic models. These data are 
necessary for developing techniques to adapt generic models to the individual patients and 
techniques that resemble treatment effects in these models [4–11]. Ultimately, such models 
may be used to predict functional outcome, to simulate speech, and to simulate modified 
aesthetics. Increasing awareness that individuals do not only react differently to treatment 
but also recover differently because of compensatory mechanisms, motivational aspects, 
and rehabilitation efforts, creates the need for such individual approach. To estimate 
function loss after treatment, and consequently to determine which treatment will be most 
suitable for the individual patient, models require extensive personalised input 
information obtained from all sorts of physiological measurements. One way of 
personalising generic models of the head and neck region is supplying the models with 
person-specific motor control or, more specifically, the individual muscle activation 
patterns. As mentioned in this dissertation, EMG can provide an indication of which 
muscles are being activated and, in some way, to what extent. The use of muscle activation 
patterns is the central theme of this dissertation. 
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To avoid invasive intramuscular EMG techniques with needle or wire electrodes, we chose 
to use surface electrodes. The generic models used in this dissertation are controlled by 
personalised muscle activation patterns extracted from the signals acquired with surface 
EMG. This is the first step towards personalisation of biomechanical models. However, we 
will need to address a broad range of other personalisation parameters before we can 
genuinely speak of a digital doppelgänger. Among these will be gross anatomy, geometry, 
tissue parameters, muscle fibre orientations, nerve trajectories, and tissue mobility.  

In summary, our current research has demonstrated the significant contribution of sEMG 
measurements (Chapter 3 and Chapter 4) to the personalisation of the generic 
biomechanical models (Chapter 5 and Chapter 6). To further tailor these models to the 
individual patient’s condition, we have formulated the following future directions:  

1. Improving muscle innervation estimation and electromyography techniques 
2. Obtaining information on individual anatomy and geometry 
3. Using sEMG as a proposed personalisation parameter  
4. Improving the biomechanical models 

 

8.2.1. Ad 1. Muscle innervation and electromyography 
Limiting factors and high-density surface electromyography as a solution 
To start off with a quote on electromyography by Carlo J. de Luca: “To its detriment, 
electromyography is too easy to use and consequently too easy to abuse” [12]. Indeed, 
acquiring these signals is relatively easy and can be performed without the use of invasive 
techniques. On the other hand, quantitative reproducibility is poor, and it gives only a 
crude estimate of the actual neural motor control. After all, EMG amplitudes depend on 
many factors, including the location of electrodes, amount of fatty tissue, amount of 
recruitment of motor units et cetera (Table 2.3, Chapter 2) [12,13]. To demonstrate this 
delicate interdependence, we performed a replacement experiment, see Figure 8.2. Even 
though it was the same instructor who applied the electrodes in accordance with our 
measurement protocol, errors arose. The first application (carrot orange) differed from the 
second application a week later (navy blue). The third application was performed directly 
after experiment two (sunset red). It seemed that even by marking the electrode locations 
to be able to reposition them exactly right, we could not avoid all errors if honouring the 
constraint that all electrodes should measure sEMG activity. The total RMS error between 
electrode placement at epoch = 1 and epoch = 2 was 10.95 mm. Between epoch = 1 and 
epoch = 3, it was 9.09 mm. Immediate replacement improved the placement accuracy to a 
total RMS error between epoch = 2 and epoch = 3 of 5.34 mm. The corresponding sEMG 
features are shown in Figure 8.1. The effect of placement and time effects on sEMG can be 
derived for the instruction ‘voluntary smile’. Possibly, location errors could be further 
minimised at the expense of not measuring any signal or measuring signals with low signal-
to-noise ratios.  
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The future use of high-density sEMG (HD-sEMG) in our experiments will require advanced 
processing and analytics but may neutralise the placement issue, as the whole muscle and 
the propagation of activation signals can be monitored [14]. Lapatki et al. demonstrated 
the feasibility of selecting the optimal electrode configuration and interelectrode distance 
on such HD-sEMG grids and proposed optimal placement of surface electrodes in the 
lower face region [15]. As the electrodes on an HD-sEMG grid measure the contribution of 
the same motor units at slightly different locations, we can deduce information on size, 
depth, and location of motor units [16]. Additionally, we may find out more about muscle 
fibre directions.  

Another important aspect is the decomposition of sEMG into motor units, which has not 
been addressed in this dissertation because in this challenging endeavour the use of HD-
sEMG is indispensable. Together with sophisticated statistical techniques such as blind 
source separation, fingerprints of the motor units can be statistically derived [17,18].  
Figure 8.3 shows a simulated muscle cross-section with motor unit territories and the 
corresponding multichannel motor unit action potentials of three spatially different motor 
units [17]. These techniques may be extra beneficial in the complex intertwined 
musculature of intraoral structures like the tongue, yielding more information about 
muscle innervations, and together with advanced imaging techniques – which will be 
discussed further on – they will help in further moulding the digital models to the 
individual.  

 
Figure 8.1 Mean muscle activations and their standard deviation of bilateral facial muscles of the 
same volunteer at different moments in time. The left sided muscle activations are shown in 
orange (epoch 1) and blue (epoch 2). The right sided muscle activations are drawn in green  
(epoch 1) and red (epoch 2). The measured facial muscles: orbicularis oris peripheralis (OOP), 
orbicularis oris marginalis (OOM), levator labii superioris alaeque nasi (LLSAN), depressor anguli 
oris (DAO), risorius (RIS), zygomaticus (ZYG), mentalis (MENT), and digastric muscles (DIG). 



193

8

The future use of high-density sEMG (HD-sEMG) in our experiments will require advanced 
processing and analytics but may neutralise the placement issue, as the whole muscle and 
the propagation of activation signals can be monitored [14]. Lapatki et al. demonstrated 
the feasibility of selecting the optimal electrode configuration and interelectrode distance 
on such HD-sEMG grids and proposed optimal placement of surface electrodes in the 
lower face region [15]. As the electrodes on an HD-sEMG grid measure the contribution of 
the same motor units at slightly different locations, we can deduce information on size, 
depth, and location of motor units [16]. Additionally, we may find out more about muscle 
fibre directions.  

Another important aspect is the decomposition of sEMG into motor units, which has not 
been addressed in this dissertation because in this challenging endeavour the use of HD-
sEMG is indispensable. Together with sophisticated statistical techniques such as blind 
source separation, fingerprints of the motor units can be statistically derived [17,18].  
Figure 8.3 shows a simulated muscle cross-section with motor unit territories and the 
corresponding multichannel motor unit action potentials of three spatially different motor 
units [17]. These techniques may be extra beneficial in the complex intertwined 
musculature of intraoral structures like the tongue, yielding more information about 
muscle innervations, and together with advanced imaging techniques – which will be 
discussed further on – they will help in further moulding the digital models to the 
individual.  

 
Figure 8.1 Mean muscle activations and their standard deviation of bilateral facial muscles of the 
same volunteer at different moments in time. The left sided muscle activations are shown in 
orange (epoch 1) and blue (epoch 2). The right sided muscle activations are drawn in green  
(epoch 1) and red (epoch 2). The measured facial muscles: orbicularis oris peripheralis (OOP), 
orbicularis oris marginalis (OOM), levator labii superioris alaeque nasi (LLSAN), depressor anguli 
oris (DAO), risorius (RIS), zygomaticus (ZYG), mentalis (MENT), and digastric muscles (DIG). 

 

Figure 8.2 Mean locations of surface electrodes on the facial muscles for repeated measurements. 
The spherical cloud represents the standard deviation in electrode selection and  
3D reconstruction. Clearly, the anterior-posterior reconstruction is more uncertain. 

 

 

Figure 8.3 Simulated motor unit territories in a muscle cross-section (center) and multichannel 
motor unit action potentials (MUAPs) of three spatially distinct MUs, as detected by a grid of  
10 × 9 surface electrodes (5-mm interelectrode distance in both directions) in a bipolar 
configuration. The grid of electrodes is depicted schematically in the upper left-hand corner. 
MUAPs were generated by the volume conductor model described in Farina et al. (2004c). Adopted 
from Holobar and Farina, Blind source identification from the multichannel surface 
electromyogram, Physiological measurement [17]. © Institute of Physics and Engineering in 
Medicine. Reproduced by permission of IOP Publishing. All rights reserved. 



194

Towards auspicious epidermal electrodes 
Advances in microelectronics are very interesting for our purpose of modelling muscle 
activation patterns of the oral cavity and perioral region. The epidermal electrodes 
described by Kim et al. offer wireless transmission, minuscule sEMG sensors, and superior 
elastic properties, which are particularly important for a complex muscle organ like the 
tongue [19]. More recently, Liu et al. and Jeong et al. used similar electrodes [20,21]. Liu et 
al. reported a new strategy, which they called ‘nanopile interlocking,' to produce a high-
adhesion stretchable electrode [21]. Their sensors can also measure strain and had tuneable 
stretchability, a high gauge factor, and good stability. They also demonstrated a similar 
signal-to-noise ratio compared to commercially available nonstretchable electrodes [21]. 
Jeong et al. systematically performed tests to establish guidelines in materials, mechanics, 
and geometric designs for sEMG measurements with an innovative class of epidermal 
sensors called epidermal electronic systems (EES) [20]. Adhesion of EES is based on the 
Van der Waals forces1. This ground-breaking new class is fundamentally different from the 
conventual sEMG sensors, and therefore the recommendations by the European SENIAM 
(Surface ElectroMyoGraphy for the NonInvasive Assessment of Muscles) project  
(Table 2.4, Chapter 2) cannot be extrapolated to EES [20]. Other groups, such as the 
Bioelectronics group in Delft2, also focus on miniaturising the electrodes and using wireless 
transformation. These interesting developments could be quite beneficial to our plans for 
the future.  

Towards essential intraoral sEMG measurements 
Intraoral sEMG measurements of the tongue, in particular, pose many challenges. 
Adhesion is a major problem in the wet salivary intraoral environment. In our preliminary 
experiments, we were able to fixate microelectrodes with Fixodent denture adhesive 
(Figure 8.4) while other researchers used paste and hooked-wire electrodes to create bigger 
surface electrodes and thus more surface to bind to the tongue [22]. Some used invasive 
hooked-wire EMG electrodes, which stay in place better, though at the expense of comfort 

and interference with normal 
voluntary movements [23–25]. This 
latter problem, incidentally, occurs 
with most types of electrodes, apart 
from EES.  

                                                             
1 Johannes Diderik van der Waals was a Dutch theoretical physicist. The Van der Waals forces is a general 

term for the intermolecular forces between molecules: dipole-dipole, dipole-induced dipole, and dispersion 

forces [64] 

2 http://bioelectronics.tudelft.nl 

Figure 8.4 Locations of surface electrodes 
placed on the tongue (1, 2, 3, and 4), the 
digastric muscles (5, 6, 7, and 8), and the 
reference electrode (R) on the nasal 
bone. 
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Figure 8.5 The epidermal electrode as described by Kim et al. [19]. A. The epidermal electrode.  
B. Application on skin, and schematic cross-section. C. Undeformed, compressed, and stretched 
epidermal electrode. D. application of a commercial available tattoo to disguise the epidermal 
electrode, again showing a deformation. Adopted from Kim et al., Epidermal Electrodes,  
Science [19]. Reprinted with permission from AAAS. All rights reserved. 

During our initial tongue sEMG experiments, the many possible tongue movements were 
reduced to five standard movements as defined by van Dijk et al. and Sasaki et al. Also, a 
swallowing exercise was performed [4,26]:  

1. reaching the left side with the tip of the tongue 
2. reaching the right side with the tip of the tongue 
3. protrusion of the tongue 
4. elevation of the tongue: reach to the tip of the nose 
5. depression of the tongue: reach to the tip of the chin 
6. swallowing 
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Five healthy volunteers were asked to perform the six instructions four times over so that 
we obtained 20 repetitions for each instruction. Meanwhile, sEMG signals were recorded 
using the TMSi® Porti system. Four electrodes placed under the chin measured muscle 
activity of the suprahyoid muscles and the digastric muscle, in particular. Four other 
electrodes were placed on the tongue. A reference electrode was placed on the bony part 
of the nose (Figure 8.4). While in some volunteers intraoral fixation was good, in others it 
was poor because too much saliva was produced. To solve this problem, we placed intraoral 
medical adhesives on the opening of the parotid duct, which significantly reduced the 
presence of saliva in the mouth as it blocked saliva influx from the parotid gland. 
Notwithstanding these measures, electrodes still lost grip at some point during the 
experiment in all volunteers. Long-lasting experiments were deemed impossible. 
Nevertheless, we obtained a reasonable data set for performing some initial classification 
tests, with encouraging results. We used a quadratic discriminant classifier, which 
assumed a normal distribution per class and unequal covariance as multiple volunteers 
performed the instructions. A data set consisting of five volunteers performing twenty 
repetitions of the six instructions was available.  

Table 8.1 Classification errors per individual and overall with 10-fold cross-validation. 
Generalisation capacity was also tested. 

Classifier 

Volunteer 

QDC 

Correctly classified (%) 

SVM 

Correctly classified (%) 

1 87.73 90.48 

2 96.17 92.87 

3 83.90 81.04 

4 98.08 97.65 

5 91.92 92.75 

Mean 91.56 90.96 

Inter (generic model) 73.77 79.38 

 
Figure 8.6 3D Scatter plot of the feature space of volunteer 1’s six instructions: 1. tongue tip to the 
left, 2. tongue tip to the right, 3. protrude tongue, 4. tongue tip to nose, 5. tongue tip to chin,  
6. swallowing. A quadratic discriminant classifier was trained to classify sEMG features in the six 
aforementioned instruction classes.  
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Although we were able to classify the aforementioned standardised tongue motions with 
promising accuracy (Table 8.1), we considered that four electrodes on the tongue might 
simply not be enough to catch the interindividual differences or individual muscle 
contribution. Consequently, we applied an HD-sEMG grid (Figure 8.7) to obtain more 
data. Unfortunately, the grid was not able to adapt entirely to the flexibility of the tongue. 
This led to the HD-sEMG grid losing grip on the tongue in the circumvallate papillae 
region. Therefore, we decided not to use the HD-sEMG grid any longer and went on a quest 
to find better alternatives. Electrocorticography (ECoG) electrodes used for intracranial 
electroencephalography (EEG) measurements may be a suitable option because these are 
very flexible. Preliminary experiments were promising (Figure 8.7). Apart from this option, 
we are currently developing flexible HD-sEMG grids with silicone and Ag/AgCl 
microelectrodes (Figure 8.8). The advantage of developing these grids ourselves is that we 
can adjust the elastic properties of the silicone as we deem fit, tailoring the flexibility of 
the HD-sEMG grids to our needs. However, the benefits of EES as explained above should 
not be overlooked.  

Recently Sasaki et al. reported on the use of HD-sEMG with 22 electrodes of the suprahyoid 
muscles [26] because intraoral sEMG measurements are impractical for assistive devices. 
They obtained good classification results for the same six movements, with a mean 
percentage of correct classification of 95.1% against our mean percentage of 91.6%  
(Table 8.1). In contrast to our quadratic classifier, they used support vector machines. 
Therefore, we also evaluated a classification experiment with support vector machines, 
obtaining a value of 91.0%. One explanation for the small 
difference in classification percentages could be that the 
HD-sEMG grid with its 22 electrodes picked up more 
relevant information than our eight microelectrodes did. 
After all, it had 14 channels more with which to obtain 
useful information. Nevertheless, even though both 
classification rates are good, in the end, for our purposes, 
accurate classification is not enough. We aim at obtaining 
muscle activation patterns of the intrinsic and extrinsic 
tongue muscles to drive a biomechanical tongue model, 
just like the one for the lips described in Chapter 5.  

Figure 8.7 Various electrodes for sEMG measurements of the tongue. From left to right: micro 
electrodes (10 mm x 10 mm), high density grid (25 mm x 35 mm), ECoG grid (39 mm x 51 mm). 

Figure 8.8 Developed silicone 
grid (30 mm x 30 mm). 
Courtesy: Eline S. van Staveren. 
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The biomechanical tongue models have been described in literature and are available in 
the ArtiSynth platform [5,27,28]. Moreover, inverse modelling with tongue models as 
performed by Stavness et al. may benefit inclusion of muscle activation patterns similar to 
those described in Chapter 6 [29]. Although we are still far from our future application, 
these initial experiments have given us proof of the possibilities. 

Concluding remarks on muscle innervation and electromyography 
To conclude, many advancements are being made in the field of sEMG and 
microelectronics. The most promising technique for intraoral measurements involves the 
use of wireless HD-sEMG grids, which have great flexibility. These grids interfere with 
natural movement as little as possible because no bulky electrodes or wires occupy 
intraoral space. Additionally, their high elasticity allows HD-sEMG grids to cope with the 
highly irregular deformations of the tongue. Regrettably, however, the present systems are 
still far from ideal. 

8.2.2. Ad 2. Obtaining information on patient-specific anatomy and geometry 
All kinds of scans will be needed for our future clinical workflow, if we want to obtain as 
much information as possible on individual patients. Grossly speaking, standard magnetic 
resonance imaging (MRI) scans can show great detail of the soft tissues, like muscles, fatty 
layers, and ligaments, but the bony structures are less well depicted. Computed 
tomography (CT) imaging is the gold standard for depicting bony parts. Besides showing 
good contrast for bony areas, CT is also less affected by imaging distortions. On the other 
hand, because of the radiation involved, this latter imaging modality is less attractive for 
experimental purposes. Moreover, CT is less sensitive for detecting tumour bone 
infiltration and bone metastasis. A safer approach than CT, and thus ideal for 
experimenting, is a special MRI sequence called black bone-MRI [30–32]. Other useful 
special MRI sequences are diffusion-weighted-preparation MRI (D-Prep MRI) – called ‘D-
Prep MRN’ (magnetic resonance neurography) when used for imaging the nerves – and 
‘diffusion tensor MRI’ (DT-MRI).  

Advanced magnetic resonance imaging sequences to the rescue 
Allowing for better visualisation of the nervous system, D-Prep MRI is the ideal technique 
for imaging the peripheral nerves. It has been described by Buckle et al. for the head and 
neck region. They showed that this technique improved the delineation of lymph nodes 
and their surrounding delicate anatomical structures in the head and neck region [33]. At 
our institute, attempts are currently being made to visualise the facial nerve with D-Prep 
MRI (Figure 8.9). 

DT-MRI observes the flow of water molecules based on diffusion. Diffusion is a 3D process 
strongly dependent on the architecture of tissues or cells, as this determines the rate of 
diffusion. The main field where DT-MRI is used is in Neuroscience, for creating visible 
tractographies to try and visualise anatomic connections between the different parts of the 
brain. This technique has also been used to identify possible muscle fibre orientations of 
the cardiac muscle [34], arms [35], legs [36], and also in the tongue [37]. 
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Figure 8.9 Sagittal D-Prep MRN image of one volunteer. Left: without annotation of the facial 
nerve. Right: highlighted facial nerve in green. Courtesy: Paula Bos.  

 

 

 

 

 

Our group is also researching the use of DT-MRI in the head and neck region for showing 
the facial muscle structures and orientations (Figure 8.10), as well as for identifying the 
various extrinsic and intrinsic muscles of the tongue (Figure 8.11). Unfortunately, to get 
high-resolution images with MRI, a long acquisition time is usually necessary, which is 
difficult with the highly dynamic behaviour of the tongue. Recently, Burdumy et al. 
introduced a rapid 3D imaging method for voice research, which could observe and 
quantify modifications in all three dimensions [38].  

To summarise, a lot of research is carried out in the field of MRI, in hopes of improving 
acquisition times and resolution so as to distinguish more detail and get more information 
on personal anatomy in relation to the extension of a tumour. 

Figure 8.10 DT-MRI of the perioral region.  
The following muscles were identified:  
OOS: orbicularis oris superior,  
OOI: orbicularis oris inferior,  
MEN: mentalis,  
DLI: depressor labii inferior, and  
DAO: depressor anguli oris. 
Courtesy: Luuk Voskuilen. 
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Figure 8.11 The various muscles of the tongue can be identified. Left: the anatomy image was 
adopted from Gray’s Anatomy [39]. Right: genioglossus white; verticalis blue; transversus orange; 
longitudinalis inferior/styloglossus green; hyoglossus red; geniohyoideus purple. Pictures 
adopted from Voskuilen et al., Crossing muscle fibres in the tongue resolved using constrained 
spherical deconvolution, International Society of Magnetic Resonance in Medicine [40]. 

 
Optical tracking necessities 
A final important imaging modality to discuss is optical tracking to acquire the outer 
appearance and geometry of individuals. We have developed our own 3D optical tracking 
system for use in clinical translational research [4,8,10]. It consists of three high-speed 
cameras that capture video at 100 frames per second, and four led lights to illuminate the 
region of interest (Figure 8.12). As we plan to measure a large group of patients in the 
surgical theatre, we created a smaller lightweight version with two miniature cameras that 
capture video at 50 frames per second and a pico-projector that can display any image or 
video in the region of interest (Figure 8.13). This handheld version is easy to carry to the 
operation theatre and even to other hospitals. One shortcoming is that both resolution 
and frame rate are lower. Also, with two instead of three cameras, markers can easily go 
out of visible range. Advanced marker tracking algorithms may reduce this problem. The 
incorporated beamer can display recognisable patterns with enough luminosity to allow 
for exact measurement of wound defects, scar tissue and conceivably also the movement 
itself.  

On top of the challenges of acquiring high-quality images to distinguish all body structures 
with various imaging techniques, we will also need mathematical algorithms for optimal 
registration. Additionally, we will need segmentation techniques – preferably automatic 
segmentation algorithms – to distinguish the several organs and structures that influence 
the function of the oral cavity and oropharynx in the imaging data acquired with MRI and 
CT [41]. 
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Figure 8.12 Triple-camera set-up able to acquire videos at 100 frames per second. Example 
perioperative image during in vivo nerve stimulation, simultaneously measuring artificially 
induced tongue movement, as was done in van Alphen et al. [8]. 

 

Figure 8.13 Stereo-camera set-up able to acquire videos at 50 frames per second and project images. 
Developed by Ferdinand van der Heijden and Kilian D.R. Kappert.  
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Towards integration of person-specific parameters 
Once all this information becomes available, it should be transferred to the biomechanical 
models to make them patient-specific. Ultimately, the biomechanical models may be used 
as objective indicators of treatment effects and may incorporate personalised speech 
synthesis to give an impression of deformed speech sound after therapy. This ultimate goal 
is ambitious but does not lack vision. However, short-term results are equally important 
and may be beneficial to the patient and physicians in an earlier stage. One short-term 
advantage of D-Prep, DT-MRI, and 3D wound and scar tissue registration is at the 
acquisition of more information to refine tumour staging, surgical planning, and 
assessment of radiation-induced fibrosis. Moreover, it will enable us to research a lot of 
interesting processes, like 3D wound healing.  

Lastly, the importance of semi-automatic segmentation algorithms cannot be 
overestimated – not only for our purpose of personalising our models but even more so for 
the disciplines of Radiology and Radiotherapy to improve the detection of anomalies and 
to identify and avoid vital structures. Semi-automatic segmentation will drastically 
decrease manual labour and eliminate the notorious intra- and inter-observer errors [41]. 

8.2.3. Ad 3. Using sEMG as a proposed personalisation parameter  
The aforementioned imaging modalities give us anatomical, geometrical, and perhaps 
physiological information to personalise the generic biomechanical models. Obtaining the 
exact locations of muscles and nerves, however, will not be enough to describe the complex 
process of actuating movement. The electrical impulse pathways from the brain to the 
muscles involved in vital muscle functions should be further personalised, including 
personal muscle activation patterns via sEMG features.  

For personalisation of the facial movements, the facial nerve plays a pivotal role, 
predominantly innervating the facial musculature. The facial nerve has six classic 
branching patterns [42–44]. Preoperative knowledge of the exact distribution pattern of 
the facial nerve is essential when performing surgery in the parotid region. During the 
procedure, the facial nerve is usually monitored by intraoperative nerve monitors to reduce 
the risk of nerve damage. However, in some cases, individual nerve branches cannot be 
spared – because of tumour invasion, for instance. In such situations, preoperative insight 
into the individual branching pattern and the innervations of the facial nerve will improve 
surgical planning and patient counselling. A first impression of the branching pattern can 
be acquired with imaging techniques such as the ones discussed above (e.g., D-Prep MRN), 
while sEMG might further personalise the branching patterns on a physiological level. As 
sEMG measures the action potentials of the depolarising sarcolemma, we can measure if a 
muscle becomes active and indirectly derive that the innervating nerve fibres are intact. 
To collect even more useful information, perioperative nerve stimulation in combination 
with sEMG measurements may be advantageous.  

To give an impression of possible facial nerve damage simulations, we modelled nerve 
damage by inactivating the facial muscles on the patient’s right side, corresponding to the 
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picture of the Bell’s palsy patient in Figure 8.14. Next, we calculated the volunteer-specific 
activation signals from sEMG to control ArtiSynth’s generic face model (see Chapters 5  
and 6) using the muscles involved in voluntary smiling. We must stress that this is a 
simplified simulation, which does not account for other aspects, like absent muscle tone, 
drooping mouth corners, or drooping eyelids. 

  
Figure 8.14 Left: Photo of a patient with facial nerve damage due to Bell’s palsy (courtesy Mary King, 
no relationship with oncological disease). Right: Simple simulation of left-sided facial nerve 
damage. LLSAN, ZYG, and LAO were activated with volunteer-specific activation signals. 
Experiment performed by M. Eskes. 

  

Figure 8.15 Left: perioperative data acquisition with triple-camera set-up recording at 100 frames 
per second. The markers on the tongue are tracked in 3D when the surgeon performs hypoglossal 
nerve stimulation, inducing an invoked movement of the tongue. Right: 2D scatter plot of 
movement clusters in a patient. The clusters correspond to different branches that were 
stimulated during surgery [8].  
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Nerve stimulation may unravel distribution patterns 
Where the facial muscles are mainly innervated by the facial nerve, the tongue muscles 
and their innervations are mainly driven by the hypoglossal nerve, with different branching 
and subsequent innervation patterns. Literature suggests that there are two main types of 
innervation of the human tongue [45]. It will be essential to know which category a patient 
belongs to, as conceivably different compensatory innervations may be at play. We 
investigated this by stimulating the main stem of the hypoglossal nerve and subsequently 
its various branches perioperatively [8]. In ten patients, we found anatomically different 
branching patterns and were able to identify five to eight branches that could be 
stimulated perioperatively. By simultaneously capturing 3D trajectories of the tongue, we 
were able to define inter- and intra-distances of different movements corresponding to 
electrical nerve stimulation of the different branches in nine out of ten patients. Figure 8.15 
shows the clearly distinct clusters. In this small series of patients, the above-mentioned 
two main branching categories [45] were not replicated.  

The following step will be adding sEMG measurements to identify which muscles are 
innervated by the different branches and thus further personalise the branching and 
innervation patterns. With a priori knowledge of the stimulation pulse and with recorded 
sEMG signals of the response, we may be able to perform a reasonable estimation of such 
personalisation.  

Because intraoral sEMG still has its difficulties, a good way to start will be by extraorally 
recording sEMG signals of the facial muscles perioperatively. During procedures such as 
parotidectomy, the facial nerve and its branches are exposed and can be electrically 
stimulated. HD-sEMG grids, ideally with wireless data transfer, will be more suited for 
perioperative sEMG than microelectrodes. Applying HD-grids is easier, too; instead of 
placing the electrodes before surgery, one could place an HD-sEMG grid while the patient 
is under anaesthesia. These grids have the significant advantage that the channels that 
actually pick up sEMG signals, can be selected afterwards, which makes perfect manual 
placement of the microelectrodes less relevant. As an additional advantage, there will be 
no more need to trouble patients with sEMG placement prior to their surgery.  

A limiting factor during measurements will be the disturbance of the sEMG signals by the 
electrical stimulus, which will profoundly influence the acquired signals. Advanced 
filtering techniques may prove successful, especially if the internal workings of the 
stimulus device are known. Numerous techniques for stimulus artefact removal have been 
described in literature. These may be used in our experiments as well [46,47]. 

Despite the challenges described above, these innovative experiments are crucial. If we can 
measure 3D motions, sEMG activities, branching patterns, and the corresponding stimulus 
conduction pathways simultaneously in a large cohort, we will obtain valuable information 
on the various innervation patterns and possibly also on compensatory innervations, and 
the extent to which these relate to movement and sEMG.  
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Computed myography combining MRI, finite-element models, and electromyography 
An interesting paper on computed myography by Van den Doel et al. describes how to 
determine both quality and quantity of the activation levels of individual muscles by 
performing voltage measurements and combining these with a finite-element model to 
simulates electrostatics. This boils down to obtaining a 3D reconstruction of motor 
function from sEMG and MRI data [48]. In a follow-up paper, they investigated the best 
suitable method to include a priori information and to design an efficient computational 
method for solving the involved inverse problem [49].  

8.2.4. Ad 4. Improving the biomechanical models 
The finite-element method is a unique way of representing physical processes and is of 
better use for the prediction of posttreatment function than the statistical models 
described in Chapters 3 and 4. However, the models described in this dissertation can be 
improved, not only as mentioned before by adjusting them to the patient’s anatomy and 
geometry, but also by improving the mathematical representation, hence including tissue 
properties, finite-element resolution, and inverse-modelling algorithms. 

Obtaining person-specific tissue parameters  
An exciting way of obtaining accurate elastic tissue parameters will be the use of a robotic 
device – a high precision instrument, with 0.03 mm position resolution (Sensable 
Technologies) and a six-axis force-torque sensor with 1/1,280 N force resolution (Nano 17, 
ATI Industrial Automation) – that has been used to determine the tissue parameters on 
cadavers by applying precise displacement stimuli and recording the force responses [50]. 
However, in cadavers, rigor mortis sets in and alters the tissue properties significantly. 
Healthy, living tissue can be tested, too, as was done for various parts of the face and 
tongue [51–54]. Also because of rigor mortis, tumour specimens should be immediately 
upon resection to obtain their characteristics with maximum reliability. To ultimately get 
in vivo tissue properties, noninvasive techniques such as MRI – and ultrasound (US) 
elastography could play an important role. US elastography is currently applied in the 
clinic to identify or characterise suspicious lesions in the liver, the thyroid, the prostate, 
the breast, and in muscles in general. However, it is still an emerging field, and more 
evidence of clinical value is needed [55]. MR elastography has been used mainly for 
research purposes. Recently, this imaging modality has been promoted more extensively 
in the United States of America because of better results in liver elastography [56,57]. Both 
are interesting techniques for assessing tissue properties, not only in healthy tissues of all 
kinds but also in tumour and scar tissue. At our institute, we are currently validating the 
US technique on a couple of phantoms to correlate US values to the gold standard of 
dynamic mechanical shear tests (Figure 8.16).  
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Figure 8.16 Ultrasound elasticity measurements of six test samples with known elasticity 
properties. On the X-axis the different samples, with increasing Young’s modulus. The mean of 
four measurements per test sample is given with a dot. Their corresponding error bars are shown, 
too. Courtesy: M.A.J.M. van Erp. 

Segmentation and surgical planning 
At present, manual tumour delineation is still a time-consuming and rather subjective 
exercise. Many articles describe inconsistencies in tumour segmentation between 
radiologists [41]. Much research has been carried out into methods for automated 
segmentation of tumours, healthy tissue, and vital structures. However, all of these are still 
far from perfect. In the future, the existing problems will need to be addressed, not only 
from a time-investment perspective but also to allow for accurate tumour representation. 
Besides delineating tumours by using all types of imaging studies, we also plan to create a 
database containing all kinds of information, including preoperative tumour images and 
micro-CT images of the resected tumours made at our surgical theatres. Additionally, 
incision lengths and shapes, as well as the outer textures of the operation fields will be 
captured with the aforementioned handheld 3D camera (Figure 8.13).  

Nowadays, static virtual surgery planning has become a routine procedure in the clinic, for 
instance for planning maxillofacial surgery and the required bony grafts [58,59]. Surgical 
time can be reduced, and precision can be improved. Planning is performed with MRI and 
CT digital data of the patient. In the software environment, the pertinent structures, 
usually the maxilla or mandibula or parts of these, are resected. Then an implant is placed, 
and the new bone geometry is created. The last step in the process is adjusting the outer 
appearance by assuming elastic soft tissue that stretches and shrinks with the bone 
replacement. In this way, a reasonable estimate of the patient’s final appearance is made 
[60]. Although this static process is important and definitively needs to be addressed in 
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our future models, we will have to go a step further. We do not merely resect and create 
new bone structures, but we also resect muscles, cut or damage nerves, resect skin tissue 
or other soft tissues. Showing the impact of these resections will require the use of 
dynamics. The various facial expressions will need to be tracked by inverse algorithms to 
account for the adapted pathological anatomy and the damaged or interrupted 
innervation. Ultimately, the inverse algorithm could show us the compensatory muscle 
strategy that produces such facial expressions and important visemes, as mentioned in 
Chapter 6. These dynamic effects are far more complicated to model. The intraoral 
environment is even harder to grasp fully, because of its anatomical and functional 
complexity and the difficulties in acquiring relevant information because of impeded 
measurements.  

Virtual therapy treatment, rehabilitation modules, and compensatory mechanisms 
We are currently in the process of developing a virtual surgery tool [61]. This tool allows 
head and neck surgeons to adjust a virtual tongue model in the same way that real surgery 
would affect the patient. First, they have to create the incision on the surface of the tongue. 
Next, they can define the characteristics of the surgical excision (circumference, depth, 
width, et cetera). When the surgeon agrees upon the resected volume, which is shown with 
a transparent yellow colour (Figure 8.17), virtual resection is performed. The selected 
elements of the model including the muscle fibres are deleted. In the next step, placing 
sutures is simulated by applying forces on both edges of the created wound. The model 
brings both sides together until it reaches a steady state (Figure 8.17). The model is then 
rebuilt with replaced muscle fibres, and tissue parameters are adjusted to resemble scar 
tissue.  

     
Figure 8.17 Performing virtual surgery: A. Tongue model with a tumour. B, Virtual resection.  
C. Placing sutures, D. Simulating the suturing procedure, E. Adjusted tongue model with scar 
tissue (grey area). Courtesy: K.D.R. Kappert 

The second treatment module we are developing, is a radiotherapy module. In the current 
clinical workflow, radiotherapy planning fields have to be designed before radiotherapy is 
given. The distribution of radiation dose in these planning fields is calculated. Also, vital 
structures can be designated to set a limit on the maximum dose they are allowed to 
receive. These planning fields could be a true asset for our future models. If registration of 
the planning fields together with the patient anatomy and geometry fits perfectly in our 
personalised models, then an important step for this module will have been made. The 
next step will be to correlate the dose with stiffening of the tissue parameters. A simple 
first step would be to adjust the tissue parameters of the model according to MRI-
elastographic data obtained from irradiated patients.  
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Remarkably, there will always be patients who almost fully recover their functions, 
regardless of the time it may take them. This may be explained in part by their compliance 
to essential rehabilitation exercises and in part by their compensatory mechanisms. 
Rehabilitation compliance will be determined by multiple factors, including the patient’s 
persistence and the rehabilitation team’s scientific level and experience. Successful 
compensation is a matter of sheer luck: some patients simply have better or more 
compensatory abilities than others, due to different nerve supply or other anatomic 
advantages. To unravel these compensatory contributions, we will need an extensive data 
set of patients with similar treatments and similar rehabilitation compliance but with 
different functional outcomes. Then we may to some extent add expectations of 
improvement with rehabilitation therapy, and possibly also predict whether specific 
exercises will be of any benefit for the patient. For instance, Kraaijenga et al. showed that 
senior volunteers could significantly improve swallowing strength and volume [62], and 
van der Molen et al. found a beneficial effect of preventive swallowing exercises for head 
and neck cancer patients who were to undergo chemoradiotherapy [63].  

Inverse modelling optimisation 
Two main difficulties in inverse modelling are ambiguity and high computational time. 
We have tried to solve the ambiguity problem by introducing the sEMG cost terms, which 
will also guide the algorithm in (hopefully) correctly personalising motor control. 
Moreover, if implemented correctly, the enormous solution space will be dramatically 
reduced by these constraints, which in turn will benefit the second problem of the time-
consuming algorithms. Previously, we argued in favour of improving the resolution of the 
finite-element model by increasing the number of elements to allow for smoother 
transitions. Unfortunately, for inverse modelling this will be a major drawback as all these 
elements will introduce new possibilities, which will drastically increase computational 
time. To compensate for this problem, we should use simpler models for inverse modelling 
than we use for forward modelling. Future research may focus on the correlation of 
outcomes of simpler models vs. those of complex models in inverse modelling. Instead of 
the finite-element method, a simple mass-spring system may be used to obtain an 
indication of the inverse solution. We are currently experimenting with such models to 
obtain correct personalised activation signals (Figure 8.18).  

 Concluding remark 
To recap, every individual is unique. Generic models can only take us so far – which is not 
far enough, in our opinion. The current era in medicine calls for treatments that are 
tailored to the needs of individual patients, since individual cancers, too, are perceived as 
unique, each with their own building blocks and therapeutic immunity. To address the 
inevitable challenges of individual responses to treatment and functional outcome, we 
propose generic biomechanical models that should be further personalised, incorporating 
as many patient-specific data as possible. In addition to gross anatomy and other tissues 
parameters, sEMG measurements – the crude derivatives of muscle activation levels – will 
be indispensable ingredients. Since most vital functions require muscle contractions, 
acquiring accurate sEMG data will be essential. 
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Figure 8.18 Simple mass spring system of the lips, left frontal view, right sagittal view. The facial 
muscles are abbreviated as follows: orbicularis oris superior (OOS), orbicularis oris inferior (OOI), 
depressor anguli oris (DAO), depressor labii inferior (DLI), levator labii superioris alaeque nasi 
(LLSAN), zygomaticus (ZYG), risorius (RIS), and mentalis (MEN).  

 
Figure 8.19 Schematic overview of fundamental aspects for personalising generic models. Input of 
many domains will be needed to ultimately create the perfect digital doppelgänger 
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9. Summary 
Functional inoperability (FI) is an important concept in head and neck cancer treatment. 
The term FI applies when surgery is not an option because the functional postoperative 
outcome would be too severe, with dramatic effects on speech, swallowing, and 
mastication. Other organ-sparing approaches, such as chemotherapy, radiotherapy or a 
combination of both, should then be considered as alternative treatment options.  

Preoperative estimation of function loss is subjective and unreliable since it depends on 
the personal expertise of individual physicians. Moreover, each patient is unique and will 
respond differently to the various treatment options. The Virtual Therapy Group is 
developing tools to make this tough decision-making process easier, with personalised 
functional outcome expectations. The idea is to develop a digital doppelgänger. This 
virtual look-a-like should be able to adapt to individual patients by processing 
conventional imaging data (magnetic resonance imagining, computed tomography, 
ultrasound), as well as 3D video measurements to define mobility of anatomical 
structures, and surface electromyography (sEMG) to account for individual muscle 
activation patterns. By personalising the currently available generic models with the 
above data, we could create genuine digital replicas of individual patients. 

The human musculoskeletal system is a redundant system: many functional movements 
can be generated by multiple muscle contraction patterns. Consequently, many functions 
have alternative control mechanisms that could be mastered to compensate for function 
loss.  

In clinical practice, some head-and-neck patients indeed regain full function after their 
treatment and continue their lives with good speech and swallowing function. Others, 
however, do not and suffer from pathological speech and dysphagia. We think that these 
differences relate to variation in neural motor control and muscle innervation. Nerve 
anatomy differs between individuals. Some people may just have more nerve branch 
innervations for particular muscles than do others.  

With sEMG, we can record a crude estimate of muscle activations, which will hopefully 
enable us to map neural motor commands. This dissertation demonstrates in Chapter 3 
that with features extracted from sEMG signals, we can accurately estimate 3D static lip 
shapes. This promising finding shows that sEMG signals can provide sufficient 
information on motor control. Chapter 4 demonstrates that a statistical model can 
adequately predict dynamic movements – visemes (groups of speech sounds that visually 
look the same), facial expressions, and asymmetric movements – with signals measured 
from 16 facial muscles. Chapter 5 describes the step from statistical models towards 
biomechanical models that implement real physics. These models will be advantageous 
because they follow physical laws and preserve real anatomy and geometry.  



In Chapter 6, we elaborate on the process of inverse modelling: calculating the input of 
muscle activations needed to generate specific functional outcomes – in our case, the 3D 
lip movements of functions such as speech. Unfortunately, this is a rather complicated 
procedure, and because of the aforementioned redundancy of the musculoskeletal 
system, it can lead to multiple solutions. However, we also demonstrate in this chapter 
that with sEMG we can reduce the solution-space and acquire more patient-specific data 
on muscle activation. Chapter 7 presents a technical elaboration on inverse modelling, 
investigating static and dynamic optimisation techniques with and without sEMG. 
Chapter 8 discusses the work and proposes future research directions on the basis of four 
main pillars in personalising the generic models. 

To conclude, forward modelling will be elementary for driving the model with surgical 
adaptations and patient-specific learnt muscle-activation strategies, so it could show us 
the treatment effects directly after surgery. Inverse modelling, on the other hand, could 
show us any potential compensatory mechanisms, which may differ from patient to 
patient. Some patients will be able to relearn functions; others will not. With a fully 
operative digital doppelgänger, clinicians will be able to perform various treatment 
strategies and compare treatment outcomes at the multidisciplinary meeting to agree 
upon the best individual treatment strategies. The doppelgänger will also be helpful 
during counselling, to simulate the functional sequelae of treatment and to better 
prepare and inform the patient.  
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10. Samenvatting 
Functionele inoperabiliteit is een relatief nieuw begrip binnen de hoofdhals chirurgie. Het 
selecteert tumoren, die niet operatief verwijderd kunnen worden, omdat de postoperatieve 
uitkomst op functioneel gebied (spraak, slikken en kauwen) als zeer slecht wordt geschat. 
Andere orgaan-sparende behandelstrategieën zijn dan een optie. Helaas is het inschatten 
van functieverlies na behandeling subjectief en onbetrouwbaar. Immers iedere patiënt is 
uniek en reageert anders op verschillende behandelingen, maar ook elke arts is anders en 
put uit andere ervaringen. Binnen het virtuele therapie project is men bezig deze moeilijke 
keuze tussen behandelingen op basis van de te verwachten uitkomst te moderniseren. Zij 
zoeken naar een objectieve, kwantitatieve en reproduceerbare maat. Het idee is gebaseerd 
op het ontwikkelen van een digitale dubbelganger.  

Deze digitale dubbelganger wordt opgebouwd middels patiënt-specifieke informatie 
verkregen via allerlei gangbare beeldvormende technieken (MRI, CT en US), maar ook met 
aanvullende metingen zoals mobiliteit en spieractiviteit die wordt gemeten met behulp 
van oppervlakte EMG. De bestaande generieke modellen kunnen met deze nieuwe 
informatie worden aangepast aan de patiënt, zodat er een echt digitaal evenbeeld ontstaat.  

Het spierskeletstelsel van de mens is een overbepaald systeem. Dat betekent dat er 
meerdere mogelijkheden zijn om met behulp van de spieren de beweging van de botten 
aan te sturen, waardoor dezelfde functionele beweging ontstaat. Er zijn meerdere spieren 
die eenzelfde functie kunnen vervullen. Dit impliceert dat ook compensatoire 
mechanismen kunnen worden aangeleerd. Dit heeft tot gevolg dat sommige patiënten 
weer vrijwel normaal door het leven kunnen gaan, terwijl anderen een pathologische 
spraak of slikfunctie ontwikkelen.  

Wij denken dat deze verschillen onder andere tot stand komen door de neurale aansturing 
van de spieren. De anatomie van de zenuwen verschilt per individu en de een heeft meer 
vertakkingen die in dezelfde spier uitmonden dan de ander. Met behulp van de 
oppervlakte EMG zijn wij in staat een afgeleide van de spieractiviteiten in kaart te brengen 
en daarmee hopelijk ook de verschillende neurale aansturingen. In dit proefschrift, in het 
derde hoofdstuk, laten wij zien dat met behulp van deze spieractiviteiten verschillende 
statische 3D lipvormen kunnen worden voorspeld. Hieruit kunnen wij mogelijk afleiden 
dat deze signalen genoeg informatie bevatten over de uiteindelijke spieraansturing. In het 
vierde hoofdstuk gebruiken wij een statistisch model om te laten zien dat wij middels de 
signalen van 16 gezichtsspieren dynamische bewegingen, zoals visemen (groepen woorden 
die er voor een liplezer hetzelfde uitzien), gezichtsuitdrukkingen en tevens asynchrone 
bewegingen adequaat kunnen voorspellen. Het vijfde hoofdstuk beschrijft de stap van 
statistische modellen naar de fysische werkelijkheid met behulp van biomechanische 
modellen. Deze modellen hebben als voordeel dat ze de natuurwetten volgen en de 
werkelijke anatomie en geometrie behouden.  
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In hoofdstuk zes wijden we uit over het achterwaarts modelleren. Met deze vorm van 
modellering kunnen wij in biomechanische modellen uitrekenen welke spieractiviteit 
nodig is om een bepaalde functionele beweging uit te voeren. Dit is helaas erg complex en 
leidt niet tot unieke oplossingen vanwege het bovengenoemde gegeven dat het 
spierskeletsysteem overbepaald is. Er zijn eenvoudigweg meer mogelijkheden om tot 
dezelfde actie te komen. We laten in dit hoofdstuk dan ook zien dat men met behulp van 
oppervlakte EMG de oplossingsruimte kunt verkleinen. Daarmee neemt men de patiënt-
specifieke neurale aansturing in acht en komt men tot oplossingen die patiënt-specifiek 
zijn. Hoofdstuk zeven is een technisch uitstapje naar verschillende methoden  
van het achterwaarts modelleren. We beschrijven statische en dynamische 
optimalisatietechnieken waarbij we de uitwerking onderzochten met en zonder hulp van 
sEMG. Hoofdstuk acht bespreekt het werk en stelt toekomstige onderzoeksrichtingen voor 
gebaseerd op vier pijlers om generieke modellen te personaliseren. 

Concluderend, voorwaarts modelleren is belangrijk om een model met chirurgische 
aanpassingen aan te sturen. Dit verschaft ons inzicht in de consequenties van zo’n 
behandeling direct na de ingreep, mits wij het model aansturen met de van jongs af aan 
geleerde patiënt-specifieke spieractivatiepatronen. Het achterwaarts modelleren geeft ons 
inzicht in mogelijke compensatoire mechanismen welke kunnen verschillen tussen 
patiënten. Sommige weten de essentiële functies opnieuw te leren, terwijl anderen daar 
niet toe in staat zijn. In de toekomst kunnen verschillende behandelstrategieën toegepast 
worden op de digitale dubbelganger. De verscheidene behandelingen en de effecten ervan 
kunnen dan tijdens een multidisciplinair overleg besproken worden zodat er een bewuste 
keuze gemaakt kan worden met inachtneming van de patiënt-specifieke factoren. Dit kan 
tot een optimale patiënt-specifieke behandelstrategie leiden. Tot slot biedt dit ook 
mogelijkheden om de voorlichting over de functionele effecten na behandeling voor de 
individuele patiënt te optimaliseren. 
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principale componenten analyse en optimal control. Dankzij u ben ik ook veel 
systematischer gaan werken, zo schrijf ik tegenwoordig commentaar bij mijn code en zelfs 
readme bestanden. Heel veel dank voor alles wat u voor mij heeft betekend! 

Zeer geachte prof. dr. ir. C.H. Slump, u zou ik graag willen bedanken voor het mogelijk 
maken van dit promotietraject. Ik ben vereerd u als promotor te mogen hebben.   
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Geachte leden van de promotiecommissie: prof. dr. ir. T.T.M. Palstra,  
em. prof. dr. ir. J. van Amerongen, prof. dr. ir. H.J. Hermens, prof. dr. ir. H.F.J.M. Koopman, 
prof. dr. ir. G.J.M. Krijnen, prof. dr. M.W.M. van den Brekel, en prof. dr. L.E. Smeele – ik 
wil u allen hartelijk danken voor het zitting nemen in de promotiecommissie en het 
vrijmaken van uw waardevolle tijd voor het beoordelen van dit proefschrift.  

De coauteurs, dr. D. Brandsma en dr. M.J.A. van Alphen, dank voor jullie zeer 
gewaardeerde bijdrage. Maarten in het bijzonder voor het beantwoorden van mijn 
prangende vragen, jouw geduld en ook voor het plaatsnemen als referent in de 
promotiecommissie. 

Ian Stavness, thank you for your time on Skype and via e-mail to help me with my 
ArtiSynth and inverse modelling endeavors. Also, your support in drafting the manuscripts 
towards publishable papers is greatly appreciated.  

Maja Keizers, heel hartelijk bedankt voor het corrigeren en redigeren van de meeste 
stukken tekst in dit proefschrift. Hierdoor is het geheel goed leesbaar geworden. 

Jeannette Alcaraz, I really appreciated your enthusiastic “YES!” on my question if you 
would be willing to revise parts of my dissertation. Your corrections and suggestions are 
gratefully acknowledged. 

Mijn dank gaat ook uit naar alle betrokken collega’s in het Antoni van Leeuwenhoek, de 
Virtual Therapy groep, de hoofdhalsafdeling, de AvL-TG-ers, de onderzoekers in het  
O-gebouw, met in het bijzonder mijn kamergenoten in 03.22: Charlotte, Elies, Joost, Sarah 
en Simone.  

Dr. R.J.J.H. van Son, dank voor de vele ideeën tijdens de maandagmiddagmeeting. Veelal 
vanuit een ander perspectief, om zodoende toch weer een stap verder te kunnen. Zoals 
bijvoorbeeld de “dynamic time warping”. Dank daarvoor. 

Marion en Henny, hartelijk dank voor alle hulp omtrent praktische zaken, met name alle 
formaliteiten rondom nieuwe studenten.  

Jolanda, vaak hebben wij elkaar niet gezien, maar veelal van alles geregeld via telefoon en 
e-mail. Dank voor al jouw steun vanuit de Universiteit Twente. 

Vele TG studenten hebben hun kennis en kunde bij ons op het Virtual Therapy project 
ingebracht, waardoor het project heeft kunnen groeien en dit proefschrift tot stand heeft 
kunnen komen. Dank voor jullie waardevolle bijdrage en de altijd gezellige 
lunchwandelingen.  

Om het onderzoek uit te kunnen voeren zijn vrijwillige proefpersonen noodzakelijk. 
Tevens moeten er voor de klinische studies patiënten bereid zijn te participeren. Bijzonder 
veel respect heb ik dan ook voor deze mensen die, verkerend in een moeilijke en onzekere 
fase, zich alsnog hiervoor beschikbaar hebben gesteld. Dank aan allen. 
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fase, zich alsnog hiervoor beschikbaar hebben gesteld. Dank aan allen. 

Graag grijp ik deze gelegenheid ook aan om alle vriendengroepen; de Tijdelijke Toppers, 
de Achterhoekse vrienden, de Bonobo’s, de vrienden in de randstad, en de  
(oud-)huisgenoten, te bedanken voor hun begrip dat mijn sociale leven het afgelopen half 
jaar tot een minimum beperkt was. Dank voor jullie support, interesse en het geluk dat ik 
jullie heb leren kennen. Ik kijk ernaar uit om met jullie een goudgele pretcilinder te 
drinken op de succesvolle afsluiting van dit hoofdstuk en de start van een nieuwe! 

Lieve (schoon)familie, dank voor de onuitputtelijke interesse en succeswensen. Ik heb me 
tijdens dit traject gesteund gevoeld door jullie en ik vind het ontzettend bijzonder dat 
zovelen van jullie de promotieplechtigheid in Enschede en/of het proosten hierop tijdens 
het feest in Amsterdam, met mij willen delen.  

Lieve pa en ma, voor mijn dank voor jullie steun is de hele lengte van dit proefschrift  
natuurlijk nog te kort. De prestatie die ik heb kunnen leveren had zonder veel mensen, 
maar dan toch in het bijzonder zonder jullie, niet tot stand kunnen komen. Jullie oneindige 
vertrouwen in mijn kunnen, onvoorwaardelijke support en altijd voorhanden zijnde 
ouderlijk advies; wat zijn jullie toch intens betrokken en wat maken jullie veel voor ons 
mogelijk. Dank jullie wel. 

Beste paranimfen, lieve broers, hoe tof dat jullie deze dag naast mij willen staan. Ondanks 
dat jullie niet echt wisten waar jullie “ja” tegen zeiden, is alles uiteindelijk “op zijn Eskes” 
op z’n pootjes terechtgekomen. Ontzettend trots ben ik ook op jullie dat ik eenieder van 
jullie de rol van oudste broer en “het grote voorbeeld” met alle bijbehorende 
verantwoordelijkheden, elke dag van de week kan toevertrouwen. Zodoende kan ik ook 
altijd voor advies bij jullie terecht. Veel dank!  

Liefste Lise, allereerst heel veel dank voor jouw onvoorwaardelijke steun. Dank voor jouw 
luisterend oor en dat je altijd geïnteresseerd bleef, ook al waren de meeste gesprekken de 
afgelopen tijd gevuld met promotieperikelen. Ik ben erg blij dat we elkaar tegen het lijf zijn 
gelopen op de “ouderwetse manier” in een “moderne” wereld. Naast alle memorabele 
herinneringen kijk ik ook graag uit naar alle mooie momenten die we samen verder gaan 
beleven! – RAWR  

Hoe zorgvuldig zo’n dankwoord ook is geschreven, het is altijd mogelijk dat er per abuis 
(en onbedoeld!) een belangrijke naam ontbreekt. Mocht dat bij de uwe het geval zijn, dan 
is er nog een plek speciaal voor u gereserveerd in deze dankbetuiging:  

Beste ………………………………………………………………………….…., voor uw onuitputbare steun de afgelopen jaren,  
waardoor ik mijn promotie in goede orde heb kunnen afronden, zal ik u eeuwig dankbaar 
zijn.
 

 Amsterdam – Enschede, 13 december 2017, 

Merijn. 
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12. Author contributions 
This chapter states the author contributions according to the CRediT Taxonomy of 
author contributions1 of which the definitions are given in table below.  

 

Contributor Role Role Definition 

Conceptualisation Ideas; formulation or evolution of overarching research goals and aims. 

Data Curation Management activities to annotate (produce metadata), scrub data and 

maintain research data (including software code, where it is necessary for 

interpreting the data itself) for initial use and later reuse. 

Formal Analysis Application of statistical, mathematical, computational, or other formal 

techniques to analyse or synthesise study data. 

Funding Acquisition Acquisition of the financial support for the project leading to this publication. 

Investigation Conducting a research and investigation process, specifically performing the 

experiments, or data/evidence collection. 

Methodology Development or design of methodology; creation of models 

Project 

Administration 

Management and coordination responsibility for the research activity planning 

and execution. 

Resources Provision of study materials, reagents, materials, patients, laboratory samples, 

animals, instrumentation, computing resources, or other analysis tools. 

Software Programming, software development; designing computer programs; 

implementation of the computer code and supporting algorithms; testing of 

existing code components. 

Supervision Oversight and leadership responsibility for the research activity planning and 

execution, including mentorship external to the core team. 

Validation Verification, whether as a part of the activity or separate, of the overall 

replication/reproducibility of results/experiments and other research outputs. 

Visualisation Preparation, creation and/or presentation of the published work, specifically 

visualisation/data presentation. 

Writing – Original 

Draft Preparation 

Creation and/or presentation of the published work, specifically writing the 

initial draft (including substantive translation). 

Writing – Review & 

Editing 

Preparation, creation and/or presentation of the published work by those from 

the original research group, specifically critical review, commentary or revision 

– including pre- or postpublication stages  

 

 

                                                             
1 Brand A, Allen L, Altman M, Hlava M, Scott J. Beyond authorship: attribution, contribution, 
collaboration, and credit. Learned Publishing [Internet]. 2015;28(2):151-155. Doi: 10.1087/20150211 
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13. About the author 
Merijn Eskes was born on the 1st of September 1987 in Winterswijk. Together with his 
brothers Tiemen and Jorrit he grew up in consecutively Halle and Lichtenvoorde, two small 
villages in the Achterhoek. In 2006 he obtained two diplomas in the disciplines of  
Nature & Technology and Nature & Health at the RKSG Marianum in Groenlo. After this, 
he started his education in Technical Medicine at the University of Twente in Enschede, 
where he pursued the master’s specialisation "Medical Sensing and Stimulation" in 2009. 
After his first master’s year, he was allowed to participate in a study tour to Japan, where 
he and his fellow students compared health care and related technology between Japan 
and the Netherlands. This was followed by four clinical research internships in which both 
research and clinical activities were the focus. He started at the Clinical Neurophysiology 
in the Academic Hospital Maastricht, followed by the Neonatal Intensive Care Unit at the 
Radboud University Medical Center in Nijmegen. During his third internship at the  
Head-neck oncology and surgery department at the Antoni van Leeuwenhoek in 
Amsterdam, he became acquainted with the Virtual Therapy project. He arranged his last 
internship in Mexico City at the Pediatric Oncology and Surgery department at the 
National Institute of Pediatrics. After living in Mexico for six months, Merijn started his 
clinical specialisation in December 2012; again, at the Antoni van Leeuwenhoek hospital 
on the Virtual Therapy project. At the end of 2013 he obtained his Master's degree in 
Technical Medicine. Due to his growing interest in Virtual Therapy, his PhD trajectory was 
formed, which ultimately resulted in the dissertation that now lies before you. During this 
time, he was speaker and program coordinator of the annual conference of the professional 
association of Technical Medicine (NVvTG). He has given presentations at various (inter) 
national conferences and is the author of five scientific publications.  
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Tiemen en Jorrit groeide hij op in achtereenvolgens Halle en Lichtenvoorde, twee kleine 
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Natuur & Techniek en Natuur & Gezondheid aan het RKSG Marianum in Groenlo. Hierna 
startte hij met de opleiding Technische Geneeskunde aan de Universiteit Twente in 
Enschede, waar hij in 2009 de master specialisatie “Medical Sensing and Stimulation” koos. 
Na zijn eerste masterjaar mocht hij deelnemen aan een studiereis naar Japan, waar hij met 
medestudenten de gezondheidszorg en bijbehorende technologie heeft vergeleken tussen 
Japan en Nederland. Aansluitend volgden vier klinische onderzoeksstages waarin zowel 
onderzoek als het klinisch handelen centraal stonden. Hij startte op de Klinische 
Neurofysiologie in het Academisch Ziekenhuis Maastricht, en kwam daarna terecht op de 
Neonatale Intensive Care Unit in het Radboud Universitair Medisch Centrum in Nijmegen. 
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