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10   Chapter I

Profoundly deaf people experience a severe handicap in their social life.  For
that reason researchers all over the world are engaged in the development of
cochlear implants that can offer these patients a sense of hearing by
electrically stimulating the auditory nerve.  At the moment approximately 10000
cochlear prostheses of several types have been implanted with varying success
(Van Olphen, 1995):  Currently available devices generally succeed in getting
the deaf patient out of his/her acoustic isolation, but the ideal result, i.e. good
open-set speech discrimination without the help of lip-reading, is still achieved
in a minority of patients ( Gantz et al.,  1988).  Moreover, it is very difficult to
identify the parameters that are crucial to predict the clinical outcome pre-
operatively, as this appears to be the result of a complex interplay between
various patient and device related factors ( Brokx et al., 1988 ; Blamey et al.,
1992; Van Dijk et al., 1993 ; Gantz et al., 1993).
Initial research in this field was primarily defined in terms of clinical concerns.
It established the feasibility of the approach and documented the beneficial
effects and possible risks (House, 1994).  However, in order to achieve a
further improvement of the clinical results by more sophisticated implant
designs, more information from basic research is needed to identify the key
factors that need optimisation.
This thesis focuses on the development of a computational model of the
implanted cochlea, which is intended to provide more insight in the
fundamentals of functional electrical stimulation of the auditory nerve.
Therefore, this introduction will not give a complete review of the literature on
cochlear implants but highlight some topics that are relevant for the design of
this study.  This will lead to the identification of some unresolved issues in the
field of modelling the response of mammalian myelinated nerve fibres to
functional electrical stimulation in general and of auditory nerve fibres to
cochlear prostheses in particular.  This problem not only involves simulating
the response of a nerve fibre to an externally applied potential field, but also
the calculation of this potential distribution from the currents on the stimulating
electrodes, which is especially intricate in the case of cochlear implants due to
the complex geometry of the inner ear ( Fig. 1).

Cochlear implants
More than 35 years ago the first patient underwent the surgical insertion of
what would be called now a cochlear implant (Djourno and Eyries, 1957).  In
the next years a few humans were implanted experimentally with electrodes in
the scala tympani (House and Urban, 1973) or in the modiolus
(Simmons, 1966), but it lasted until the mid-seventies until the principle of
direct electrical stimulation of the auditory nerve was applied systematically in
a clinical setting.  From then on dozens of different cochlear implant designs
have been developed for the purpose of bringing profoundly deaf patients into
auditory contact with the hearing environment ( Loeb, 1990).  All these designs
have some basic features
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Fig. 1 a. Schematic cross section through the human cochlea or inner ear.  The auditory or
cochlear nerve in the modiolus forms the central core.  Its fibres radiate to the hair cells
distributed along the spiralling membranous labyrinth.  This is deeply embedded in the
petrous bone and consists of three fluid-filled chambers (scala tympani, scala media or
cochlear duct and scala vestibuli), separated by thin membranes.
(From: Jahn and Santos-Sacchi, 1988)

b. A more detailed cross section of the cochlear canal illustrating the electrical volume
conduction problem addressed in this thesis.  The black circle in the scala tympani
represents an intracochlear electrode, the concentric circles the potential field that would
result if the electrical properties of all cochlear tissues were identical.  Since this is not
the case, it is not trivial to calculate the potential distribution in the vicinity of the auditory
nerve fibres that extend from their cell bodies in the spiral ganglion in the lower left corner
of the figure. (Adapted from: Jahn and Santos-Sacchi, 1988)

b

a
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Fig. 2 The basic components of a cochlear implant (From: Pfingst, 1986)

in common: the incoming sounds are captured with a microphone, processed in
a speech processor, which encodes the information in signals on an electrode
or electrode array that is implanted in or near the cochlea ( Fig. 2).  The precise
implementation of these basic functions, however, varies widely amongst the
various implant types.  A gross classification of the different designs can be
achieved on the basis of the number of electrodes (commonly called
‘channels’) and the location of these electrodes (Pfingst, 1986) as indicated in
Table I.
In the physiological situation more basal cochlear nerve fibres (i.e. closer to the
round window) encode for higher frequencies while more apical ones transmit
low-frequency information.  Multichannel implants are designed to make use of

Table I The classification of some well-known cochlear implant types on the basis of the number
of channels available for stimulation and the site of electrode implantation.

EXTRA-
COCHLEAR

INTRA-
COCHLEAR MODIOLUS

SINGLE-CHANNEL
Vienna/3M

(Burian et al., 1986)

House/3M
(House and Berliner,

1986)

MULTICHANNEL

Ann Arbor
(Niparko et al., 1993)

Banfai/Hortmann
(Banfai et al., 1986)

Clark/Nucleus
(Clark et al., 1987)

Ineraid/Symbion
(Parkin and Steward,

1988)

LAURA/ABS
(Peeters et al., 1993)

Simmons
(Simmons, 1966)
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Fig. 3 An artist’s impression of the Clark/Nucleus multichan nel intracochlear implant (Clark et
al., 1987) showing the banded electrode array, containing 22 platinum electrodes, which
is inserted into the scala tympani (Courtesy of Cochlear (UK) Ltd.).

this tonotopic organisation of the auditory nerve.  These devices apply multiple
electrodes to elicit different auditory sensations by stimulating discrete sub-
populations of auditory nerve fibres, while single-channel implants make use of
a single electrode in or near the cochlea.
Most currently used cochlear implants utilise intracochlear electrodes that are
inserted into the scala tympani through the round window membrane or a
drilled cochleostomy in its vicinity ( Fig. 3).  Extracochlear devices use an
electrode in the round window niche, which can be combined with electrodes in
or against the otic capsule.  Some experimental devices combine intra- and
extracochlear electrode sites (Banfai et al., 1992 ).
Apart from the electrode configuration used, auditory prostheses differ also in
the way the sound signals are converted into electrical stimuli on the
electrodes.  Two basic types of speech decoding strategies can be
distinguished.  The first type is based on feature extraction, which means that
e.g., information regarding the frequency and amplitude of spectral peaks is
used to encode formant information in vowels ( Clark et al., 1987). The other
type of strategies is essentially based on conveying time information of the
filtered incoming signal.  This can be done by using either analog stimuli (i.e.,
the waveform of the electrode current is a transformed representation of the
incoming signal) or by pulse sequences (Lawson et al., 1993).  Since it is still
subject of debate which type of encoding scheme is superior, some cochlear
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implants are not restricted to a fixed processing strategy but have a
programmable speech processor (Peeters et al., 1993).
Of course, the most important parameter for deciding between different
cochlear implant designs is the benefit the patient experiences from it.  Four
levels of clinical performance can be distinguished:
1. The prosthesis has a signal function

The patient can detect and recognise common sounds, e.g., when someone
enters the room behind his back, or when someone starts speaking.

2. The prosthesis provides an aid in lip-reading
Auditory information on rhythm and intonation helps the patient to
understand spoken language, but he must heavily rely on lip-reading.

3. The patient’s speech production is improved
The auditory feedback of the patient’s own speech leads to an increased
quality of his voice and speech production ( Leder and Spitzer, 1990).

4. The patient can understand speech without the help of lip-reading
This is the ideal result, which is achieved by a small, although important,
minority of patients.  An important distinction in this context is the one
between so-called ‘open set’ and ‘closed set’ speech recognition, for in the
latter case a restricted vocabulary is used to alleviate the task.

It is, however, important to notice that the subjective benefits reported by
implant users, seem to depend primarily on the feeling of independence and
confidence that is gained by wearing the implant rather than on objective
measures of performance (Kou et al., 1994).  Nevertheless, such objective
methods for the evaluation of the auditory capabilities of severely hearing
impaired patients with and without the use of visual information are important
guides, both for therapeutic evaluation of individual patients and for the
comparison of the results obtained with different implant designs.  Such tests
include supra-segmental items (such as detecting rhythm information and
distinguishing between questions and affirmative sentences) and segmental
ones (e.g., the recognition of short vowels).  Well-known examples of English
tests are the MAC test battery ( Owens et al., 1985) and the Iowa Cochlear
Implant Tests (Tyler et al., 1983), while the Antwerpen/Nijmegen test ( Beijnon
et al., 1990) was developed for the Dutch language domain.
Using such tests, several comparative studies involving groups of patients
wearing different prostheses were performed (Cohen et al., 1993; Gantz et al.,
1993).  The general conclusion of most of such studies is that multichannel
devices are superior to single-channel ones, but that the final clinical outcome
depends complexly on many other factors, related to the individual patient and
the kind of signal processing applied ( Wilson et al., 1993 ).
Whereas the initial cochlear implant candidates were primarily post-lingually
deafened adults, current implantation programs involve increasing numbers of
pre- or perilingually deafened children (Soulière et al., 1994; Van Den Broek et
al., 1995), for which very favourable results with respect to the development of
language skills are reported.  Initially children were not implanted, because of
uncertainties regarding the potential damage to a developing auditory system
due to the electrical fields generated by the implant.  Animal experiments,
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however have revealed that even the converse may be true: Early electrical
stimulation at moderate intensity levels can induce a better development of the
auditory nervous system when compared to unstimulated deafened cases
(Snyder et al., 1990; Leake et al., 1990).  Other safety issues still remain to be
resolved.  Although several successful reimplantations of scala tympani
electrodes have been reported in adults ( Lindeman et al., 1987) and in children
(Miyamoto et al., 1994 ), there is certainly an insertion trauma associated with
intracochlear electrodes, especially when long ones are inserted to reach more
apical fibres (Kennedy, 1987; Linthicum et al., 1991 ; Welling et al., 1993 ).  This
can lead to fibrosis or ossification in the cochlear duct with the possible
consequence of increased retrograde neuronal degeneration (Schuknecht,
1993).
In view of the ongoing improvements of cochlear implant designs and the
inevitable failure of implanted hardware in time, it is wise to take maximum
care that children that are implanted now will still be able to profit from future
implant designs.  Extracochlear devices may provide a solution to this problem,
as they do not disturb the integrity of the cochlea.  Therefore, further loss of
residual hearing can be prevented, as contrasted with intracochlear electrode
insertion (Bogess et al., 1989).  This is particularly important in the light of
recent findings that indicate the feasibility of electrical stimulation of residual
hearing (McAnally and Clark, 1994).  Extracochlear electrodes have the
additional advantage that they can also be placed over the cochlear apex
(Franz and Clark, 1988), which is inaccessible for intracochlear electrodes (cf.
Fig. 3).  This is especially interesting in the light of the fact that many patients
suffering from severe sensorineural hearing loss have relatively many intact
auditory nerve fibres in this region ( Hinojosa and Marion, 1983).  In addition, it
are these low and middle frequency nerve fibres that are important for the
understanding of speech in normally hearing subjects ( Pfingst et al., 1987 ),
while these fibres also play an important role in directional hearing by detection
of interaural time differences ( Von Békésy, 1930).  It is therefore not surprising
that the binaural interaction with bilateral intracochlear electrodes, i.e. in the
high-frequency region of the cochlea, was found to depend solely on interaural
intensity differences ( Van Hoesel et al., 1993).  Finally, the insertion of
extracochlear electrodes suffers less than that of intracochlear ones from
intrascalar ossification, which is known to occur frequently in cases of deafness
due to meningitis ( Jackler et al., 1987).  An important drawback of the
extracochlear location of electrodes is the fact that the distance between the
stimulating electrodes and the excitable neural elements is relatively large.
This is expected to result in higher stimulation thresholds and less selective
stimulation, i.e. less groups of auditory nerve fibres that can be stimulated
independently.  The higher stimulus currents involved may also impose
limitations on the dynamic range, e.g., due to stimulation of the facial nerve.

The Leiden University cochlear implant project
In spite of the limitations inherent to the use of extracochlear electrodes we feel
that the above-mentioned advantages of an extracochlear approach make it
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worth-while to investigate the feasibility of a multichannel extracochlear implant
with optimised electrode positions and stimulus patterns.
Unlike previous designs that required major surgical intervention in the middle
ear and even the Eustachian tube ( Banfai et al., 1986 ), the device should not
disturb the integrity of the middle ear.  For the fixation of the electrodes in the
otic capsule and an adequate sealing of the inner ear these electrodes will be
coated with Polyactive ®, a degradable bio-active material, that was shown to
induce active bone bonding ( Bakker et al., 1990).  Histological studies of the
behaviour of this electrode coating on the guinea pig cochlea, with and without
electrical stimulation, are currently going on in our laboratory (Kingma et al.,
unpublished results).
The electrophysiological part of the project focuses on identifying the stimulus
parameters that are crucial for selective stimulation of small sub-populations of
auditory nerve fibres.  For this purpose electrophysiological measurements in
guinea pigs, implanted with extracochlear electrodes are performed.  The initial
experiments involve normally hearing animals, since this allows the application
of acoustical stimuli to measure the excitation patterns due to electrical
stimulation (Charlet de Sauvage et al., 1983 ; Black et al., 1983; Van Den
Honert and Stypulkowski, 1987), while later studies will use deafened animals.
For these animal experiments we needed a multichannel programmable
stimulus generator with current outputs and with at least 5 µs time resolution
per channel.  To prevent current glitches due to asynchronous switching of
electrodes we desired to refrain from using a multiplexer.  We also wanted to
be able to perform simultaneous data acquisition (e.g., measure electro-
physiological responses) while stimulating both acoustically and electrically with
the device.  Since it did not appear feasible to fulfil the speed and timing
requirements with commercially available equipment, we decided to develop
the flexible, multichannel data acquisition and waveform generator system
which is described in chapter VII  of this thesis.

Aim and overview of the present study
In order to guide these experiments and to get more insight in the fundamental
processes involved in electrically stimulating the inner ear we felt the need to
develop a computational model of the electrically implanted inner ear.  This
model had to combine a calculation of electrical fields due to the stimulating
electrodes with the prediction of resulting neural responses ( Fig. 4).
In order to be able to investigate the influence of different stimulus waveforms
on the neural excitation, nerve fibre model should give a sufficiently accurate
description of the response of the auditory nerve fibres to time-varying,
externally applied electrical fields.  This means that passive estimators of
neural reactivity such as the activation function ( Rattay, 1989) or the total
equivalent driving function ( Warman et al., 1992) cannot be applied, since their
use is limited to predicting the response of a nerve fibre in its resting state to a
single, monophasic stimulus.  Also, single-node models with non-linear kinetics
(Motz and Rattay, 1986 ) are not applicable for this purpose since they do not
take the spatial distribution of the stimulating potential into account.  On the
other hand, the neural model should not be so intricate that it would cost too
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much computational effort to simulate the overall response of the population of
auditory nerve fibres present in the cochlear turns.  This means that models
that incorporate detailed anatomical information ( Halter and Clark, 1991) also
do not fulfil our aims.
Colombo and Parkins (1987) presented a more simplified non-linear model of
the mammalian auditory nerve fibre based on the classical work on amphibian
neurons of Frankenhæuser and Huxley (1964), as used by Reilly et al. ( 1985)
in their so-called Spatially Extended Non-linear Node (SENN) model.
However, they had to adapt the anatomy of the modelled nerve fibre
significantly to represent physiological data obtained from single auditory nerve
fibre experiments in squirrel monkeys.  Furthermore, simulations we performed
using their model parameters revealed that the duration of their simulated
action potentials was about 1.3  ms, which is more than twice the spike duration
observed in vivo (Kiang et al., 1976).  Furthermore, the simulated spike
conduction velocity was much lower than it is in real nerve fibres.
We concluded that a major factor causing the discrepancy between
experimental and simulation data consisted of the difference between
mammalian body temperature and the temperature at which Frankenhæuser
and Huxley (1964) performed their voltage-clamp measurements (20 °C).
Chapter II  of this thesis investigates whether correcting this and a couple of
other model assumptions results in a model that -  although still based on
amphibian data - can give an adequate description of the neural properties that
are relevant for the design of electrical prostheses.  Chapter III  addresses the
question whether a better description of the behaviour of large mammalian
myelinated nerve fibres is obtained if nodal kinetics are used that are based
upon voltage-clamp measurements in mammalian nerve fibres at body
temperature (Schwarz and Eikhof, 1987).

Fig. 4 The conceptual framework behind the model of the electrically stimulated ear.  The input
signal is the current stimulus on the left, which is delivered by the speech processor
(Fig. 2).  This current induces a potential field in the cochlea via the electrode system.  This
potential field, as computed by the volume conduction model, forms the input of the nerve
fibre model that predicts which auditory nerve fibres will be excited.  The information
conveyed to the brain is characterised by the number, location and firing pattern of these
fibres, the model’s output.

Both the MSENN model and the SEF model (as the models described in
chapter II  and III  respectively, are called) describe the behaviour of large
mammalian motor neurons with diameters of 10  µm or above, which have
action potential durations around 0.3  ms and maximum steady-state firing rates
above 1 kHz.  The auditory nerve fibres which are the target of stimulation for
cochlear implants, however, possess axon diameters below 3  µm, have spike
durations of circa 0.5  ms (Kiang et al., 1976) and cannot sustain firing at spike

Current
Stimulus Electrode Cochlea

Auditory
Nerve

Excited
Nerve Fibres

System (Volume Conduction) (Nerve Fibre Model)

Number
Location

Firing Pattern
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rates above 600 Hz (Moxon,  1968).  This is consistent with the findings of
Paintal (1966), who showed that both the spike duration and the length of the
absolute refractory period (i.e. the period after the initiation of an action
potential in which it is impossible to elicit a second propagated action potential)
increases gradually with diminishing fibre diameter.  Chapter IV of this thesis
deals with the question how the SEF model can be generalised to simulate the
behaviour of fibres of different sizes, including auditory spiral ganglion cells.
As stated above, the full mathematical model of the electrically implanted
cochlea consists of two sub-models, the first of which is the nerve fibre model.
This neural excitation model receives its input from the other sub-model that
calculates the potential distribution in the cochlea from the stimulating
electrode currents.  Since the cochlear geometry is complex and the various
cochlear structures have electrical conductivities that differ several orders of
magnitude (Suesserman, 1992), it is impossible to derive an analytic solution to
this three-dimensional volume conduction problem.  Most previous studies
unrolled the cochlear duct to simplify the geometry and used discrete resistive
and capacitive components ( Suesserman and Spelman, 1993) or applied
numerical methods to solve this problem ( Finley et al., 1990 ).  We also did not
model the cochlear duct as the tapered spiral it is in reality, but we solved the
problem for a field model that is symmetric about a common mid-modiolar axis
and features three tiers of neural loci, representing spiral ganglion cells from
turns II, III and IV of the guinea pig cochlea.  Chapter V describes this
combined neural and volume conductor model and compares the resultant
model predictions for several longitudinal bipolar electrode sites against
experimental electrically evoked auditory brainstem response (EABR) data
from the cat.
In chapter VI the model is applied to investigate the influence of temporal
stimulus parameters and electrode configurations on the spatial selectivity of
electrical stimulation by cochlear implants.  In this chapter it is also studied to
what extent the physiological variation in axon diameter or the loss of
peripheral processes of the auditory nerve fibres is expected to influence these
effects.
Chapter VII , which was outlined above when describing the Leiden cochlear
implant project, describes the development of the multichannel data acquisition
and waveform generator system used in the experimental part of the project.
Finally, Chapter VIII  discusses the overall results of the study and outlines
some directions for future research.
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ABSTRACT
Starting with the spatially extended non-linear node model (R EILLY et al., 1985),
which incorporates Frankenhaeuser-Huxley non-linearities at each of several
nodes in a row, a model is developed to describe many aspects of the
behaviour of mammalian nerve fibres in a quantitative way.  By taking into
account the effects of temperature and by introducing a realistic nerve
morphology, a good fit is obtained between the shape, duration and conduction
velocity of simulated and in vivo action potentials in mammals.  The resulting
model correctly predicts the influence of physiological variations of body
temperature on various aspects of nerve behaviour.  It is shown that the
absolute refractory period predicted by the model is within physiological ranges.
Both in vivo and in the model, the spike amplitude and the spike conduction
velocity are reduced in the relative refractory period. It is concluded that single-
node models (although widely used) cannot replace this multiple non-linear
node model, as the stimulus repetition rates that can be followed by the
simulated nerve fibre are limited by impulse conduction properties, rather than
by the frequency following behaviour of a single node.

1  INTRODUCTION
In recent years, interest in the modelling of the generation and propagation of
nerve impulses has increased as electrical nerve stimulation is more widely
used in clinical practice, e.g., in hearing prostheses for the profoundly deaf
(TYLER et al., 1989) and in external control of the neuromuscular system
(VELTINK et al., 1989).  REILLY et al. (1985; 1987; 1989) describe an elaboration
of the MCNeal (MCNEAL, 1976) model of a myelinated nerve fibre in an
extracellularly applied field.  Their spatially extended non-linear node model
(SENN model) assumes the myelin sheath is a perfect insulator, and it
incorporates Frankenhaeuser and Huxley (FH) (F RANKENHAEUSER and HUXLEY,
1964) non-linearities at each of several adjacent nodes of Ranvier.  With this
model, it is possible to simulate the behaviour of myelinated nerve fibres under
varying extracellular electrode configurations and stimulus patterns.  The
models are mostly used to describe nerve behaviour in mammals, although
they are derived from amphibian data (G ORMAN and MORTIMER, 1983; MEIER et
al., 1992).
In the field of cochlear prostheses, Colombo and Parkins (C OLOMBO and
PARKINS, 1987) applied the SENN model to explain the response to electrical
stimulation of the auditory nerve (fibre diameter 0.5  - 1 µm) in deafened
squirrel monkeys. Sweeney et al. (SWEENEY  et al., 1987) proposed a non-linear
cable model that uses the equations of Chiu et al. (CHIU et al., 1979), which are
based on measurements in a rabbit.  Recently, Struijk et al. (STRUIJK et al.,
1992) used these equations in modelling recruitment of dorsal column fibres in
spinal cord stimulation.   In Table 1, some properties of large mammalian
myelinated nerve fibres are summarised and compared to the predictions of
the SENN and Sweeney model.  From this Table, it is clear that, although the
SENN model can provide a good qualitative description of many aspects of
nerve behaviour, it falls short quantitatively in several respects when
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stimulation of mammalian nerve fibres is considered.  As the FH equations
were derived for a Xenopus Laevis (a cold-blooded animal) at 20°C, this could
be expected beforehand.  Similar observations can be made for the model
proposed by Sweeney et al..
In this paper, we present a modified SENN (MSENN) model (Fig.  1), which has
been adapted to fit mammalian nerve fibre data from the literature.  This was
mainly done by taking into account the influence of body temperature on nerve
kinetics.  The spike shape, conduction velocity and strength/duration curves
generated with the model at different temperatures are compared to
physiological data.  A detailed study of the behaviour of the modelled nerve
fibre in the (relative) refractory period is carried out.  Special attention is paid to
the phenomenon of abortive spikes, the spike propagation and the repetitive
firing abilities. We show how the spike amplitude and the spike conduction

Table 1 - Summary of model results for the present model (MSENN) of a 10  µm nerve fibre,
compared to in vivo measurements by Paintal (P AINTAL, 1973) in the cat for A  fibres of
10 µm and 20 µm outer diameter; to the o riginal SENN model of a 20  µm nerve fibre
(REILLY et al., 1985); and to our 10 µm fibre model computations after Sweeney et al.’s
model (SWEENEY  et al., 1987), with parameters based on the measurements of Chiu  et al.
(CHIU et al., 1979);  if the original FH kinetics are applied to the 10  µm fibre under standard
conditons (Table 2), the conduction velocity v changes to 35.1 ms-1, but other results are
the same as shown for the SENN model;  the experimental value of the chronaxy τchr was
taken from work by Ranck (RANCK, 1975).

MSENN
10 µm

10 µm
A Fibre

20 µm
A Fibre

SENN
(REILLY et al.,

1985)

Chiu et al.,
(CHIU et al., 1979)

10 µm

v (ms-1) 59.4 60 120 42.8 (20 µm)
35.1 (10 µm)*

57.2

Q10,v 27°-37°C
18°-28°C

1.4
1.4

1.6
2.5

1.6
2.5

1.0
1.0

trise (ms) 0.07 0.08 0.07 0.19 0.06

Q10,trise 27°-37°C
18°-28°C

(1.5)-1

(1.6)-1
(2.5)-1 (2.5)-1 1.0

1.0

tfall (ms) 0.26 0.29 0.23 1.05 0.26

Q10,tfall 27°-37°C
18°-28°C

(2.2)-1

(2.6)-1
(3.5)-1 (3.5)-1 1.0

1.0

ARP (ms) 0.50 0.55 0.45 1.69 0.37

Q10,ARP 27°-37°C (2.0)-1 (3.2)-1 (3.2)-1 1.0

τchr (µs) 45 29-59 29-59 80 21

*= computed with unmodified FH equations in a fibre with standard morphology (Table  2)

velocity depend on the stimulation frequency.  The implications of the results
for the use of nerve fibre models when designing electrical prostheses are also
discussed.



A Model of Myelinated Nerve Fibres for Electrical Prosthesis Design   26

2  MODEL DESCRIPTION
It was observed in an early stage of neurophysiological studies that the
behaviour of nerve fibres is influenced strongly by temperature  (SCHOEPFLE
and ERLANGER, 1941).  With rising temperature, the impulse conduction
velocity in a nerve fibre increases and its action potentials last for a shorter
time.  However, increasing temperature T in the SENN model to mammalian
body temperature (310.65 K = 37.5°C), as done by Colombo and Parkins
(COLOMBO and PARKINS, 1987), does not change conduction velocity or the
duration of the action potential significantly.  This is because the FH equations
incorporate temperature in the so-called constant field (Goldman) term of the
ionic currents only (see below for an explanation of these terms).  For Xenopus,
Frankenhaeuser and Moore (FRANKENHAEUSER and MOORE, 1963) reported that
the Q10 values for sodium activation ( αm 1.7, ßm 1.8) were much smaller than
those for sodium inactivation ( αh 2.8, ßh 2.9) and potassium (αn  2.8, ßn 3.2).  In
the model equations, this can be described by multiplication of all these
activation and inactivation rate constants with a factor φ of the form

Ve,k-1 Ve,k Ve,k+1

Vi,k-1 Vi,k Vi,k+1

Ga Ga

+

-

+

-

+

-

GL

LV

mC

IC,k-1 INa,k-1 IK,k-1 Ip,k-1 IL,k-1

NaP KP pP
GL

LV

mC

IC,k INa,k IK,k Ip,k IL,k

NaP KP pP
GL

LV

mC

IC,k+1 INa,k+1 IK,k+1 Ip,k+1 IL,k+1

NaP KP pP

Ext.

Int.

Fig. 1 - MSENN model representation of a myelinated nerve fibre; three nodes k - 1, k and k + 1 are
connected by an internodal conductance Ga; nodal membrane is shown between the dashed
lines; it possesses a permeability for sodium ( PNa), potassium (P’

K), non-specific ions ( Pp), a
leak conductance (GL) and potential (VL) and a membrane capacitance (Cm); currents through
the various channels are labeled correspondingly; Vi,k-1, Vi,k, and Vi,k+1 are intracellular
potentials at the nodes, and Ve,k-1, Ve,k, and Ve,k+1 are corresponding extracellular potentials; in
the lower part, the axon with its myelin sheath of Schwann cells (shaded area) is displayed
with each node immediately below its model representation.
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The first step to arrive at the MSENN model was to introduce this type of
temperature dependence in the FH non-linearities at the active nodes in the
SENN model, with T0=293.15 K (20°C).  As a next step, the size and shape of
the modelled nerve fibre were adapted to represent a 10  µm diameter motor
fibre, which is more in the middle range of physiological sizes than the 20  µm
used by McNeal (MCNEAL, 1976) and Reilly et al. (REILLY et al., 1985) (see
Table 2).  The internodal resistivity ρi strongly influences the impulse
conduction velocity, but unfortunately it has not yet been measured reliably. As
it presumably depends on temperature, in the present model a Q10 value of
(1.3)-1 (MOORE et al., 1978) is incorporated if temperatures below mammalian
body temperature are considered.
Unlike in the original SENN model, the resting membrane potential Vr was
computed with the Goldman equation (constant field equation, T ASAKI , 1982,
p.139).  In this way, variations in the ionic content of the extracellular medium
can be accounted for.  If it is assumed that the so -called non-specific
permeability Pp is working on sodium (F RANKENHAEUSER and HUXLEY, 1964,
p.303), the Goldman equation reads as follows:

For an explanation of the symbols used in eqn.  2 and other symbols introduced
below without definition,  readers should refer to work by McNeal (M CNEAL,
1976), Reilly et al. (REILLY et al., 1985) and to Table 2, which defines the so-
called standard conditions.  All computations were performed for nerve fibres in
an infinite linear isotropic homogeneous medium using these standard
conditions, unless stated otherwise.
The differential equations were integrated with a fourth-order Runge -Kutta
method with adaptive step-size control  (PRESS et al., 1988), adapted for
systems of coupled differential equations.  The resulting step sizes varied
between 0.01 µs and 10 µs.  For all tested stimulus strengths and wave forms,
the rise of the m parameter (describing the sodium channel activation) above
0.7 proved a new, simple and robust threshold criterion for the occurence of the
first spike.  To determine the absolute and relative refractory period, we added
the criterion that the action potential must be conducted along the nerve fibre to
be able to recognise abortive spikes (Fig.  7).  To standardise the measurement
of the rise and fall times trise and tfall of the simulated transmembrane action
potential, its shape was simplified to a triangle with its top at the maximum of
the original spike.  The rising and falling edges of this triangular action potential
were defined to cross the simulated spike at 10% of spike height.  This
procedure is illustrated in Fig.  2a.
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Table 2 - Set of parameters defining the standard conditions for the MSENN model; the ionic
concentrations are chosen in accordance with mammalian data (GUYTON, 1981); the
nodal gap width is based on data from work by Waxman ( WAXMAN, 1978); the values of
ρi and ρe, the ratios d/D and L/D and the nodal parameters are adopted from the SENN
model (REILLY et al., 1985); the Q10 values for ρi and ρe are based on work by Moore et
al. (MOORE et al., 1978)

parameter unit symbol standard value

 axoplasm resistivity Ω⋅m ρi
1.1 (37.5°C)
Q10 = (1.3)-1

external resistivity Ω⋅m ρe
3.0 (37.5°C)
Q10 = (1.3)-1

membrane capacitance/
unit area

F m-2 cm 0.02

leak conductance/
unit area Ω -1 m-2 gL 303

sodium permeability
 constant

µm s-1
PNa 80.0

potassium permeability
constant

µm s-1
PK

' 12.0

nonspecific
permeability

constant

µm s-1
Pp

5.4

intracellular sodium
concentration

mol m-3 [Na+]i 10

extracellular sodium
concentrations

mol m-3 [Na+]o 142

intracellular potassium
concentration

mol m-3 [K+]i 141

intracellular potassium
concentration

mol m-3 [K+]o 4.2

fibre diameter µm D 10

axonal diameter µm d 7

nodal gap width µm l 1

internodal distance µm L 1000

temperature K T 310.65
(= 37.5°C)
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3  RESULTS
In Figs.  2 - 9 the properties of the MSENN model (standard conditions unless
stated otherwise) are demonstrated.  Table 1 summarises these data and
compares them with the corresponding values for real 10  µm nerve fibres at
mammalian body temperature.  The corresponding values of a nerve fibre of
the same geometry but with nodes obeying the original FH kinetics (SENN), in
addition to data regarding the model described by Sweeney et al. (SWEENEY  et
al., 1987) are added for comparison.  It is clear that the behaviour of the
present model resembles the in vivo situation more than the other models.  The
various aspects of model behaviour are discussed in detail below.

3.1 Shape of the action potential
Fig. 2c shows the shape of the transmembrane action potential generated by
the MSENN model.  The rise time trise of the resulting action potential is
0.07 ms, while tfall is 0.26 ms.  Spike duration thus amounts to 0.33  ms.  The
spike height Vp is 111 mV and Vr is -83 mV (eqn. 2), which results in +28  mV as
the maximum intracellular potential.  The potassium and sodium equilibrium
potentials are -94 mV and +71 mV, respectively.

Fig. 2 - (a) Time course of the nodal potential V (i.e. the deviation of the transmembrane potential
from its resting value) for an action potential simulated with the original SENN model; dashed
lines illustrate the procedure used to approximate this action potential with a triangle and the
definition of its rise time trise and its fall time tfall; (b) transmembrane ionic currents Iion during
the action potential in (a); solid line represents the sodium current INa, dashed line the
potassium current IK, the dotted line the non-specific current IP; (c) action potential generated
by the MSENN model at 37.5°C; note that the time axis differs from that in (a); (d)  as (b) but
for the spike in (c).
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Fig. 3 - Rise time trise and fall time tfall of the action potential generated by the MSENN model (solid
lines) at temperatures between 17.5°C and 37.5°C, compared to measurements in the cat by
Paintal (PAINTAL, 1966) (dashed curves).

For comparison, the action potential generated by the original SENN model is
displayed in Fig.  2a.  Obviously, the spike duration is much longer (1.24  ms),
with a relatively short rise time of 0.19  ms.  Figs.  2b and d show that the time
course of the sodium current is also quite different in both models.  This is
mainly a temperature effect, reflecting the different Q10 values for the sodium
activation and inactivation processes (Section  2).
In Fig.  3, the influence of temperature variations on trise and tfall in the present
model (solid curves) and in vivo in the cat (dashed lines; P AINTAL, 1966) is
shown.  As expected, both slopes of the spike decrease with increasing
temperature, but the effect on the rising phase is smaller than it is on the falling
one.  For the temperature range between 27°C and 37°C, the model's  Q10 is
(1.48)-1 for trise and it is (2.22) -1 for tfall.  In lower temperature ranges, these
effects are slightly stronger (Table  1).

3.2 Impulse conduction velocity
The conduction velocity v is 59.4 ms-1 in this 10µ fibre at 37.5°C.  For lower
temperatures, v is appreciably lower, with a Q10 value of 1.4 for the
temperature range 17° - 37°C (Fig.  4).  Although threshold currents increase
when lower temperatures are simulated, the model does not exhibit a so -called
blocking temperature below which impulses do not travel along the fibre.
When the unmodified FH equations (as used in the SENN model) are applied
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in a 10 µm nerve fibre with the standard morphology, v is 35.1 ms-1, a strongly
incorrect value which expectedly hardly depends on temperature.  The dashed
curves in Fig.  4 show that the parameters whith the largest influence on the
temperature dependence of v are the temperature dependences of the FH
parameters m, h, p and n and the temperature dependence of ρi. The
introduction of the Goldman equation  and the change in ionic content of the
intra- and extracellular medium are minor alterations as far as spike conduction
is considered.  The Goldman equation  does, however, make the nerve fibre
sensitive to changes in the sodium and potassium concentrations; doubling the
extracellular potassium concentration changes Vr from -83 to -69 mV and v is
reduced from 59.4 to 52.9 ms-1.  On the other hand, if the extracellular sodium
concentration is increased to 200  mmol l-1, Vr becomes -79 mV and v increases
to 65.9 ms-1.

Fig. 4 - Spike conduction velocity v as a function of temperature T; lines representing the MSENN
model (standard conditions, Table 2), the SENN model (REILLY, et al., 1985) with standard
nerve morphology and in vivo measurements in the cat (PAINTAL, 1973) are labelled
correspondingly; other curves demonstrate the relative importance of some parameters in the
MSENN model;  dashed line was computed with the MSENN model, with ρi = 1.1 Ωm for all
temperatures (otherwise standard conditions), dashed-dotted line was generated with
MSENN model with Vr = -70mV (otherwise standard conditions), the dotted line with the
MSENN model with amphibian sodium and potassium concentrations (otherwise standard
conditions).
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3.3 Strength/duration (SD) curves
Fig. 5 shows the relationship between the duration of monophasi c cathodal
pulses and the corresponding threshold current (SD curve) for a monopolar
electrode one internodal distance away from the nerve fibre under standard
conditions.  The charge needed to produce an action potential (i.e. the product
of pulse height I and pulse duration tpulse) is also displayed in this curve.  The
rheobase Irheo (the threshold current for a pulse of infinite duration) is almost
equal for both kinetics if the same model parameters are used otherwise, but
the chronaxy τchr (the threshold duration of a pulse twice as strong as the
rheobase) is much shorter in the MSENN model (45  µs vs. 80  µs), as expected.
Note that the points plotted in the SD curves in Fig.  5 were obtained by
determining the threshold for pulses of the corresponding length, but that the
curves between the points were computed from the measured rheobase and
chronaxy with eqn.  3. This equation describes the classical hyperbolic
relationship between I and tpulse.

Apparently, the simplified concepts of rheobase and chronaxy make sense in
the context of both the original and the modified SENN model.

Fig.5 - Strength/duration curves for monophasic cathodal pulses for an electrode 1 internodal
distance away from a nerve fibre under standard conditions; both the threshold currents Ith for
pulses with duration tpulse and the charge injected Qth (= Ith ⋅€tpulse) are shown for the MSENN
model and for a nerve fibre with unmodified FH kinetics; continuous lines were drawn from
the measured rheobase and chronaxy (eqn. 3); symbols represent measured points.
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Additionally, Reilly  et al. (REILLY et al., 1985) interpret the strength/duration
properties of their model in terms of an equivalent strength/duration time
constant τe, which they define as the RC time constant of a linear RC network
model of a single node with an SD curve shape that best matches the shape of
a given empirical curve.  The value of τe for the MSENN model is 55  µs,
whereas it is 100 µs for the SENN model.

3.4 Refractory period
The absolute refractory period (ARP) is defined as the period after the initiation
of an action potential in which it is impossible to elicit a second propagated
action potential as a response to a second stimulus even if its strength is
unlimited.  The period thereafter is characterised by a state of reduced
excitability, resulting in elevated thresholds for the generation of spikes.  It is
called the relative refractory period (RRP).
In the model described here, the ARP is 0.50  ms, as shown in Fig.  6.  This
figure was computed using 100 µs cathodal current pulses (the first being 150%
of threshold) from a monopolar electrode 1 mm (=1 internodal distance) away
from the middle of a nerve fibre segment.  The zero point of the time axis was
chosen

at the beginning of the first spike (i.e. the moment m crosses the level 0.7) to
reduce the influence of stimulus conditions on the calculated ARP.  With the

Fig. 6 - Threshold current Ith for eliciting an action potential (and its amplitude Vp) in the relative
refractory period of the MSENN model as a function of the time interval ∆t elapsed since the
initiation of the first spike; thresholds are measured relative to the threshold for the initiation of
the first spike; dashed line through the triangles representing Vp is the exponential curve that
fits these data optimal in a least squares sense; stimuli are cathodal pulses of 100  µs
duration.
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stimulus used, this threshold is reached 92  µs after the start of the stimulus.
The Q10 of the ARP is (2.0) -1 in the temperature range 27°€- 37°C.
In the RRP, the threshold currents return quickly to almost pre-stimulus levels;
at 1.0 ms after the beginning of the first spike, the threshold is just 7% elevated
and the 1% level is reached at t = 1.85 ms.  The 'refractoriness' of the nerve
fibre is also reflected in the height of the second action potential.  It is as small
as 70% of the height of the first spike in the early stages of the RRP, and it
increases gradually to regain 99% of its original value at t = 2.00 ms.
A remarkable property of the model is the occurrence of local, abortive spikes
at the end of the ARP.  In a single node, these spikes are not distinguishable

Fig. 7 - Example of an abortive spike, simulated with the MSENN model; on the left, are time traces of
the FH parameters m, h, n and p, and on the right the corresponding membrane potential V;
curves are shown for node 0, where the spike is initiated, and the adjacent nodes 1 and  2.
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from normal spikes (e.g. by the transmembrane sodium or potassium currents,
or the time course of the FH parameters m, h, p and n), but they are not
conducted to the end of the nerve fibre.  The second action potential shown in
Fig. 7 is such an abortive one.  It is initiated in node 0, the node closest to the
stimulating electrode.  It travels to node 1 and  2 consecutively, but the traces
for these adjacent nodes show that it is rapidly extinguished when it is
conducted along the nerve fibre.
Owing to the strong stimulus required to elicit the phenomenon, a large
stimulus artifact is discernible in the transmembrane potential, but the
behaviour of the FH parameters shown on the left is similar for the first and the
second spike, at least for node 0, and we cannot tell from the behaviour in
node 0 that the spike is abortive.

Fig. 8 - Spike abortion phenomenon demonstrated in a MSENN nerve fibre, stimulated at node  0 with
cathodal pulses (1500 Hz repetition rate, first pulse at t = 0); four simultaneous time traces
are shown of the membrane potential V at node number N = 10, 20, 25 and 60; arrows
indicate the 13th action potential, which disappears before it reaches node 60 (reproduced
with permission from F RIJNS and SCHOONHOVEN, 1992).
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3.5 Frequency following
When fast repetitive stimuli are used, abortive spikes can also occur after
several firings.  This is illustrated in Fig.  8 for 100 µs pulses with a repetition
rate of 1500 Hz (at 200% of the threshold for the first spike).  In this Figure,
four time traces of the transmembrane potential V are shown for active nodes
10, 20, 25 and 60 internodal distances away from the node where the action
potentials are elicited.  In this case, consecutive spikes show decreasing
amplitudes, and the average spike conduction velocity between the 20th and
60th node gradually decreases from its initial value of 59  m s-1 for the first
spike to 30 m s-1 for the 12th spike.  Finally, the 13th action potential (marked
by an arrow in Fig.  8) is initiated and reaches node  20 like the previous ones,
but it fails to travel further more than a couple of nodes and it never reaches
node 60.  A similar observation holds for the 17th  spike, which does not even
reach the 25th node.  Thus, this spike abortion phenomenon induces a lower
maximum discharge rate than the 2  kHz we might expect from the ARP value.
Another interesting phenomenon illustrated by Fig.  8 is the changing height of a
single action potential during it course along the nerve fibre.  It gradually
decreases initially but grows again later on.  The spike conduction velocity also
shows a minimum when a spike has travelled several internodal distances.
Fig. 9 shows the dependence on firing frequency of the steady-state conduction
velocity (again between nodes 20 and 60) and spike height (in node 60).  Both
v and Vp decrease gradually with increasing stimulus frequency, conduction
velocity faster than spike height.  The maximum steady-state discharge rate is
slightly less than 1.5  kHz, when spike height is approximately 50% of its initial
value.

Fig. 9 - Relative spike height and conduction velocity as a function of stimulus rate fpulse in the present
model (standard conditions).
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4  DISCUSSION
The purpose of our MSENN model is to upgrade previous electrical nerve
stimulation models for a realistic description of the behaviour of mammalian
myelinated nerve fibres.  It was developed from the SENN model (R EILLY et
al., 1985), to which several modifications were introduced to adapt the
originally amphibian data for warm-blooded animals.
The Goldman equation (eqn. 2) is used throughout to compute the resting
membrane potential Vr.  Under so-called standard conditions (Table 2), Vr

is -83 mV, which is comparable with Vr = -80 mV reported experimentally
(BRISMAR, 1980).
When compared to the action potential generated by the original FH equations,
the spike produced by the new model is significantly shorter and has a
relatively large ratio of trise to tfall.  This is in accordance with the spike shape
and duration reported by Paintal (P AINTAL, 1966), who extensively studied trise

and tfall in myelinated fibres in the cat (Table  1).  When comparing data from
different authors, we should bear in mind that the exact figures reported
depend on the definition of spike duration used.  Despite this, it is clear that the
shape of the newly modelled action potential approximates the in vivo situation
in mammals for more than the original SENN model, for which the spike
duration is 1.24 ms.
As may be expected from the introduction of Q10 values for the FH parameters
m, h, p and n, temperature does influence the shape of the action potential and
the time course of the ionic currents in the MSENN model.  However, the effect
of large temperature variations on the spike shape is described only
qualitatively by the present model, as the simulated Q10s of trise and tfall are
relatively low (Table  1), and tfall does not depend linearly on temperature as it
does in vivo in the cat (Fig.  3).  This discrepancy between the model and
experimental data could be expected beforehand, as the model was developed
using kinetics originally determined for amphibian nerve fibres at 20°C, with
spike durations around 1.3 ms (FRANKENHAEUSER and HUXLEY, 1964).  These
spikes are significantly shorter than in the cat, for which Paintal (P AINTAL, 1966)
recorded spike durations around 2 ms at 21.5°C in nerve fibres with normal
conduction velocities around 60  m s-1.  From this point of view, it is more
surprising to note that the model fits mammalian data at normal body
temperature in a quantitative manner.
Table 1 shows that the spike conduction velocity of the original SENN model is
low when compared to measurements in mammalian nerve fibres.  The ratio
between conduction velocity v (in m s-1) and total fibre diameter D (in µm, axon
and myelin sheath) was shown by Hursch (HURSH, 1939) to be 6.0 for large
fibres in the cat at 37.5°C. Boyd and Kalu (B OYD and KALU, 1979) reinvestigat-
ed this relation and found a mean ratio of 5.7 for the largest diameter fibres at
temperatures between 35 and 37.5°C.  At 37.5°C, the MSENN model gives a
v/D ratio of 5.94, which is thus well within physiological ranges.  In this model, v
varies nearly linearly with temperature T as it does in vivo, but its Q10 is 1.4, a
relatively low value.  However, if the model is applied to electrical stimulation in
mammals (body temperatures above 36°C), this difference between the model
and experimental data is of little importance, as can be concluded from Fig.  4.
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A comparison between the strength/duration (SD) curves of the SENN model
and the MSENN model (Fig.  5) shows that the chronaxy, or alternatively the SD
time constant τe, is significantly shorter in the present model and that threshold
charges for short pulses are lower. Reilly  et al. (REILLY et al., 1985) argue that
sensory experiments by several investigators yield experimental values of τe

that are at least twice the value of 100  µs computed with their model.  This
means that the lower τe value of the present model is a shift in the wrong
direction as far as sensory stimulation is concerned.  On the other hand, Ranck
(RANCK, 1975) reports a chronaxy of 29  - 59 µs for extracellular stimulation of
myelinated cat sural A fibres.  The chronaxy value of 45  µs of the MSENN
model fits neatly in this range.  This also means that the SD behaviour of the
model is applicable in the field of functional electrical stimulation, i.e. neural
prostheses for selective neuromuscular control (MEIER et al., 1992).
The results in this paper also show that the refractory properties of the MSENN
model resemble those of actual nerve fibres in many respects.  In accordance
with Paintal's work (P AINTAL, 1973), the absolute refractory period in the
modelled fibre is about 1.5  times spike duration.  If we define its end as the
point where the threshold has returned to within 1% of its original value, the
model's ratio RRP/ARP is 2.7, whereas it is about 4  in vivo.  Thus, the model's
relative refractory period is about one-third too short.
Regarding the occurrence of abortive spikes in vivo, Paintal (P AINTAL, 1973)
reports that impulses can be initiated after the end of a spike; in fact, these are
abortive because they are unable to propagate until they attain the so-called
propagating amplitude, which is approximately 40% of the spike height.  Fig.  7
shows that the MSENN model produces such abortive spikes, whereas Figs.  6
and 9 show that in this model the propagation amplitude is 55%  - 70%,
depending on stimulus conditions.
The maximum transmissible frequency is just below 1.5  kHz in the model
situation (Figs.  8 and 9).  As explained in Section  3.5, this is clearly lower than
we would expect from the ARP but definitely higher than in real fibres.  For
fibres conducting at 60  m s-1, this peak frequency of discharge is about 800  Hz,
which Paintal (P AINTAL, 1973) explains is due to spike abortion as every spike
is travelling in the relative refractory phase of the preceding one and has a
lower conduction velocity.  From Figs.  8 and 9, it can be concluded that the
model behaves similarly when repetitive firing is induced.  This result stresses
the fact that single-node models (MOTZ and RATTAY, 1986) should not be used
for this purpose, even if only time aspects of nerve behaviour are considered.
In this context, it is worthwhile to reconsider Fig.  6, where the relation between
'refractoriness' and spike amplitude is shown.  This gradual increase of spike
amplitude with an increasing inter-stimulus interval was observed in cat
peripheral nerve fibres by Paintal (P AINTAL, 1966) and in cat cochlear nerve
fibres by Gaumond et al. (GAUMOND et al., 1982). It has also been inferred from
human compound action potentials by Stegeman et al. (STEGEMAN et al., 1983),
who described single-fibre action potential amplitude recovery with an
exponential recovery function
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where Vn is the normal spike amplitude and Vp the actual spike amplitude.
They deduced from the literature a 'rate of recovery' γ of 2.5 (ms)-1.  In Fig.  6,
our simulation data shows that such an exponential curve, with δ€= 0.85 and
γ€= 2.2 (ms)-1 could be accommodated.
As the MSENN model shows a linear relationship between the diameter of a
nerve fibre and its spike conduction velocity, changing the diameter influences
this velocity in a realistic way, but there is no influence of the fibre diameter on
spike duration and refractory behaviour.  However, in vivo both the spike
duration and the absolute refractory period vary inversely with fibre diameter
(PAINTAL, 1966), effects which are not yet fully understood.
An explanation for quantitative discrepancies between the model and
experimental data may be given by observations that mammalian nerve fibre
kinetics is governed by different rules to those describing amphibian
fibres (BRISMAR, 1980).  Essentially, the difference is that mammalian fibres
have far less active potassium channels and that repolarisation of the nerve
fibre's membrane is mainly due to a relatively large leak conductance.  The
equations of Chiu et al. (CHIU et al., 1979), as used by Sweeney et al.
(SWEENEY  et al., 1987), do not incorporate any active potassium channels.
We have simulated a 10  µm fibre with these equations, using the parameter
values given by Warman et al. (WARMAN et al., 1992), and found that the spike
shape and conduction velocity are comparable with those in the MSENN model
(Table 1).  However, the ARP is only slightly longer than the spike duration
and, as a consequence, the fibre is able to transmit spike rates above 2.1  kHz,
which is definitely too high.  In addition, the chronaxy (determined with the
method in Section  3.3) is less than half the value of the MSENN model.  This
means that, for relevant aspects of electrical stimulation models, the MSENN
model yields a better fit of experimental data in mammals than Sweeney's
model which uses mammalian data directly.
At present, we are studying a model based on voltage clamp data in the rat by
Schwarz and Eikhof (SCHWARZ and EIKHOF, 1987).  The results indicate,
however, that the overall shape of the action potential and the time course of
the sodium current are again not essentially different from those in the MSENN
model.
Warman et al. (WARMAN et al., 1992) introduced the total equivalent driving
function, which eliminates the need to solve the full system of non-linear
differential equations for the purpose of determining the excitation threshold for
the first spike.  This reduces the number of computations required for all nodal
kinetics, including that presented in this paper.  However, the full model is still
required if an analysis of the response to repetitive stimuli, as used in neural
prostheses, is desired in order to deal with abortive spikes (Figs.  7 and 8).
Another explanation for quantitative mismatches between the model and
experimental results may be the obvious fact that the electrical characteristics
of the internodal myelin sheath are deliberately neglected in the model. Halter
and Clark (HALTER and CLARK, 1991) proposed a multi-axial cable model, in

[ ]V e Vp
t

n= − ∗−1 δ γ∆ (4)
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which detailed anatomical data regarding the myelin sheath were incorporated.
They found a spike conduction velocity of 57.6  m s-1 in a simulated 17.5  µm
mammalian myelinated nerve fibre, which is obviously too low.  Future
research will have to clarify the exact role of the myelin sheath in nerve
conduction.
A further serious drawback of an application of this kind of model for the design
of electrical prostheses is the large amount of computing power required to
solve the equations.  The MSENN model, on the other hand, can be
implemented on a simple personal computer and can describe many properties
of mammalian nerve fibres adequately.  Its spike shape, conduction velocity
and absolute refractory period are well in agreement with experimental data.  In
addition, the model can describe the influence of temperature on various
aspects of nerve behaviour and the consequences of repetitive firing.
Examples of its application include motor nerve and auditory nerve stimulation,
as repetitive stimulation is obligatory in these fields .
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Abstract
This paper presents an upgraded cable model of mammalian myelinated nerve
fibers in an extracellularly applied field. The kinetics of the nodes is based upon
voltage clamp data in rat motor fibers at 37°C [18], while the resting membrane
potential is computed with the Goldman equation.  The resulting spike shape,
conduction velocity, strength/duration behavior, and absolute and relative
refractory period are in good quantitative agreement with published
experimental data in mammals at normal body temperature and at 20 °C.
Results at intermediate temperatures however, suggest that the widely used
concept of a constant Q10 for the rate constants is invalid.  In addition, the
model generates realistic abortive spikes towards the end of the absolute
refractory period and it can describe the consequences of repetitive firing.  The
results stress the advantages of a multiple nonlinear node model even if only
time aspects of nerve behavior are under study.  It turned out, that the model
presented here describes in vivo neural properties relevant for electrical
prosthesis design better than previous models in literature.

I. Introduction
Until the early eighties the insights into the physiology of single nerve fibers
were predominantly based on measurements with the voltage clamp technique
in unmyelinated [1] and myelinated [2] nerve fibers of cold blooded animals.
Although there were indications that the situation is different  [3] in mammals, it
was generally assumed that mammalian nerve fibers are not essentially
different from their cold blooded counterparts, although functioning at higher
temperatures.
Using these data, several authors published models describing spike
conduction and electric excitation in myelinated nerve fibers.  Fitzhugh  [4]
assumed each node of Ranvier to obey the Hodgkin and Huxley equations and
described the internodal myelin sheath as a distributed leaky capacitance.
Goldman and Albus [5] used a similar model with nodes obeying the nonlinear
Frankenhaeuser and Huxley [2] equations (further referred to as FH equations)
to demonstrate a linear relationship between axon diameter and conduction
velocity, which is in agreement with experimental data [6].  For purposes of
functional electrical stimulation McNeal [7] developed the first model of a
myelinated nerve fiber in an extracellularly applied field.  In this model the
myelin sheath is assumed to be a perfect insulator.  All nodes of Ranvier are
represented by a linear electrical circuit, except the so -called excitation node
for which the FH equations are used.  A further elaboration of the model was
given by Reilly et al. [8] - [10].  His s patially extended nonlinear node model
(SENN model) incorporates FH nonlinearities at each of several adjacent
nodes.  With the SENN model it is possible to simulate the behavior of
myelinated nerve fibers under varying extracellular electrode configurations
and stimulus patterns.  The model is mostly used to describe nerve behavior in
mammals, although it is derived from amphibian data [11], [12].  In the field of
cochlear prostheses Colombo and Parkins [13] applied it to explain the
strength/duration response to electrical stimulation of the auditory nerve (fiber
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diameter 0.5 - 1 µm) in deafened squirrel monkeys.  Unfortunately, their model
cannot quantitatively describe the refractory and repetitive firing properties,
which are essential in cochlear prostheses.  We showed that a SENN model
with adapted FH kinetics (further referred to as the MSENN model) can
describe many aspects of the behavior of mammalian nerve fibers in a
quantitative way [14]
In the last decades, there was growing evidence that mammalian nerve fiber
kinetics is governed by rules that differ from those describing amphibian
fibers [15], [16].  However, the overall shape of the action potentials is not
essentially different from the ones generated by amphibian nerve fibers [17].
Essentially, the difference is that mammalian fibers have far less active
potassium channels in the nodal area and that repolarization of the nerve
fiber's membrane is mainly due to a relatively large leak conductance.
Schwarz and Eikhof [18] (further referred to as SE) were the first to measure
and describe quantitatively action potentials and membrane currents in single
myelinated rat (and cat) fibers at 20 and 37 °C.
Sweeney et al. [19] incorporated the equations given by Chiu et al. [15] in the
so-called CRRSS model, which is currently the most cited nerve fiber model in
the context of functional electrical stimulation.  In a previous paper  [20] we
showed, however, that the amphibian-based MSENN model is remarkably
superior to the mammalian-based CRRSS model in its description of nerve

Fig. 1. Schematic representation of three nodes k - 1, k and k + 1 in the SEF model of a
myelinated nerve fiber.  In the lower part of the figure, the axon with its sheath of Schwann
cells (shaded area) is displayed, with the model representation immediately above it.  The
nodal membrane with its permeability for Sodium ( PNa) and Potassium (PK), its leak
conductance (GL) and leak potential (VL), and its membrane capacitance (Cm), is shown
between the dashed lines.  The currents flowing through the various channels are labeled
correspondingly.  Vi,k-1, Vi,k and Vi,k+1  are the intracellular potentials at the nodes, whereas
Ve,k-1, Ve,k, and Ve,k+1 are the corresponding extracellular potentials. Ga is the internodal
conductance.
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fiber properties that are essential for electrical prosthesis design, such as the
frequency following behavior.  A comparison of the properties of several single-
node models for mammalian nodal membranes (including modified FH and SE
equations) is also found in Rattay  [21].  In the present paper, we will introduce a
multiple nonlinear node model of myelinated motor fibers with nodes obeying
the (mammalian) SE equations (see Fig.  1).  This SEF model is tested by
comparing its spike shape, its conduction velocity and its strength/duration
curves at different temperatures to physiological data.  A detailed study of the
behavior of the modeled nerve fiber in the (relative) refractory period is carried
out.  Special attention is paid to the phenomenon of abortive spikes, the spike
propagation and the repetitive firing abilities.  Finally, the implications of the
results for modeling mammalian myelinated nerve fibers will be discussed.

II. Description of the Model
The set of parameters defining the so-called standard conditions is presented in
the Appendix.  These standard conditions are used for the computations
throughout this paper unless explicitly stated otherwise.  Here we give some
specific considerations about the choice of these parameters.  For the
mathematical details of the model equations the reader is referred to the
Appendix.
As stated above, the model presented here is based upon the measurements of
Schwarz and Eikhof [18], who used motor fibers which were taken from rat and
cat sciatic nerves.  In order to be able to validate this so-called SEF model
using experimental data from other authors, we first have to estimate the
diameter and other relevant parameters of the modeled nerve fiber that were
not extensively documented by SE.
It is well known that the duration and shape of action potentials depend on fiber
diameter, e.g., from measurements of Paintal [22], who extensively studied rise
time trise and fall time tfall in myelinated fibers in the cat.  At 37 °C the duration of
the spikes recorded and simulated by SE is about 0.3  ms with tfall  ≈€€0.23 ms.
Comparison of this spike shape with Paintal's data leads to the conclusion that
SE must have used fibers with an action potential conduction velocity v of
approximately 85  m/s.  Then, the total fiber diameter D of the average neuron
Schwarz and Eikhof most likely used can be estimated by application of the
relation v = D ⋅€5.7 ×€106s-1 as experimentally observed by Boyd and Kalu
[23].  This gives D = 15 µm, which is well within the range of large motor fibers
(also called A-fibers).  This estimated value of the total fiber diameter was used
for all computations in the present paper, while the axon diameter d was 70%
of this value.  The length l of the nodes of Ranvier used in the computations is
1 µm and the internodal distance L is 1.5 mm, i.e., 100  D.
This fiber geometry was used to convert the total nodal sodium and potassium
permeability PNa and PK and the total nodal leak conductance GL as used by
Schwarz and Eikhof to the corresponding quantities per unit area, which will be
relevant in forthcoming adaptations of the model to thin fibers as present in the
auditory nerve.  The sodium and potassium concentrations inside and outside
the nerve cell were changed from those in Ringer's solution to mammalian
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values according to Guyton  [24].  All computations in this paper were
performed for nerve fibers in an infinite linear isotropic homogeneous medium.
The temperature dependence (expressed as Q10 's) of the rate constants for m
(sodium activation), h (sodium inactivation) and n (potassium activation) was
taken from the SE paper.  The internodal resistivity ρi was adopted from the
original SENN model to be 1.1  Ω⋅m at 20°C.  In fact, this parameter, which
strongly influences the impulse conduction velocity, has not been measured
reliably yet.  However, it presumably does depend on temperature;  Moore  et
al. [25] argue that ρi has a Q10 value of (1.3) -1 (or -1.3 in a notation frequently
used in physiological literature).  In the present model this value was incor-
porated, giving ρi = 0.7 Ω⋅m at 37°C.
In the SE equations, the resting membrane potential Vr was fixed at -78 mV,
rather than computed from the ionic contents and membrane properties as one
might expect.  We have followed a different approach and use the Goldman
equation (constant field equation [26, p. 139])
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In this way, variations in the ionic content of the extracellular medium can be
accounted for.  For an explanation of the symbols used in (1) and other
symbols introduced below without definition, the reader is referred again to the
Appendix.

III. Computational Aspects
The model equations were integrated with a fourth order Runge -Kutta method
with adaptive stepsize control  [27], adapted for systems of coupled differential
equations.  The resulting stepsizes varied between 0.01  µs and 10 µs and
computing speed was comparable with the conventional Runge -Kutta method
and a stepsize of 1 µs.  The former method is superior in maintaining numerical
stability if large stimuli of short duration, applied in the relative refractory
period, are to be simulated.
The membrane equations were dynamically initialized by requiring that the
membrane is stable in each node k at rest, i.e., dmk /dt = dhk /dt = dnk /dt = 0 for
Vk = 0 (See (A.4)).  As a consequence of the use of (1), the leak potential VL,
which is computed from the requirement that the net transmem-brane current
must be zero under resting conditions, becomes zero and can be eliminated
from the equations.
Reilly et al. [8] used as a threshold criterion the occurrence of an 80  mV
depolarization in response to monophasic stimuli.  For biphasic stimuli they
required unambiguous propagation of an action potential.  In the present study
a more robust threshold criterion was used that allowed computer-controlled
iterative determination of threshold currents irrespective of the stimulus wave
form or electrode configuration.  For all tested stimulus strengths and wave
forms the rise of the m parameter (describing the sodium channel activation)
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above 0.7 proved adequate for this purpose.  Using this criterion, the program
allowed the automatic determination of strength/duration curves, impulse
conduction velocity v and absolute and relative refractory period.  In our study
of the refractory period, we added the criterion that the action potential must be
conducted along the nerve fiber, to deal with abortive spikes which occur
towards the end of the absolute refractory period.  To standardize the
measurement of the rise and fall times trise and tfall of the simulated
transmembrane action potential its shape was simplified to a triangle with its
top at the maximum of the original spike.  The rising and falling edges of this
triangular action potential were defined to cross the simulated spike at 10% of
spike height.  To assess tfall reliably it is essential that the length of the actively
modeled segment is at least as large as the spatial extent of the spike.  In the
present study we used 25 nodes to determine spike shape and conduction
velocity, which amply fulfilled this criterion.

IV. Results
In Figs.  2 - 8 the properties of the present SEF model (standard conditions
unless stated otherwise, see Appendix) are demonstrated.  Table  I summarizes
these data and compares them with the corresponding values for real
mammalian 15 µm nerve fibers at body temperature.  The corresponding
values of a nerve fiber of the same geometry but with nodes obeying
temperature dependent FH equations (MSENN, [20]) and the CRRSS model
[19] respectively, are added in this table for comparison. The various aspects
of the model behavior will be discussed in detail below.

A. The Shape of the Action Potential
The action potential generated by the SEF model at 37 °C is shown in Fig.  2 (a).
To avoid a stimulus artifact in this figure, a nerve fiber with 25 nonlinear nodes
was depolarized at its first node and the spike was recorded after traveling 12
nodes along.  The rise time trise of the action potential is 0.083  ms and tfall is
0.243 ms.  Spike duration thus amounts to 0.33  ms.  The spike height Vp is
108 mV and Vr is -85 mV (1), which results in +23  mV as the maximum
intracellular potential.  The potassium and sodium equilibrium potentials are -
94 mV and +71 mV respectively.  Vr is -80 mV when the original ionic
concentrations from the SE paper are used to compute Vr with (1), which is
only slightly more negative than the fixed value of -78 mV as used in that
paper.
In Fig.  2(c) the spike computed with modified FH kinetics is shown for
comparison.  Although the underlying spike generating mechanism is
essentially different (see Section I) and the potassium currents are much larger
(Fig. 2(b) versus (d)), the overall spike shape and the time c ourse of the
sodium current are comparable to the spike in Fig.  2 (a).
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The amplitude of the action potential increases if the temperature T is lowered:
it is 115  mV at 27°C and 117 mV at 20°C.  With falling temperature trise

increases with Q10 = (1.9)-1 as does tfall with a Q10 value of (2.4) -1 for the
temperature range between 27°C and 37°C.  In the temperature range between
18 and 28°C these effects are slightly stronger ( Q10 = (2.1)-1 and (2.7)-1

respectively). In Fig.  2(a), the influence of these temperature variations on the
duration of the rising and the falling phase of the spike is shown for the present
model and in Fig.  3(b) for in vivo measurements in the cat [22].

B. Impulse Conduction Velocity
The spike conduction velocity v was measured simultaneously with the
determination of the shape of the action potential.  For the simulated 15  µm
nerve fiber under standard conditions v was 84.2 m/s, giving Ψ €= 5.61 106s-1.
As shown in curve  1 in Fig.  4, v strongly depends on T with Q10 = 1.8 for the
temperature range between 27 and 37°C, while Q10 = 2.0 when measured
between 18 and 28°C.  If the temperature dependence of ρi is omitted, Q10 for v
is 1.5 (27 - 37°C, see Fig.  4, curve  5).  The model does not exhibit a so -called
blocking temperature below which impulses do not travel along the fiber.

Fig. 2. (a) The time course of the nodal potential V (see (A.4) for its definition) for an action potential
simulated with the SEF model.  (b) The transmembrane ionic currents Iion during the action
potential in (a).  The solid line represents the sodium current, the dashed one the potassium
current.  (c) The action potential generated by the MSENN model at 37°C.  (d) As (b), now for
the spike in (c).  The short-dashed line represents the nonspecific current.
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In the FH based MSENN model with temperature dependent rate constants,
Q10 is 1.2 for v in the range 27 - 37°C.  It increases to 1.4 if a Q10 value of (1.3) -

1 is used for ρi (Fig. 4, curve  3).  In the original (FH based) SENN model, Ψ  is
2.15 106s-1.  Using its FH kinetics in a 15  µm fiber with the standard
morphology gives Ψ  = 3.51 106s-1.  This value is of course fairly independent of
temperature (Fig. 4, curve  4), since T is only substituted in the constant field
terms of the ionic currents.  The introduction of the Goldman equation  and the
change in ionic content of the intra- and extracellular medium are minor
alterations as far as spike conduction is considered.  In other words, the
parameters which have the largest influence on the temperature dependency of
v are the temperature dependencies of the rate constants m, h and n and the
temperature dependency of ρi.
C. Strength/Duration (SD) Curves

Fig. 3. (a) The rise time trise and the fall time tfall of the single-fiber action potential generated by
the SEF model at temperatures between 17.5°C and 37.5°C.  (b) As (a), now for action
potentials recorded in the cat [22].
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When stimulating current is being passed in constant current pulses, the
relation between the amount of current I and the duration of the pulse tpulse

which just gives rise to an action potential yields the well known
strength/duration curves.  The current threshold of a long duration pulse is
called the rheobase Irh, whereas the chronaxy τchr is defined as the time on the
SD curve corresponding to twice Irh.  Many SD curves (including those derived
with the model) fit the empirical equation
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As can be seen in Fig.  5, in the SEF model both Irheo and τchr depend strongly
on the position of the stimulating (current-driven) electrode relative to the nerve
fiber and the polarity of the stimulus.  For cathodal stimulation, chronaxy
values between 28 µs and 45 µs are found, with the smallest values for the
current source positioned very close to the nerve fiber.  Anodal stimulation
results in smaller chronaxies (between 17  µs and 39 µs) and higher thresholds,
but the difference between the chronaxy for the two stimulus modalities
decreases with increasing distance.  The polarity selectivity ratio (defined as

Fig. 4. The dependence of impulse conduction velocity v on temperature T:
1) The SEF model presented in this paper (standard conditions, Appendix).
2) In vivo measurements in the cat after Paintal [35].
3) The MSENN model (Frijns and Schoonhoven [14]), with standard nerve morphology

and temperature dependency.
4) The SENN model [8], standard nerve morphology.
5) The SEF model with ρi  = 0.7 Ω⋅m, otherwise standard conditions.
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the ratio between thresholds for anodal and cathodal stimulation) varies
between 4.2 and 6.6, depending on electrode position and pulse duration, with
lower values for shorter pulses and more  distant electrodes.  For the purpose
of comparison of model results with other temperatures,  a monopolar
electrode, one internodal distance radially away from a node of Ranvier was
used.  Under these circumstances τchr is 34 µs at 37°C and 56 µs at 27°C for
cathodal pulses and 26 µs and 43 µs for anodal stimuli at 37 and 27 °C
respectively.

D. Refractory Period
The absolute refractory period (ARP) is defined as the period after the initiation
of an action potential in which it is impossible to elicit a second propagated
action potential as a response to a second stimulus even if its strength is
unlimited.  The period thereafter is called the relative refractory period (RRP).
It is characterized by a state of reduced excitability, resulting in elevated
thresholds for the generation of spikes.
In the model described here, the ARP is 0.60  ms and its Q10 is (2.0) -1 in the
temperature range from 27°C to 37°C.  These values were determined using
100 µs cathodal pulses from a monopolar electrode one internodal distance
(1.5 mm) away from the middle of a nerve fiber segment with 25 active nodes
and 10 passive nodes at both ends.  The first spike was elicited with a stimulus
current 150% of threshold.  The zero point of the time axis was chosen at the

Fig. 5. The chronaxy τchr (left axis) and the rheobase current Irh (right axis) of the SEF model as a
function of the distance r to the nerve fiber (standard conditions, Appendix) for monopolar
anodal and cathodal stimulation.
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beginning of the first spike (i.e., the moment m crosses the level 0.7, see 
Section III) to reduce the influence of stimulus conditions on the calculated 
ARP.  With the 100 µs pulse used this level is reached 49 µs after the start of 
the stimulus.
In Fig. 6, the behavior of the nerve fiber model in the RRP is shown.  The 
threshold currents return quickly to almost pre-stimulus levels: at 1.25 ms after 
the beginning of the first spike the threshold is just 10% elevated and the 1%
level is reached at t = 3.0 ms.  The refractoriness of the nerve fiber also 
influences the height of the second action potential.  Ten nodes from the 
excitation point it is as small as 70% of the height of the first spike in the early 
stages of the RRP and it increases gradually to regain 90% of its original value 
at t = 3.0 ms.
A remarkable property of the model is the occurrence of local, abortive spikes 
at the end of the ARP.  In a single node near the point of excitation these 
spikes are not distinguishable from normal spikes (e.g., by the transmembrane 
sodium or potassium currents or the time course of m, h and n), but they are 
not conducted to the end of the nerve fiber.  Expectedly, the time interval in 
which such abortive spikes are elicitable increases with falling temperature.

Fig. 6. The threshold current Ith for eliciting a second action potential in the refractory period, tref after
the initiation of the first one.  The stimuli are cathodal pulses of 100  µs duration.  Thresholds
are measured relative to the threshold for the initiation of the first spike.  The triangles represent
the amplitude Vp of the second action potential.
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E. Frequency Following Behavior
Abortive spikes can also occur after several firings when fast repetitive stimuli 
are used.  This is illustrated in Fig. 7 for 100 µs pulses with a repetition rate 
of 1150 Hz (at 200% of the threshold for the first spike).  In this figure, four 
time traces of the transmembrane potential V are shown for active nodes, 
10, 15, 20, and 70 internodal distances away from the point where the action 
potentials are elicited.  In that case each consecutive spike is somewhat 
smaller than the previous one and the spike conduction velocity at the 
70th node gradually decreases from its initial value of 84 m/s for the first 
spike to 47 m/s for the seventh spike.  Finally, the eighth action potential 
(marked by an arrow in Fig. 7) is initiated and reaches node 15 like the 
previous ones but it fails to travel further more than a couple of nodes and 
it never reaches node 70.  A similar observation holds for the 12th spike. 
Thus, although one might ex pect from the refractory curve that the modeled 
nerve fiber can fire at rates above 1.6 kHz (i.e., signal periods above 
ARP), this spike abortion phenomenon results in a lower max imum 
discharge rate.

Fig. 7.  Time traces of membrane potential V at node number N = 10, 15, 20 and 70 of a nerve fiber
stimulated at node 0 with cathodal pulses at a 1150  Hz rate, starting at t = 0. The arrows
indicate the eight action potential, which disappears before it reaches node 60 (standard
conditions).
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An interesting phenomenon that is illustrated by Fig. 8(a) is the changing 
height of a single action potential during its course along the nerve fiber.  It 
graduallydecreases initially but later on it is growing again.  A similar 
observation holds for the spike conduction velocity (Fig. 8(b)), which also 
shows a minimum when a spike has traveled several internodal distances.  
After the abortion of a spike the next one has a larger amplitude and is initially 
conducted with an elevated conduction velocity, but eventually its amplitude 
decreases and it slows down to reach the same velocity as the previous one.  
The net effect at node 70 is that the spikes arrive almost regularly spaced in 
time with a 950 Hz repetition frequency.
The steady state conduction velocity and spike height decrease gradually with 
increasing stimulus frequency, conduction velocity faster than spike height. The 
maximum steady state discharge rate fmax is approximately 1.1 kHz, when v 
(at node 70) is 50% of its initial value and Vp 65%.

Fig.8 . (a) The spike height Vp af the first, second, seventh, eighth (abortive), and ninth spike as
measured at node number N in a nerve fiber stimulated with 100  µs cathodal pulses at a rate of
1150 HZ. (i.e. the situation of Fig.  7).  The numbers in circles represent the spike number.  (b)
The conduction velocity v along the nerve fiber of the five spikes of which the height is shown in
(a).  Clearly, the time course of v closely resembles the one of Vp
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V. Discussion
The purpose of the model presented in this paper is to give a better description 
than previous models of those aspects of the behavior of mammalian 
myelinated nerve fibers, that are most relevant for the design of electrical 
prostheses.  It was developed from the SENN model [8] to which several 
modifications were introduced to adapt it for warm-blooded animals.
The main modification is the use of the Schwarz and Eikhof equations [18], 
which were derived from voltage clamp data in mammals, instead of the 
amphibian-based Frankenhaeuser and Huxley [2] equations.  Additionally, 
the various ionic concentrations were chosen in physiological ranges and 
the Goldman equation (1) was used to compute the resting membrane 
potential Vr to reflect the fact that in vivo the sodium and potassium 
concentrations are kept within narrow limits by the physiological system itself to 

Table I - Summary of model results for the present model (SEF) of a 15  µm myelinated nerve
fiber, compared to in vivo measurements by Paintal in the cat [35], to the original SENN
model [8], the CRRSS model [19] and to the SENN model with temperature dependent
FH kinetics (MSENN, [20]).  The model values for the chronaxy τchr were computed for
extracellular cathodes at distances between 50  µm and 10 mm to the fiber.  The
experimental value of the chronaxy τchr was taken from Ranck [33] (see text), the one
for the v/D ratio Ψ , from Boyd and Kalu [23].  All SEF model results were computed for
standard conditions (Appendix).  See the text for an explanation of symbols.

15 µm

A fiber

SENN

(1985)

CRRSS

(1987)

MSENN

(1992)

SEF

Ψ (106s-1) 5.7 2.15 5.72 5.94 5.61

Q10,v

27°-37°C
18°-28°C

1.6
2.5

1.0
1.0

1.7
2.1

1.4
1.4

1.8
2.0

trise (ms) 0.08 0.19 0.06 0.07 0.08

Q10,trise

27°-37°C
18°-28°C

(2.5)-1

(2.5)-1
1.0
1.0

(2.3)-1

(2.5)-1
(1.5)-1

(1.6)-1
(1.9)-1

(2.1)-1

tfall (ms) 0.23 1.05 0.26 0.26 0.24

Q10,tfall

27°-37°C
18°-28°C

(3.5)-1

(1.7)-1
1.0
1.0

(2.8)-1

(2.9)-1
(2.2)-1

(2.6)-1
(2.4)-1

(2.7)-1

ARP (ms) 0.50 1.69 0.37 0.50 0.60

Q10,AR

P

27°-37°C (3.2)-1 1.0 (2.5)-1 (2.0)-1 (2.0)-1

fmax (kHz) 1.0-1.1 0.5 2.1 1.5 1.1

τchr (µs) 29-59 67-117 17-32 34-78 28-45
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prevent disregulation of the nervous system due to a changed resting 
membrane potential [28]. Doubling the extracellular potassium concentration 
changes Vr from -85 to -70 mV and v is reduced from 84.2 to 71.5 m/s.  
Contrarily, if the extracellular sodium concentration is increased to 200 
mmol/l Vr becomes -82 mV and v increases to 96.5 m/s.  Clearly, the 
direction of the change in Vr does not predict the corresponding change in 
impulse conduction properties.
We have chosen to start from a linear cable model rather than from a more 
complex structure like the multiaxial cable proposed by Halter and Clark [29] 
for a number of reasons.  Although the latter model is theoretically able to 
incorporate detailed anatomical and physiological data, there are several 
uncertainties regarding the choice of parameters in that model.  A further 
serious drawback of such a multiaxial cable model is the amount of computing 
power required to solve the equations.  To determine excitation thresholds, 
calculations based on a total equivalent driving function as proposed by 
Warman et al. [30] save time, but a full model is required when repetitive 
stimulation is considered.  The fact that the SEF model can be implemented on 
a simple personal computer greatly enhances its applicability for the design of 
functional electrical stimulation devices.
When compared to the single node action potentials generated by the original 
SE equations a slightly prolonged rise and fall time are observed in the SEF 
model due to current flow along the cable.  The increase in spike duration is 
much more pronounced in the model published by Halter and Clark [29], which 
generates spike durations above 0.4 ms in a fiber with a diameter of 17.5 µm. 
Halter and Clark report a conduction velocity of 57.6 m/s in their simulated fiber.  
This means a ratio Ψ  between conduction velocity v and total fiber diameter D 
(axon and myelin sheath) of 3.29 106s-1, which is well below the value of 5.61 
106s-1 found in the present paper.  Hursh [6] showed that Ψ  = 6.0 106s-1 for 
large fibers in the cat at 37.5 °C.  Boyd and Kalu [23] reinvestigated this relation 
and found a mean ratio of 5.7 106s-1 for the largest diameter fibers (10 to 21 
µm) at temperatures between 35 and 37.5°C.  At mammalian body temperature, 
the value of Ψ  in the present model is thus well in physiological ranges.  
Additionally, Fig. 4 (curve 1) shows that v varies nearly linearly with temperature 
T as it does in vivo (Fig. 4, curve 2), with Q10 values that are comparable to 
those measured experimentally.
We have investigated the dependence of various aspects of model behavior on
fiber diameter D and found that Ψ , the spike duration and the refractory 
behavior do not depend on D provided that L/D is unchanged.  This is not a 
surprising result, since the model obeys the same two of the three main 
conditions necessary for Rushton's  "corresponding states" rule [31] as does the 
model of Goldman and Albus [5] which also has these properties.  A linear 
relationship between v and D is acceptable in view of the available experimental 
data [23].  However, in vivo both the spike duration and the absolute refractory 
period vary inversely with fiber diameter [22].  This points to a shortcoming of 
model behavior which is not yet fully understood.
Both at 37°C and at temperatures just below 20°C (the other temperature for 
which Schwarz and Eikhof performed their voltage clamp measurements) the 
action potential in the simulated 15 µm fiber is in good agreement with Paintal's 
data [22] for similar fibers.  However, there is a definite mismatch between the 
simulated and measured spike shapes for intermediate temperatures as can be 
seen in Fig. 3.  Apparently, the concept of a constant Q10 for the rate 
constants,
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as used in the present paper and by previous authors, including Schwarz and
Eikhof, is not a valid one.
If temperature dependent rate constants according to Frankenhaeuser and
Moore [38] are introduced in the original SENN model, an acceptable spike
shape is obtained at 37°C (see Fig. 2).  In a previous paper [20] we showed
that such a model can also describe other aspects of mammalian nerve
behavior quantitatively, although the maximum attainable discharge frequency
(1.5 kHz for a fiber with D = 10 µm) is too high.  However, the underlying
mechanism is essentially different, since mammalian fibers have far less active
potassium channels and a larger leak conductance (see Fig. 2).  In the CRRSS
model [19] which is based on the measurements of Chiu  et al. [15] in the rabbit,
no active potassium channels are incorporated at all.  We have also
implemented that model (see Table I) and found that the total spike duration is
comparable with the one in the present model again, but that the action
potential has a relatively short rise time of 0.06  ms, exhibits even shorter
chronaxies and the maximum firing rate exceeds 2  kHz, a conclusion which is
in agreement with  Rattay's [21] analysis of single node behavior.  Furthermore,
the simplification to omit an active potassium conductance precludes the use of
the Goldman equation.
In his review article, Ranck [33] mentions a chronaxy of 29  - 59 µs for
extracellular stimulation of myelinated cat sural  A fibers.  The chronaxies
(28 - 45 µs) and polarity selectivity ratios found for the present model for
cathodal stimulation of a large myelinated nerve fiber are in accordance with
this reference.  However, experimental data on τchr in mammals span a large
range and include values well in excess of 100  µs [34].  For instance, single
neuron data regarding auditory nerve fibers indicate chronaxies as large as
350 µs [13].  At present, only part of this variation in experimental data can be
explained by differences in the method of stimulation, e.g., small values are
found for intracellular electrodes and τchr increases with increasing distance
between the electrode and the nerve fiber, both in vivo and in the present
model.  For a discussion on the different potential distribution along the nerve
fiber for anodal and cathodal stimulation and, as a consequence, the different
site of excitation for the two stimulus modalities, the reader is referred to the
literature [33], [21].
In this paper, special attention has been paid to the refractory period and
repetitive firing properties of the model, since these subjects are of utmost
importance in the field of auditory prostheses which we are interested in.  It was
shown that this model behaves like actual nerve fibers in many respects.
According to Paintal [35] the absolute refractory period in a large fiber is about
1.5 times the spike duration tspike and the ratio of the RRP to the ARP is
approximately  4.  In the present model the ARP is 0.60  ms, which is 1.8 times
tspike.  The situation with the relative refractory period is more complicated since
its definition is less strict.  We have defined its end as the point where the
threshold has returned to within 1% of its original value, and the model's RRP
is 2.4 ms which is exactly four times the ARP.
In Fig.  6, the relation between refractoriness and spike amplitude is shown.
This gradual increase of spike amplitude with an increasing interstimulus
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interval was observed in cat peripheral nerve fibers by Paintal  [22], in cat
cochlear nerve fibers by Gaumond et al. [36] and our laboratory in guinea pigs
[37].  Stegeman et al. [38] inferred a similar relation from human compound
action potentials.
The occurrence of abortive spikes at the end of the ARP and during repetitive
stimulation in vivo is discussed in detail by Paintal  [35].  Both in his data and in
the SEF model the occurrence of abortive spikes is enhanced at lower
temperatures.  Paintal explains that "although an impulse can be initiated after
the end of the spike, such impulses are in fact abortive because they are
unable to propagate until they attain propagating amplitude, which is
approximately 40% of spike height".  Our simulations (Figs.  6 and 8(a)) suggest
that in our model this propagating spike height is of the order 55  - 70%.  It is
unlikely that the mimimum in spike amplitude and conduction velocity which
occurs several nodes away from the excitation node (see Fig.  8) is related to
the "anodal surround" that typically occurs adjacent to the site of highest
depolarization under an extracellular cathode  [33, p.423], since the site of
maximum hyperpolarization appears to be just three nodes away from the
excitation node and moreover, the minimum moves to larger distances with
decreasing pulse frequency.  In fact, the initial dip in spike velocity for the first
spike and in spike height for all spikes (Fig.  8) is due to the anodal surround.
The maximum transmissible frequency is just above 1.1  kHz in the model
situation, which is comparable to frequencies observed in real fibers of this
diameter.  As in vivo, this frequency is less than the frequency that would be
expected from the ARP of the fibers.  Figs.  7 and 8 are in agreement with
Paintal's [35] observation that thi s is due to the reduced conduction velocity of
spikes traveling in the relative refractory period of previous ones.  These
results stress the fact that single-node  models  (e.g., [39]) are less suited for
this purpose, even if only time aspects of nerve behavior are considered.
Following McNeal [7], the internodal myelin has been treated as a perfect
insulator in the SEF model.  To test the influence of this simplifying
assumption, we have performed a series of simulations with the internode
represented by a passive node (see Appendix) with a time constant of 334.4  µs
(R = 139.3 MΩ , C = 2.4 pF) according to Rubinstein  [40], a value that is in
accordance with Tasaki [26].  Virtually all model results are significantly
affected: the spike duration increases to 0.42  ms, excitation thresholds almost
double and the chronaxy increases.  This increase of τchr was predicted by
Rubinstein, who states that “a nonlinear model assuming that myelin is a
perfect insulator will ... underestimate the strength/duration time constant.”
However, the effect is relatively limited, since for a point cathode 1.5  mm
radially away from the fiber τchr increases from 34 µs to 47 µs, whereas the
time constant for the node-internode unit, computed with Rubinstein's theory,
increases from 27.5 µs to 98 µs.  The introduction of the internodal time
constant has a more pronounced effect on the spike conduction velocity.  It
decreases from 84.2 m/s to 33.5 m/s (i.e., Ψ  = 2.23 106s-1).  The maximum
steady-state firing frequency fmax is reduced to 825 Hz.  Subdivision of each
internode in more segments did not further change the model's behavior very
much, which is in accordance with Blight's [41] observations.  If the nodal ionic
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permeability constants are multiplied by a factor 4.7 and the nodal leak
conductance is divided by a factor 1.2 as did Halter and Clark  [29], v increases
to 60.2 m/s (Ψ €= 4.01 106s-1) and spike duration reduces to 0.36 ms with a very
short rise time ( trise = 51 µs), but τchr remains unchanged.  Thus, the introduction
of the internodal time constant gives a shift of most model results away from
experimental values and we decided not to incorporate it in the present model,
for the purpose of the SEF model is not to study nerve fiber behavior in each
and every detail but to give a quantitative description of those aspects of nerve
fiber behavior that are relevant in the context of functional electrical
stimulation.  Future research on the internode, in vivo and with e.g., multiaxial
models  [29], has to answer the questions li ke why real nerve fibers can
conduct at such high velocities in spite of the large internodal time constants.
Summarizing, it can be stated that the model presented in this paper can
describe many properties of mammalian nerve fibers better than amphibian
based SENN models do, even if the temperature dependence of the rate
constants is accounted for (see Table I).  In many respects, the model is also
superior to previous models based on mammalian kinetics.  Its spike shape,
conduction velocity and (absolute and relative) refractory period are in good
agreement with experimental data.  In addition, the model can describe the
influence of temperature on various aspects of nerve behavior, as well as the
consequences of repetitive firing.  Examples of its application include electrical
control of the neuromuscular system, since in this field the use of repetitive
stimuli is obligatory.  In a forthcoming paper, we will show how an extended
version of the model can be used in conjunction with a volume conduction
model of the cochlea to simulate the behavior of small, bipolar auditory nerve
fibers when stimulated by a cochlear implant.
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Appendix  Model Equations and Standard Conditions
In this paper, the neural response to an extracellular current stimulus is
modeled with the equivalent circuit model shown in Fig.  1.  The nerve fiber is
represented as an electrical cable of N nodes of Ranvier.
In each node of Ranvier, a membrane capacitance Cm and leak conductance
GL are present which can be calculated from

C c dlm m= π (A.1)

and

G g dlL L= π (A.2)

in which cm = the membrane capacitance per unit area
gL = the leak conductance per unit area
l = the length of the nodal membrane.

The nodes are interconnected by an axoplasmic conductance Ga formed by the
conductive intracellular axoplasm

G
d

La
i

= π
ρ

2

4
(A.3)

in which d = the axonal diameter
L = the internodal distance
ρi = the axoplasm resistivity.

It is assumed that the passive electrical properties of the myelin sheath
surrounding the extranodal membrane can be ignored.  The validity of this
assumption is discussed in Section  V of this paper.
In the present paper, the resting membrane potential Vr (defined as the voltage
drop experienced when going from extracellular to intracellular in a nerve fiber
in its resting state) is computed from the ionic contents of the intracellular and
extracellular fluid with the Goldman equation (1), whereas the original SE-
equations used a fixed value.
The so-called active nodes are governed by the equations formulated by
Schwarz and Eikhof (SE) [18] and the resulting model is described by a system
of coupled nonlinear first order differential equations.  This set of equations can
be written in a convenient notation using (nontime dependent) matrices and so-
called state vectors that fully describe the state of the nerve fiber.
First, consider the kth node of Ranvier.  The time course of the transmembrane
potential in this node ( Ek) is described in terms of its deviation Vk from Vr

( )V E V V V Vk k r i k e k r= − = − −, , (A.4)

where
Vi,k = the internal potential at node k
Ve,k = the external potential at node k
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In this paper, all computations are performed for a fiber lying in an infinite
linear isotropic homogeneous environment with resistivity ρe.  We assume that
the influence of the fiber itself on the potential field may be neglected.  Then,
Ve,k due to M electrodes with respective stimulating current  Ij is given by

V
I
re k

e j

j kj

M

,
,

=
=
∑ρ

π4 1

(A.5)

where rj,k = the distance between electrode j and node k.
According to the SE-equations, the leak current IL across the leak conductance
in this kth node can be computed as follows

( )I G V VL k L k L, = − (A.6)

in which VL is the leak current equilibrium potential. For an active node, VL is
computed from the criterion that the net transmembrane current must be zero if
the nerve fiber is in its resting state. In such a node, two additional ionic
currents are involved, the sodium ( iNa,k) and potassium (iK,k) current per unit
area, which together constitute Iact,k, the so-called total active current in node k

( )I dl i iact k Na k K k, , ,= +π . (A.7)

On the other hand, if node k (k ≠€1 and k ≠€N) is modeled passively this can
be formulated by simultaneously stating that VL,k and Iact,k are zero.  In other
words, no nonlinearities are incorporated (see [2]).
Application of Kirchhoff's law at the internal point of (either active or passive)
node k, i.e., requesting that the sum of the incoming currents at this point is
zero, gives, with substitution of (A.4)

( )[ ]{dV
dt C

G V V V d Vk

m
a k k k L k= − + − +− +

1
21 1 π lg

( ) ( )[ ]}G V V V I G Va e k e k e k act k L L, , , ,− +− + − −1 12 . (A.8)

If the boundary conditions in node  1 and node N are chosen in such a way that
no axial current can flow past the nerve fiber's endings, the N coupled
differential equations describing the simulated nerve fiber's behavior under an
applied electrical field can be written in a convenient matrix-vector notation

[ ]dV
dt

AV BV C I Ie act L

r
r r r r

= + + + (A.9)

where r
V = (V1,...,VN)1r
Ve = (Ve,1,...,Ve,N)r
Iact = (Iact,1,...,  Iact,N)2
r
IL = (-GLVL,...,  -GLVL)
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are vectors of length N and the time-independent matrices A, B, and C (size
N x  N) are given by

( )

( )

( )

A
C

G d G

G G d G

G G d

m

a L a

a a L a

a a L

=

− +

− +

− +
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

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


1

0

2
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.. .. ..
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.. .. ..

lg

(A.10)
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The equations governing the ionic currents in the (active) node k, i.e., the kth
component of Iact3 (see (A.6)), are adopted from Schwarz and Eikhof

[ ] [ ] { }
{ }i P h m

E F
RT

Na Na E F RT

E F RTNa k Na k k
k o i k

k
,

exp

exp
= ⋅ ⋅

− ⋅
−

+ +
3

2

1
(A.13)

[ ] [ ] { }
{ }i P n

E F
RT

K K E F RT

E F RTK k K k
k o i k

k
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'
exp

exp
= ⋅ ⋅

− ⋅
−

+ +
2

2

1
(A.14)

where T = the absolute temperature
F = Faraday's constant
R = the gas constant
[Na+]0 = the extracellular sodium concentration
[Na+]i = the intracellular sodium concentration
[K+]o = the extracellular potassium concentration
[K+]i = the intracellular potassium concentration
PNa 4 = the sodium permeability  constant
P’

K5 = the potassium permeability constant
and mk, hk and nk are dimensionless variables describing the function of the
various ionic channels of node  k.
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If we define the vectors
r

m  = (m1,...,mN)6
r
h  = (h1,...,hN)7r
n  = (n1,...,nN)8

the set of first order differential equations governing these variables can be
written in matrix-vector notation.  For 

r
m 9 this equation reads as follows

dm
dt

m
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. (A.15)

Similar equations can be derived for 
r
h  and 

r
n 10.  These equations are

initialized with starting values m0, h0, n0 respectively for all active nodes, in
such a way that the nerve fiber is at rest at its resting potential computed with

(1), i.e., 
dm
dt

dh
dt

dn
dt

r r r r
= = = 0 11 at 

r r
V = 0 12.  The α and β coefficients in (A.15)  -

 (A.17) are voltage dependent and depend on temperature T with Q10 values of
2.2, 2.9, and 3.0, respectively [18].
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in which T0 = 293.15 K (20°C).  For the values of the other constants in these
equations, the reader is referred to [18, Table  I].
Table II defines the so-called standard conditions which were used for the
computations in this paper, unless explicitly stated otherwise.
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Table II - The set of parameters defining the standard conditions

Parameter Unit Symbol Standard Value

 axoplasm resistivity Ω⋅m ρi
0.7 (37°C)

Q10 = (1.3)-1

 external resistivity Ω⋅m ρu
3.0 (37°C)

Q10 = (1.3)-1

membrane capacitance
/unit area

F/m2 cm 0.02

leak conductance
/unit area

Ω -1/m2 gL 728

sodium permeability constant µm/s PNa
51.5

potassium permeability constant µm/s P'K 2.0

intracellular sodium concentration mol/m3 [Na+]i 10

extracellular sodium concentration mol/m3 [Na+]o 142

intracellular potassium concentration mol/m3 [K+]i 141

extracellular potassium concentration mol/m3 [K+]o 4.2

fiber diameter µm D 15

axonal diameter µm d 10.5

nodal gap width µm l 1

internodal distance µm L 1500

temperature K T 310.15
(= 37°C)
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Summary
It has been known for several years that the duration of a nerve fiber’s action
potential depends on its diameter, but there is still no firm explanation for this
phenomenon.  This paper addresses this issue by means of a non-linear cable
model of a large mammalian myelinated nerve fiber that is known to give a
quantitative description of many aspects of actual neural behavior.  A variation
of parameters identifies the systematic variation with fiber diameter of the
nodal leak conductance and the active permeabilities (by the same
multiplication factor per unit area of membrane) as the most likely hypothesis.
It turns out that this hypothesis allows to match the model’s relation between
the conduction velocity of a spike and its fall time with Paintal’s experimental
data (Paintal, 1966) for any physiologically realistic value of the g-ratio.  The
resulting generalized model yields a reduced velocity-diameter ratio for thinner
fibers, which conforms with physiological data.  Moreover, the model simulates
many auditory nerve fiber properties correctly, including the maximum firing
rate.  It is concluded that the results support the hypothesis that the
dependence of the spike shape on fiber size is due to a systematic variation of
the active and passive nodal conductances.

I. Introduction
The generation and propagation of action potentials in myelinated nerve fibers
has been studied extensively, experimentally, by analytic theory, as well as in
computer simulations.  Early experiments showed that there is an approximate
proportionality between fiber size and the distance between adjacent nodes of
Ranvier and that there exists an almost linear relationship between the velocity
v with which action potentials are conducted along a fiber and the outer
diameter D of the fiber ( Hursh, 1939).  This linear relation between v and D has
been accepted as an established fact, despite the finding of Gasser and
Grundfest (1939) that a slightly S-shaped curve had to be used to obtain a
good reconstruction of their measured compound action potentials (cf.
Stegeman and De Weerd, 1982).
The proportional relation between fiber diameter and spike conduction velocity
was given a theoretical basis by Rushton’s ‘corresponding states’ theory
(Rushton, 1951).  A central role in this elegant theory is played by the notion
that each point in a nerve fiber has a ‘corresponding point’ in a fiber of different
size, that is defined by geometric scaling, and that each point has always the
same potential as its corresponding point.  The three main conditions
necessary for this assumption to be valid are that the specific properties, both
of the nodal membranes and of the myelin (which Rushton treated as a
passive, leaky cable) are identical for all fibers, that the area of the excitable
nodal membrane is proportional to the square of the axon diameter d divided
by the internodal length L and that the following relation between L, d, and D is
fulfilled:

( )[ ] ( )L d D d L
D g g∝ ⋅ ∝ −ln or ln

1
2 1

2 (1)



Modeling Diameter Dependent Neural Properties   71

where: g d D= , which is fixed as a consequence of geometric scaling.
Rushton also deduced that the proportionality between v and D still may be
roughly obeyed if g is not quite constant for different fibers, and that the ratio Ψ
between v and D has a maximum for g = 0.6.
Paintal, who studied experimentally myelinated ( Paintal, 1966) and
unmyelinated (Paintal, 1967) single fibers in the cat, showed that more neural
properties depend on fiber diameter than the conduction velocity alone:  Both
the rise time trise and the fall time tfall of the action potential and thus the spike
duration tspike increase with decreasing fiber diameter ( Fig. 1), results which
were confirmed by Coppin (1973).  Also the absolute refractory period (ARP),
which is the period after the initiation of a spike in which it is impossible to
induce another propagated action potential, increases with decreasing fiber
diameter, while the maximum transmissible frequency diminishes
correspondingly (Paintal, 1978).
Insight into the active processes responsible for the generation of action
potentials was gained by voltage-clamp measurements in unmyelinated
(Hodgkin and Huxley,  1952) and myelinated (Frankenhaeuser and
Huxley,  1964) amphibian nerve fibers.  These measurements showed that in
the initial depolarization phase of the action potential an inward sodium current
occurs, while an outflow of potassium ions is the main factor responsible for the
repolarization during the falling phase of the spike.  These processes can be
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Fig. 1 The diameter dependence of the rise time trise (lower solid curve) and the fall time tfall (upper
solid line) of the transmembrane action potential as measured in the cat ( Paintal, 1966).
For comparison the values of trise and tfall as simulated by the CRRSS ( Sweeney et
al., 1987), MSENN (Frijns and Ten Kate, 1994a) and SEF (Frijns et al.,  1994b) models
(which do not depend on fiber diameter) are displayed also.
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described by a set of coupled non-linear differential equations governing the
time behavior of the voltage-dependent ion channels involved.
More recently, reliable voltage-clamp data for mammalian nerve fibers became
available.  Then it became clear that the mechanism behind the generation and
propagation of action potentials in the case of mammalian fibers is somewhat
different from the amphibian situation.  Essentially, the difference is that the
potassium conductance in the nodal membrane is only about one fifth of the
amphibian value and that repolarisation of the mem brane is largely due to a
much larger leak conductance (Horáckova et al.,  1968; Chiu et al.,  1978;
Brismar, 1980) rather than due to an outward potassium current.
Schwarz and Eikhof (1987) were the first to perform a full Hodgkin-Huxley
analysis for large rat myelinated nerve fibers at body temperature, for which
they recorded and simulated intracellular action potentials with durations
around 0.3 ms, which is a realistic value in the light of Paintal’s ( 1966) data.  To
our knowledge such experimental data are not available for mammalian
myelinated fibers with diameters below 10  µm.
Several authors developed cable models of myelinated nerve fibers with nodal
kinetics based on such voltage-clamp data in cold-blooded animals
(Fitzhugh, 1962; Goldman and Albus, 1968; McNeal, 1976; Reilly et al.,  1985;
Frijns and Ten Kate,  1994a) and in mammals (Sweeney et al.,  1987; Halter and
Clark, 1991; Frijns et al.,  1994b).  If these models are used to simulate smaller
nerve fibers by proportionally changing the geometry of the fiber while keeping
the length l of the nodes of Ranvier fixed, they obey the above-mentioned
conditions necessary for Rushton’s ‘corresponding states rule’ ( Rushton, 1951),
and as a consequence (see also Goldman and Albus, 1968) the spike
conduction velocity v varies linearly with the fiber diameter.  This is roughly in
accordance with the in vivo situation, although there are indications that smaller
fibers conduct less fast relative to their fiber diameter than larger ones ( Gasser
and Grundfest, 1939; Boyd and Kalu, 1979).
However, these models are conflicting with Paintal’s observations, since the
simulated spike durations do not depend on the fiber diameter.  Jack  (1975)
discussed the problem of the dependence of spike shapes on fiber diameter in
detail and arrived at the conclusion that there is experimental evidence that at
least part of this discrepancy may be due to a systematic variation in the size of
the conductances (per unit area of membrane) responsible for generating the
action potential in myelinated and unmyelinated amphibian nerve fibers.  The
findings of Smith and Schauf ( 1981) regarding a decrease of the potassium
conductivity with fiber diameter in R. Pipiens further corroborated this
conclusion.  Since no reliable voltage-clamp data for mammals were available
at that time Jack  (1975) had to be more speculative about the situation in
mammals.
For our research program on electrical stimulation of the auditory nerve as a
method for rehabilitating the profoundly deaf we are interested in a model of
auditory nerve fibers.  These are bipolar nerve fibers, i.e. they consist of a
peripheral and a central axon with diameters between 2 and 3  µm,
interconnected by a cell body, with a typical diameter between 10 and 20  µm.
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Only for the cell body voltage clamp data are currently available ( Santos-
Sacchi, 1993).  In accordance with the notion that smaller nerve fibers have
longer action potentials, single fiber recordings from such auditory fibers
indicate spike durations around 0.5  ms (Kiang et al.,  1976) and absolute
refractory periods above 1  ms (Moxon,  1968).
Recently, we developed the so-called SEF model ( Frijns et al.,  1994b), which is
a non-linear cable model of a 15 µm A-fiber, based on the Schwarz and
Eikhof (1987) data.  This model gives a good quantita tive description of many
properties (including spike shape ( tspike = 0.32 ms), spike conduction velocity-to-
diameter-ratio (Ψ €€= 5.6 106s-1) and refractoriness (ARP = 0.60 ms)) of large
myelinated mammalian fibers, but as discussed above, simple geometric
scaling does not result in the experimentally observed longer spike durations
and refractory periods for smaller diameters.  In this study we will investigate to
what extent this model can be generalized to describe the spike shape, spike
conduction velocity v and firing properties of neurons of different sizes,
including auditory nerve fibers.  First, we will investigate the effect on simulated
neural behavior of varying individual parameters of the model.  Then we will
reconsider Jack's hypothesis that all nodal permeabilities vary with fiber
diameter D in terms of a single multiplication factor η .  It will be shown how a
form of this hypothesis that is adapted for mammalian fibers allows one to fit
the simulated spike shapes of the SEF model to Paintal's experimentally
observed relation between spike shape and conduction velocity of cat
myelinated fibers ( Paintal, 1966).  Next, we will consider how the model can be
extended further to include also fibers which have a ratio g between d and D
that deviates from the value of 0.7 used in the SEF model thus far.  The
predictions of the resulting generalized SEF model (e.g., the dependence of
spike conduction velocity v on D) will be compared to experimental and
simulated data in literature.  Finally, we will discuss the extent to which the
findings support the hypothesis that a size-dependent variation of nodal
properties is responsible for the systematic dependence on fiber diameter of
physiological properties of mammalian myelinated nerve fibers, such as action
potential duration.

II. The influence of parameter variations on simulated spike
shape and conduction velocity in the SEF model

The SEF model (Frijns et al., 1994b) is a linear cable model of a 15 µm 
mammalian myelinated nerve fiber with nodal kinetics based upon the 
measurements of Schwarz and Eikhof (1987) in rat and cat sciatic nerve fibers 
at 37°C.  As in the SENN model ( Reilly et al., 1985), the myelin sheath is 
considered to be a perfect insulator.  To account for variations in the ionic 
content of the intracellular and extra-cellular fluids the Goldman equation 
(Frijns et al., 1994b) is used to compute the resting membrane potential.  The 
model parameters defining so-called standard conditions were chosen to be 
physiologically realistic and are summarized in Table I.  The model 
equations themselves are not reproduced here, since they can be found in 
the literatur cited above.  Also for computational details regarding the 
integration of the model equations and the method used to determine the 
spike shape we refer to our previous paper (Frijns et al., 1994b).
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In that paper we showed that this model gives a quantitative description of
many properties of large mammalian neurons, including the spike shape,
conduction velocity, strength/duration behavior and absolute and relative
refractory period, both at normal mammalian body temperature and below.
In search for a way to generalize the SEF model to fibers of different sizes, i.e.
to account for the longer spike durations in smaller fibers while maintaining a
realistic ratio Ψ  between v and D, a parameter variation study was performed
by applying a multiplication factor ƒ  (= 0.5 or 2) to the nodal parameters (Table
II).  Some important effects were observed.  Changing l, the nodal gap width,
without any change of the specific membrane properties does virtually not
influence the spike shape, while v decreases significantly with increasing l.  A
similar observation holds for the axoplasmic resistivity ρ i.  Increasing the
specific nodal capacity cm results in prolonged action potentials, but a 25%

Table I The set of parameters defining the standard conditions for the SEF model.

Parameter Unit Symbol Standard Value

 axoplasm resistivity Ω ⋅m ρ i 0.7 (37°C)

 external resistivity Ω ⋅m ρe 3.0 (37°C)

membrane capacitance
/unit area F/m2 cm 0.02

leak conductance
/unit area Ω -1/m2 gL 728

sodium permeability constant µm/s PNa
51.5

potassium permeability constant µm/s PK
' 2.0

intracellular sodium concentration mol/m3 [Na+]i 10

extracellular sodium concentration mol/m3 [Na+]o 142

intracellular potassium concentration mol/m3 [K+]i 141

extracellular potassium concentration mol/m3 [K+]o 4.2

fiber diameter µm D 15

axonal diameter µm d 10.5

nodal gap width µm l 1

internodal distance µm L 1500

temperature K T 310.15
(= 37°C)
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increase of tspike is associated with a reduction of Ψ  by approximately one-third.
Another way the prolonged action potentials in thinner nerve fibers can be
explained, is by the hypothesis that the time constants τm , τh , and τn of the
sodium activation, sodium inactivation, and the potassium activation,
respectively, depend on fiber diameter.  The data in Table II regarding
simulations in which these time constants have been varied individually,
indicate that such a variation of a single time constant cannot account for the
effects observed experimentally: τm and τh each influence only one phase of the
action potential and have a strong influence on Ψ , while changes of τn have
little bearing on the model’s behavior as a consequence of the small potassium
permeability in mammals.  If, however, τm , τh , and τn are varied simultaneously
and by the same factor, this induces a change of both phases of the action
potential that is proportionate in the light of Paintal’s observations (cf. Fig. 1),
although this is accompanied by a relatively large effect on Ψ  (see Section VI
for a discussion on this subject).
Similarly, variation of the ionic permeabilities PNa and PK

’ and of gL , the leak
conductance per unit area, leads to changes in the spike duration.  Again,
individual changes of a single ionic permeability or the leak conductance can
also not explain the effect of the fiber diameter on the spike shape:  A decrease
of the sodium permeability per unit area PNa increases trise and reduces Ψ , but
has hardly any influence on tfall. On the other hand, a decrease in the leak
conductance per unit area gL will result in a prolonged fall time with little

Table II The effect of variations of the parameters in the SEF model on the ratio Ψ  between spike
conduction velocity v and fiber diameter D, on rise time trise, fall time tfall and spike amplitude
A. The values computed with the standard parameter set ( Table I) are given in the top row.
τm , τh , and τn  designate the time constants for sodium activation, inactivation and
potassium activation respectively.  The label ‘ƒ  = 0.5’ means that the parameter value in the
first column was divided by 2, while the label ‘ƒ  = 2’ means that it is multiplied by 2.  The
other symbols are explained in Table I.

Ψ  = 5.6110-6s-1 trise= 84 µs tfall= 241 µs A = 107.5 mV

ƒ= 0.5 ƒ= 2 ƒ= 0.5 ƒ= 2 ƒ= 0.5 ƒ= 2 ƒ= 0.5 ƒ= 2

ƒ∗ l 8.14 3.78 83 92 240 239 107.9 106.4
ƒ∗cm 7.75 3.76 70 111 213 304 112.5 99.9
ƒ∗ρ i 8.19 3.78 83 92 240 238 107.9 106.4

ƒ∗PNa 3.78 7.03 128 67 249 260 84.2 121.4
ƒ∗PK

’ 5.22 5.85 91 80 248 234 101.8 110.6
ƒ∗gL 7.21 3.17 77 123 292 214 121.7 84.9

ƒ∗(PNa,PK
’,gL) 5.42 5.26 105 73 302 213 100.3 112.1

ƒ∗τm 3.23 8.17 154 56 297 224 89.9 115.6
ƒ∗τh 6.01 4.60 87 96 389 195 119.8 83.2
ƒ∗τn 5.62 5.59 85 84 248 238 108.1 106.3

ƒ∗(τ m, τ h, τ n) 3.88 7.52 140 55 427 151 112.5 99.9



Modeling Diameter Dependent Neural Properties   76

influence on trise , while it causes a significant increase of the conduction
velocity-to-diameter-ratio ( Table II).  However, if gL , PNa and PK

’ are changed
simultaneously and by the same proportion, this leads to a variation of tfall that
is in the same direction as (but larger than) the variation of trise , while it has
only a limited effect on Ψ .
This led us to hypothesize that in mammals the fact that the spike duration
increases with decreasing fiber diameter is caused by a concomitant variation
of gL , PNa and PK

’ by the same diameter dependent multiplication factor η (D).
In fact, this hypothesis is identical to the one formulated by Jack ( 1975) for
amphibian fibers with the modification that gL obeys the same diameter
dependence as the active ionic permeabilities.
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As a next step to test the hypothesis that the diameter dependent changes in 
action potential duration can be explained by a simultaneous variation of PNa, 
PK’ and gL with the same diameter dependent multiplication factor η (D), we 
decided to explore whether there exists function η  (D) that makes the SEF 
model produce the same relationship between spike shape and conduction 
velocity as measured by Paintal (1966).

a. Relating multiplication factor η  to fiber diameter
To arrive at this generalized form of the SEF model we made use of the 
observations that for any fixed value of η  both the simulated spike shape and 
Ψ  are not influenced by geometric scaling, provided that the nodal gap width l
-which is generally considered to be independent of fiber diameter ( Hildebrand
et al., 1993)- is left unchanged.
These observations implied that we did not need to know beforehand to which
fiber diameter D a given value of η  would be related in the final model, but that
it made sense to perform repeated simulations with the standard SEF model
(D = 15 µm) for a wide range of η  values, record the resulting spike shape and
Ψ (η ), and determine the geometrical scaling factor corresponding with each η
afterwards.  To accomplish the latter step, Paintal’s ( 1966) data on the relation
between spike shapes and spike conduction velocity served to relate each
simulated fall time (and by that η ) to the conduction velocity v(η ) that the
simulated fiber with this fall time should have.  Finally, the diameter D(η ) of the
modeled fiber that produces these desired conduction velocity v(η ) and fall
time tfall(η ) could be determined unambiguously by application of the definition
of Ψ  to the recorded value of Ψ (η ):

D v( ) ( ) ( )η η η= Ψ . (2)

This procedure, which will be described in detail now, is illustrated in Fig. 2.
Fig. 2a shows the dependence of tfall on η , as determined by varying η  in an
otherwise standard SEF neuron, while Fig. 2b displays the simultaneously
recorded Ψ  as a function of η .  To link these simulated curves to experimental
data, Paintal's observation that tfall depends linearly on v (Paintal,  1966), was
applied.  Using his data set for 32.9°C and his Q 10-value of (3.5) -1 for tfall we
derived for nerve fibers at mammalian body temperature (37°C):

t v v tfall fall= − ⋅ ⇔ = −401 19 401 19. ( ) / . (3)

where tfall is expressed in µs and v in m/s.  This experimentally determined
relation, plotted in Fig. 2c, was combined with the simulation data in Fig. 2a by
substituting each simulated tfall(η ) in Eq.  3.  This procedure is symbolized by the
horizontal arrow that points from a simulation data point in Fig. 2a to the line
representing Eq. 3 in Fig. 2c.  This yields v(η ), which is the spike conduction
velocity to be associated with the value of tfall (and thus η ) in the generalized
SEF model.  Finally, the Ψ  value for each η  in Fig. 2b was used in conjunction
with Eq.  2 to determine unambiguously the diameter D(η ) that corresponds to η
:

III. Extension of the SEF model to include variation of spike
shape with fiber diameter
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This procedure is illustrated in Fig. 2d, where D(η ) is represented by the 
tangent of the angle between the Ψ axis and the line through the origin and the 
intersection of the dotted lines coming from Figs. 2a and 2c.  Theoretically, 
performing this procedure for all values of η  will completely determine the 
unique function D(η  ) that relates the multiplication factor η  for the nodal 
parameters to fiber size, provided that the SEF model produces values of tfall(η  ) 
and Ψ  (η  ) that allow D(η  ) to cover the full range of nerve fiber diameters 
between 0.5 and 24 µm.

b. Consequences of generalizing the SEF model
We performed the procedure described in Section III.a for the SEF model and it 
turned out that variations of η  between approximately 0.3 and 4.0 sufficed to 
identify D(η  ) for fiber diameters between 0.5 and 24 µm.  Therefore we could 
proceed with the next step, i.e. determining its inverse relation η  (D), which 
gives the value of η  that should be applied to the nodal parameters to simulate 
a fiber with arbitrary diameter D.  Only for descriptive purposes we have fitted a 
polynomial function through the data points using a linear least squares 
estimation (Press et al., 1988) and requiring that η  = 1 for D = 15 µm in order 
keep the generalized model representation for this diameter identical to the 
original SEF model.  We found that a polynomial of order of six in D had to be 
taken to give also sufficiently accurate values of η  for the smallest fibers.  The 
resulting function is plotted in Fig. 3a in conjunction with the data points used in 
the analysis. It is of practical importance in defining the set of nodal parameters 
for a simulated neuron of any diameter, in such a way that Eq. 3, which is 
based on experimental data, is satisfied.  This is demonstrated in Fig. 3b, where 
both the resulting rise time trise and the fall time tfall are plotted as a function of 
simulated conduction velocity.  There is a negligible deviation of the simulated 
fall time from the straight line representing Paintal’s data (Eq. 3) due to the use 
of the polynomial fit for η  , while also the fall time is within physiological ranges. 
As is shown in Fig. 3c spike height gradually diminishes with conduction velocity 
in the generalized SEF model, a phenomenon that is absent if the original 
model is scaled down in the classical way.  The implications of this finding will 
be discussed in Section VI.
When discussing the data in Table II (Section II) we already observed that the 
hypothesis that the nodal permeabilities PNa and PK

’ and leak conductance gL
are size-dependent, does slightly influence the ratio Ψ  between v and D. 
Therefore this hypothesis must have an effect on the dependence of the 
simulated spike conduction velocity on fiber diameter, which will no longer be a 
linear function.

D(η ) = v(η ) /Ψ (η ) = [401− tfall (η )] / [1.9 ⋅Ψ (η )] . (4)

velocity to be associated with the value of tfall (and thus η  ) in the generalized SEF 
model.  Finally, the Ψ  value for each η  in Fig. 2b was used in conjunction with 
Eq.  2 to determine unambiguously the diameter D(η  ) that corresponds to η  :
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Fig. 4a shows that the generalized SEF model exhibits a non-linear relation 
between v and D indeed, and that the curve saturates for the largest fibers.
The slope of the line connecting a point on this curve with the origin is Ψ  , which 
gradually increases from 5.1 106s-1 at D = 0.5 µm to reach a plateau of about 
5.6 106s-1 for D between 12 and 16 µm (Fig. 4b).  For larger fibers v continues
to increase with fiber diameter, but Ψ  gradually decreases to 4.6 106s-1 for the 
largest fibers with myelinated diameters around 23 µm.
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IV. Simulating the influence of the g-ratio on conduction velocity

While a ratio g between axon diameter and fiber diameter of 0.7 (as it is in the 
SEF model, Table I) is realistic for relatively large A I fibers, (Dyck et al., 1993), 
this ratio is known to vary with fiber type and diameter ( Waxman andBennett, 
1972; Behse, 1990), which in turn is expected to influence the spike conduction 
velocity ( Rushton, 1951; Goldman and Albus, 1968).  In the present section we 
will first show how the procedure that related η  to D by application of Paintal’s 
experimental data can be extended to include different fiber morphologies, and 
then investigate the consequences of this extension for the simulated velocity-
diameter relation for A II and AIII fibers for which Behse (1990) measured the g-
ratio.

a. Anatomical observations
There has been discussion on the subject whether the ratio g between 
axon diameter d and total fiber diameter D is fixed or depends systematically 
on fiber size (Waxman and Bennett, 1972; Hildebrand et al., 1993).  At 
present, most evidence points into the direction that the number of myelin 
lamellae and therefore the total myelin thickness for a given axon diameter 
depends on both fiber type and animal species.  Using light and electron 
microscopic techniques Behse (1990) showed that the relation between myelin 
thickness Dmy and axon diameter d for AII and AIII fibers in human sural 
nerves is best described by two different straight lines of the form:

D a d bmy = ⋅ + (5)

where a and b are constants that are different for each of these two fiber types.
Application of the definition of the g-ratio and some straightforward
mathematical manipulations to Eq.  5 yields the following dependence of g on
D:

( ) ( )g b
D a= − ⋅ + ⋅1 2 1 2 . (6)

This relation, with parameters a and b taken from Behse (Behse, 1990) has
been plotted in Fig. 5 for both A II and AIII  fibers.  It appears that in both cases g
diminishes gradually with decreasing fiber size, but that there is a notable
difference in the region of overlap for diameters around 6  µm, where the A II
fibers have much smaller g-ratios than A III  fibers of the same outer diameter D.

b. Adjusting the model parameters to include different g-ratios
Like we did in Section III .a, we performed repeated simulations for a wide
range of values of η  for g-ratios between 0.40 and 0.80 with an otherwise
standard 15 µm SEF neuron.  It appeared that the resulting fall tim e tfall(η ,g) (cf.
Fig. 2a) did not depend on the g-ratio, i.e. tfall(η ,g) = tfall(η ).  Therefore, the spike
conduction velocity to be associated with each value of tfall , determined by
application of Paintal’s observations as formulated in Eq.  3, is also only a
function of η  and not of g, i.e. v(η ,g) = v(η ).
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However, it turned out that the influence of the multiplication factor η  on the
ratio Ψ (η ,g) between the simulated value of v and the fiber’s diameter could not
be described by simply scaling the original function Ψ (η ), determined in
Section III  and plotted in Fig. 2b, by a factor that is only a function of g.  As a
consequence, we were not able to find the diameter dependent nodal
properties of the model with respect to different g-ratios by means of a simple
transformation of the polynomial η (D) derived for g = 0.7.
Therefore, we had to resort to performing the analysis illustrated in Fig. 2 for
each simulation in our data set.  In this way D(η ,g), the outer diameter of a fiber
with g-ratio g that is to be associated with multiplication factor η  in the final
model, is determined by the following equation, which is the generalized form
of Eq. 4:

D g v g g t g gfall( , ) ( , ) / ( , ) [ ( , )] / [ . ( , )]η η η η η= = − ⋅Ψ Ψ401 19 . (7)

As the final step in the analysis we performed a two-dimensional linear least
squares fit to find a bivariate polynomial that describes η (D,g) for fibers of all
diameters with an arbitrary g-ratio, with the additional constraint that
η (15,0.7) = 1 in order to include the original SEF model in its generalized
formulation.  This resulted in the following bivariate function of order 6 in D
(expressed in µm) and order 2 in g:

η ( , )D g a D gmn
m n

nm

=
==

∑∑
0

2

0

6

. (8)

For descriptive purposes the coefficients are given in Table III .
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Fig. 5 The ratio g between axon diameter d and fiber diameter D for human sural AII and AIII  fibers
as computed with Eq. 6 from Behse’s data (Behse, 1990).
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c. Application of the generalized SEF model to different fiber morphologies
Simulations performed for values of g between 0.4 and 0.8 that used Eq.  8 to
provide η (D,g) showed that the resulting generalized version of the SEF model
obeyed Eq. 3 as neatly as the fit for g = 0.7 (see Fig. 3b), indicating that the fit
is sufficiently accurate in this respect.  In fact, also the plot of tfall as a function
of simulated conduction velocity v does not depend on g.  Therefore, it is not
reproduced here as it is identical to the corresponding plot in Fig. 3b.
With this fit, the influence on neural behavior of the anatomical variations of
the g-ratio with fiber diameter can be simulated.  Fig. 6a displays the computed
relation between spike conduction velocity and diameter for the morphology of
AII and AIII  sural nerve fibers as reported by Behse (see Section IV.a) and for A I
fibers with a fixed g-ratio of 0.7.  The most striking observation in this figure is
that the model predicts that, for diameters in regions of overlap between fiber
classes, AII fibers conduct more slowly than both A I and AIII  fibers of the same
outer diameter.  The differences between the fiber types appear in a more
prominent way in Fig. 6b, which displays Ψ  as a function of D for these fiber
classes.  It appears that simulated values of Ψ  range from approximately
4.1 106s-1 for the smallest A II and AIII  fibers to 5.6  106s-1 for A I fibers with
diameters between 12 and 15 µm.  From comparison with Fig. 4b, which shows
this relation for a constant ratio g = 0.7, it follows that the predicted influence of
geometrical factors on the relative spike conduction velocity is somewhat larger
than the introduction of the multiplication factor η , at least for the A II fibers and
the smallest AIII  fibers.

V. Physiological implications
It is expected that the introduction of a diameter dependent scaling factor
η (D,g) for the nodal permeabilities and the introduction of variable g-ratios will
not only modify the spike shape and spike conduction velocity but also other
aspects of neural behavior.  Here the influence of these factors on the
strength/duration behavior and on the maximum firing rate will be studied.

Table III The parameters anm of Eq. 8, the bivariate function of order 6 in D and order 2 in g,
yielding the value of multiplication factor η (D,g).

m n 0 1 2

0 3.4106 10-1 -1.5311 10-1 1.1590 10-1

1 -5.4317 10-2 µm-1 2.0508 10-1 µm-1 -1.5961 10-1 µm-1

2 2.8972 10-2 µm-2 -0.9926 10-1 µm-2 8.0065 10-2 µm-2

3 -6.2567 10-3 µm-3 2.1838 10-2 µm-3 -1.6520 10-2 µm-3

4 5.8617 10-4 µm-4 -2.0009 10-3 µm-4 1.3836 10-3 µm-4

5 -2.3011 10-5 µm-5 7.4148 10-5 µm-5 -4.1686 10-5 µm-5

6 3.0626 10-7 µm-6 -8.9616 10-7 µm-6 3.2493 10-7 µm-6
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a. Rheobase and chronaxy
To investigate the influence of η (D,g) on the predicted strength/duration
behavior we have computed the rheobase and chronaxy of fibers from the
various fiber classes for cathodal stimulation.  The rheobase Irh, defined as the
current threshold for a long duration pulse, was determined using a pulse width
of 1 ms.  The chronaxy τchr is defined as the minimum duration of a pulse
necessary to excite the fiber with a current strength twice Irh.  The simulations
were performed for fibers that were modeled using 120 active nodes and a
point source electrode, 1 mm radially away from the central node of these
fibers.
It appears that Irh increases gradually with decreasing fiber diameter in all cases
(Fig. 7a).  From comparison of the curve computed with the original SEF model
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Fig. 6 As Fig. 4, now for A I fibers with a constant g-ratio of 0.7, and A II and AIII  fibers with g-ratios
according to Behse (1990).  The dotted lines represent the relationship between v and D as
reported by Boyd and Kalu (1979).
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against the one computed with g = 0.7 in the extended SEF model (labeled A I

in Fig. 7a) it follows that the introduction of η (D,g) diminishes this effect.  The
corresponding curves computed for A II and AIII  fibers indicate that a reduction
of the g-ratio results in a minor increase of excitation thresholds, thus slightly
counteracting the effect of η (D,g) on this aspect of model behavior. Fig. 7b

displays the effect of fiber diameter on τchr in the same model situations.  It
appears that for g = 0.7 this chronaxy increases substantially more with
decreasing fiber diameter in the generalized SEF model (curve labeled A I) than
in the original model.  This effect is enhanced to a minor extent by the varying
g-ratios used in the simulations for A II and AIII  fibers.
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Fig. 7 a. The rheobase current Irh as a function of fiber diameter D for the original SEF model
(g = 0.7), and the generalized SEF model for A II and AIII  fiber classes with g-rations
according to Behse (1990).  The data points labelled A I were computed with the generalized
model and a constant g-ratio of 0.7, which is for D > 10 µm the generalized model
representation of A I fibers.  The A I data points for D < 10 µm were included to illustrate the
predictions of the model described in Section  III .  Results were computed for a cathode,
1 mm radially away from the centre of a fiber consi sting of 120 nodes.

b. The chronaxy τchr as a function of diameter for the same fibers as used in (a).

a
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Fig. 8 The morphology of the auditory nerve fiber model used to test the influence of the application
of η (D,g) as given by Eq.  8 on the frequency following behavior.

b. Firing behavior of auditory nerve fibers during repetitive stimulation
An aspect of neural behavior that is important in neural prostheses in general
and in auditory prostheses in particular is the frequency following behavior.
From the fact that the introduction of η (g,D) results in prolonged action
potentials for thinner fibers, it is expected that this will be accompanied by a
prolonged refractory period, and as a consequence, by a reduction of the
maximum steady-state firing rate.  As stated in Section  I these properties,
which are well-documented for auditory nerve fibers, do not depend on fiber
diameter if the specific nodal properties are fixed as in the original SEF model.
To investigate the behavior of the extended model in this respect, an auditory
nerve fiber model was constructed, based on the morphological findings
reported by Liberman and Oliver ( 1984) in the cat and Brown (1987) and Gleich
and Wilson (1993) in the guinea pig, taking into account a shrinkage of
approximately 10% due to labeling with horseradish peroxidase, and assuming
that the resultant fiber with an axon diameter of 3  µm had a g-ratio of 0.685 like
an AIII-fiber of the same dimensions ( Fig. 8).  The rise time of the simulated
action potential is 0.12  ms, while its fall time is 0.36  ms, resulting in a total
spike duration of 0.48  ms.  The absolute refractory period appeared to be
1.1 ms, while the maximum steady-state firing rate is approximately 650  Hz,
which is indeed lower than the value of 1.1  kHz found with the original SEF
kinetics (Frijns et al.,  1994b).

VI. Discussion
This paper aims at getting a better understanding of the mechanism behind the
observation that the duration of the action potentials of mammalian myelinated
nerve fibers decreases with increasing spike conduction velocity ( Paintal, 1966;
Coppin 1973), a phenomenon that is not explained by existing theoretical and
computational models.  Geometrical scaling of existing active cable models
yields a linear relationship between fiber diameter and spike conduction
velocity, which is in accordance with Rushton’s corresponding state theory, and



87  Chapter IV

acceptable in the light of experimental findings, but the simulated spike shapes
are identical for all fiber diameters ( Fig. 1).  To account for this discrepancy,
Jack (1975) hypothesized that the membrane properties of amphibian (and
possibly also mammalian) peripheral nerve fibers are correlated with their size.
He formulated this hypothesis on the basis of a model based on the Hodgkin
and Huxley (1952) equations.
The present study addresses the subject by means of simulations with an
active cable model of a 15  µm mammalian myelinated nerve fiber with nodal
kinetics based upon voltage-clamp data in large rat and cat fibers at
mammalian body temperature (Schwarz and Eikhof, 1987).  In our previous
paper (Frijns et al.,  1994b) it was demonstrated that this SEF model, which
treats the internodal myelin as a perfect insulator, describes many neural
properties, including the spike shape, spike conduction velocity and the
maximum firing frequency in a quantitatively correct way.  We also discussed
that the classical way to represent the internodal myelin as a leaky capacitor or
a series of leaky capacitors (cf. Fitzhugh, 1962; Goldman and Albus, 1968)
causes a large increase in spike duration that is inconsistent with the
measurements of Schwarz and Eikhof (1987), and also unrealistically reduces
the spike conduction velocity by more than 60%.  The latter findings conform
with the results obtained with a multi-axial cable model that took into account
many anatomical details of both the nodal and internodal areas ( Halter and
Clark, 1991).  Furthermore, the inclusion of an internodal time constant in the
SEF model would not only corrupt the simulated spike shape and the spike
conduction velocity, but also relevant model properties such as the refractory
behavior and the maximum steady-state firing rate.  However, the effect of an
internodal time constant on the chronaxy appeared to be limited:  As contrasted
with Rubinstein’s ( 1991) theoretical predictions from the analysis of a passive
cable, a more than three-fold increase of  the time constant of the node-
internode unit increased τchr less than 40%.  Therefore, we decided not to
include such a capacitive internode, as our aim was to give a quantitatively
correct description of at least the spike shape and conduction velocity.
The parameter variation study performed in Section  II  led to the conclusion that
there are two ways to explain the phenomenon that a fiber’s spike shape
depends on its spike conduction velocity v.  First, the rate constants τm, τh, and
τn of the differential equations governing the activation and inactivation of the
ion channels might depend on diameter, like they depend on temperature
(Frijns et al.,  1994b).  An argument against this hypothesis is that such a
variation has an unrealistically strong influence on the spike conduction velocity
(Table II).  This effect might be reduced by introducing a diameter dependence
of τm that is less pronounced than that for τh.  We did not further pursue this
possibility, also because of the relatively large influence of the temperature on
the spike conduction velocity when compared with its influence on the spike
shape, despite the fact that the temperature dependence of τm is less than that
of τh (cf. Figs. 3 and 4 in Frijns et al.,  1994b).
The other hypothesis that can explain the relation between spike conduction
velocity and spike shape is that there is a systematic variation in the active and
passive ionic permeabilities (per unit area of membrane).  Although the effect
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of the active potassium channels on mammalian nerve fiber properties is very
limited (Schwarz and Eikhof, 1987; Table II), we have assumed that the
diameter dependence of PNa and PK

’ is identical.  This ensures that the resting
membrane potential Vr as computed with the Goldman equation is independent
of fiber diameter.  Such a dependence is unlikely, since this would imply e.g.,
DC-currents to flow in the resting state along bipolar auditory neurons which
can have different axon diameters on both sides of the cell body ( Gleich and
Wilson, 1993).
Therefore the hypothesis was elaborated that gL, PNa and PK

’ vary
systematically, and by the same multiplication factor η , with fiber diameter.  It
turned out that it is possible to match the model’s spike fall time with Paintal’s
experimental data ( Paintal, 1966) on the basis of this hypothesis, not only for
fibers with a fixed ratio g = 0.7 between axon diameter d and total fiber
diameter D (Section III ), but also for any other physiologically realistic value of
this ratio (Section  IV).  It appeared that this scaling also results in values of trise

that are roughly in accordance with Paintal’s observations ( Fig. 3b).  As stated
before, it is not pretended that the bivariate function used to describe the
dependence of multiplication factor η  on D and g (Eq. 8) has a physiological
background, but it is of practical importance in defining the set of nodal
parameters for simulating a neuron with an arbitrary geometry.
An interesting property of this generalized version of the SEF model is the fact
that it predicts that the conduction velocity of thin fibers is lower relative to their
diameter than that of larger ones (Fig. 4), resulting in a slightly non-linear,
sigmoidal form of the diameter-velocity relationship.  This finding is in
accordance with physiological data regarding the analysis of compound action
potentials, both in amphibia ( Wijesinghe et al.,  1991), and in mammals as first
reported by Gasser and Grundfest (1939) and given renewed evidence by
Stegeman and De Weerd (1982) (see Schoonhoven and Stegeman (1991) for
a review of literature on this subject).  This effect is further enhanced if
allowance is made for the known physiological variation of the g-ratio with fiber
size (Fig. 5; Eq. 6) as deduced from Behse (1990).  Then, the model yields
ratios Ψ  between v and D that are close to the experimental values reported by
Boyd and Kalu (1979) for various nerves, including the sural nerve, in the cat
hind limb (Fig. 6), not only for large fibers like the original SEF model, but also
for thinner A II and AIII  fibers.  We conclude that the generalization introduced to
correct the spike shape also results in a shift of the velocity diameter relation in
a physiologically realistic direction.
The data regarding the excitation thresholds and chronaxy ( Fig. 7) show that
the occurrence of longer spikes due to the introduction of diameter dependent
nodal properties is associated with an increased strength/duration time
constant.  This effect could be expected beforehand (cf.  Rubinstein, 1991),
since a reduction of gL, PNa and PK

’ increases the nodal time constant and as a
consequence the time constant of the node-internode unit.  Changes of the g-
ratio, however, do not notably influence the strength/duration behavior.  The
changed strength/duration properties, including a reduction relative to the SEF
model of the predicted rheobase for small fibers, will have their bearing upon
the predicted recruitment of fibers in a nerve bundle that is stimulated with
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electrical pulses of varying width, as typically occurs in the field of functional
electrical stimulation ( Veltink et al.,  1988; Rijkhoff et al.,  1994).  Therefore,
comparison of the model predictions with and without the application of η (D,g)
to the nodal parameters with experimental results from this field may yield
further information regarding the physiological significance of the underlying
hypothesis.
More direct evidence to decide between the two possible explanations of the
dependence of spike shape on fiber diameter, i.e. a diameter dependence of
either the rate constants or of the ionic conductances, may come from
experiments that measure the height of the transmembrane action potential for
fibers with different diameter.  As is readily seen in Fig. 3c, a decrease of the
conduction velocity due to a decrease of gL, PNa and PK

’ is accompanied by a
decrease of the amplitude of the action potential.  If, on the other hand, the
prolonged spike duration of fibers with lower conduction velocities results from
a reduction of the rate constants τm, τh, and τn , this is associated with an
increase of spike height for thinner fibers (see Table II).  To our knowledge
there are no reliable experimental data regarding this issue available in
literature.
We conclude that the simulation results obtained with the generalized SEF
model at least do not contradict the hypothesis that both the active and passive
nodal conductances depend on fiber diameter, since fitting the fall time of the
action potential to experimentally derived data resulted not only in a
concomitant change of the rise time that is acceptable in the light of the same
data, but also in a physiologically realistic non-linearity of the diameter-velocity
relationship.  Moreover, the spike shape and repetitive firing properties
(Section V.b) of the auditory nerve fiber model that was constructed on the
basis of this generalized SEF model are also in good agreement with the
physiological data cited in Section I.  This makes this auditory nerve fiber
model applicable to study electrical stimulation of the deaf inner ear with
cochlear implants (Frijns et al.,  1995).
Of course, one should realize that the SEF model is a simplified representation
of the in vivo situation, which cannot account for all known neural properties.
Nevertheless, we feel that further experimental research is required in order to
validate or falsify the hypothesis on which the present analysis is based.  In
addition, substantial modeling effort is still required since even today’s most
sophisticated models like the one presented by Halter and Clark ( 1991) fall
short when quantitative aspects of neural behavior are considered.
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Abstract
In spite of many satisfactory results, the clinical outcome of cochlear
implantation is poorly predictable and further insight in the fundamentals of
electrical nerve stimulation in this complex geometry is necessary.  For this
purpose we developed a rotationally symmetric volume conductor model of the
implanted cochlea, using the Boundary Element Method (BEM).  This
configuration mimics the cochlear anatomy more closely than previous,
unrolled models.  The calculated potential distribution in the cochlea due to
stimulating electrodes is combined with a multiple non-linear node model of
auditory nerve fibres, which we developed recently.  The combined model is
used to compute excitation profiles of the auditory nerve for a variety of
stimulus levels and electrode positions.  The model predicts that the excitation
threshold, the spatial selectivity and the dynamic range depend on the exact
position of the electrode in the scala tympani.  These results are in good
agreement with recently published electrical ABR data.  It is shown that the use
of actively modelled nerve fibres is essential to obtain correct predictions for
the biphasic stimuli typically used in cochlear implants and that unrolling the
cochlear duct as done in previous models leads to erroneous predictions
regarding modiolar stimulation.

Introduction
The last decades several types of  cochlear prostheses have been developed
that can offer the profoundly deaf a sense of hearing (Balkany, 1986).  These
cochlear implants stimulate the auditory nerve electrically inside the inner ear,
where the terminal parts of its nerve fibres diverge in a spiral-like manner.
Multi-channel prostheses are equipped with multiple electrodes to take
advantage of this spatial distribution and the tonotopic organisation of cochlear
neurones, aiming at stimulation of a different neural population by each
channel and thus providing a different psycho-acoustic percept.  Although
these multi-channel prostheses have proven to be superior to previous single-
channel devices (Gantz and Tyler, 1990), the ideal result -i.e. the
understanding of speech without the help of visual cues- is achieved in a
minority of patients.  Furthermore, it is still virtually impossible to predict pre-
operatively which patient will benefit most of the implant  (Gantz et al., 1993).
In order to get more insight in the processes involved in this type of stimulation
and to be able to identify which parameters of an electrical auditory prosthesis
are crucial to realise selective stimulation of discrete sub-populations of the
auditory nerve fibres, a model of the implanted cochlea would come in useful.
Such a model should include two sub-models, the first one describing the
electrical volume conduction process, i.e. computing the potential distribution in
the cochlea due to the stimulating current sources, the other one simulating the
behaviour of the auditory nerve fibres in response to this potential distribution.
In an attempt to arrive at the latter sub-model Colombo and Parkins  (1987)
developed a model of the mammalian auditory-nerve neurone based on the
classical work on amphibian nerve fibres of Frankenhaeuser and
Huxley  (1964), as used by Reilly et al.  (1985) in their so-called Spatially
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Extended Non-linear Node (SENN) model.  In order to fine tune the model to
represent physiological data obtained from single auditory-nerve fibre
experiments in squirrel monkeys they had to adapt the modelled nerve fibre's
anatomy significantly.  Rattay and co-workers  (Motz and Rattay, 1986 ; Rattay
and Aberham, 1993) used a single-node model to investigate the time structure
of the response of the auditory nerve to electrical stimuli and concluded that
the Hodgkin and Huxley  (1952) model of unmyelinated squid giant axon
membrane simulates the electrically stimulated auditory nerve best in time
behaviour.  Recently we developed the so-called MSENN  (Frijns et  al., 1994a)
and SEF (Frijns et al., 1994b) models which are non-linear cable models which
represent essential mammalian nerve fibre properties, including spike
conduction velocity, refractory behaviour and repetitive firing, better than
previous models.  The SEF model is based upon voltage clamp measurements
in rat and cat motor nerve fibres at mammalian body temperature performed by
Schwarz and Eikhof (1987).  In this paper a generalised version of the SEF
model is used, which has been extended to include nerve fibres of smaller
diameter, details of which are to be published elsewhere.
Apart from the excitability properties of the nerve fibres, the neural excitation
patterns are strongly determined by the three-dimensional potential pattern set
up in the cochlea by the stimulating current sources.  Measurements of the in
vivo electrical properties of a cochlea implanted with an electrode array
confirmed this strong influence of the cochlear electro-anatomy  (Black et al.,
1983; Ifukube and White, 1987) .  The first theoretical models on this point
assumed an exponential decay of current from its source to the nerve fibres
along the cochlea, modelled in one dimension (O'Leary et al., 1985) .
Sapozhnikov (1990) computed potential distributions  with a finite difference
method in a linear, unrolled cochlear geometry, incorporating two cochlear
turns.  Girzon (1987) also used a finite difference method to compute  the
potential distribution in a n anatomically-based three-dimensional volume
conductor that included a continuously spiralling cochlear duct, and showed
that the scala tympani act s in part as a terminated leaky transmission line .  The
limited spatial resolution of his model, however, did not permit the computation
of neural excitation functions.   Finley et al.  (1990) were the first to present a n
integrated three-dimensional neuron-field model of a segment of an unrolled
cochlea, using the finite element method (FEM) and a passive nerve fibre
model based upon activation functions  (Rattay, 1989) for most of their
computations.  Suesserman and Spelman (1993) developed a so-called
lumped-parameter model of the unrolled first turn of a guinea pig cochlea in
which they incorporated resistive and capacitive components but did not
include any neural element.
In this paper we will present a rotationally symmetric volume conduction model
of the second turn of the guinea pig cochlea, coupled with an active nerve fibre
model.  Unlike previous models, this model preserves the contiguity in the
modiolus of the auditory nerve fibres coming from different places in the
cochlea (See Fig. 1).  Therefore it is expected to give a more accurate
description of the neural recruitment characteristics, especially for higher
stimulus currents where
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excitation of nerve fibres in the modiolus is likely to take place.  To validate this
hypothesis we will use this integrated model to simulate neural responses as a
function of electrode current for various electrode positions.  First we will
present the solution of the volume conduction problem for the rotationally
symmetric cochlea, resulting in the potential distribution throughout the cochlea
for any given set of electrodes.  Then we will describe the way we modelled the
neural responses to given potententials at the nodes of Ranvier.  Finally, we
will combine the two sub-models to compute spatial excitation patterns over the
fibre population and the dependence of the number of activated fibres on the
stimulus level as reflected in input-output curves of the auditory nerve.  The
latter results will be compared with electrically evoked auditory brainstem
responses (EABR) that were measured in vivo in the cat  (Shepherd et al.,
1993).  To assess the relevance of using our complex type of model rather than
models based on simplified assumptions as reported before, we will also
compare our results with a similar analysis based on either an unrolled cochlea
model or on a passive nerve fibre model.

A B C
Fig. 1 A Schematic representation of the way the auditory nerve fibres are distributed in the

normal cochlea.  The fibres are tonotopically organised in such a way that more apically
ending fibres encode for lower frequencies and follow a more central course in the
modiolus.

B In an unrolled cochlea model especially the modiolar portion of the cochlea is heavily
distorted.  As a result, the central portions of the auditory nerve fibres are running more
widely apart.

C A rotation-symmetric geometry preserves the spatial relationship of the central axons in
the modiolus.
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Calculating potential fields in the cochlea

The Boundary Element Method
There exist several computational methods to solve complex volume
conduction problems in three dimensions  (Binns et al., 1992) .  In the present
study we will use the Boundary Element Method  (BEM) (Meijs et al., 1989 ; Van
Oosterom, 1991), also known as the Integral Equation Method.  This method
uses Green's second theorem to express the potential distribution due to a
current source distribution in a piece-wise homogeneous volume conductor of
arbitrary shape as the superposition of two components.  The first component is
identified as the potential distribution that would be induced by these current
sources in a homogeneous medium of infinite extent, whereas the second
component is a correction term that accounts for the inhomogeneities in the
volume conductor in terms of imaginary secondary sources arising from the
boundaries between the various media.
An advantage of the BEM for the complex geometry of the cochlea is the
relative ease of mesh generation: It requires discretisation of the boundaries
between volumes with different conductivity rather than discretisation of these
volumes themselves.  Another interesting property of the method results from
the fact that it is a two-step procedure.  The first of these steps accounts for the
volume conduction properties of the specific geometry under study by
computing the strength of the secondary sources.  Once this first step has been
performed, the potentials due to different current source configurations can be
calculated rapidly in the second step without the need to repeat the much larger
computational effort of the first step.  In the present paper all current sources
will be bipolar point sources directed longitudinally along the basilar membrane,
but the method allows the future use of macro-electrodes in arbitrary
configurations.
From the analysis of passive neural models it is known that the driving force for
the excitation of a nerve fibre at a node far from its end points is roughly
proportional to the second order difference quotient of the extracellular
potential along the axon.  For stimulation at the ends of a finite length fibre
-which is frequently the case for an auditory nerve fibre when  stimulated by a
cochlear implant- the situation is different, and the driving force appears to be
proportional to the first spatial difference quotient of the extracellular
potential (Warman et al., 1992).  From these observations it follows that the
accuracy of the solution of the volume conduction problem is not only
determined by the accuracy in the computed potential but also by the accuracy
of its first and second derivative to the place.  For this reason one should either
use a mesh which is much finer than the internodal distance to solve the
volume conduction problem, or use a coarser mesh in a method which applies
at least second order interpolation functions for the potential.  We decided for
the second option and discretised all boundaries with quadratically curved
triangular surface elements on which the potential was also interpolated
quadratically.  This did not only increase the numerical accuracy of the method
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but also resulted in a more a realistic shape of the modelled cochlea (see
Figs. 2 and 3; cf. De Munck (1992), Strang and Fix  (1973)).

The application of second order interpolation functions implies that the error
terms in the calculations are of order three and above, and therefore it is
expected that the accuracy of the calculated potentials is inversely proportional
to the third power of the length of the sides of the surface elements.  This
conclusion was confirmed by calculations we performed on configuration s with
concentric cylinders and spheres for which analytical solutions are available.
Further details of the numerical method are beyond the scope of this paper and
are to be published elsewhere.

The rotationally symmetric model of one turn of the cochlea
As our intention was to arrive at a model of the implanted cochlea that can be
used in conjunction with our animal experiments on guinea pigs, a cross-
section at the base of the second turn of the guinea pig cochlea was used to
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Fig. 2 A The modelled cross-section of the second turn of the guinea pig cochlea.  The various

compartments with different conductivities (see Table  I) are indicated as well as the four
electrode sites (A = near the outer wall; B = central in the scala tympani; C  = near the
spiral ganglion; and D = underneath the dendrites).  The course of three nerve fibres, one
ending in the modelled second turn and two in more apical turns, is displayed.  The
numbered dots along these nerve fibres designate the location of the nodes of Ranvier.

B Photomicrograph of the cross-section at the beginning of the second turn of a left guinea
pig cochlea that was used to construct the boundary element mesh in  A.
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construct the mesh of the present model.  The contours of this cross-section 
were approximated by 41 quadratically curved elements through 72 mesh 
points (see Figure 2 for a comparison between the modelled and observed 
anatomy).  This cross-section was rotated around the central modiolar axis and 
the created volume 'azimuthally' subdivided in sixteen segments, resulting in 
the toroidal structure shown in Figure 3.  To optimise the numerical accuracy 
the segments in the vicinity of the electrodes were chosen to be smaller than 
the more distant ones.  The final mesh consisted of 2240 elements and 4194 
nodes.  Although part of a real guinea pig cochlea projects into an air-
containing bulla, the modelled cochlear turn was completely embedded in bone 
(like the cross-section in Fig 2B) for now.  This increased the similarity with the 
human/feline situation, for which relevant experimental ABR data became 
available recently (Shepherd et al., 1993).  Of course, other species-related 
differences in cochlear anatomy exist , e.g. the fact that the guinea pig cochlea 
is smaller than the feline one and that it has four instead of three turns. 
Similarly, the location of Rosenthal’s canal in both the cat and ginea pig 
cochlea differs from the human situation (Shepherd et al., 1993).  Such 
differences must be kept in mind when comparing experimental or simulation 
data across species.
Although the BEM can deal with the presence of capacitive effects, it is 
assumed throughout this paper that the impedances of all media in the cochlea 
are purely resistive, as this allows to evaluate time-varying stimuli without 
consideration of charge-storage effects in the tissue.  This 
simplifying assumption is supported by the findings of Spelman et al. (1982), 
who showed that the potentials in the scala tympani are virtually frequency-
independent for all frequencies tested (up to 12.5 kHz).

Table I The conductivities of the various cochlear tissues as used in the computations.  The data
were compiled from Finley et al. (1990), Suesserman (1992) and Strelioff (1973).  
The values for the basilar membrane and Reissner’s membrane are enlarged by a factor 
5 and 10 respectively to correct for the geometric scaling applied to minimise computational 
errors (see text).

Tissue
Conductivity

(Ω m)-1

Scala tympani 1.43

Scala vestibuli 1.43

Scala media 1.67

Stria vascularis 0.0053

Spiral ligament 1.67

Reissner’s membrane 0.00098

Basilar membrane 0.0625

Organ of Corti 0.012

Bone 0.156

Nerve tissue 0.3
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A B

C

Fig. 3 A Three-dimensional view of the boundary element mesh of the rotationally symmetric
cochlea model, with a part intentionally left out.  The boundaries between the
compartments with different conductivity are described by quadratically curved sur faces.

B A slice of the mesh in A (cf. Fig.  2A)
C Top view of the boundary element mesh of the rota tionally symmetric cochlea, illustrating

the smaller element size near the stimulat ing electrodes in order to reduce computational
errors.
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The conductivities of the various media in the cochlea as used in the
computations are listed in Table  I.  Summarising these data, the scala tympani,
vestibuli and media are well conducting media, separated by very thin, highly
resistive membranes, which are embedded in poorly conducting bone.  Many
values in Table  I were adopted from Finley et al.  (1990), who compiled their
parameter values from several authors.  For the conductivity of the bony tissue
more recent data from Suesserman (1992) were used.  We computed the
conductivity of the stria vascularis, the spiral ligament, the organ of Corti,
Reissner's membrane and the basilar membrane from the resistance data of
Strelioff  (1973), combined with morphologic data from Nijdam  (1982) and
Fernàndez (1952), using the dimensions in the second turn of the guinea pig
cochlea at 10 mm from the stapes.  The estimated in vivo thickness of
Reissner's membrane, the basilar membrane and the stria vascularis is 1.7  µm,
4 µm and 40 µm respectively.  In the rotationally symmetric model of the
cochlea however, we have enlarged the thickness of Reissner's membrane and
of the basilar membrane (and consequently also enlarged their conductivities)
by a factor 10 and 5 respectively, to prevent excessive numerical errors
inherent to the BEM.  From computations on geometries with known analytic
solutions it followed that these errors occur when membranes are modelled
with surface elements that are closer to one another than 1/20 th of the side of
the elements.  With the above-mentioned adaptations to the membrane
morphology this situation is avoided without the need to introduce additional
mesh points.

The computed potential distribution due to intracochlear electrodes.
Figure 4 shows the potential distribution in a cross-section of the cochlea near
the anodic part of a bipolar current source for the four electrode sites (A  = near
the outer wall, B = in the middle of scala tympani, C  = adjacent tot the
modiolus and D = underneath the peripheral dendrites) that where adopted
from Shepherd et al. (1993).  From this figure it is clear that the scala media is
electrically well insulated from its surroundings.  Apparently, for scala tympani
electrodes it serves with the osseous spiral lamina as a barrier for the excitation
of the terminal ends of nerve fibres in more apical turns of the cochlea.  It is
also clear from this figure that the potential distribution in the neural
compartment (i.e. the volume occupied by the auditory nerve fibres) is fairly
different for the various electrode positions, so it is expected that neural
responses to these fields will depend on the electrode site.  These quantitative
differences between the potential distributions are  illustrated in more detail by
Figure 5, which displays the course of the potential along nerve fibres located
in the same cross-section (cf. Fig.  2A).  In spite of these differences, the
general course of the curves in Fig.  5 is similar  for all four electrode sites (A  -
 D).  It turns out that the maximum potentials occur in the peripheral part of the
nerve fibres originat ing from the modelled second turn, while the potential
reaches its maximum in the modiolus f or the fibres coming from more apical
turns.  This maximum  value is, however, significantly lower  than the one in the
fibre coming from the second turn , and it is expected that this will result in
higher excitation thresholds for these fibres .  As shown in Fig.  5, the potential in
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fibres originating from the third and fourth  cochlear turn reaches also a
maximum at the peripheral terminal , but due to the shielding effect of the scala
media this maximum  is even lower than the one in the modiolus .
The potential field in a 'horizontal' plane through the osseous spiral lamina
(indicated by the line HH’ in Fig.  4D) due to the current dipole underneath the
peripheral dendrites (site D) is shown in Fig.  6.  This figure shows that there
exists a zero potential plane exactly midway between the electrodes.  As this
plane runs radially through the modiolus, i.e. in the direction of the peripheral
dendrites of the auditory nerve fibres (cf. line AA’ in Fig.  6), it is evident that
nerve fibres in this region are not likely to respond to stimulation by this
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the electrode sites A - D.  The numbers on the equipotential lines i ndicate the potential in
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of the cross-section used in Figure  6.
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electrode pair.  To understand however, from such a potential distribution which
fibres will be excited for a given stimulus strength a neural excitation model is
obligatory.
With the mesh used for the calculations, the equipotential lines in Figs. 4 and 6
in poorly conducting media as the stria vascularis have an irregular course  due
to a limited  numerical accuracy.  Yet, we refrained from a local refinement of
the mesh, since we were mainly interested in the potentials in the relatively
good conducting neural compartment, where the method apparently gives more
accurate results (cf. Fig.  5).  As a test for the accuracy of the calculated
potentials on the nerve fibres we repeated the calculations while doubling the
length of the sides of all surface elements , and computed for each electrode

1

10

100

1000

0 1000 2000 3000 4000
1

10

100

1000

0 1000 2000 3000 4000

1

10

100

1000

0 1000 2000 3000 4000
1

10

100

1000

0 1000 2000 3000 4000

A B

C D

II
III

IV

II
III

IV

II
III

IV

II

III

IV

Distance along Nerve Fibre      (µm)

V
(m

V
)
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configuration used in this paper  the root mean square error calculated over all
nodes of Ranvier of all nerve fibres  (see the next section for their exact
location):

( )
RMS error

k k
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k
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∑
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2
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where: ϕk = the potential in node k computed with the fine mesh
and ϕk

C = the potential in node k computed with the coarser
mesh.

Typical RMS errors were approximately 0.1 (range from 0.03 to 0.40), the
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largest error occurring for the configuration in electrode site C with the largest
inter-electrode spacing (‘bipolar+2’, see below), where both the electrodes and
some nerve fibres are close to the same surface elements (cf. Fig.  4).  As
explained when describing the BEM , the accuracy of the calculated potentials
is roughly inversely proportional to the third power of the length of the sides of
the surface elements and the RMS error in the final solution is expected to be
less than 0.05 (= 0.40/23), which is  expected to be  sufficient in the light of the
inter-individual anatomical  variability  and other uncertainties in the model .

Modelling the auditory nerve fibre responses

The kinetics, morphology and spatial distribution of the modelled auditory nerve
fibres
The nerve fibre responses in the present paper are calculated with a version of
the SEF model (originally describing a 15  µm motor fibre, see Frijns et al.,
1994b) that has been extended to give a quantitatively correct description of
many relevant properties (including spike duration, spike conduction velocity
and frequency following behaviour) of mammalian nerve fibres with myelinated
diameters in the range between 0.5 and 22  µm.  The kinetics of this extended
model was used to construct an active cable model of a high spontaneous rate
auditory nerve fibre with a morphology based upon the findings of Liberman
and Oliver ( 1984) in the cat and Brown (1987) and Gleich and Wilson  (1993) in
the guinea pig, taking into account a shrinkage of approximately 10% due to
labelling with horseradish peroxidase.  This resulted in a bipolar fibre,
consisting of a peripheral and a modiolar axon with a diameter d of 3 µm,
interconnected by a cell body (soma) with a length of 20  µm and a diameter of
10 µm.  The nodal gap width is 1  µm throughout the fibre, the length of the
unmyelinated terminal was chosen to be 10  µm (see Figure 7A).  The internodal
myelin sheath was considered to be a perfect insulator, as it was in the original
SEF model.  The internodal length varied along the nerve fibre as indicated in
Fig. 7A (Liberman and Oliver, 1984).  This nerve fibre morphology was used to
represent both the fibres coming from hair cells in the modelled second turn of
the cochlea as well as the fibres running down more centrally in the modiolus
and originating from locations in the third and fourth turn.  The positions of the
nodes of Ranvier of these fibres relative to a transversal section through the
modelled cochlea are indicated in Fig.  2A.  For the computation of the
excitation profiles of the fibres from the modelled turn, 40 fibres , uniformly
distributed around the turn, were used to represent the approximately 10,000
fibres existing in the second turn in vivo.  Thus, the computed response of each
single nerve fibre in the model represents the behaviour of approximately 250
nerve fibres present in each real cochlear segment of 9 degrees ( ≈ 0.17 mm
along the basilar membrane).  To account for the fibres from the more apical
turns, another 55 fibres of the same morphology and kinetics (35 for the third
turn and 20 for the fourth one) were embedded on two, more centrally located,
concentric circles in the modiolus (Fig.  1C).
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For each nerve fibre a system of 64 coupled non-linear differential equations
(i.e. 4 equations for each of the 16 included active nodes of Ranvier) had to be
solved.  Appendix  A summarises details of the associated equations and the
parameters used in the computations.  For further computational details (e.g.,
the threshold criterion) the reader is referred to previous papers  (Frijns et  al.,
1994a; Frijns et al., 1994b).  A detailed study of the time-dependent properties
of the nerve fibre model is beyond the scope of the present paper.  The results
can be summarised as follows: the total spike duration amounts to 0.48  ms
(see Figure 7B), the absolute refractory period is 1.1  ms and the maximum
steady-state firing rate is approximately 650  Hz.

Simulating excitation profiles of the auditory nerve
Recently, it was shown experimentally in cats that both the threshold currents
and the slope of the input-output curves of the electrically evoked auditory
brainstem response (EABR) due to stimulation by bipolar scala tympani
electrodes depend upon the exact location of these electrodes  (Shepherd et al.,
1993).  As these differences must be reflected in the excitation patterns of the
auditory nerve at the level of the cochlea, these data provide an opportunity to
validate our model predictions with experimental results.
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Fig. 7 A The morphology of the high spontaneous rate auditory nerve fibre model used (not to
scale). The inset in the lower left part of the figure shows the non-linear electrical circuit
used to simulate the nodal kinetics (see Appendix  A).

B The action potential produced by the auditory nerve fibre model.
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For this purpose we computed potential distributions in the rotationally
symmetric cochlea model for longitudinally directed bipolar electrodes at four
locations comparable to the ones used by Shepherd et  al. (1993) (see Figs. 2
and 4).  In the model situation also the stimuli used by these authors were
applied, viz. biphasic current pulses with a pulse width of 200  µs per phase, but
all electrode spacings were scaled down by a factor 2 to account for the
difference in size between the modelled guinea pig cochlea and the feline
cochlea used in the experiments.  For the so-called 'bipolar' stimulus mode this
resulted in a 375 µm inter-electrode distance, whereas it was 0.75  mm and
1.125 mm for the situations that will be referred to as 'bipolar+1' and 'bipolar+2'
respectively (a terminology that was adopted from the Nucleus cochlear
implant used by Shepherd et al.,  1993).
Using the potential distributions computed this way, we stepped through a
range of stimulus levels in 3  dB steps, and determined in which fibres a
propagating action potential was generated and in which ones this was not the
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Fig. 8 Excitation profiles of the three upper turns for the rotationally symmetric guinea pig cochlea
computed with biphasic current pulses (200 µs/phase, the apical electrode being cathodic-
first as indicated by the ‘-’ and ‘+’ symbols denoting the location and initial polarity of the
electrodes) for bipolar electrode configurations located in the modelled second turn in site A  -
 D (see Fig.  2A).  The roman numbers mark the various cochlear turns.  The location of the
node of Ranvier where the initial excitation of each nerve fibre takes place is indicated by a
grey shading.
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case.  For the four ‘bipolar’ electrode configurations the results are presented
as so-called excitation patterns in Fig.  8.  For each nerve fibre in the modelled
turn it is indicated in this figure whether the initial excitation occurred in the
peripheral dendrite, the nodes surrounding the soma (i.e. in the spiral ganglion),
or more centrally in the modiolar axon.  Also stimulation of nerve fibres running
down in the modiolus from more apical cochlear turns is shown.  As expected
from the potential field in Fig.  6, there exists a region of elevated thresholds for
fibres located near the midplane between electrodes, resulting in a bi-modal
distribution of excited fibres, which is most prominent for lower stimulus
strengths.  Simulations for ‘bipolar+1’ and ‘bipolar+2’ stimulus modes revealed
that this bi-modality increases with the inter-electrode distance.  For each
electrode configuration the fibres near the stimulating electrodes appear to be
stimulated most easily.  Current thresholds differ however, significantly
between the four electrode sites.  The lowest thresholds are found for the
dendritic position (D), where excitation occurs in the unmyelinated terminals of
selected fibres for currents slightly above 0.1  mA.  For the outer wall position
(A) the highest thresholds (almost 0.5 mA) are predicted by the model (See
also Table Error! Unknown switch argument.).  The part of the nerve fibre
that is excited first varies depending on the electrode configuration, the
stimulus strength and the location of the nerve fibre itself.  Some general
observations can however, be formulated.  Firstly, for all electrode sites except
the one close to the spiral ganglion (C), stimulation takes place in the
peripheral dendrite for fibres located near the part of the dipole that is cathodic
during the first phase of the stimulus.  For electrode site C these fibres are
frequently excited in the 2 nodes surrounding the cell body in the spiral
ganglion.  Secondly, for fibres located near the initially anodic part of the dipole
the place of excitation shifts with increasing stimulus intensity from the
unmyelinated terminal to the modiolar part of the  axon.  Thirdly, fibres running
down from more apical parts of the cochlea are excited  in the modiolus at a
node of Ranvier  close to the stimulating electrode s rather than at their
peripheral processes.  This is consistent with the maximum in the potential
distribution which occurs in or near this node (Fig.  5).  We will use the term
ectopic stimulation to denote  such activation of fibres from turns not containing
stimulated electrodes.  This phenomenon occurs most easily for the electrode
near the spiral ganglion (site C),  while the thresholds are two to four times
higher for stimulation by the other electrode positions.

Computing input-output curves
Counting the number of modelled nerve fibres that respond at each stimulus
intensity for a given electrode configuration provides a way to summarise the
data available in an excitation profile.  This results in so-called input-output
(I/O) curves that can be considered the modelled analogues of the EABR input-
output curves measured experimentally, since the amplitude of the EABR is
generally considered a measure of the number of excited nerve fibres in the
cochlear partition.  The upper pane of Fig.  9 displays such I/O-curves
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Fig. 9 Computed Input-output-curves for biphasic current pulses (200  µs/phase) in the bipolar,
bipolar+1 and bipolar+2 electrode configurations for the four electrode sites A  - D in the
second turn of the rotationally symmetric cochlea.  The curves were constructed by counting
the number of excited nerve fibres for each stimulus current in the corresponding excitation
patterns.
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computed from the excitation profiles from Fig. 8 for the ‘bipolar’ stimulation 
mode, while the lower panes of Fig. 9 present the corresponding curves 
for the ‘bipolar+1’ and ‘bipolar+2’ configurations respectively.  The excitation 
thresholds for all these electrode combinations are listed in Table II.  
Particularly for small inter-electrode spacings there are clear differences 
between the four electrode sites, amongst which the dendritic site (D) takes a 
special position.  This site results in the lowest excitation thresholds and the 
largest range of stimulus intensities for which the I/O-curve has a shallow 
slope, corresponding with a large dynamic range.  The electrode close to 
the spiral ganglion (site C) yields the next higher thresholds, but a much 
steeper I/O-curve.  The highest thresholds were observed for the electrode 
site near the outer wall (site A).  All thresholds tend to decrease with 
increasing inter-electrode spacing (Table II, column 2), but the initial slope of 
the curves increases, corresponding with a wider region of excitation and a 
smaller dynamic range (Table II, column 5).  Another factor diminishing the 
dynamic range for large inter-electrode distances is the fact that the 
thresholds for ectopic excitation of apical nerve fibres in the modiolus are 
generally lowered more than the overall excitation thresholds.  The spiral 
ganglion site (C) suffers most from this limitation.

Discussion
In the present paper a rotationally symmetric model of the electrically 
implanted cochlea was described.  It is a combination of two sub-models, the 
first one computing the potential distribution due to stimulating electrodes in the 
complex geometry of the cochlea, the other one simulating the neural reaction 
to this potential field.  The model allows the computation of input-output curves 
and the corresponding neural excitation patterns for arbitrary stimuli and 
electrode configurations.
In order to test the validity of the model results, the circumstances (including 
electrode positions and stimulus wave forms) for the computation of Figs. 
8 and  9 were chosen in such a way that they are comparable to the 
experimental conditions used by Shepherd et al. (1993), although geometric 
scaling can only partially eliminate the differences between the modelled 
guinea pig cochlea and the feline used in these experiments.  Generally 
speaking, however, there is a great deal of similarity between the model and 
the experimental situation. If one assumes that the amplitude of wave IV in the 
EABR is a measure of the number of excited nerve fibres in the cochle a, it 
makes sense to compare the computed I/O-curves (Fig. 9) with the 
measured ones (Fig. 3 in Shepherd et. al., 1993), which leads to the 
conclusion that the model's predictions are in good agreement with these 
experimental results.  In both cases the neural response increases with 
stimulus current in the range between 0.1 and 2.5 mA, while excitation 
thresholds and gradients of the curves depend comparably on electrode site.  
Especially the favourable outcome for the dendritic position (D), with its lowest 
excitation thresholds and its largest current range with a low gradient of the 
I/O curve is apparent in both situations.  In addition, the model correctly 
predicts the diminishing differences between the I/O-curves for the four
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electrode sites with increasing inter-electrode distance.  The main discrepancy
between the model results and the experiments occurs for the higher stimulus
levels, where the curves for the four electrode sites converge more to one
another in the experimental situation than in the simulations.  Table  II  gives a
more quantitative comparison between simulation results and experimental
data.  It appears that the average ratio between the experimental and
simulated current thresholds is approximately 2.8, rather than 1.0 (which would
obviously have been the ideal result), but the fact that this ratio is fairly
independent from electrode site and electrode spacing, implies that the model
gives realistic predictions of the relative threshold shifts between the various
electrode configurations.  Possible explanations for this factor 2.8 include
geometric differences between the modelled guinea pig cochlea and the
(scaled) cat cochlea, threshold differences between the auditory nerve fibre

Table Error! Unknown switch argument. Comparison of the computed thresholds
(Ith) and I/O-curve gradients ( GIO and G’

IO, computed over turns II  - IV and turn II
respectively)  with corresponding experimental EABR data  (Shepherd et al., 1993), Ith

exp and
GIO

exp for all electrode spacings and electrode sites A  - D.

Electrode
site

Ith

(mA)

Ithexp

(mA)

I
I

th
exp

th

GIO

(fibres
/dB)

G’
IO

(fibres
/dB)

GIO
ex

p

(µV/dB)

G
G

IO
exp

IO

(µV/fibre)

G
G

IO
exp

IO
'

(µV/fibre)

Bipolar
A 0.497 1.100 2.21 1.33 1.33 0.423 3.15 3.15
B 0.278 0.990 3.56 1.00 1.00 0.476 2.10 2.10
C 0.177 0.660 3.73 1.00 1.00 0.331 3.02 3.02
D 0.124 0.320 2.58 0.58 0.58 0.193 3.02 3.02

Mean ± SD 3.02±0.74 2.82±0.49 2.82±0.49

Bipolar+1
A 0.269 0.590 2.19 1.33 1.33 0.470 2.84 2.84
B 0.183 0.550 3.01 1.17 1.17 0.455 2.56 2.56
C 0.135 0.340 2.52 2.50 1.50 0.377 6.63 3.98
D 0.089 0.260 2.92 0.83 0.83 0.307 2.71 2.71

Mean ± SD 2.66±0.38 3.69±1.97 3.02±0.65

Bipolar+2
A 0.202 0.470 2.33 1.50 1.50 0.503 2.98 2.98
B 0.154 0.410 2.66 1.50 1.33 0.459 3.27 2.90
C 0.107 0.310 2.90 2.67 1.50 0.451 5.91 3.33
D 0.088 0.240 2.73 1.00 1.00 0.350 2.86 2.86

Mean ± SD 2.65±0.24 3.76±1.45 3.02±0.21

All spacings

Mean ± SD 2.78±0.49 3.42±1.37 2.96±0.45
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model and real auditory nerve fibres.  Table  Error! Unknown switch
argument. also contains data regarding the slope of the computed I/O-curves.
These gradients were computed by counting the number of auditory nerve
fibres that are excited by a biphasic stimulus that is 12  dB above the threshold
for that electrode configuration.  Again, the results were compared with
Shepherd’s data on EABR I/O-curves by computing the ratio between the
experimental (Shepherd et al., 1993, Table  V) and the simulated data.  Ideally,
this procedure would result in a fixed ratio relating the EABR amplitude to the
number of excited nerve fibres in the model.  With the responses of nerve
fibres from all turns included in the computations, we found ratios around
3.0 µV/fibre for all electrode configurations except for the ‘bipolar+1’ and
‘bipolar+2’ electrodes in site C (= near the spiral ganglion).  In the latter two
cases approximately twice this ratio was found.  Table  Error! Unknown switch
argument. shows that this discrepancy disappears if the calculations are
restricted to the responses of the fibres in the modelled second turn.
There are two major differences between the present model and previous ones
(Sapozhnikov,  1990; Finley et al.,  1990; Suesserman and Spelman, 1993).
Firstly, the present rotationally symmetric model includes a more realistic
geometry of the modiolus than models that incorporate an unrolled cochlear
duct.  Especially for larger inter-electrode separations and higher stimulus
strengths this difference is expected to have a significant effect.  To test this
hypothesis, a boundary element mesh of an unrolled cochlear model was
generated by translating the cochlear section from Fig.  2A along the length of
the basilar membrane (Fig.  10A) rather than rotating it around the modiolus
(Fig 3).  The dimensions of this unrolled cochlea model were chosen in such a
way that its basilar membrane length is equal to the rotationally symmetric
counterpart.  For this unrolled model, Fig  10B displays the potential field (cf.
Fig. 6) for the dendritic electrode position in the ‘bipolar’ configuration (inter-
electrode distance 0.375 mm).  Fig.  10C shows the computed I/O-curves for
this and the three other standard ‘bipolar’ electrode (sites A  - D in Fig.  2).  It is
evident from Fig.  10 that unrolling the cochlea model influences the recruitment
characteristics of the nerve fibres, reflected in the I/O-curves, which are initially
more shallow due to a more gradual spread of excitation along the cochlear
turn.  For higher stimulus currents however, the curves are steeper due to the
relatively easy excitation of fibres passing by from more apical turns.  This
results from the fact that unrolling causes many modiolar fibres to be moved
away from the (zero potential) midplane between the electrodes.  So, it turns
out that ectopic stimulation takes place in an unrolled model more easily than
in the equivalent rotationally symmetric case (Figs.  6 and 9).  Future research
will have to elucidate the consequenc es of using this rotationally symmetric
structure instead of a continuous spiral, for which Girzon (1987) showed that
the scala tympani acts more or less as a non-uniform, leaky transmission line
of finite length .
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Fig. 10 A Three-dimensional view of the unrolled cochlea model, constructed by translation of the
mesh in Fig.  2A.  Note the smaller element size in the middle part of the mesh, i.e. around
the electrodes.

B Equipotential lines for the bipolar current source in site D (=  below the dendrites) in the
unrolled cochlea model in a plane perpendicular to the modiolus at the level of the
dendrites of the axons in the second turn (i.e. at 0.05  mm on the vertical axis in Fig.  2A).
The numbers indicate the calculated potential in millivolts for a 1  mA current source.  The
thick vertical lines represent the boundaries between the various media (from left to right:
bone; modiolar nerve tissue; bone of the osseous spiral lamina; dendritic nerve tissue;
organ of Corti; scala media; stria vascularis; spiral ligament; outer wall bone). The dashed
line AA’ illustrates the orientation of the nerve fibres.

C Computed I/O-curves for biphasic current pulses in the bipolar stimulation mode for the
four electrode sites A-D in the second turn of the unrolled cochlea model.

A

C

B

Stimulus Current       (mA)
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Fig. 11 Input-output-curves for the bipolar, bipolar+1 and bipolar+2 electrode configurations for the
four electrode sites A - D in the second turn of the rotationally symmetric cochlea,
computed for 200 µs current pulses with a passive nerve fibre model.  The curves were
constructed by counting the number of excited nerve fibres for each stimulus current in the
corresponding excitation patterns.
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The second major difference between the present model and previous ones is
the inclusion of an actively modelled auditory nerve fibre with mammalian
nodal kinetics, where the previous models used either passive neural models or
amphibian kinetics.  This aspect of our model increases the time necessary to
compute the excitation profiles, but it allows to include realistic temporal
stimulus waveforms, such as biphasic pulses, in the study.  At first sight,
threshold estimates obtained with (computationally much less intensive)
passive neural models based upon the activating function fk

act (Rattay, 1989)
and the total equivalent driving function Tk

PW  (Warman et al., 1992) provide an
attractive alternative.  In fact, the latter is a generalised form of the activating
function, which not only takes into account the stimulating influence of an
extracellular potential field but also the current redistribution along the nerve
fibre during the active phase (pulse width PW) of monophasic stimuli.  For the
present paper it suffices to know that this method gives estimates of threshold
currents for arbitrary extracellular electrode configurations near an infinite
length fibre that are based upon the so-called critical voltage Vc(PW).  This is
defined as the membrane depolarisation in an equivalent passive cable model
at the end of a current pulse at threshold strength for the actively modelled
counterpart.  It is possible to perform a complete analysis of Tk

PW for the
present (finite length!) auditory nerve fibre model, which will abolish the need to
perform repeated computations with the SEF model for each fibre and each
different electrode configuration.  However, the same results will obviously be
obtained with a simulation with the equivalent passive cable model in the same
potential field, provided that the value of Vc(PW) has once been determined on
beforehand for each node.  For practical reasons we have decided to follow the
latter approach to produce the input-output curves presented in Fig.  11.  The
most striking difference between these curves and those computed with the
active model (Fig.  9) is the reduced gradient of all I/O-curves in the case of the
passive fibre.  Another important difference between Figures  9 and 11 is seen
in the I/O-curves for the electrodes near the outer wall (A).  The initial slope of
this curve and the suggested dynamic range are comparable to the
corresponding results for the dendrite position (D), although the predicted
excitation thresholds are elevated.  This would suggest that both electrode
positions A and D are equally effective, which is contradictory to the
experimental results currently available  (Shepherd et al., 1993).  Thus, the
application of passive neural models, although computa tionally attractive, is a
simplification yielding less reliable and sometimes misleading estimates of the
response to the biphasic stimulation typically applied in cochlear implants.
Unlike us, Finley et al.  (1990) did not incorporate the stria vascularis, the spiral
ligament and the organ of Corti in their model.  This may be considered a
minor anatomical detail, but in the present model this results in a scala media
that is electrically well insulated from its surroundings as it is in vivo, where this
is a prerequisite for maintaining the endocochlear potential.  Histologically the
lining of the scala media is characterised by tight junctions between
neighbouring cells that prevent ion leakage into and from the scala media , and
although these thin membranes are known to be both capacitive and resistive ,
the membrane capacitances are expected to have little effect on the fields in
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the scala tympani or the nerve tissue during electrical stimulation with scala
tympani electrodes due to the ir high resistivity , as discussed by Girzon  (1987).
The question of frequency dependence of fields in other parts of the cochlea,
e.g. in the habenula perforata, is still open.  Therefore the present approach
with a purely resistive cochlea model should be considered as a first
approximation of the in vivo situation.  Future versions of the model should
include capacitive elements in order to evaluate their potential influence on the
calculated temporal responses.
That the insulating effect of the scala media has implications for cochlear
implants with intra-scalar electrodes is illustrated by Figs.  4 and 5, where the
scala media acts as a barrier between the electrodes and fibres in more apical
segments of the cochlea.  Similarly, the model predicts higher thresholds for
extra-cochlear stimulation with electrodes located in the bone lateral from the
stria vascularis than for electrodes lateral from the scala tympani.
The morphology of the auditory nerve fibres used in our computations differs in
several respects from similar models found in the literature, although we also
used the data provided by Liberman and Oliver  (1984) as a starting point.
Firstly, the central axon diameter of the modelled high spontaneous rate fibre is
3 µm rather than 1 µm as proposed by Colombo and Parkins (1987) or 2 µm
(Rattay, 1990).  This relatively large diameter is based upon the measurements
in guinea pigs performed by  Brown (1987) and Gleich and Wilson  (1993),
taking into account the shrinkage factor demonstrated by the latter authors.
The peripheral axon (i.e. the dendritic part of the fibre) was modelled to have
the same diameter rather than a smaller one, making the fibre representative
for high spontaneous rate fibres, which are known to exhibit lower electrical
thresholds (Van Den Honert and Stypulkowski,  1987). Preliminary simulations
with fibres with thinner peripheral processes resulted in slightly elevated
thresholds indeed.  Since Gleich and Wilson  (1993) showed that there exists a
wide variation in fibre diameter in vivo, this suggests that the inclusion of a
more heterogeneous population of nerve fibres may be a meaningful future
extension of the model.  Calculations with nerve fibres with a constant rather
than gradually increasing nodal spacing of 350  µm for the part of the fibre
proximal to the cell body (cf. Colombo and Parkins, 1987) did not give rise to
significant changes in the simulated excitation profiles nor in the computed
input-output curves and may therefore be considered to be of minor
importance.
The boundary element method was used to solve the volume conduction
problem for a number of reasons.  One of the advantages of the method is the
relative ease of mesh generation, which is of particular importance when a full
three-dimensional model of the cochlea is to be constructed.  Also the rapid
calculation of the potential distribution due to varying current source
distributions once the first step of the procedure has been performed (see the
description of the method) is a favourable property.  The use of second order
interpolation functions resulted in a good approximation of the shape of the
various structures in the cochlea (Fig.  2).  We also concluded that the accuracy
of the solution was sufficient despite the relatively small number of mesh
points, not only because of the limited  RMS errors as computed with eq.  1, but
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also because we found that doubling the average size of the sides of the
surface elements did only marginally affect the calculated neural responses.
We tested the sensitivity of  the model to uncertainties in the conductivity of the
various media by systematically varying the individual conductivities up and
down by a factor 2.  It turned out that this induced surprisingly  insignificant
changes to the calculated neural excitation patterns  for all media with
exception of the perilymph and the bone .  The main effect of doubling the
conductivity of the bone  was a reduction of the thresholds for ectopic
stimulation by 1 - 3 dB depending on the electrode site, probably due to an
increased radial current flow through the outer cochlear wall.  An increased
conductivity of the perilymph cause d an approximately proportionate increase
of the excitation thresholds , as well as a slight reduction of the gradient of the
I/O-curves.   As the conductivity of perilymph is known within a few percent,
while the conductivity of cochlear bone has been measured with  an accuracy of
approximately 3 0% (Suesserman, 1992), we concluded that the model
predictions are relatively insensitive to the uncertainties in all resistivit ies.
Several extensions and refinements to the present model are still conceivable,
some of which were already mentioned above.  Future versions of the model
will, for example, have to incorporate realistic electrode shapes instead of the
point current sources used here, since larger electrode surfaces and the
presence of an insulating electrode carrier in the scala tympani  will influence
the calculated potential distributions  (Finley et al. , 1987).  We expect, however ,
that the effect on the simulations presented here will be limited,  as Shepherd et
al. (1993) used relatively small electrodes, occupying less than 4% of the
cross-sectional area of the scala tympani (see their Fig. 1, which is to scale
according to its caption ).  Theoretically, the BEM allows for the inclusion of an
anisotropic conductivity in the modiolus  (Van Der Weiden and De Hoop,
1989; Zhou, 1994), but we have not yet fully finished the implementation of this
model extension.  In addition, we intend to construct a n anatomically-based,
fully three-dimensional (i.e. spiralling) mesh of the implanted cochlea .  This will
allow the calculation of neural excitation patterns due to current injection by
electrodes that are located in different cochlear turns.  Furthermore, such a
model will account for the electrical non-uniformity  of the cochlea as a
consequence of the tapering of the scalae from base to apex.  As can also be
inferred from Girzon’s  (1987) results, the influence of both this non-uniformity
and of the fact that  the the cochlea is a spiralling structure rather than a
rotationally symmetric one, is likely to  increase with increasing  inter-electrode
spacing.
It is the subject of further research to find out to what extent the present
rotationally symmetric model can deal with other experimental data, e.g., single
fibre mappings of the spatial selectivity of various electrode
configurations (Van Den Honert and Stypulkowski,  1987).  The results obtained
thus far make us confident that this modelling approach will help us in
identifying the biophysical constraints imposed on restoring hearing by
electrically stimulating the inner ear.  This insight, in turn, will be useful to
optimise stimulation strategies and electrode configurations in future cochlear
implant designs.
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Table A.I The parameters of the generalised SEF high spontaneous rate auditory nerve fibre model.

Parameter Unit Symbol Value

axoplasm resistivity Ωm ρi 0.7

nodal membrane capacitance pF Cm 0.189

nodal leak conductance nΩ -1 GL 2.43

nodal sodium permeability (µm)3s-1 PNa 172

nodal potassium permeability (µm)3s-1 PK 6.68

intracellular sodium concentration mol m-3 [Na+]i 10

extracellular sodium concentration mol m-3 [Na+]o 142

intracellular potassium concentration mol m-3 [K+]i 141

extracellular potassium concentration mol m-3 [K+]o 4.2

Temperature K T
310.15

(= 37°C)



119   Chapter V

[ ]dV
dt

V V I Ie act L

r
r r r r

= + + +A B C (A.1)

where:
r

V = (V1, ... , VN) the deviation from the resting membrane
potential,r

Ve = (Ve,1, ... , Ve,N) the extracellular potentials due to the
stimulating electrodes,r

Iact = (Iact,1, ... ,Iact,N) the sum of the active sodium and potassium
current per node,

and
r
IL = -GLVL⋅(1, ... ,1) with GL = the nodal leak conductance,

and VL = the leak current equilibrium
potential.

For non-uniform fibres like the present auditory nerve fibre the structure of the
matrices A, B and C given in the previous paper ( Frijns et al., 1994b) requires
a slight modification, to account for the variation with segment number k of the
nodal gap width lk, the internodal length Lk and axon diameter dk.  This leads to
the following dependence on k of the nodal membrane capacitance Cm,k, the
nodal leak conductance and the axoplasmic conductance Ga,k:

C c d lm k m k k, = π

G d l gL k k L= π

and

G
d

La k
k

i k
, = π

ρ

2

4

(A.2)

(A.3)

(A.4)

where cm = the membrane capacitance per unit area
gL = the leak conductance per unit area

and ρi = the axoplasm resistivity.

Appendix A.  the generalised SEF auditory nerve fibre model

The auditory nerve fibre model used in the present paper (Fig.  7) is an active
cable model of a guinea pig high spontaneous rate fibre, based on an extension
of the SEF model (Frijns et al., 1994b) to fibres of smaller diameter.  Here we
will only summarise the model equations and parameters of this auditory nerve
fibre model.  For symbols that are not explained in the text Table  A.I will
provide additional information.  For further details we refer to the literature
(Schwarz and Eikhof, 1987; Frijns et al., 1994b).  In the latter paper we showed
that the model equations of a uniform finite-length active cable model with N
nodes can be written as an equation with time-independent matrices A, B and
C and time-dependent vectors describing the status of all nodes:
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This results in the following expressions for A, B and C:
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In the high spontaneous rate auditory nerve fibre model used in the present
paper (Fig. 7) the nodal gap width l is fixed throughout the fibre. Also the
axonal diameter d is identical on both sides of the cell body.  The cell body
itself has a larger internal diameter (10  µm instead of 3 µm).  We could,
however, not detect any influence of the soma thickness on the computed I/O-
curves nor on the excitation profiles of the auditory nerve, but a large
discontinuity in the axon diameter resulted in up to ten-fold increased
computation times, due to the much smaller integration step-sizes required to
maintain numerical stability.  Therefore we decided to perform some of our
computations with a 3  µm soma thickness.
The generalised SEF model equations describing the active nodal sodium and
potassium currents I INa k K k, , and for each node k are:

[ ] [ ] ( )
( )I P h m

E F
RT

Na Na E F RT

E F RTNa k Na k k k
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(A.8)



121   Chapter V

[ ] [ ] ( )
( )I P n

E F
RT

K K E F RT

E F RTK k K k k
k o i k

k
, ,

exp

exp
= ⋅ ⋅

− ⋅
−

+ +
2

2

1
(A.9)

where T = the absolute temperature
F = Faraday’s constant
R = the gas constant
Ek = the transmembrane potential in node k

and mk, hk and nk are dimensionless variables describing the kinetics of the
ionic channels of node k.  For 

r
m =(m1, ... , mN) the matrix-vector equation

describing the set of first order differential equations that controls its time
course reads:
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Similar equations apply for 
r
h =(h1, ... , hN) and 

r
n =(n1, ... , nN).  The way the α

and β parameters in Eq. Error! Picture string contains unmatched quotes.
depend on voltage and temperature is described in detail in our previous paper
(Frijns et al., 1994b).  The equations are initialised with starting values 

r
m0 , 

r
h0

and 
r
n0  respectively, that ensure that the nerve fibre is at rest at its resting

potential Vr, i.e. dm
dt

dh
dt

dn
dt

r r r r
= = = 0  at

r v
V = 0 .  The value of Vr is

computed with the Goldman equation to account for variations in the ionic
content of the extracellular medium:
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In summary, for the 16 nodes of Ranvier included in the auditory nerve fibre
model a system of 64 coupled non-linear first order differential equations had to
be solved (viz. Eqs.  Error! Picture string contains unmatched quotes.r

h  and
r

and A.10 and the equivalent equations for  n ).  These equations were 
integrated by means of a fourth order Runge-Kutta algorithm with adaptive 
step-size control with step-sizes varying between 0.001 µs and 1µs.  These 
small integration steps were necessary because of the large range (over 40 dB) 
of stimulus strengths applied.
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Abstract
A rotationally symmetric model of electrical stimulation of the guinea pig
cochlea with active neural elements is used to study the influence of temporal
stimulus parameters and electrode configurations on the spatial selectivity of
electrical stimulation by cochlear implants.  Q 10 dB values of the excitation
patterns are determined with respect to the position of the stimulating electrode
pairs in the cochlea.  The results are compared against single fibre data from
the cat cochlear nerve as measured by Van den Honert and Stypulkowsky
(1987).  It turns out that the use of charge-balanced asymmetric rather than
symmetric biphasic pulses approximately doubles the number of independent
channels that can be applied in a cochlear implant with longitudinal bipolar
electrodes, like a configuration with radial electrode pairs using symmetric
biphasic pulse stimulation will also do.  Finally, the influence on selectivity of
the physiological variation in diameter of the cochlear nerve fibres and of a
possible loss of their peripheral processes is studied.

Introduction
The use of multi-electrode devices in electrical stimulation of the auditory
nerve in deaf patients is based upon the concept that isolated sub-populations
of surviving auditory nerve fibres can be stimulated by employing disparate
electrode combinations.  Since these nerve fibres are tonotopically arranged in
the cochlea (i.e. the fibres encoding for the higher frequencies are located
more basally and those encoding for lower frequencies more apically) such a
selective excitation of discrete parts of the cochlea is expected to give rise to
different psycho-acoustic percepts.  The clinical outcome with currently
available multi-channel implants is usually more favourable than that usually
achieved with older single-channel devices  (Gantz and Tyler, 1990).  This
suggests that it is worth-while to put further effort in optimising the spatial
selectivity of future devices.
The number of independent channels that can be used for frequency coding
depends on the interaction between separate electrodes.  There have been
several attempts to quantify this interaction, both psycho-
acoustically (Eddington et al., 1978;  Townsend et al., 1987) and
electrophysiologically with evoked potentials  (O'Leary et al., 1985) .  Recordings
from central auditory structures  (Black and Clark, 1980) and single fibre
recordings from the auditory nerve  (Van Den Honert and Stypulkowski, 1987)
provided additional information on the subject.
The region of excitation is larger with monopolar than with bipolar
stimulation (Shannon, 1983), while the observed interaction patterns for bipolar
stimulation broaden with increasing inter-electrode distance.  Non-simultaneous
stimulation results in a weaker interaction between electrodes  (Favre and
Pelizzone, 1993), an effect that is successfully applied in the so-called
continuous interleaved sampling (CIS) strategy  (Wilson et al., 1991) .  Phase-
locking the current pulses to the input signal adds temporal cues to this CIS-
strategy and results in an even better open set speech recognition  (Peeters et
al., 1993).  Other suggested ways to reduce channel interaction are to apply
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multipolar electrical stimulation rather than monopolar or bipolar to sharpen the
region of excitation  (Townsend and White, 1987) or to use radially instead of
longitudinally oriented electrode pairs  (Van Den Honert and Stypul-
kowski, 1987).
Most authors interpret these results in terms of current spread along the scala
tympani and some researchers tried to measure this spread experimen-
tally (Black et al., 1981;  Ifukube and White, 1987) .  In addition, several
computational models were developed to describe a nd understand the potential
distribution in the cochlea and the resulting neural excitation patterns.  The
simplest models assume an exponential decay of current from its source to the
neural elements (O'Leary et al., 1985) , whereas others consist of discrete resis-
tive  (Black and Clark, 1980) or resistive and capacitive  (Suesserman and
Spelman, 1993) elements.  Finley et al.  (1990) used the finite element method
to solve the three-dimensional volume conduction problem for an unrolled
cochlear turn and were able to explain the differences in excitation patterns
observed between radial and longitudinal electrode configurations with a
passive neural model.  Colombo and Parkins (1987) arrived at similar
conclusions regarding radial and longitudinal electrodes using an infinite,
homogeneous volume conductor and an active neural model.
In a previous paper  (Frijns et al., 1995a)  we presented a rotationally symmetric
model of the electrically stimulated guinea pig cochlea which incorporates
active neural elements, and computed excitation profiles of the auditory nerve
and their dependence on stimulus level and electrode position.  In order to be
able to compare these simulation data against available electrically evoked
auditory brainstem (EABR) data of cats  (Shepherd et al, 1993), we embedded
this cochlea model in a bony outer medium and adapted the dimensions of the
electrode configurations to account for the dimensional dissimilarities between
the cochleae of both species.  It turned out that the model predicted differences
between the thresholds and gradients of the EABR input/output curves for the
distinct electrode configurations that were in good agreement with the
experimental data.  We also showed that unrolling the cochlear duct ( Finley et
al., 1990) or the use of a passive neural model  (Warman et al., 1992) will lead
to erroneous conclusions.  In this paper we will apply this model to study the
influence of several relevant temporal stimulus parameters and electrode
configurations on the spatial selectivity that can be achieved with cochlear
implants.  We will also study to what extent the simulated responses are
influenced by physiological differences in diameter of the peripheral processes
of the auditory nerve fibres  (Gleich and Wilson,  1993) or by the total absence
of these dendrites as is frequently observed in deaf ears ( Johnsson, 1988;
Schuknecht, 1993).
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Materials and Methods
In the present study we will use the computational model of the implanted
guinea pig cochlea we described in a previous paper  (Frijns et al., 1995a)  as a
starting point, including the adaptations described in the Introduction to allow
for comparison with cat data.  The model consists of two sub-models, the first
one computing the potential distribution due to stimulating current sources in a
rotationally symmetric cochlear geometry, the other one describing the neural
responses to the calculated potential field.  We will give a short description of
both sub-models below.  For further details we refer to the above-mentioned
paper.

The rotationally symmetric volume conduction model of the second turn of the
guinea pig cochlea
For the purpose of simulating the neural responses to the focal injection of
stimulus currents into the cochlea we were interested in calculating the
potentials in the nodes of Ranvier of the auditory nerve fibres due to these
current sources.  As an analytic solution of such a three dimensional volume
conduction problem is restricted to geometries that are much simpler than the
cochlea, the problem had to be solved numerically.  We applied the numerical
method which is known as the Boundary Element Method or the Integral
Equation Method (Meijs et al., 1989 , Van Oosterom, 1991).  This method offers
the advantages of a relative ease of mesh generation and the opportunity to
perform calculations with multiple current source configurations instead of one,
with a limited additional amount of computational effort.  It requires
discretisation of the boundaries between volumes with different conductivity
rather than discretisation of these volumes themselves, and uses Green's
second theorem to express the potential distribution due to a current source
distribution in a piece-wise homogeneous volume conductor of arbitrary shape
as the superposition of two components.  The first component is identified as
the potential distribution that would be induced by these current sources in a
homogeneous medium of infinite extent, whereas the second component is a
correction term that accounts for the inhomogeneities in the volume conductor
in terms of imaginary secondary sources arising from the boundaries between
the various media.  To increase the numerical accuracy and to obtain a more
realistic shape of the modelled cochlea we discretised all boundaries with
quadratically curved triangular surface elements on which the potential was
also interpolated quadratically (Brebbia and Dominguez, 1992; Frijns and De
Snoo, 1995).
We limited the number of surface elements and the complexity of the mesh
generation by simplifying the spiralling cochlear anatomy to the rotationally
symmetric structure shown in Fig. 1c, which consists of 2240 curved elements
and 4194 nodes. This toroidal structure was created by rotating the cross-
section shown in Fig. 1a around the modiolus and ‘azimuthally’ subdividing the
created volume in sixteen segments in such a way, that the surface elements
located in the vicinity of the electrodes were smaller than those further away
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Fig. 1 a The modelled cross-section of the cochlea, which is based upon a histologic section
through the base of the second turn of a guinea pig cochlea.  The course of three nerve
fibres, one ending in the modelled second turn and two in more apical turns, is displayed.
The numbered dots along these nerve fibres designate the location of the nodes of
Ranvier.
The numbers in the scala tympani designate the radial dipoles with electrode spacing
187.5 µm, while the lower inset shows the way these dipole locations are combined to
obtain radial dipoles with electrode spacing 375  µm.  The upper inset summarises the
four longitudinal electrode sites (A  = near the outer wall; B = central in the scala tympani;
C = near the spiral ganglion; and D = underneath the dendrites).

b Top view of the boundary element mesh of the rotationally symmetric cochlea, illustrating
the smaller element size near the stimulating electrodes in order to reduce computational
errors.

c Three-dimensional view of the quadratically curved boundary element mesh of the
rotationally symmetric cochlea model, with a part intentionally left out.

(Fig. 1b).  The conductivities of the various media in the cochlea were derived
from experimental data in literature as listed in Table I.
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Table I The conductivities of the various cochlear tissues as used in the computations.  The data
were compiled from Finley et al.  (1990), Suesserman (1992) and Strelioff  (1973).  The
values for the basilar membrane and Reissner’s membrane are enlarged by a factor 5 and
10 respectively to correct for the geometric scaling of these membranes, which was applied
to minimise computational errors.

Tissue
Conductivity

(Ω m)-1

Scala tympani 1.43

Scala vestibuli 1.43

Scala media 1.67

Stria vascularis 0.0053

Spiral ligament 1.67

Reissner’s membrane 0.00098

Basilar membrane 0.0625

Organ of Corti 0.012

Bone 0.156

Nerve tissue 0.3

soma myelin

central axondendrite

10µm 1µm

175
µm

175
µm

175
µm

20
µm

150
µm

200 µm 250 µm 300 µm 350 µm 350 µm

1µm1µm

10µm

1µm

3µm
ddendrite

Fig. 2 The morphology of the auditory nerve fibre model that is used in the calculations.  For
high spontaneous rate (HSR) fibres the axonal diameter of the peripheral process ddendrite

is 3 µm, while it is 2  µm in simulations with low spontaneous rate (LSR) fibres.
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The auditory nerve fibre model
In our previous paper  (Frijns et al., 1995a)  we demonstrated that an active,
non-linear nerve fibre model produces more accurate predictions of the
excitation patterns in the auditory nerve due to biphasic stimuli than passive
estimators based upon the potential distribution in cochlea, such as the
activating function  (Rattay, 1989) or the total equivalent driving
function (Warman et al., 1992).  Therefore, also the present paper will use this
model of guinea pig auditory nerve fibres, which can simulate the response to
time-varying potential fields in the cochlea.  The model equations of this
auditory nerve fibre model, which has nodal kinetics based on voltage clamp
data in the rat  (Schwarz and Eikhof, 1987), are described in detail
elsewhere (Frijns et al., 1994b, 1995a, 1995b) and will not be reproduced here.
Fig. 2 shows the morphology of the bipolar auditory fibres used in the
calculations.  Most simulations in the present paper were performed for high
spontaneous rate (HSR) nerve fibres.  These fibres, which were also used in
our previous paper (Frijns et al., 1995a) , consist of a peripheral and a modiolar
axon with a diameter of 3  µm, interconnected by a cell body with a diameter of
10 µm.  The gap width of the nodes of Ranvier is 1  µm, and the length of the
unmyelinated terminal 10 µm.  Some calculations involved low spontaneous
rate (LSR) fibres, which have a similar morphology but have a terminal axon
diameter of 2 µm (Gleich and Wilson,  1993).
Although the volume conduction part of the model represents the geometry of a
single turn of the cochlea, it includes nerve fibres originating in three
successive cochlear turns, viz. in the modelled turn and the two more apical
ones.  In the modiolus, where all fibres are coming closely together, the more
apical fibres take a more central course to reflect the tonotopic organisation
normally present in the auditory nerve  (Fig. 1a).  The modelled second turn
accommodates 40 nerve fibres, the third and fourth turns 35 and 20,
respectively.  This means that the model incorporates approximately 15 fibres
per octave, or equivalently, 50 fibres per decade and that each modelled nerve
fibre represents about 250 real nerve fibres.

Measures of spatial selectivity
The model’s results can be interpreted in terms of spatial selectivity in several
ways.  In our previous paper  (Frijns et al., 1995a)  we computed the average
gradient for the first 12  dB of the calculated input/output curves for this
purpose.  Such I/O-curves (see Fig. 3b for an example) display the total number
of excited nerve fibres as a function of stimulus intensity and can therefore be
compared with experimental EABR data.  A shallow slope of such a curve
means a gradual recruitment of nerve fibres with increasing stimulus strengths,
which corresponds with a restricted region of excitation.  I/O-curves, however,
do not provide information on the distribution of the excited fibres along the
cochlear partition, which limits their value for the present study.
So-called excitation profiles (the rightmost four panels in Fig. 3) give more
detailed information on this subject, as they show the position of the excited
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fibres in the cochlea for a given stimulus level.  In these figures the part of the
nerve fibre (dendrite, soma or modiolar axon) where the initial excitation takes
place is indicated by a grey shading.  Such excitation profiles allow, e.g., the
identification of stimulus conditions for which the model predicts so-called
ectopic excitation of fibres from higher cochlear turns passing by in the
modiolus, which imposes a limit on the usable range of stimulus levels.
The excitation profiles also provide a way to quantify the spatial selectivity by
measuring the sharpness of the peaks in the distribution of the excited fibres
around the electrodes.  We will express this sharpness in terms of a quality
factor Q10 dB in analogy with the practice for measuring frequency selectivity in
hearing subjects (Evans, 1975) .  This Q10 dB is defined as the centre frequency
f0 of the region of excitation due to an electrode configuration, divided by the
bandwidth ∆f, 10 dB above the best threshold.  It is important to bear in mind
that this definition does neither imply that this threshold is reached at f0, nor
that the fibres corresponding with f0 are excited at all.  This applies, e.g., to the
bimodal excitation profiles in Fig. 3, which will be described in detail in the next
section.  Taking into account the fact that the model incorporates 50 nerve
fibres per decade (see the previous section), and assuming that a region with a
width of n simulated nerve fibres, centred around f0, is excited by a stimulus
10 dB above threshold, the corresponding Q10 dB can be computed as follows:

Q
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f f
dB n nn n10

0 0
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10 10
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A high value of Q10 dB, which, according to Eq.  1, depends only on the width of
the excited region and not on the place of excitation, corresponds to a small
region of excitation and thus to a high spatial selectivity.

Results

Influencing neural recruitment by stimulus parameters
In our previous study  (Frijns et al., 1995a)  we calculated neural excitation
profiles and input/output (I/O) curves for longitudinal bipolar electrodes at
positions, comparable to those used experimentally by Shepherd et al.  (1993).
These four positions (A  = near the outer wall, B = in the middle of scala
tympani, C = adjacent tot the modiolus and D = underneath the peripheral
dendrites) are illustrated in the inset in Fig. 1a.  We demonstrated that the
model’s results for all three tested inter-electrode spacings (‘bipolar’ = 375 µm,
‘bipolar+1’ = 750 µm and ‘bipolar+2’ = 1125 µm) were in good agreement with
available electrical ABR data in cats  (Shepherd et al, 1993) if the calculations
were performed for the same symmetric biphasic pulses (pulse width
200 µs/phase, the most apical electrode becoming cathodic first) as applied in
the experiments.  Fig. 3 displays this stimulus waveform and summarises the
results for the four ‘bipolar’ electrode configurations.  From the I/O-curve in
Fig. 3b it is clear that the excitation threshold greatly depends on the electrode
site: the electrode in the dendritic position (site D) has the lowest excitation
threshold, while the threshold for the electrode near the outer wall (site A) is
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approximately four times that value.  The underlying excitation profiles ( Fig. 3)
demonstrate that also the dynamic range as determined by ectopic stimulation
as well as the spatial selectivity vary with the exact position in the scala
tympani of the stimulating dipole.
The Q10 dB-values (computed with Eq.  1) for the four ‘bipolar’ electrode
configurations from Fig. 3 are listed in Table II together with similar data for the
corresponding ‘bipolar+1’ and ‘bipolar+2’ electrode configurations.  Evidently,
electrodes in the dendritic position (site D), which we showed to have the
lowest excitation threshold for all electrode spacings  (Frijns et al., 1995a) , also
exhibit the highest Q10 dB, indicating that these electrodes allow the most
localised excitation, while the outer wall position (site A) is the least favourable
in both respects.  On the other hand, the spatial selectivity in the excitation
profiles of all electrode sites deteriorates with increasing inter-electrode
distance: the average Q10 dB for the ‘bipolar’ electrodes is 1.89, while it is 1.28
for the ‘bipolar+2’ configuration.  Also the differences between the excitation

Fig. 3 a The symmetric biphasic current pulse ( I) applied to the basal electrode of the bipolar pair
used in the simulations presented in this figure.  The apical electrode has the opposite
polarity, i.e. it is cathodic first.

b The number of excited nerve fibres ( Nfibres) as a function of the stimulus current
(input/output curves) for the HSR auditory nerve fibre model ( Fig. 2) and the stimulus
waveform in (a) with ‘bipolar’ electrodes at the four electrode sites A, B, C and D (see
legend and the upper inset in Fig. 1a).
The rightmost four panels show the location along the cochlear turns of the excited nerve
fibres at a given stimulus strength for each of the four electrode configurations tested.
The location of the node of Ranvier where the initial excitation takes place is indicated by
a grey shading (dendrite = lightest, central axon  = black, around the
soma = intermediate).
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profiles for the four electrode sites diminish with increasing inter-electrode
spacing; electrodes in sites C and D are slightly more sensitive to this
parameter than those in sites A and B.
All excitation profiles in Fig. 3 show a bimodal distribution of excited fibres,
which is centred around the mid-plane between the electrodes constituting the
bipolar pair.  The central region of high excitation thresholds is an inevitable
consequence of the existence of a zero-potential plane in the centre of any
current dipole (cf. Fig. 6a), but close observation of the simulations suggested
that the almost symmetric bimodal distribution of excitation is caused by the
fact that symmetric biphasic pulses were used:  It appeared that the excitation
of nerve fibres near the most apical electrode of the current dipole took place
during the initial phase of the stimulus, whereas fibres close the other electrode
depolarised during the second stimulus phase.  In fact, most fibres appeared to
respond when the nearest part of the current dipole acted as the cathode,
especially for lower stimulus intensities.  From this observation we expected
that the use of monophasic stimuli would result in a unimodal distribution of
excited nerve fibres around the cathode, offering the opportunity to achieve
more localised stimulation. Fig. 4 shows the excitation profiles and the resulting
I/O-curves for the case of monophasic pulses of 200  µs duration and the same
four longitudinal ‘bipolar’ electrode configurations as used for Fig. 3, with the
more apical electrode acting as the cathode.  As argued above, there exists a
region of elevated thresholds near the mid-plane between the electrodes, and
the region with the lowest thresholds is located around the cathode indeed.
Thresholds around the anode tend to be 6 dB to 12 dB higher, resulting in a
range of stimulus intensities for which the slope of the I/O-curves in Fig. 4b is
approximately half that of the equivalent curve in Fig. 3b.  This is also reflected
in the Q10 dB-values in Table II, which are evidently higher than in the case of
symmetric biphasic pulses.  Now, the average Q10 dB is 5.02, while it was 1.89
for symmetric biphasic pulses.  For electrode site D the Q10 dB is even raised
from 2.40 to 10.85.  On the contrary, the Q10 dB for electrode site C remains
unchanged, as a consequence of the fact that this electrode site exhibits a
threshold difference between anodal and cathodal stimulation of just 6  dB(see
Fig. 4e).  Table II shows that similar observations hold for the ‘bipolar+1’ and
‘bipolar+2’ electrode spacings, although the relative advantage of monophasic
pulses over symmetric biphasic ones is less for larger inter-electrode distances.
The excitation profiles in Fig. 4 demonstrate another interesting phenomenon:
at stimulus strengths 2 to 8 times threshold for each individual fibre, nerve
fibres located near the cathode failed to generate action potentials that
propagated through the modiolus.  This so-called cathodal block resulted in a
gradual shift of the centre of excitation caused by the cathode away from the
mid-plane between the electrodes towards the apex.  Such an effect is not
discernible around the anode.
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Fig. 4 The same as Fig. 3, now for the monophasic current pulse shown in (a) with the more apical
electrode of the bipolar pair acting as the cathode.

Fig. 5 The same as Fig. 3, now for the charge-balanced asymmetric biphasic pulse shown in (a) with
the more apical electrode of the bipolar pair acting as the cathode during the first stimulus
phase.
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Although such monophasic stimuli apparently have favourable properties in
terms of an improved spatial selectivity over symmetric biphasic pulses, they
are not applicable for chronic stimulation in vivo as tissue damage will occur
due to net charge injection (see Discussion).  Comparison of Figs.  3 and 4
suggests that the application of charge-balanced asymmetric biphasic pulses
(cf. Fig. 5a) is likely to result in a significant increase in spatial selectivity,
comparable with the one obtained with monophasic pulses, while avoiding the
risk of tissue damage.  The concept behind this stimulus waveform is that the
first stimulus phase will excite fibres near the electrode that acts as the
cathode, while the second stimulus phase will reverse the charge injection with
a (longer lasting) current pulse that is small enough to prevent excitation near
the other electrode of the bipolar pair, which is the cathode during this stimulus
phase.  From Figs.  3 and 4 we inferred that a ratio of 5 (i.e. 14  dB) between the
amplitude of the first and second stimulus phase would suffice to produce this
effect for all four electrode sites.  Fig. 5 displays the simulated I/O-curves and
excitation profiles for all four electrode sites A  - D with this stimulus waveform,
while the third column in Table II lists the corresponding Q10 dB-values.  For ten
of the twelve electrode configurations tested these Q10 dB-values are identical to
the ones for the corresponding monophasic stimuli, given in the second column
of this table.  The two exceptions are the ‘bipolar’ and ‘bipolar+1’ electrodes
near the outer wall (site A), where the second stimulus phase was apparently
yet so large that it caused some additional excitation near the basal electrode
(see the corresponding excitation profile in Fig. 5).  As indicated by the
excitation profiles for the electrode sites C and D in Fig. 5 the use of
asymmetric biphasic pulses instead of monophasic ones caused another side-
effect as it counteracted the cathodal blocking effect in a number of instances.
Generally speaking however, the simulation data presented here indicate that
charge-balanced asymmetric biphasic current pulses improve the spatial
selectivity of longitudinal electrode pairs indeed, especially for small inter-
electrode separations.

The effect of radial bipolar electrode configurations
Another option to circumvent the occurrence of bimodal excitation patterns of
the auditory nerve as occur in conventional bipolar stimulation with symmetric
biphasic pulses (Fig. 3), is to apply bipolar electrodes that are radially rather
than longitudinally oriented with respect to the scala tympani.  As is illustrated
in Fig. 6, this rotation of the dipole axis rotates the zero potential mid-plane
between the electrodes also by 90 degrees.  Therefore this zero potential plane
does not cross the modiolus in the case of radially oriented dipoles, and the
situation is avoided that nerve fibres cannot be stimulated due the fact that
their entire coarse is in this equipotential plane.
To test to what extent the exact location of a radial dipole or the spacing of the
constituting electrodes influences the predicted excitation profile of the auditory
nerve and the spatial selectivity, we used the six dipoles shown in Fig. 1a.
Dipoles 1, 2 and 3 are positioned immediately underneath the dendrites, while
dipoles 4, 5 and 6 occupy more central positions  in the scala tympani.
Electrode
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pairs 1 and 4 have an inter-electrode distance of 375  µm (i.e. identical to the
‘bipolar’ longitudinal configuration), the other four dipole spacings are half this
value.  If the innermost electrode of a dipole acts as the positive electrode we
call the dipole anodic, while it is called cathodic if the negative electrode is
closest to the modiolus.
Fig. 7b shows the simulated I/O-curves for the six radial dipoles for anodic
monophasic pulses with a duration of 200  µs.  The corresponding excitation
profiles are also reproduced in Fig. 7.  Expectedly, the larger dipoles 1 and 4
yield lower excitation thresholds than the smaller ones located at the same
level in the cochlea.  However, excitation thresholds and the node of Ranvier
that is depolarised initially depend on the exact site in the scala tympani.  This
is illustrated (Table III ) by the fact that the threshold for the small dipole in
position 2 is even slightly lower than the one for the large dipole in position 4.

Table II The simulated Q10 dB-values (as computed with Eq.  1) for symmetric biphasic current
pulses (200 µs/phase), monophasic current pulses (200 µs) and charge-balanced
asymmetric current pulses (200 and 1000 µs/phase respectively) on longitudinal bipolar
electrode pairs with different electrode spacing (‘bipolar’ = 375 µm, ‘bipolar+1’ = 750 µm,
’bipolar+2’ = 1125 µm) in four electrode sites A  - D (Fig. 1).

electrode symmetric

biphasic

mono-

phasic

asymmetric

biphasic

bipolar
A 1.42 3.09 1.95
B 1.95 4.33 4.33
C 1.79 1.79 1.79
D 2.40 10.85 10.85

mean 1.89 5.02 4.73

bipolar+1
A 1.42 2.70 1.95
B 1.52 1.95 1.95
C 1.25 1.33 1.33
D 1.95 4.33 4.33

mean 1.54 2.58 2.39

bipolar+2
A 1.25 2.70 2.70
B 1.25 1.42 1.42
C 1.11 1.17 1.17
D 1.52 1.79 1.79

mean 1.28 1.77 1.77
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Fig. 6 a The potential distribution in a horizontal plane through the peripheral processes of the
auditory nerve fibres (i.e. at 0.05  mm on the vertical axis in Fig. 1a) for the longitudinal
‘bipolar’ electrode configuration close to the dendrites (site D in Fig. 1a).  The circles
represent the boundaries between the various media (from the inside out: modiolar nerve
tissue, osseous spiral lamina, dendritic nerve tissue, organ of Corti, scala media, stria
vascularis, spiral ligament, outer wall bone).  The numbers on the equipotential lines
indicate the potential in millivolts due to the injection of a current of 1  mA.  Note the
existence of a zero potential plane running midway between the electrodes through the
origin.

b The same as (a), now for the radial dipole pair 3 ( Fig. 1a), which has the same electrode
spacing as the longitudinal dipole used to compute (a).

b

a
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An interesting observation in Fig. 7 and Table III  is the fact that for both
stimulus polarities electrodes 1, 2 and 3, which are located just below the
dendrites, give rise to a higher spatial selectivity (average Q10 dB 4.6 vs. 1.5), a
lower excitation threshold (by 8.2  dB on the average) and a 6 to 12  dB larger
usable range of stimuli with respect to ectopic modiolar stimulation than the
electrodes 4, 5 and 6 that are located more centrally in the scala tympani.  The
model results do not reveal any consistent relationship between the spacing of
the electrodes and the sharpness of the simulated distribution of the excited
fibres as expressed in the  Q10 dB.
A similar analysis was made for cathodic monophasic pulses of the same
duration.  The results are presented in Fig. 8 and Table III .  For this stimulus
polarity the model predicts excitation thresholds that are lower by a factor 2.6
on the average than those for the anodic monophasic pulses.  As with anodic
stimulation we find also for cathodic pulses the highest Q10 dB-values for
electrode positions just below the dendrites.  For these electrode positions
polarity reversal has much more impact on the Q10 dB than for the electrodes
located more centrally in the scala tympani.  Polarity reversal lowers the
simulated thresholds for the fibres from more apical turns more than those for
the turn, where the electrodes are located.  Especially for electrode positions 4,
5, and 6 this imposes a serious constraint on the predicted dynamic range
(Fig. 8).  As is readily seen in the simulated I/O-curves and excitation profiles
of Fig. 8, the model predicts such a large influence of cathodal blocking, that
the number of excited fibres even decreases for stimulus currents above 5  mA.

Table III The simulated excitation thresholds and Q10 dB-values (as computed with
Eq. 1) for monophasic current pulses (200 µs) and the six radial di poles of
Fig. 1a.  The stimulus polarity is defined according to the polarity of medial
electrode.  The column an/cath lists the ratio between the threshold currents
for anodic and cathodic dipoles.

electrode anodic cathodic an/cath

threshold

(mA)

Q10dB threshold

(mA)

Q10dB threshold

ratio

1 0.39 3.09 0.14 4.33 2.8
2 0.75 3.09 0.15 7.23 5.0
3 0.80 4.33 0.39 5.42 2.1
4 0.77 1.42 0.36 1.65 2.1
5 1.33 1.52 0.55 1.95 2.4
6 2.17 1.42 1.57 0.82 1.4
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Fig. 7 The same as Fig. 3, now for the monophasic pulse shown in (a) and
the six radially oriented current dipoles of Fig. 1a, with the electrode
closest to the modiolus acting as the anode.  The numbers (1 and 4
on this page, 2, 3, 5 and 6 on page  141) in the legends refer to the
corresponding electrode configuration.

Fig. 8 As Fig. 7, now for monophasic current pulses of the opposite
polarity, i.e. with the more medial electrode acting as the cathode.
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The influence of the peripheral processes
There exists a considerable variability in the morphology of the auditory nerve
fibres in a normal cochlea, especially in the diameter of the peripheral
processes, which are also called dendrites (Gleich and Wilson,  1993).  In the
simulations presented in the previous sections, however, we used for all nerve
fibres the standard morphology of an average HSR fibre, which has a relatively
thick dendrite (3 µm, Fig. 2).  Since thinner nerve fibres are known to exhibit
higher excitation thresholds  (Gorman and Mortimer, 1983), the question arises
to what extent the presence of LSR fibres (which are known to possess thinner
dendrites, see Gleich and Wilson,  1993) influences the excitation pattern of the
electrically stimulated auditory nerve.  This is the more interesting, as the
relative contribution of this fibre type to the total auditory fibre population is not
exactly known, but estimates range from 25% to over 50% ( Gleich and
Wilson, 1993).  Therefore, we performed simulations with a nerve fibre model
that has a thinner dendrite (2  µm) and thus is more representative for LSR
fibres.  It turned out that the calculated excitation thresholds are approximately
2 dB higher for LSR fibres indeed ( Table IV), and that these differences vary
with the electrode spacing.  As is illustrated by the Q10 dB-values in Table IV,
also the spatial selectivity is only influenced marginally by the diameter of the
peripheral processes (cf. Table II).  Because of this, also the excitation profiles
and I/O curves closely resemble the corresponding results for HSR fibres
(Fig. 3).  Therefore they are not reproduced here.
In profound deafness, loss of entire peripheral processes is often reported, and
this situation may grow worse after the insertion of a scala tympani electrode
(Linthicum et al., 1991 ; Schuknecht, 1993).  To study the influence of this
phenomenon on spatial selectivity, we performed simulations with nerve fibres

Fig. 9 As Fig. 3, now for the situation that all nerve fibres have lost their peripheral processes.
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that did not extend beyond the cell body in the spiral ganglion.  As is shown in
Fig. 9, the absence of the peripheral dendrites has considerable influence on
both the simulated excitation thresholds and the spatial selectivity of most
electrode positions.  An exception to this observation is formed by the electrode
position close to the cell bodies (site  C).  For this site the excitation thresholds
are increased by about 2 dB relative to the thresholds for HSR fibres, while the
thresholds are elevated by approximately 15  dB for the other ‘bipolar’ electrode
positions (Table IV).  The threshold differences diminish slightly with increasing
electrode separation, but, according to the model’s predictions, ectopic
stimulation in the modiolus will occur for stimuli that are just a few decibels
above threshold for all electrode configurations tested ( Fig. 9).

Discussion
This paper used the rotationally symmetric model of the electrically implanted
cochlea we developed recently (Frijns et al., 1995a)  to study the way stimulus
Table IV The influence of thinner (2  µm, LSR) or absent (No Dendrite) peripheral processes of

the auditory nerve fibres on the simulated excitation thresholds and Q10 dB-values (as
computed with Eq. 1) for symmetric biphasic pulses (200  µs/phase).  Threshold
differences are given in decibels relative to the corresponding thresholds for non-
degenerated HSR-fibres (ddendrite =3 µm).

electrode LSR No Dendrite

threshold

(mA)

relative
threshold

(dB)

Q10 dB
threshold

(mA)

relative
threshold

(dB)

Q10 dB

bipolar
A 0.594 1.5 1.65 2.650 14.5 0.67
B 0.342 1.8 1.95 1.288 13.3 1.33
C 0.219 1.8 1.65 0.225 2.1 1.52
D 0.138 0.9 2.40 0.813 16.3 0.95

mean 1.5 1.91 11.6 1.12

bipolar+1
A 0.369 2.7 1.42 1.463 14.7 0.64
B 0.261 3.1 1.42 0.794 12.7 0.70
C 0.189 2.9 1.11 0.170 2.0 1.11
D 0.099 0.9 1.95 0.434 13.8 0.90

mean 2.4 1.47 10.8 0.84

bipolar+2
A 0.270 2.5 1.25 0.844 12.4 0.70
B 0.197 2.1 1.25 0.447 9.3 0.75
C 0.140 2.3 0.99 0.124 1.3 0.99
D 0.095 0.6 1.65 0.334 11.6 0.82

mean 1.9 1.28 8.6 0.82
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and patient related parameters influence the spatial selectivity obtained with
cochlear implants.  For this purpose we computed neural excitation patterns
and the corresponding input-output curves for various stimuli, electrode
configurations and nerve fibre morphologies.  As the spatial selectivity of a
stimulus configuration is reflected in the sharpness of the peak around the
electrodes in the computed excitation profiles, we measured this spatial
selectivity in terms of a quality factor, Q10 dB (Eq. 1), that resembles one used to
quantify tuning in single fibre measurements in hearing animals  (Pickles,
1988).  In this respect it makes sense to compare the Q10 dB-values in
Tables II  - IV to auditory single fibre data, which usually render Q10 dB-values
between 2 and 8 (Evans, 1975) .  There are, however, some fundamental
differences.  While a tuning curve represents the threshold of a single nerve
fibre for a pure tone stimulus of varying frequency, the excitation profile in the
case of electrical stimulation depicts the response of a region of nerve fibres to
a single stimulus configuration with varying intensity.  However, in the present
rotationally symmetric model with uniformly distributed nerve fibres, Q10 dB will
obviously have the same value if it is computed either by measuring the width
of the excitation profile 10  dB above threshold as done in this study, or by
shifting the entire electrode configuration (with a stimulus strength of 10  dB
above threshold) along the length of the basilar membrane while monitoring the
response of a single nerve fibre.
Direct comparison of the simulated Q10 dBs against experimental values can
only be done in a restricted way, for single nerve fibre studies to electrical
stimulation by similar electrode configurations are scarce.  Van Den Honert and
Stypulkowski (1987) performed such single fibre recordings for both electrical
and acoustic stimuli in normally hearing cats.  The relative dimensions of their
longitudinal bipolar electrodes (500 µm ball contacts with 2  mm distance) to the
basal turn in the cat cochlea were comparable with our ‘bipolar+1’ (electrode
spacing 0.75 mm) configuration in the simulated second turn of the guinea pig
cochlea.  For monophasic current pulses on these longitudinal dipoles they
observed Q10 dB-values ranging from 0.53 to 2.62 with a mean of 1.25, while the
average simulated Q10 dB for the four ‘bipolar+1’ electrode sites A  - D is 2.58
(range 1.33 - 4.33, Table II).  They reported lower and sharper minima in the
distribution of the excitation thresholds when the apical electrode served as the
cathode and explained this longitudinal polarity effect on the basis of the
diminishing dimensions of the scala tympani from the round window to the
apex.  As the rotationally symmetric model does not account for this tapering, it
is not surprising that the model does not exhibit any effect of a polarity reversal
on longitudinal dipoles on the threshold or the spatial selectivity.  The simulated
thresholds for modiolar fibres coming from more apical turns of the cochlea are
at least 12 to 20 dB above the ones in the turn where the electrodes are
located, which is comparable with the minimum threshold difference of 14  dB
for fibres differing at least one octave in characteristic frequency as reported by
Van Den Honert and Stypulkowski  (1987).  As contrasted with their
measurements the model does, however, not yield a uniform distribution of
excitation thresholds for these ‘distant’ fibres ( Fig. 8).  It is not clear whether
this difference is caused by the fact that Van Den Honert and Stypulkowski
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used normally hearing animals or by one or more invalid assumptions in our
model.
The simulated excitation thresholds are comparable with the ones reported by
Van Den Honert and Stypulkowski  (1987)1 or all (longitudinally and radially
oriented) dipoles.  Unlike these authors, however, we found the average
threshold for radial electrodes to be 8.3 dB lower rather than higher if the
cathode was placed medially (i.e. close to the neural elements) instead of
laterally.  Finley  et al. (1990) arrived at a similar conclusion using the activating
function (Rattay, 1989) to estimate neural responses in an unrolled cochlear
volume conduction model.
The spatial selectivity of radially oriented dipoles does not seem to depend on
the stimulus polarity in the measurements of Van Den Honert and
Stypulkowski (1987).  Regarding such electrode configurations these authors
report higher Q10 dB-values (mean 4.04, range 2.0 to 6.6) than for longitudinal
electrode pairs.  The corresponding simulation data exhibit a slightly larger
variability with Q10 dB s ranging from 0.8 to 7.2, while the average of 3.03 is not
much larger than the average Q10 dB for the ‘bipolar+1’ longitudinal electrode
configuration.  We found however, that the position in the scala tympani, for
which Van Den Honert and Stypulkowski reported that they could not it control
experimentally, has a major influence on the spatial selectivity with radial
electrode orientations:  The Q10 dB-values for both anodic and cathodic
electrode configurations 1, 2, and 3 are at least twice (and up to 6.6 times)
these values for the corresponding electrodes lower in the scala tympani (4, 5,
and 6, respectively).  In addition, polarity reversal does virtually not influence
the computed Q10 dB for electrodes 4, 5, and 6, while it does have influence on
the spatial selectivity for radial electrodes high in the scala tympani (1, 2, and
3).  From these observations we conclude that the widely accepted view that
radially oriented electrode pairs have favourable properties in terms of spatial
selectivity probably needs some nuance.
It is well known from functional electrical stimulation of the peripheral nervous
system that the stimulus waveform can be used as a means to influence the
neural recruitment characteristics  (Gorman and Mortimer, 1983), especially
when the nerve contains nerve fibres with clearly different diameters.  In the
case of electrical stimulation of the eighth nerve in the cochlea, however, the
model predicts such an influence, even if all fibres would have the same
morphology:  Figs.  3 and 4 and Table II show that monophasic pulses result in
a more circumscript region of excited nerve fibres than symmetric biphasic
ones in the case of longitudinal bipolar electrodes, especially for relatively
small inter-electrode spacings.  As Van Den Honert and Stypulkowski  (1987)
already inferred from their measurements, monophasic stimuli excite
predominantly nerve fibres around the cathode, at least for stimuli that are less
than 6 to 12 dB supra-threshold.  This is in accordance with the fact that (real
and modelled) nerve fibres react with four to eight times lower thresholds to
stimulation by an extracellular cathode than to anodal stimulation (polarity
selectivity ratio, Frijns et al., 1994b).  The simulation data in Fig. 5 indicate that

1
From comparison of their Table I and Fig.  4 with their Fig.  3 we concluded that the unit along
the vertical axes in their Figs.  3, 5, and 6 should be mA rather than µA.
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this more selective stimulation can also be achieved by applying charge-
balanced asymmetric biphasic pulses.  An important advantage of such charge-
balanced asymmetric biphasic stimuli over monophasic pulses for neural
prostheses is the fact that no net charge is injected into the tissue.  This is
generally considered an obligatory condition to avoid damage to the inner ear
tissues (Donaldson and Donaldson, 1986; Brummer and Turner, 1977).  We
expect that the use of asymmetric rather than symmetric biphasic stimuli in
cochlear implants will result in an increased perceptual difference between
stimulating electrodes as their regions of excitation show less overlap.  In other
words, this strategy, which is applicable with any type of cochlear implant with
longitudinal electrodes, is expected to give the patient more independent input
channels.  A possible limitation of this technique, e.g., when used in
combination with the continuous interleaved strategy  (Wilson et al., 1991) , is
caused by the fact that the duration of the charge-balancing second phase of
an asymmetric biphasic pulse is prolonged by a factor equal to the amplitude
ratio of the first and second phase.  This can lead to overlap in time between
current pulses on different electrode pairs with the possible consequence of
broadened excitation patterns.  The application of an exponentially decaying
instead of a rectangular second stimulus phase (Gorman and Mortimer, 1983)
might serve to overcome this problem.  Future studies will have to clarify this
issue.
Another aspect of the use of monophasic and asymmetric biphasic pulses that
should be discussed in this context is the phenomenon of ‘cathodal blocking’ or
‘anodal surround’ (Ranck, 1975).  This phenomenon occurs in the vicinity of
any cathode at higher stimulus intensities: the stimulus elicits an action
potential near the nerve fibre's terminal, but the stimulus itself prevents its
propagation due to a strong hyperpolarisation of the more distant, modiolar part
of the fibre.  The model predicts that this phenomenon will have serious
impact, e.g. in the case of a radial dipole with the cathode located medially,
where the predicted number of excited nerve fibres even decreases with
increasing stimulus intensity for stimulus strengths above 5  mA (Fig. 8b).  This
is in accordance with experimental findings for the amplitude of the electrically
evoked compound action potential ( Prijs (1980), Fig.  6).  The simulation data
indicate that this unwanted effect can be prevented by application of biphasic
stimuli, as the polarity reversal in the second stimulus phase will eliminate the
cathodal block.  Since the Q10 dB-values for radial dipoles do not notably
depend on the stimulus polarity, symmetric biphasic pulses will suffice for this
purpose.  The simulation data regarding ectopic stimulation in the modiolus
suggest, however, that an electrode configuration with the anode in the medial
position will yield a larger dynamic range, and charge-balanced asymmetric
biphasic pulses may come in useful to mimic this situation without the risk of
damaging the cochlear tissues.
The simulations with auditory nerve fibres with thinner peripheral processes,
which are the modelled counterparts of LSR fibres (Liberman and Oliver  ,1984;
Gleich and Wilson,  1993), did - apart from a slight (circa 2  dB) increase in
excitation  - not reveal  any significant differences with the simulations for HSR
fibres, which possess thicker dendrites.  This means that physiological
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variations in size of the auditory nerve fibres ( Gleich and Wilson,  1993) are not
expected to have significant influence on the performance of cochlear implant
users.  The situation with respect to the loss of peripheral dendrites following
hair cell degeneration, however, is quite different:  The model predicts that this
will result in an increase in excitation threshold and as a consequence in a
reduction of the dynamic range by approximately 10  dB.  As is illustrated in
Table IV, this threshold change is accompanied by a significant reduction of the
spatial selectivity.  An exception to these general observations is formed by
electrodes close to the cell body (like site C) for which excitation occurs near
the soma, even in the presence of a dendrite.  Unfortunately, such electrode
positions are among the less favourable ones in terms of spatial selectivity
when there is no neural degeneration, and currently available pre-operative
tests do not yield sufficient information regarding the number of intact auditory
nerve fibres ( Estève-Fraysse et al., 1993 ).
We conclude that the rotationally symmetric, integrated neuron-field model of
the implanted cochlea provides a valuable means to study the relative
influence of various parameters on the spatial selectivity that can be achieved
with a cochlear implant.  Since the model includes active neural elements, we
were able to include not only geometric factors such as electrode orientation
and variations in nerve fibre morphology (including degeneration of the
peripheral process) in the present study, but also the temporal waveform of the
stimuli.  This analysis led, amongst others, to the conclusion that the
application of charge-balanced asymmetric biphasic current pulses is probably
a way to realise the relatively localised excitation pattern produced by
monophasic current pulses while complying with biological safety
considerations.  On the basis of our results, such charge-balanced asymmetric
current pulses are expected to yield Q10 dB-values for longitudinally directed
bipolar electrode pairs that are comparable with those for radial dipoles, which
means approximately a doubling of the number of non-overlapping loci of
stimulation without the need to change the design of the longitudinal electrode
arrays currently available.  Therefore it will have to be the subject of further
studies whether these stimuli indeed provide a good alternative for the
- technically difficult to manufacture  - radial electrode configuration that is
generally considered to give the best spatial selectivity.
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Abstract
To meet the needs of our research programmes on auditory prostheses for the
totally deaf, a 15-channel data acquisition and waveform generator system with
flexible triggering, pacing and linking was developed.  It allows both
synchronous and asynchronous operation at high speed.  Each channel of the
system, which is controlled by a simple personal computer, has an on-board
microcontroller, a 512 kWord signal memory, a voltage input and both voltage
and current outputs.  The system includes a master pacer and trigger unit with
elaborate hardware and software triggering options.  This paper describes the
system hardware and the software used to control it.  Finally, some of its
applications are demonstrated.  The flexibility of the system makes it widely
applicable in the field of biomedical engineering.

Introduction
During the past decade many digital signal processing and waveform
generators for use with a personal computer have become commercially
available.  Many of those devices provide for an optional multi-channel output
by means of a multiplexer, which inevitably causes a diminished sampling rate
per channel.  For our research programmes on auditory prostheses for the
totally deaf, however, we needed a multi-channel, non-multiplexed
(synchronous) waveform generator with at least 5  µs time resolution per
channel and with voltage and current outputs to test new multi-polar stimulus
patterns in laboratory animals.  Additionally, the need was felt to be able to
record simultaneously the output of all eight electrodes of the LAURA
prosthesis [1] in an exact time relation to a standardized speech sample for the
purpose of testing new speech processing strategies.  It did not appear feasible
to fulfill the speed and timing requirements with commercially available
equipment, and so we decided to develop a flexible, multi-channel data
acquisition and waveform generator system which allows both synchronous and
asynchronous operation at high speed and which has copious memory for the
storage of (speech) signals.  In this paper we present the resulting system and
some of its applications.

Hardware
Figure 1 shows a functional overview of the system.  It consists of up to 15
identical data acquisition and waveform generator (DAWG) cards and a pacer
and master trigger unit that are connected to a bidirectional communication
bus.  This bus is controlled from a personal computer through a special-
purpose PC controller card.  To reduce power consumption all hardware was
developed in CMOS technology.

The PC controller card and communication bus
Any IBM ® XT-compatible personal computer can be used to control the DAWG
system.  For this purpose a dedicated controller card was developed, which
uses the prototype card address range in the PC (300H - 30FH) for I/O.  The
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output of this controller card is the so-called communication bus, which consists
of a 16-bit channel selection bus, an 8-bit buffered bidirectional PC data bus
and a reset and interrupt* line.  This interrupt line generates an interrupt request
on the PC (IRQ2, 3 or 4 depending on a jumper setting) when a DAWG card
sends data or an error message to the host computer.  The channel selection
bus contains a single line for each card, allowing simultaneous communication
of the PC with multiple DAWG cards, for example, to speed up communication
when transferring the same waveform to different cards or to start conversion
in multiple cards with a single soft trigger command.  Similarly, a selected
number of cards can be reset with a single command.  If all cards must be
reset simultaneously, the reset line is used.

Data acquisition and waveform generator cards
Each DAWG card allows one to generate a pre-programmed waveform while
simultaneously recording any input signal. Both signal generation and recording
are performed with a 12-bit resolution.  The functional layout of the card is
shown in figure 2.  Its core is the so-called signal memory (512  kWord static
RAM (random access memory)), which is accessed through a 16-bit
bidirectional data bus and a 20-bit address counter.  This address counter is
under control of the clock select unit and can be programmed to count up or
down, in order to enable sequential access to the signal memory during signal
processing.  Additionally, the address counter can be programmed to give
cyclic access to a given address range.  The clock select unit in turn allows
selection of either an external pacer clock (e.g. from the pacer and master
trigger unit) or signals from the microcontroller unit, which is described below.
Depending upon the settings of this microcontroller unit there are three

* An interrupt is a signal indicating that the PC s hould suspend its current
task to serve a designated activity, e.g., process an error message.

Figure 1. An overview of the data acquisition and waveform generator (DAWG) system which is
controlled from a personal computer through a dedicated PC controller card.  The system
can contain up to 15 identical DAWG cards and a pacer and master trigger unit.
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conversion options available: these are analogue to digital conversion (ADC),
digital to analogue conversion (DAC), and so-called alternating conversion,
which means that the conversion mode switches between ADC and DAC after
every sample.  Applications of the alternating conversion mode include the
programmable delay line function and impulse response recording.
To ensure high-speed operation data acquisition or waveform generation is
initiated by a pacer clock without intervention of the microcontroller.  As a
consequence the maximum sampling rates are limited by the DAC (Analog
Devices AD 667) and the ADC (Analog Devices AD 7870) to 300  kHz (full-
scale sweep) and 100 kHz respectively.  The signal-to-noise ratio is 72  dB for
the voltage output and 68  dB for the voltage input.  With future replacement of
these convertors by faster - and, if desired, up to 16-bit - ones, sampling rates
> 2 MHz are possible without the need to change other hardware components.
In fact, with the existing DA convertor, smooth signals (e.g. sinusoids) with
sampling rates of 1.3 MHz have been generated.  For the purpose of patient
security in future applications the DAWG cards will have an optional isolation
area which includes the input amplifier and the output voltage and current
sources.  The current source has three software selectable output ranges
(maximum positive and negative output current 100  µA, 1 mA and 10 mA,
respectively); the settling time constant for a full range current step is 6  µs.
The 16-bit HPC 46003-based microcontroller unit of each DAWG card consists
of the processor and its associated EPROM (erasable programmable read-only
memory) and RAM (each 32 kB) and a timer module.  This unit has two main
tasks.  The first one is to control the settings of the actual data acquisition
and/or waveform generation process.  An example of such a setting is done via
the clock select unit to allow the selection of either an external pacer clock or a
pacer clock that is derived (by division) from the 16  MHz crystal used to drive
the HPC 46003 CPU.  Alternatively, the processor itself can take control over
the address counter of the signal memory by means of its read/write signals.
Other settings performed by the microcontroller include the definition of the
start and end address in the signal memory that will be used and -in the case of
waveform generation-the number of cycles that will be produced.  The
microcontroller unit is also responsible for the pre- and post-triggering facilities
available, and it generates variably delayed output triggers.  The second main
task of the microcontroller unit is the transfer of data between the personal
computer and signal memory.  The basic functions are programmed in the
EPROM (see below).  Downloading of new functions into the RAM (e.g., signal
averaging routines) is one of these basic functions.

Pacer and master trigger unit
As shown in figure 3 the interface structure of the pacer and master trigger unit
is identical to that in the DAWG cards.  Again the microcontroller unit is
primarily used to control the settings of the device.  The pacer unit consists of
16 independent synchronous 32-bit modulo N counters driven by a single
33 MHz
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crystal.  The division factor N is programmed for each counter separately and
allows for pulse rates below 1 pulse/min, with a frequency resolution < 1% for
rates < 330 kHz.  This makes the unit applicable for both sweep triggering and
the pacing of the conversion process in the DAWG cards.  The high frequency
resolution obtained is useful in, for example, eliminating the need to recompute
the signal when performing a frequency sweep with a sinusoid.  The various
pacer clock signals are distributed to the DAWG card through the pacer bus
(figure 1).
The device has 16 hardware trigger inputs that can be coupled to the trigger
bus via the master trigger unit.  In turn, this unit can also respond to soft trigger
commands from the microcontroller unit or to (delayed) output triggers from
DAWG cards.  As a consequence the triggering facilities of the device are very
flexible, also because the same trigger that is used to start the conversion
process in one or multiple DAWG cards can be used to start one or more pacer
clocks simultaneously.  This ensures an exact synchrony between, for example,
sensory stimulation and the recording of the physiological response.  Since
these pacer clocks are derived from a single source, the conversion processes
in the individual DAWG cards have a constant time relation, even if they occur
at different clock rates.  If, on the other hand, truly asynchronous operation is
required, one can make use of the CPU clock on the DAWG card (see above).

Software
The 15 channel data acquisition and waveform generator system is controlled
by the on-board software for the microcontroller in each card and a software
driver in the personal computer.

On-board software in ROM
The HPC 46003 microcontroller of the individual cards is used in the 16-bit
mode.  The software was written in assembly language and stored in the 32 kB
EPROM available in each card.
On power-up a reset procedure is performed which initializes the system.  Then
the processor enters an infinite loop in which it monitors the state of four
switches on the front panel (figure  4).  These switches can be used to initiate
test procedures such as testing the signal memory.
Commands issued from the personal computer give rise to a non-maskable
interrupt, which forces the microcontroller to leave the infinite loop.  After
completion of the command it will return to this loop again and wait for another
command. Each command can have 0 - 3 16-bit parameters which are sent to
the microcontroller as consecutive data words.  Two bits of the eight-bit
command are used to encode the number of parameters, and another bit is
used to tell whether a ROM or RAM routine should be executed.  The
remaining five bits serve to encode the command number, allowing for 32 pre-
programmed ROM routines.  The possibility of installing up to 32 additional
command routines in the RAM further enhances the flexibility of the system.
Table 1 gives a listing of the most important ROM commands.  A detailed
description of all commands is beyond the scope of this paper. Suffices it to
state that most ROM commands cause the microcontroller to perform a basic
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operation, such as loading the address counter of the signal memory (see
figure 4) or setting the rate of the internal pacer clock, although some
commands initiate a more complex process such as configuring the card as a
digital delay line or as a storage oscilloscope. A special command is the so-
called bit-command, which has one parameter.  Each of the 16 bits of the
parameter signals an action that must be performed.  The bits are evaluated
from low to high order and it is, for example, possible to enable the external
pacer clock and the soft trigger and give the soft trigger impulse in a single
action.
Some commands cause the microcontroller of a DAWG card to send data back
to the personal computer.  An interrupt request will signal the PC that the data
word is available.  In order to increase the speed of communication this
interrupt is suppressed during the transfer of large blocks of data from a DAWG
card to the PC.  Similarly, the microcontroller will produce an interrupt when it
sends an error code to the PC.

Software for the personal computer
It is, of course, possible to issue the basic commands of the microcontrollers as
I/O instructions from a high-level programming language.  For reasons of
speed and memory usage we have written an assembly-language driver that
performs all handshaking procedures when using the basic commands.  Where
it is feasible the driver allows one to send commands and/or data to multiple
cards simultaneously.  It also contains an interrupt handler to deal with error
messages and a number of standard routines that combine several basic
commands into a single action.
One such routine performs the initialization of the system.  It detects which
DAWG card numbers are physically present, waits until they have all finished
their reset procedure and then tests the communication.  It also installs the
interrupt routine if this has not been done yet.  An often-used routine allows the
user to send a signal from a file on disk to a specified part of the signal
memory of selected DAWG cards, and also perform the settings necessary to
clock the signal out through the DA-convertor.  Other routines allow the transfer
of additional RAM routines to selected microcontrollers or the transfer of data
from the signal memory to a file on disk.
The driver is an executable file that is not linked into the application software
but loaded below it in memory by means of a so-called application loader,
which also makes the memory address of the driver software available to the
application software.  After completion of the application it removes both the
application and the driver from memory.  The driver can be used with
application programs written in any high-level programming language provided
that the correct assembly language interface is used.  At present, such an
interface is available for ASYST ® (version 2.00 or higher) and Turbo Pascal ®

(version 4.0 or higher).
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Table 1 Brief description of some important ROM commands built into each DAWG card.

Command name
No. of

parameters Brief description

ModeLatch 1 Change the contents of the registers
that determine the mode of conversion
(ADC, DAC, or alternating) and the
counting of the address counter

Receive 3 Receive a number of data words from
the PC and store these into the signal
memory

Send 3 Read data from the signal memory and
send these data to the PC

AddressCounter 2 Set the reload value of the address
counter and optionally load this value
into the counter immediately

PrePostTrig 3 Activate the pre-triggering or post-
triggering function

DelayTime 1 Change the delay between input trigger
and output trigger

Fclock 1 Set the frequency of the on-board
pacer clock

Ncycles 2 Set the number of waveform cycles to
be produced

Nsamples 2 Set the number of samples in a cycle

IoutMax 1 Select the current output range

DelayLine 3 Set the DAWG card to function as a
delay line for analogue signals

StorScope 3 Set the DAWG card to function as a
storage oscilloscope

BitCommand 1 Perform an action depending on each
bit set in the parameter word (see text)
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Applications
The development of the multi-channel data-acquisition and waveform
generator system was necessary for the cochlear implant projects at both
universities, where it is a critical research tool in the development of new
speech-encoding strategies since it offers the possibility of simultaneous and
synchronized recording and stimulation.  The ultimate goal of a cochlear
implant is to restore speech understanding in deaf persons by stimulating nerve
fibres of the auditory nerve by means of injected current pulses.  Such an
implant usually consists of an external part and an internal one.  Both
communicate with each other through a RF (radio frequency) link for both data
transport and power supply.  The external part is called the speech processor.
It is responsible for the transformation of the speech signal into meaningful
pulse sequences on different electrodes in the internal part.  These pulse
sequences are designed to allow electrical stimulation of different discrete
groups of auditory nerve fibres, in order to produce as many different sound
percepts as possible.  In fact, one of the important research topics is to find out
which is the best way to encode speech into electrical pulse patterns
stimulating the fibres of the auditory nerve.
This research is focussed on the time structure of the stimulating wave form
patterns, as well as on the frequency domain analysis of the speech signal.
One of the applications of the DAWG system is to test whether a new speech-
encoding strategy is correctly implemented in the speech processor.  To do
this, standard sentences are loaded in one of the DAWG cards.  The output of
this card is connected to the speech processor input, while the outputs of the
electrode contacts of the implant are connected to the input ports of other
DAWG cards.  While the first DAWG board generates the standard sentences,
the latter ones simultaneously and synchronously capture the pulse patterns
that would be delivered to the multichannel microelectrode of the cochlear
implant.  Afterwards the storage scope function allows one to display the stored
responses on a standard oscilloscope, while the window and zooming functions
allow detailed analysis of the multichannel responses.  Once an interesting part
of the signal has been isolated the windowed signal can be sent to a file or
printed on a laser printer for further analysis.  In addition, the stored data of the
output channels can be manipulated in the personal computer.  The adapted
pulse patterns can then be sent back to the DAWG to stimulate a patient or an
experimental animal with an implanted electrode, to test the modified speech-
processing strategy.
Figures 5 and 6 show examples of such an analysis of two different, though
related, processing techniques, the so-called continuous interleaved (CIS) and
phase-locked continuous interleaved strategy respectively.  The input signal
(the word /so/) is displayed on top of the time traces of the eight output channel
responses.  For both algorithms the speech signal is sent through eight
bandpass filters to generate biphasic output current pulses with amplitudes that
follow the envelope of the bandpass filter output signals.  These current pulses
are used to stimulate the electrodes in a sequential manner.  In the case of the
phase-locked CIS (figure 6) the biphasic pulses for channels  1 and 2 are
generated with a fixed phase relation to the bandpass filter output.  These
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channels correspond with low-frequency information, where in the physiological
situation phase locking of the neural response with the input signal is observed.
With the latter algorithm significantly better open set speech recognition was
achieved than with conventional methods  [2].
In the ENT Department of the Leiden University Hospital the DAWG system is
used as an electro-stimulator in cochlear implants research and for the
generation of the stimuli while simultaneously recording the patient's and
laboratory animal's responses in auditory brainstem response (ABR)
measurement [3] and electrocochleography [4,5].  Another audiological
application is the measurement of distortion product otoacoustic emissions [6],
which requires the generation of two sinusoids with varying frequency, while
sampling the sounds coming from the ear.  Several other applications of the
device are conceivable, e.g. in neurophysiology, to accomplish spike-triggered
averaging in single-fibre EMG (electromyography), [7], or to perform brain
electrical activity mapping (BEAM) [8]. Since the device is equipped with

Figure 5. Nine channels of the DAWG system used to test the continuous interleaved strategy for
speech processing in the LAURA cochlear implant.  Channel 0 is used to generate the
word /so/  at the input of the LAURA speech processor. Channels 1  - 8 are used to record
the speech processor output signals simultaneously and synchronously.
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current outputs it can also be used as an electrostimulator in order to test new
modes of electrical nerve stimulation, not only in cochlear implants but also in
other applications of functional electrical stimulation (FES) [9].
To conclude, it can be stated that the DAWG system presented here greatly
enhances the flexibility and speed in the evaluation of different speech
processing strategies for cochlear implants.  Its applicability however, is not
limited to this area and the system can be used anywhere in the field of
biomedical engineering.
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Figure 6. The same as figure 5, now for the phase-locked continuous interleaved strategy, in which
channels 1 and 2 are phase-locked to the input signal.
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In this chapter, the results of the individual studies described in this thesis will
be discussed and placed in a broader perspective.  The model of the
electrically stimulated guinea pig cochlea that is presented in this thesis consist
of two sub-models.  The first sub-model is a non-linear cable model of auditory
nerve fibres.  In chapters II, III and IV it is explained how this model is
constructed from voltage-clamp data in large motor fibres.  In fact, the resulting
auditory nerve fibre model is a special case of a more generally applicable
neural model.  It is shown that this model gives a good description of many
relevant aspects of the behaviour of mammalian myelinated nerve fibres of all
diameters, a.o. the shape and duration of the action potential, the spike
conduction velocity and the frequency following behaviour.
The auditory nerve fibre model receives its input from the other sub-model that
calculates the potential distribution in the cochlea due to the stimulating current
sources. A rotationally symmetric model representation of the cochlea is used,
that was created by rotating a cross-section from the base of the second turn of
a guinea pig cochlea around the mid-modiolar axis.  In this volume conductor
the potential distribution is computed at sites representing the locations of the
nodes of Ranvier of auditory nerve fibres from three successive cochlear turns.
The integrated model is applicable to predict the number, distribution and firing
patterns of excited auditory nerve fibres due various intra- and extracochlear
electrode configurations and stimulus waveforms.  One of the model
predictions is that the excitation profile of the auditory nerve due to biphasic
pulses on longitudinally directed bipolar intracochlear electrodes depends on
the inter-electrode spacing and the exact location of the electrodes in the scala
tympani.  This prediction was found to be in good agreement with experimental
EABR data in the cat (chapter V).  In chapter VI the model is applied to
investigate the influence of temporal stimulus parameters and electrode
configurations on the spatial selectivity that is attainable with cochlear implants.
An important conclusion in this chapter is that the use of charge-balanced
asymmetric rather than symmetric biphasic current pulses approximately
doubles the number of independent channels that can be applied in current
cochlear implant designs, like a configuration with radial electrode pairs would
also do.
This discussion will consist of three parts, the first considering the
computational modelling of mammalian myelinated nerve fibres for functional
electrical stimulation.  The second part will discuss the implementation of the
Boundary Element Method we used to solve the volume conduction problem in
the cochlea, while in the third part some suggestions for further research on the
basis of this study will be formulated.
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Modelling mammalian myelinated nerve fibres
Chapters II  - IV of this thesis deal with the development of a cable model of
mammalian myelinated nerve fibres with multiple non-linear nodes.  It is
shown, how models based on either amphibian (MSENN) or mammalian (SEF)
voltage-clamp data can give an adequate description of many aspects of the
behaviour of mammalian myelinated nerve fibres that are relevant for the
design of functional electrical stimulation devices.  To our knowledge, such
voltage-clamp data are only available for neural elements with diameters
above 10 µm and therefore there is no unequivocal explanation for the fact that
the duration of action potentials increases with decreasing fibre diameter
(Paintal, 1966).  As this is associated with an increased duration of the
refractory period and, as a consequence, lower maximum steady-state firing
rates (Paintal, 1978), this phenomenon is important in the light of modelling
nerve fibres for electrical prosthesis design.  In this thesis it is shown how
Paintal’s data on mammalian myelinated fibres can be matched by the SEF
model on the basis of an adapted version of a hypothesis Jack ( 1975)
formulated for amphibian unmyelinated nerve fibres.  This makes the
generalised SEF model not only applicable for simulating the responses of
auditory nerve fibres as it is done in this thesis, but also for studying the
recruitment characteristics of extraneural and intrafascicular electrodes used in
the field of functional electrical stimulation ( Veltink et al., 1988 ; Rijkhoff et al.,
1994).  Traditionally, researchers in this field make use of neural models that -
 like the SEF model  - treat the internodal myelin as a perfect insulator.
Rubinstein (1991) argued from analysis of a passive cable model that this
assumption, which was first introduced by McNeal ( 1976), will lead to an
underestimation of the strength/duration time constant.  Simulations with a
version the SEF model that incorporated a physiologically based internodal
time constant, revealed however, that this effect is limited.  On the other hand,
the introduction of an internodal time constant has serious impact on both the
spike shape and spike conduction properties (see chapter  III). This conclusion
also holds for more sophisticated computational models that take into account
many anatomical and physiological details, including active ion channels under
the myelin sheath (Halter and Clark, 1991).  To explain this discrepancy and
other phenomena regarding the initiation and propagation of action potentials in
mammalian myelinated nerve fibres that are not yet fully understood
(Rubinstein, 1991) further experimental effort is needed.  To test the hypothesis
formulated in chapter IV of this thesis, it would be very interesting if voltage-
clamp measurements in thinner nerve fibres would be performed.
Several other extensions of the generalised SEF model are conceivable, e.g.
the introduction of stochastic parameters to simulate membrane noise ( Ball and
Rice, 1992) or the introduction of slow-gated potassium channels (Halter and
Clark, 1991) in the nodal membrane.  The latter extension may be necessary if
prolonged changes in the excitability of the auditory nerve after
electrostimulation (Kilian, 1994) are to be described by the model.
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The boundary element method with second order
interpolation functions
For the computation of the potential field in the cochlea due to the stimulating
electrodes the Boundary Element Method (BEM) was used in chapters V en VI.
As discussed there, a major advantage of the BEM over the finite element
method as applied by Finley and Wilson ( 1990) is the relative ease of mesh
generation, as this involves only the boundaries between media of different
conductivity ( Brebbia and Dominguez, 1992).  Quadratic interpolation functions
were used both to define the curved mesh elements and for interpolating the
potential on these elements.  This was done to ensure maximum accuracy with
a minimum number of mesh points, especially with respect to the second order
derivative of the potential to the place, as this is closely related to the excitation
of myelinated nerve fibres (activating function; Rattay, 1989).  Calculations on
cylindrical test configurations for which an analytical solution could be derived
(Gootzen et al., 1989) showed that this method is indeed superior in this
respect to methods that use constant potentials on plain triangles ( Meijs et al.,
1989) or linear interpolation on plain triangles ( De Munck, 1992).  We have
also tested the method on the problem of four concentric spheres, which is a
commonly used, simplified model of the head in EEG studies.  For this problem
an analytic solution for the potential on the outer surface due to a dipole source
in the inner sphere is available ( Cuffin and Cohen, 1979).  Whereas previous
implementations of the BEM tended to predict potentials that are systematically
too high by a factor 3 or more ( Meijs et al., 1989 ), we found the method to be
superior again, as it yields - when applied to the same number of mesh points  -
potentials that do not deviate systematically from the analytic solution by more
than a few percent (Frijns et al., 1995).
Whereas the BEM as used in this thesis encompasses solely volumes with an
isotropic conductivity, it is possible to expand its use to situations with
anisotropic media by means of a co-ordinate transformation ( Van Der Weiden
and De Hoop, 1989; Zhou, 1994).  This results in an extra equation with an
extra unknown variable for each mesh point on the boundary of an anisotropic
medium, for not only the potential on this boundary but also the current flow
through this boundary enters the set of equations defining the BEM formulation
of the problem.  We have implemented and tested this extension in
combination with the use of second order interpolation functions on the above-
mentioned configuration with three co-axial cylinders.  From comparison with
the analytic solution we arrived again at the conclusion that the use of second
order interpolation functions reduces the computational error significantly.  This
result is not only applicable to model the anisotropy that is present in the
modiolus of the cochlea, as suggested in chapter V, but also in other fields of
functional electrical stimulation where a limited number of anisotropy axes is
present, e.g. in epidural spinal cord stimulation ( Struijk et al., 1992 ).

Suggestions for further research
In the modelling work presented here several simplifying assumptions were
made.  One of the most evident simplifications is the use of a rotationally
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symmetric cochlea model rather than a full three-dimensional spiral.  Although
this model enables us to study a wide variety of patient and device related
issues as demonstrated in chapter VI, simultaneous stimulation of electrodes
located in or over different cochlear turns cannot be addressed adequately.
The generation of a full spiralling mesh or, which is less difficult to accomplish,
the use of multiple rotationally symmetric cochlear turns on top of one another,
would enhance the model in this respect.
Another simplification, that will certainly have its influence on the model
predictions is the use of point sources instead of macro-electrodes, as was
illustrated previously in a two-dimensional model ( Finley et al., 1987 ).  Future
versions of the model will therefore have to include large surface area
electrodes, while also the insulator that usually serves as the electrode carrier
will have to be incorporated in the model.
A quasi-static approach was used to solve the volume conduction problem.  In
this approximation the fields and potentials at any given instant in time are
determined by the properties of the sources at that same instant only.  This
means that the electrical conductivity of all cochlear tissues is considered to be
frequency independent (Van Oosterom, 1991).  As a consequence, the
capacitive influence of e.g., the thin membranes surrounding the scala media is
neglected.  Spelman et al. (1982) showed that this assumption holds up to
approximately 12  kHz, while the signals typically applied in cochlear implants
contain components close to this frequency.  Therefore, a future extension of
the model that allows for complex impedances will probably give a better
description of the in vivo situation.  The price that will have to be paid for this
refinement is a significant increase in computational effort, especially when
computing the neural responses to various temporal waveforms, since the
transfer function for each electrode to each individual node of Ranvier will be
frequency dependent in a different way.
The proof of the pudding is in the eating.  In this context this means that the
model predictions should be verified experimentally.  These experiments are
currently going on in our laboratory, using the guinea pig as the experimental
animal.  An important topic of interest in these experiments, both from the
viewpoint of modelling and from its clinical interest, is to test the model’s
prediction that the number of independent channels in a cochlear implant with
longitudinal electrodes can be doubled by the application of asymmetric
biphasic pulses.  Such experiments should also be performed in patients
implanted with a cochlear implant, using both electrophysiological (EABR) and
psychophysical methods.
The latter experiments are essential, for, even if the model’s predictions of
neural excitation in the guinea pig would be perfect, there is still an important
question to be answered: To what extent can simulation and experimental data
obtained from a (hearing or deafened) laboratory animal be extrapolated to the
situation in deaf patients?  Of course there is no general answer to this
question.  Pfingst ( 1988) addressed this question before.  He concluded that
animal models, at least nonhuman primates, probably provide a close match to
humans, although neurophysiological studies invariably indicate higher
thresholds to electrical stimulation than psychophysical ones.  A few additional
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remarks, specific to our situation, can be made.  First, there are gross anatomic
differences between the guinea pig and primates.  The dimensions of the
guinea pig inner, middle and outer ear are much smaller than the human one,
and the human cochlea is deeply embedded in the petrous bone instead of
projecting into an air containing bulla.  Moreover, there is electronmicroscopic
evidence that approximately 2 percent or less of human spiral ganglion cell
bodies is myelinated, while this is the case for over 90 percent of such cell in
other species, including guinea pigs and monkeys ( Arnold,1987).  Apart from
this, there exist several other differences among species in the organ of Corti
and the cochlear innervation pattern ( Nadol, 1988).  These and possibly other
unknown differences will probably have their impact on the clinical outcome of
stimulating the auditory nerve by cochlear implants.  Computational models
that take into account the known differences may help to understand the
differences encountered between animal experiments and clinical results.
Then, as anywhere in (bio-)physics, models like the one presented in this thesis
will permit specification of more rigorous experimental questions, organised
within a theoretical framework, and provide a plan which will guide the
development of knowledge and technology in the field.
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Cochlear implants are electronic devices intended to restore the sense of
hearing in people with profound sensorineural hearing loss.  They work by
electrically stimulating the spiral ganglion cells that are still present in the deaf
inner ear.  Despite many promising results with patients that gained open-set
speech understanding without the help of lip-reading, the clinical outcome in an
individual patient is hardly to predict.  It seems to depend on the complex
interplay of various patient and device related factors that are not yet fully
understood.  The work presented in this thesis aims at getting a better
understanding of the fundamental processes that are involved in the process of
electrically stimulating the inner ear.  It is part of the Leiden University cochlear
implant research program that is outlined in chapter i of this thesis.
In that chapter a short review of relevant topics regarding cochlear implants is
given, using a scheme that classifies the different cochlear implant designs on
the basis of the number and location of the stimulating electrodes.  It is
explained that there exist some fundamentally different ways to process the
sound signal into electrical stimuli and that it is not yet clear which way is the
best.  In this introductory chapter also the advantages and disadvantages of
extracochlear electrodes relative to intracochlear ones are discussed.  The last
part of chapter i presents an overview the main questions addressed in this
thesis.
The main topic of this thesis is the development of a computational model of
the electrically stimulated cochlea.  It consists of two sub-models, the first one
calculating the potential distribution in the neural compartment of the inner ear.
This potential field, in turn, is used as the input signal for the second sub-
model, which is an active, non-linear model of the auditory nerve fibres.
Chapter ii  draws attention to the fact that previous neural models provide a
good qualitative description of many aspects of neural behaviour, but that they
fall short quantitatively in several respects when stimulation of mammalian
nerve fibres is considered.  It is shown that a good fit is obtained between the
shape, duration and conduction velocity of simulated and in vivo action
potentials in mammalian motor neurons, if the effects of temperature are
incorporated in an existing amphibian-based nerve fibre model and a realistic
nerve fibre morphology is introduced.  The resulting MSENN model also
correctly describes the refractory behaviour of real nerve fibres.  The
simulation data lead to the conclusion that single-node models cannot replace
a multiple non-linear node model as the maximum steady-state firing rates are
limited by impulse conduction properties rather than by the frequency following
behaviour of a single node.
In the last decades, there was growing evidence that mammalian nerve fibre
kinetics is governed by rules that differ from those describing amphibian fibres.
Essentially, the difference is that mammalian fibres have far less active
potassium channels in the nodal area and that, as a consequence of this, the
repolarisation of the nerve fibre’s membrane in the falling phase of the action
potential occurs mainly due to a relatively large leak conductance.  The non-
linear node SEF nerve fibre model described in chapter iii  of this thesis
contains nodal kinetics based upon voltage-clamp measurements in large rat
and cat motor fibres at 37°C.  The resulting spike shape, conduction velocity,
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strength/duration behaviour and absolute and relative refractory period are in
good quantitative agreement with published experimental data from large
mammalian fibres (with axon diameters above 10  µm) at normal body
temperature and at 20°C.  In addition, the model generates realistic abortive
spikes towards the end of the absolute refractory period and it can describe the
consequences of repetitive firing adequately.
For the purpose of our cochlear implant project we were interested in a model
of primary auditory nerve fibres, which have axon diameters between 2 and
3 µm.  Unfortunately, no voltag e-clamp data are currently available for such
thin fibres.  If the MSENN and SEF model are scaled down geometrically, the
simulated spike conduction velocity varies linearly with fibre diameter, which is
acceptable in view of the available experimental data, but the shape of the
action potential does not change with fibre diameter.  However, it is known
from literature that the action potentials of thinner nerve fibres last longer and
that these increased spike durations are associated with prolonged refractory
periods.  In chapter iv  of this thesis it is hypothesised that this phenomenon
results from the fact that the specific nodal properties vary with fibre diameter.
It is demonstrated how the SEF model can be generalised to include fibres of
different diameter on the basis of this hypothesis.  The resulting model, of
which the parameters were obtained by fitting the duration of the falling phase
of the simulated action potential to experimental data, is shown to have also a
rise time of the action potential that is within physiological ranges for all fibre
diameters.  Moreover, the model exhibits a non-linear, sigmoidal, relationship
between the spike conduction velocity and fibre diameter, while such a non-
linear relationship was inferred previously from electromyographic data.
With this generalised form of the SEF model we constructed an anatomically-
based model of an auditory nerve fibre.  It produces realistic spike shapes
and - what is more important for the desired ap plication - its maximum firing
rates are in good correspondence with experimental observations.
This model is applied in chapter v of this thesis to simulate the neural
response to the electrical field due to intracochlear electrodes.  This potential
field is calculated with an implementation of the boundary element method
that - unlike previous studies in the field of biomedical engineering  - uses
quadratically curved triangular elements to represent the boundaries between
media with different conductivities.  The application of curved elements
ensures a better approximation of the contours of the cross-section of a guinea
pig cochlea that was used to construct the mesh of the model.  The fact that
the potential is interpolated quadratically on these surface elements further
improves the accuracy of the solution.  Whereas previous volume conduction
models of the cochlea consist of lumped circuits or use an unrolled cochlear
duct, the present field model is rotation symmetric about a common mid-
modiolar axis.  Also the fact that the model incorporates three arrays of actively
modelled spiral ganglion cells extends the model beyond the previously
published modelling work.  The resultant model predicts that the exact location
in the scala tympani of intracochlear electrodes has a strong influence on both
the excitation thresholds and selectivity of stimulation.  These model results are
shown to be in good agreement with published experimental electrical auditory
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brainstem response data.  It is also demonstrated that the use of actively
modelled nerve fibres is essential to obtain correct predictions for the biphasic
stimuli typically used in cochlear implants and that unrolling the cochlear duct
has serious consequences for the predictions regarding modiolar stimulation.
In chapter vi  the rotation symmetric model is applied to study the influence of
temporal stimulus parameters and electrode configurations on the spatial
selectivity obtained with cochlear implants.  To quantify this spatial selectivity
a Q10 dB is defined, which measures the sharpness of the peak in the excitation
profile of the auditory nerve.  The simulated excitation profiles are compared to
auditory single fibre data from literature.  The results presented in this chapter
indicate that the use of charge-balanced asymmetric rather than symmetric
biphasic pulses approximately doubles the number of independent channels
that can be applied in a cochlear implant, like a configuration with radial
electrode pairs using symmetric biphasic pulse stimulation would also do.  The
influence on selectivity of the actual variation in diameter of the cochlear nerve
fibres and by a possible loss of their peripheral processes is also studied.
The next step in our research project is formed by the experimental verification
of the model predictions by performing electrophysiological measurements in
guinea pigs that have been chronically implanted with extracochlear electrodes.
For these measurements a multichannel synchronous data acquisition and
waveform generator (DAWG) system with voltage inputs and voltage and
current outputs was developed.  This system is described in chapter vii  of this
thesis.  It consists of up to 16 independent DAWG cards which each have their
own microcontroller, signal memory and high-speed analog-to-digital and
digital-to-analog converter.  The device is controlled from a personal computer
and includes elaborate hardware and software triggering options.  The flexibility
of the system makes it widely applicable in the field of biomedical engineering.
Chapter viii  summarises the most important results of this thesis and discusses
them in a more general context.  Attention is paid to the implications and
possible areas of application of the neural modelling work and also to the
boundary element method with second order interpolation functions as it was
developed alongside with this project.  Finally, it comes to the formulation of
suggestions for further modelling, animal, and clinical research with this thesis
as a starting point.
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Electrische binnenoorprothesen (cochlear implants) zijn electronische hulp-
middelen, waarmee aan doven een gehoorsensatie kan worden gegeven door
de spirale ganglioncellen die nog aanwezig zijn in het beschadigde binnenoor
electrisch te prikkelen. Ondanks veelbelovende resultaten bij patiënten die
hiermee in staat blijken een gesprek te kunnen voeren zonder gebruikmaking
van spraakafzien, is het klinische resultaat in een individuele patiënt nauwelijks
voorspelbaar. Dit blijkt namelijk afhankelijk te zijn van het complexe samenspel
van diverse, nog niet geheel begrepen factoren, die zowel met de patiënt als
met het implantaat samenhangen. Het onderzoek dat in dit proefschrift
beschreven wordt, poogt te komen tot een beter begrip van de fundamentele
processen die betrokken zijn bij het electrisch stimuleren van het binnenoor.
Het maakt deel uit van het onderzoeksprogramma electrische
binnenoorprothesen van de Leidse Universiteit, zoals dat uiteengezet wordt in
hoofdstuk 1 van dit proefschrift.
In dat hoofdstuk wordt een kort overzicht over een aantal relevante zaken met
betrekking tot electrische binnenoorprothesen gegeven aan de hand van een
schema dat de verschillende cochlear implants classificeert op basis van het
aantal en de plaats van de electroden. Vervolgens wordt uitgelegd dat er een
aantal principieel verschillende manieren zijn om het geluidsignaal te vertalen
in electrische signalen en dat het nog niet duidelijk is welke methode het beste
is. In dit inleidende hoofdstuk wordt ook ingegaan op de voor- en nadelen van
extracochleaire electroden ten opzichte van intracochleaire. Het slot van
hoofdstuk I geeft een overzicht over de belangrijkste vragen die in dit
proefschrift aan de orde komen.
Het hoofdonderwerp van dit proefschrift is de ontwikkeling van een
computermodel van de cochlea onder electrische stimulatie. Het bestaat uit
twee sub-modellen, waarvan het eerste de potentiaalverdeling uitrekent ter
plaatse van de zenuwvezels in de cochlea. Op zijn beurt is deze potentiaal-
verdeling weer het invoersignaal voor het tweede sub-model, een actief, niet-
lineair model van de vezels van de gehoorzenuw.
Hoofdstuk ii  vestigt de aandacht op het feit dat bestaande zenuwmodellen
weliswaar een goede kwalitatieve beschrijving van verscheidene aspecten van
het gedrag van zenuwvezels geven, maar dat deze modellen niet bruikbaar zijn
om electrische stimulatie van zenuwvezels in zoogdieren kwantitatief te
beschrijven. Hier wordt aangetoond, dat uitgaand van een bestaand model van
amfibie-neuronen, een goede overeenstemming bereikt wordt tussen de vorm,
duur en voortgeleidingssnelheid van gesimuleerde en echte actiepotentialen in
zoogdierzenuwvezels, als temperatuureffecten meegenomen worden en een
realistische vezel morfologie wordt geïntroduceerd. Het resulterende MSENN
model beschrijft tevens het refractaire gedrag van echte zenuwvezels op
realistische wijze. De simulatieresultaten laten zien dat modellen, bestaande uit
één knoop van Ranvier, kabelmodellen met een aantal niet-lineaire knopen niet
kunnen vervangen, omdat de maximale vuurfrequenties niet alleen bepaald
worden door het frequentie-volggedrag van de afzonderlijke knopen maar ook
door de impulsgeleidingseigenschappen van de vezel.
De laatste tientallen jaren werd het meer en meer duidelijk dat de kinetiek van
zoogdierzenuwvezels wordt beheerst door andere regels dan die van amphibie-
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neuronen. Het belangrijkste verschil is dat zoogdiervezels veel minder actieve
kaliumkanalen hebben in de knoop van Ranvier en dat als gevolg daarvan de
repolarisatie van het celmembraan tijdens de dalende fase van de actie-
potentiaal voornamelijk berust op een relatief grote lekgeleidbaarheid.  In het
niet-lineaire SEF zenuwvezelmodel dat beschreven wordt in hoofdstuk iii  van
dit proefschrift wordt dan ook een kinetiek toegepast die gebaseerd is op
zogenaamde voltage-clamp metingen aan dikke ratte- en kattemotorvezels
bij 37°C. De vorm en geleidingssnelheid, de sterkte/duurrelatie en de absolute
en relatieve refractaire periode van dit model zijn in goede, kwantitatieve
overeenstemming met gepubliceerde gegevens over dikke zoogdier zenuw-
vezels (met axon diameters boven 10  µm), zowel bij normale lichaams-
temperatuur als bij 20°C. Bovendien genereert het model realistische, niet
voortgeleide actiepotentialen tegen het einde van de absoluut refractaire
periode en kan het de gevolgen van herhaalde stimulatie adequaat
beschrijven.
Voor toepassing binnen ons cochlear implant project waren we geïnteresseerd
in een model van primaire auditieve zenuwvezels, die een axondiameter
hebben tussen 2 en 3 µm. Helaas zijn op dit moment geen voltage-clamp
metingen beschikbaar voor zulke dunne vezels. Als het MSENN en SEF model
geometrisch verkleind worden verandert de actiepotentiaal geleidingssnelheid
recht evenredig met de vezeldiameter, wat acceptabel is gezien de
beschikbare experimentele gegevens, maar de vorm van de actiepotentiaal
hangt niet van de diameter af. Het is echter uit de literatuur bekend, dat de
actiepotentialen van dunnere vezels langer duren en dat deze langere
actiepotentialen gepaard gaan met langere refractaire perioden. In hoofdstuk
iv  van dit proefschrift wordt de hypothese geformuleerd, dat dit fenomeen het
gevolg is van het feit dat de nodale eigenschappen per eenheid van oppervlak
variëren met de vezeldiameter. Het wordt gedemonstreerd hoe het SEF model
op basis van deze hypothese gegeneraliseerd kan worden, zodat het vezels
van uiteenlopende diameter kan beschrijven. Het resulterende model, waarvan
de parameters verkregen werden door de duur van de dalende flank van de
actiepotentiaal te schalen aan de hand van experimentele gegevens, blijkt ook
voor alle vezeldiameters een stijgtijd van de actiepotentiaal te hebben die
binnen fysiologische grenzen valt. Bovendien vertoont dit model een niet-
lineair, S -vormig verband tussen de actiepotentiaalgeleidingssnelheid en de
vezeldiameter, wat voorheen al afgeleid was uit electromyografische metingen.
Met deze gegeneraliseerde vorm van het SEF model hebben we aan de hand
van anatomische gegevens een model van een auditieve zenuwvezel
geconstrueerd. Het produceert realistische actiepotentiaalvormen en - wat
belangrijker is voor de beoogde toepassing  - de maximale vuurfrequenties zijn
in goede overeenstemming met experimentele waarnemingen.
Dit model wordt in hoofdstuk v van dit proefschrift toegepast om de neurale
responsies op het electrische veld ten gevolge van intracochleaire electroden
te simuleren. Deze potentiaalverdeling wordt berekend met de oppervlakte
integraalmethode. De gekozen implementatie maakt - in tegenstelling tot
eerdere onderzoeken op biomedisch terrein - gebruik van kwadratisch
gekromde driehoekselementen om de grenslagen tussen media met



180   Samenvatting

verschillende geleidbaarheid te beleggen. Door de toepassing van gekromde
elementen wordt een betere benadering verkregen van de contouren van de
doorsnede door een cavia-cochlea, die gebruikt is om het volume-
geleidingsmodel te bouwen. Het feit dat de potentiaal kwadratisch geïnter-
poleerd wordt op deze oppervlakte-elementen komt de nauwkeurigheid van de
oplossing verder ten goede. Waar eerdere volumegeleidingsmodellen van de
cochlea bestaan uit samengestelde, discrete electrische componenten of een
ontrolde ductus cochlearis gebruiken, is het hier gepresenteerde model rotatie-
symmetrisch om een as door het centrum van de modiolus. Ook het feit dat het
model drie rijen actief gemodelleerde spirale ganglioncellen bevat, is een
uitbreiding ten opzichte van eerder gepubliceerd modelwerk. Het resulterende
model voorspelt dat de exacte positie in de scala tympani van intracochleaire
electroden een sterke invloed heeft op zowel de excitatiedrempels als de
selectiviteit van stimulatie. Deze modelresultaten blijken goed in overeen-
stemming te zijn met uit de literatuur bekende experimentele gegevens van
electrisch opgewekte auditieve hersenstam potentialen. Verder blijkt het gebruik
van actief gemodelleerde zenuwvezels essentieel te zijn om goede
voorspellingen te verkrijgen voor de bifasische pulsen die in het algemeen
gebruikt worden bij cochlear implants, terwijl het ontrollen van de cochlea een
sterke invloed heeft op de voorspellingen met betrekking tot stimulatie van
vezels in de modiolus.
In hoofdstuk vi  wordt het rotatie-symmetrisch model toegepast om de invloed
te bestuderen van temporele stimulusparameters en van de electrode
configuratie op de spatiële selectiviteit die met cochlear implants bereikt kan
worden. Om deze spatiële selectiviteit te kwantificeren wordt een Q10 dB-waarde
gedefinieerd, die een maat is voor de breedte van de piek in het excitatieprofiel
van de gehoorzenuw. De gesimuleerde excitatieprofielen worden vergeleken
met enkele-vezelmetingen uit de literatuur. De resultaten uit dit hoofdstuk
geven aan, dat het gebruik van ladingsgebalanceerde, asymmetrische
bifasische pulsen in plaats van de gebruikelijke symmetrische, het aantal
onafhankelijke kanalen dat toegepast kan worden in een electrische
binnenoorprothese ongeveer verdubbelt, net zoals het geval is bij gebruik van
symmetrische bifasische pulsen op radiaire electrodeparen. Verder wordt de
invloed die de bestaande variatie in diameter tussen de vezels van de
gehoorzenuw heeft op de selectiviteit bestudeerd, alsmede de invloed hierop
van een eventueel verlies van de perifere uitloper van deze vezel.
De volgende stap in ons onderzoeksproject wordt gevormd door de
experimentele verificatie van de modelvoorspellingen door middel van electro-
fysiologische metingen in cavia’s met chronisch geïmplanteerde
extracochleaire electroden. Voor deze metingen werd een meerkanaals,
synchroon signaalacquisitie en -generatorsysteem (S.A.G.) ontwikkeld met
spanningsingangen en spannings- en stroomuitgangen. Dit systeem wordt
beschreven in hoofdstuk vii  van dit proefschrift. Het bestaat uit maximaal 16
onafhankelijke S.A.G.-kaarten die elk hun eigen microprocessor eenheid,
geheugen voor signaalopslag en snelle analoog naar digitaal en digitaal naar
analoog converter hebben. Het apparaat wordt bestuurd vanuit een personal
computer en heeft uitgebreide hardware en software triggermogelijkheden. De
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flexibiliteit van het systeem maakt het breed inzetbaar op het gebied van
biomedisch onderzoek.
Hoofdstuk viii  zet de belangrijkste resultaten uit dit proefschrift op een rijtje en
bediscussieerd ze in een ruimer kader. Daarbij wordt ingegaan op de
implicaties en mogelijke toepassingen van het aan zenuwvezels verrichte
modelwerk en de ruimere toepasbaarheid van de in het kader van dit
onderzoek ontwikkelde oppervlakte integraalmethode met tweede orde
interpolatiefuncties. Tenslotte worden suggesties voor verder modelmatig,
dierexperimenteel en patiënt gebonden onderzoek op basis van de hier
verkregen gegevens geformuleerd.
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